1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-04 09:09:56 +00:00
freebsd/sys/kern/vfs_cache.c
Konstantin Belousov bde575b273 kern___realpathat(): honor uio_seg argument
Reviewed by:	markj
Sponsored by:	The FreeBSD Foundation
MFC after:	1 week
Differential revision:	https://reviews.freebsd.org/D47739
2024-11-25 21:36:41 +02:00

6398 lines
161 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1989, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Poul-Henning Kamp of the FreeBSD Project.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include "opt_ddb.h"
#include "opt_ktrace.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/capsicum.h>
#include <sys/counter.h>
#include <sys/filedesc.h>
#include <sys/fnv_hash.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/fcntl.h>
#include <sys/jail.h>
#include <sys/mount.h>
#include <sys/namei.h>
#include <sys/proc.h>
#include <sys/seqc.h>
#include <sys/sdt.h>
#include <sys/smr.h>
#include <sys/smp.h>
#include <sys/syscallsubr.h>
#include <sys/sysctl.h>
#include <sys/sysproto.h>
#include <sys/vnode.h>
#include <ck_queue.h>
#ifdef KTRACE
#include <sys/ktrace.h>
#endif
#ifdef INVARIANTS
#include <machine/_inttypes.h>
#endif
#include <security/audit/audit.h>
#include <security/mac/mac_framework.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#include <vm/uma.h>
/*
* High level overview of name caching in the VFS layer.
*
* Originally caching was implemented as part of UFS, later extracted to allow
* use by other filesystems. A decision was made to make it optional and
* completely detached from the rest of the kernel, which comes with limitations
* outlined near the end of this comment block.
*
* This fundamental choice needs to be revisited. In the meantime, the current
* state is described below. Significance of all notable routines is explained
* in comments placed above their implementation. Scattered thoroughout the
* file are TODO comments indicating shortcomings which can be fixed without
* reworking everything (most of the fixes will likely be reusable). Various
* details are omitted from this explanation to not clutter the overview, they
* have to be checked by reading the code and associated commentary.
*
* Keep in mind that it's individual path components which are cached, not full
* paths. That is, for a fully cached path "foo/bar/baz" there are 3 entries,
* one for each name.
*
* I. Data organization
*
* Entries are described by "struct namecache" objects and stored in a hash
* table. See cache_get_hash for more information.
*
* "struct vnode" contains pointers to source entries (names which can be found
* when traversing through said vnode), destination entries (names of that
* vnode (see "Limitations" for a breakdown on the subject) and a pointer to
* the parent vnode.
*
* The (directory vnode; name) tuple reliably determines the target entry if
* it exists.
*
* Since there are no small locks at this time (all are 32 bytes in size on
* LP64), the code works around the problem by introducing lock arrays to
* protect hash buckets and vnode lists.
*
* II. Filesystem integration
*
* Filesystems participating in name caching do the following:
* - set vop_lookup routine to vfs_cache_lookup
* - set vop_cachedlookup to whatever can perform the lookup if the above fails
* - if they support lockless lookup (see below), vop_fplookup_vexec and
* vop_fplookup_symlink are set along with the MNTK_FPLOOKUP flag on the
* mount point
* - call cache_purge or cache_vop_* routines to eliminate stale entries as
* applicable
* - call cache_enter to add entries depending on the MAKEENTRY flag
*
* With the above in mind, there are 2 entry points when doing lookups:
* - ... -> namei -> cache_fplookup -- this is the default
* - ... -> VOP_LOOKUP -> vfs_cache_lookup -- normally only called by namei
* should the above fail
*
* Example code flow how an entry is added:
* ... -> namei -> cache_fplookup -> cache_fplookup_noentry -> VOP_LOOKUP ->
* vfs_cache_lookup -> VOP_CACHEDLOOKUP -> ufs_lookup_ino -> cache_enter
*
* III. Performance considerations
*
* For lockless case forward lookup avoids any writes to shared areas apart
* from the terminal path component. In other words non-modifying lookups of
* different files don't suffer any scalability problems in the namecache.
* Looking up the same file is limited by VFS and goes beyond the scope of this
* file.
*
* At least on amd64 the single-threaded bottleneck for long paths is hashing
* (see cache_get_hash). There are cases where the code issues acquire fence
* multiple times, they can be combined on architectures which suffer from it.
*
* For locked case each encountered vnode has to be referenced and locked in
* order to be handed out to the caller (normally that's namei). This
* introduces significant hit single-threaded and serialization multi-threaded.
*
* Reverse lookup (e.g., "getcwd") fully scales provided it is fully cached --
* avoids any writes to shared areas to any components.
*
* Unrelated insertions are partially serialized on updating the global entry
* counter and possibly serialized on colliding bucket or vnode locks.
*
* IV. Observability
*
* Note not everything has an explicit dtrace probe nor it should have, thus
* some of the one-liners below depend on implementation details.
*
* Examples:
*
* # Check what lookups failed to be handled in a lockless manner. Column 1 is
* # line number, column 2 is status code (see cache_fpl_status)
* dtrace -n 'vfs:fplookup:lookup:done { @[arg1, arg2] = count(); }'
*
* # Lengths of names added by binary name
* dtrace -n 'fbt::cache_enter_time:entry { @[execname] = quantize(args[2]->cn_namelen); }'
*
* # Same as above but only those which exceed 64 characters
* dtrace -n 'fbt::cache_enter_time:entry /args[2]->cn_namelen > 64/ { @[execname] = quantize(args[2]->cn_namelen); }'
*
* # Who is performing lookups with spurious slashes (e.g., "foo//bar") and what
* # path is it
* dtrace -n 'fbt::cache_fplookup_skip_slashes:entry { @[execname, stringof(args[0]->cnp->cn_pnbuf)] = count(); }'
*
* V. Limitations and implementation defects
*
* - since it is possible there is no entry for an open file, tools like
* "procstat" may fail to resolve fd -> vnode -> path to anything
* - even if a filesystem adds an entry, it may get purged (e.g., due to memory
* shortage) in which case the above problem applies
* - hardlinks are not tracked, thus if a vnode is reachable in more than one
* way, resolving a name may return a different path than the one used to
* open it (even if said path is still valid)
* - by default entries are not added for newly created files
* - adding an entry may need to evict negative entry first, which happens in 2
* distinct places (evicting on lookup, adding in a later VOP) making it
* impossible to simply reuse it
* - there is a simple scheme to evict negative entries as the cache is approaching
* its capacity, but it is very unclear if doing so is a good idea to begin with
* - vnodes are subject to being recycled even if target inode is left in memory,
* which loses the name cache entries when it perhaps should not. in case of tmpfs
* names get duplicated -- kept by filesystem itself and namecache separately
* - struct namecache has a fixed size and comes in 2 variants, often wasting
* space. now hard to replace with malloc due to dependence on SMR, which
* requires UMA zones to opt in
* - lack of better integration with the kernel also turns nullfs into a layered
* filesystem instead of something which can take advantage of caching
*
* Appendix A: where is the time lost, expanding on paragraph III
*
* While some care went into optimizing lookups, there is still plenty of
* performance left on the table, most notably from single-threaded standpoint.
* Below is a woefully incomplete list of changes which can help. Ideas are
* mostly sketched out, no claim is made all kinks or prerequisites are laid
* out.
*
* Note there is performance lost all over VFS.
*
* === SMR-only lookup
*
* For commonly used ops like stat(2), when the terminal vnode *is* cached,
* lockless lookup could refrain from refing/locking the found vnode and
* instead return while within the SMR section. Then a call to, say,
* vop_stat_smr could do the work (or fail with EAGAIN), finally the result
* would be validated with seqc not changing. This would be faster
* single-threaded as it dodges atomics and would provide full scalability for
* multicore uses. This would *not* work for open(2) or other calls which need
* the vnode to hang around for the long haul, but would work for aforementioned
* stat(2) but also access(2), readlink(2), realpathat(2) and probably more.
*
* === hotpatching for sdt probes
*
* They result in *tons* of branches all over with rather regrettable codegen
* at times. Removing sdt probes altogether gives over 2% boost in lookup rate.
* Reworking the code to patch itself at runtime with asm goto would solve it.
* asm goto is fully supported by gcc and clang.
*
* === copyinstr
*
* On all architectures it operates one byte at a time, while it could be
* word-sized instead thanks to the Mycroft trick.
*
* API itself is rather pessimal for path lookup, accepting arbitrary sizes and
* *optionally* filling in the length parameter.
*
* Instead a new routine (copyinpath?) could be introduced, demanding a buffer
* size which is a multiply of the word (and never zero), with the length
* always returned. On top of it the routine could be allowed to transform the
* buffer in arbitrary ways, most notably writing past the found length (not to
* be confused with writing past buffer size) -- this would allow word-sized
* movs while checking for '\0' later.
*
* === detour through namei
*
* Currently one suffers being called from namei, which then has to check if
* things worked out locklessly. Instead the lockless lookup could be the
* actual entry point which calls what is currently namei as a fallback.
*
* === avoidable branches in cache_can_fplookup
*
* The cache_fast_lookup_enabled flag check could be hotpatchable (in fact if
* this is off, none of fplookup code should execute).
*
* Both audit and capsicum branches can be combined into one, but it requires
* paying off a lot of tech debt first.
*
* ni_startdir could be indicated with a flag in cn_flags, eliminating the
* branch.
*
* === mount stacks
*
* Crossing a mount requires checking if perhaps something is mounted on top.
* Instead, an additional entry could be added to struct mount with a pointer
* to the final mount on the stack. This would be recalculated on each
* mount/unmount.
*
* === root vnodes
*
* It could become part of the API contract to *always* have a rootvnode set in
* mnt_rootvnode. Such vnodes are annotated with VV_ROOT and vnlru would have
* to be modified to always skip them.
*
* === inactive on v_usecount reaching 0
*
* VOP_NEED_INACTIVE should not exist. Filesystems would indicate need for such
* processing with a bit in usecount.
*
* === v_holdcnt
*
* Hold count should probably get eliminated, but one can argue it is a useful
* feature. Even if so, handling of v_usecount could be decoupled from it --
* vnlru et al would consider the vnode not-freeable if has either hold or
* usecount on it.
*
* This would eliminate 2 atomics.
*/
static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"Name cache");
SDT_PROVIDER_DECLARE(vfs);
SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *",
"struct vnode *");
SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *",
"struct vnode *");
SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *",
"char *");
SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *",
"const char *");
SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *",
"struct namecache *", "int", "int");
SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *");
SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *",
"char *", "struct vnode *");
SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *");
SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int",
"struct vnode *", "char *");
SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *",
"struct vnode *");
SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative,
"struct vnode *", "char *");
SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *",
"char *");
SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *",
"struct componentname *");
SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *",
"struct componentname *");
SDT_PROBE_DEFINE3(vfs, namecache, purge, done, "struct vnode *", "size_t", "size_t");
SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int");
SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *");
SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *");
SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *",
"struct vnode *");
SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *",
"char *");
SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *",
"char *");
SDT_PROBE_DEFINE1(vfs, namecache, symlink, alloc__fail, "size_t");
SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool");
SDT_PROBE_DECLARE(vfs, namei, lookup, entry);
SDT_PROBE_DECLARE(vfs, namei, lookup, return);
static char __read_frequently cache_fast_lookup_enabled = true;
/*
* This structure describes the elements in the cache of recent
* names looked up by namei.
*/
struct negstate {
u_char neg_flag;
u_char neg_hit;
};
_Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *),
"the state must fit in a union with a pointer without growing it");
struct namecache {
LIST_ENTRY(namecache) nc_src; /* source vnode list */
TAILQ_ENTRY(namecache) nc_dst; /* destination vnode list */
CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */
struct vnode *nc_dvp; /* vnode of parent of name */
union {
struct vnode *nu_vp; /* vnode the name refers to */
struct negstate nu_neg;/* negative entry state */
} n_un;
u_char nc_flag; /* flag bits */
u_char nc_nlen; /* length of name */
char nc_name[]; /* segment name + nul */
};
/*
* struct namecache_ts repeats struct namecache layout up to the
* nc_nlen member.
* struct namecache_ts is used in place of struct namecache when time(s) need
* to be stored. The nc_dotdottime field is used when a cache entry is mapping
* both a non-dotdot directory name plus dotdot for the directory's
* parent.
*
* See below for alignment requirement.
*/
struct namecache_ts {
struct timespec nc_time; /* timespec provided by fs */
struct timespec nc_dotdottime; /* dotdot timespec provided by fs */
int nc_ticks; /* ticks value when entry was added */
int nc_pad;
struct namecache nc_nc;
};
TAILQ_HEAD(cache_freebatch, namecache);
/*
* At least mips n32 performs 64-bit accesses to timespec as found
* in namecache_ts and requires them to be aligned. Since others
* may be in the same spot suffer a little bit and enforce the
* alignment for everyone. Note this is a nop for 64-bit platforms.
*/
#define CACHE_ZONE_ALIGNMENT UMA_ALIGNOF(time_t)
/*
* TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the
* 4.4 BSD codebase. Later on struct namecache was tweaked to become
* smaller and the value was bumped to retain the total size, but it
* was never re-evaluated for suitability. A simple test counting
* lengths during package building shows that the value of 45 covers
* about 86% of all added entries, reaching 99% at 65.
*
* Regardless of the above, use of dedicated zones instead of malloc may be
* inducing additional waste. This may be hard to address as said zones are
* tied to VFS SMR. Even if retaining them, the current split should be
* re-evaluated.
*/
#ifdef __LP64__
#define CACHE_PATH_CUTOFF 45
#define CACHE_LARGE_PAD 6
#else
#define CACHE_PATH_CUTOFF 41
#define CACHE_LARGE_PAD 2
#endif
#define CACHE_ZONE_SMALL_SIZE (offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1)
#define CACHE_ZONE_SMALL_TS_SIZE (offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE)
#define CACHE_ZONE_LARGE_SIZE (offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD)
#define CACHE_ZONE_LARGE_TS_SIZE (offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE)
_Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
_Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
_Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
_Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
#define nc_vp n_un.nu_vp
#define nc_neg n_un.nu_neg
/*
* Flags in namecache.nc_flag
*/
#define NCF_WHITE 0x01
#define NCF_ISDOTDOT 0x02
#define NCF_TS 0x04
#define NCF_DTS 0x08
#define NCF_DVDROP 0x10
#define NCF_NEGATIVE 0x20
#define NCF_INVALID 0x40
#define NCF_WIP 0x80
/*
* Flags in negstate.neg_flag
*/
#define NEG_HOT 0x01
static bool cache_neg_evict_cond(u_long lnumcache);
/*
* Mark an entry as invalid.
*
* This is called before it starts getting deconstructed.
*/
static void
cache_ncp_invalidate(struct namecache *ncp)
{
KASSERT((ncp->nc_flag & NCF_INVALID) == 0,
("%s: entry %p already invalid", __func__, ncp));
atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID);
atomic_thread_fence_rel();
}
/*
* Check whether the entry can be safely used.
*
* All places which elide locks are supposed to call this after they are
* done with reading from an entry.
*/
#define cache_ncp_canuse(ncp) ({ \
struct namecache *_ncp = (ncp); \
u_char _nc_flag; \
\
atomic_thread_fence_acq(); \
_nc_flag = atomic_load_char(&_ncp->nc_flag); \
__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0); \
})
/*
* Like the above but also checks NCF_WHITE.
*/
#define cache_fpl_neg_ncp_canuse(ncp) ({ \
struct namecache *_ncp = (ncp); \
u_char _nc_flag; \
\
atomic_thread_fence_acq(); \
_nc_flag = atomic_load_char(&_ncp->nc_flag); \
__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP | NCF_WHITE)) == 0); \
})
VFS_SMR_DECLARE;
static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"Name cache parameters");
static u_int __read_mostly ncsize; /* the size as computed on creation or resizing */
SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RD, &ncsize, 0,
"Total namecache capacity");
u_int ncsizefactor = 2;
SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0,
"Size factor for namecache");
static u_long __read_mostly ncnegfactor = 5; /* ratio of negative entries */
SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0,
"Ratio of negative namecache entries");
/*
* Negative entry % of namecache capacity above which automatic eviction is allowed.
*
* Check cache_neg_evict_cond for details.
*/
static u_int ncnegminpct = 3;
static u_int __read_mostly neg_min; /* the above recomputed against ncsize */
SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0,
"Negative entry count above which automatic eviction is allowed");
/*
* Structures associated with name caching.
*/
#define NCHHASH(hash) \
(&nchashtbl[(hash) & nchash])
static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */
static u_long __read_mostly nchash; /* size of hash table */
SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
"Size of namecache hash table");
static u_long __exclusive_cache_line numneg; /* number of negative entries allocated */
static u_long __exclusive_cache_line numcache;/* number of cache entries allocated */
struct nchstats nchstats; /* cache effectiveness statistics */
static u_int __exclusive_cache_line neg_cycle;
#define ncneghash 3
#define numneglists (ncneghash + 1)
struct neglist {
struct mtx nl_evict_lock;
struct mtx nl_lock __aligned(CACHE_LINE_SIZE);
TAILQ_HEAD(, namecache) nl_list;
TAILQ_HEAD(, namecache) nl_hotlist;
u_long nl_hotnum;
} __aligned(CACHE_LINE_SIZE);
static struct neglist neglists[numneglists];
static inline struct neglist *
NCP2NEGLIST(struct namecache *ncp)
{
return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]);
}
static inline struct negstate *
NCP2NEGSTATE(struct namecache *ncp)
{
MPASS(atomic_load_char(&ncp->nc_flag) & NCF_NEGATIVE);
return (&ncp->nc_neg);
}
#define numbucketlocks (ncbuckethash + 1)
static u_int __read_mostly ncbuckethash;
static struct mtx_padalign __read_mostly *bucketlocks;
#define HASH2BUCKETLOCK(hash) \
((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)]))
#define numvnodelocks (ncvnodehash + 1)
static u_int __read_mostly ncvnodehash;
static struct mtx __read_mostly *vnodelocks;
static inline struct mtx *
VP2VNODELOCK(struct vnode *vp)
{
return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]);
}
static void
cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp)
{
struct namecache_ts *ncp_ts;
KASSERT((ncp->nc_flag & NCF_TS) != 0 ||
(tsp == NULL && ticksp == NULL),
("No NCF_TS"));
if (tsp == NULL)
return;
ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
*tsp = ncp_ts->nc_time;
*ticksp = ncp_ts->nc_ticks;
}
#ifdef DEBUG_CACHE
static int __read_mostly doingcache = 1; /* 1 => enable the cache */
SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0,
"VFS namecache enabled");
#endif
/* Export size information to userland */
SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR,
sizeof(struct namecache), "sizeof(struct namecache)");
/*
* The new name cache statistics
*/
static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"Name cache statistics");
#define STATNODE_ULONG(name, varname, descr) \
SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
#define STATNODE_COUNTER(name, varname, descr) \
static COUNTER_U64_DEFINE_EARLY(varname); \
SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \
descr);
STATNODE_ULONG(neg, numneg, "Number of negative cache entries");
STATNODE_ULONG(count, numcache, "Number of cache entries");
STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held");
STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit");
STATNODE_COUNTER(miss, nummiss, "Number of cache misses");
STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache");
STATNODE_COUNTER(poszaps, numposzaps,
"Number of cache hits (positive) we do not want to cache");
STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)");
STATNODE_COUNTER(negzaps, numnegzaps,
"Number of cache hits (negative) we do not want to cache");
STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)");
/* These count for vn_getcwd(), too. */
STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls");
STATNODE_COUNTER(fullpathfail2, numfullpathfail2,
"Number of fullpath search errors (VOP_VPTOCNP failures)");
STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)");
STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls");
STATNODE_COUNTER(symlinktoobig, symlinktoobig, "Number of times symlink did not fit the cache");
/*
* Debug or developer statistics.
*/
static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"Name cache debugging");
#define DEBUGNODE_ULONG(name, varname, descr) \
SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
static u_long zap_bucket_relock_success;
DEBUGNODE_ULONG(zap_bucket_relock_success, zap_bucket_relock_success,
"Number of successful removals after relocking");
static u_long zap_bucket_fail;
DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, "");
static u_long zap_bucket_fail2;
DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, "");
static u_long cache_lock_vnodes_cel_3_failures;
DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures,
"Number of times 3-way vnode locking failed");
static void cache_zap_locked(struct namecache *ncp);
static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
char **retbuf, size_t *buflen, size_t addend);
static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf,
char **retbuf, size_t *buflen);
static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf,
char **retbuf, size_t *len, size_t addend);
static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
static inline void
cache_assert_vlp_locked(struct mtx *vlp)
{
if (vlp != NULL)
mtx_assert(vlp, MA_OWNED);
}
static inline void
cache_assert_vnode_locked(struct vnode *vp)
{
struct mtx *vlp;
vlp = VP2VNODELOCK(vp);
cache_assert_vlp_locked(vlp);
}
/*
* Directory vnodes with entries are held for two reasons:
* 1. make them less of a target for reclamation in vnlru
* 2. suffer smaller performance penalty in locked lookup as requeieing is avoided
*
* It will be feasible to stop doing it altogether if all filesystems start
* supporting lockless lookup.
*/
static void
cache_hold_vnode(struct vnode *vp)
{
cache_assert_vnode_locked(vp);
VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
vhold(vp);
counter_u64_add(numcachehv, 1);
}
static void
cache_drop_vnode(struct vnode *vp)
{
/*
* Called after all locks are dropped, meaning we can't assert
* on the state of v_cache_src.
*/
vdrop(vp);
counter_u64_add(numcachehv, -1);
}
/*
* UMA zones.
*/
static uma_zone_t __read_mostly cache_zone_small;
static uma_zone_t __read_mostly cache_zone_small_ts;
static uma_zone_t __read_mostly cache_zone_large;
static uma_zone_t __read_mostly cache_zone_large_ts;
char *
cache_symlink_alloc(size_t size, int flags)
{
if (size < CACHE_ZONE_SMALL_SIZE) {
return (uma_zalloc_smr(cache_zone_small, flags));
}
if (size < CACHE_ZONE_LARGE_SIZE) {
return (uma_zalloc_smr(cache_zone_large, flags));
}
counter_u64_add(symlinktoobig, 1);
SDT_PROBE1(vfs, namecache, symlink, alloc__fail, size);
return (NULL);
}
void
cache_symlink_free(char *string, size_t size)
{
MPASS(string != NULL);
KASSERT(size < CACHE_ZONE_LARGE_SIZE,
("%s: size %zu too big", __func__, size));
if (size < CACHE_ZONE_SMALL_SIZE) {
uma_zfree_smr(cache_zone_small, string);
return;
}
if (size < CACHE_ZONE_LARGE_SIZE) {
uma_zfree_smr(cache_zone_large, string);
return;
}
__assert_unreachable();
}
static struct namecache *
cache_alloc_uma(int len, bool ts)
{
struct namecache_ts *ncp_ts;
struct namecache *ncp;
if (__predict_false(ts)) {
if (len <= CACHE_PATH_CUTOFF)
ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK);
else
ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK);
ncp = &ncp_ts->nc_nc;
} else {
if (len <= CACHE_PATH_CUTOFF)
ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK);
else
ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK);
}
return (ncp);
}
static void
cache_free_uma(struct namecache *ncp)
{
struct namecache_ts *ncp_ts;
if (__predict_false(ncp->nc_flag & NCF_TS)) {
ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
uma_zfree_smr(cache_zone_small_ts, ncp_ts);
else
uma_zfree_smr(cache_zone_large_ts, ncp_ts);
} else {
if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
uma_zfree_smr(cache_zone_small, ncp);
else
uma_zfree_smr(cache_zone_large, ncp);
}
}
static struct namecache *
cache_alloc(int len, bool ts)
{
u_long lnumcache;
/*
* Avoid blowout in namecache entries.
*
* Bugs:
* 1. filesystems may end up trying to add an already existing entry
* (for example this can happen after a cache miss during concurrent
* lookup), in which case we will call cache_neg_evict despite not
* adding anything.
* 2. the routine may fail to free anything and no provisions are made
* to make it try harder (see the inside for failure modes)
* 3. it only ever looks at negative entries.
*/
lnumcache = atomic_fetchadd_long(&numcache, 1) + 1;
if (cache_neg_evict_cond(lnumcache)) {
lnumcache = atomic_load_long(&numcache);
}
if (__predict_false(lnumcache >= ncsize)) {
atomic_subtract_long(&numcache, 1);
counter_u64_add(numdrops, 1);
return (NULL);
}
return (cache_alloc_uma(len, ts));
}
static void
cache_free(struct namecache *ncp)
{
MPASS(ncp != NULL);
if ((ncp->nc_flag & NCF_DVDROP) != 0) {
cache_drop_vnode(ncp->nc_dvp);
}
cache_free_uma(ncp);
atomic_subtract_long(&numcache, 1);
}
static void
cache_free_batch(struct cache_freebatch *batch)
{
struct namecache *ncp, *nnp;
int i;
i = 0;
if (TAILQ_EMPTY(batch))
goto out;
TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) {
if ((ncp->nc_flag & NCF_DVDROP) != 0) {
cache_drop_vnode(ncp->nc_dvp);
}
cache_free_uma(ncp);
i++;
}
atomic_subtract_long(&numcache, i);
out:
SDT_PROBE1(vfs, namecache, purge, batch, i);
}
/*
* Hashing.
*
* The code was made to use FNV in 2001 and this choice needs to be revisited.
*
* Short summary of the difficulty:
* The longest name which can be inserted is NAME_MAX characters in length (or
* 255 at the time of writing this comment), while majority of names used in
* practice are significantly shorter (mostly below 10). More importantly
* majority of lookups performed find names are even shorter than that.
*
* This poses a problem where hashes which do better than FNV past word size
* (or so) tend to come with additional overhead when finalizing the result,
* making them noticeably slower for the most commonly used range.
*
* Consider a path like: /usr/obj/usr/src/sys/amd64/GENERIC/vnode_if.c
*
* When looking it up the most time consuming part by a large margin (at least
* on amd64) is hashing. Replacing FNV with something which pessimizes short
* input would make the slowest part stand out even more.
*/
/*
* TODO: With the value stored we can do better than computing the hash based
* on the address.
*/
static void
cache_prehash(struct vnode *vp)
{
vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT);
}
static uint32_t
cache_get_hash(char *name, u_char len, struct vnode *dvp)
{
return (fnv_32_buf(name, len, dvp->v_nchash));
}
static uint32_t
cache_get_hash_iter_start(struct vnode *dvp)
{
return (dvp->v_nchash);
}
static uint32_t
cache_get_hash_iter(char c, uint32_t hash)
{
return (fnv_32_buf(&c, 1, hash));
}
static uint32_t
cache_get_hash_iter_finish(uint32_t hash)
{
return (hash);
}
static inline struct nchashhead *
NCP2BUCKET(struct namecache *ncp)
{
uint32_t hash;
hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
return (NCHHASH(hash));
}
static inline struct mtx *
NCP2BUCKETLOCK(struct namecache *ncp)
{
uint32_t hash;
hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
return (HASH2BUCKETLOCK(hash));
}
#ifdef INVARIANTS
static void
cache_assert_bucket_locked(struct namecache *ncp)
{
struct mtx *blp;
blp = NCP2BUCKETLOCK(ncp);
mtx_assert(blp, MA_OWNED);
}
static void
cache_assert_bucket_unlocked(struct namecache *ncp)
{
struct mtx *blp;
blp = NCP2BUCKETLOCK(ncp);
mtx_assert(blp, MA_NOTOWNED);
}
#else
#define cache_assert_bucket_locked(x) do { } while (0)
#define cache_assert_bucket_unlocked(x) do { } while (0)
#endif
#define cache_sort_vnodes(x, y) _cache_sort_vnodes((void **)(x), (void **)(y))
static void
_cache_sort_vnodes(void **p1, void **p2)
{
void *tmp;
MPASS(*p1 != NULL || *p2 != NULL);
if (*p1 > *p2) {
tmp = *p2;
*p2 = *p1;
*p1 = tmp;
}
}
static void
cache_lock_all_buckets(void)
{
u_int i;
for (i = 0; i < numbucketlocks; i++)
mtx_lock(&bucketlocks[i]);
}
static void
cache_unlock_all_buckets(void)
{
u_int i;
for (i = 0; i < numbucketlocks; i++)
mtx_unlock(&bucketlocks[i]);
}
static void
cache_lock_all_vnodes(void)
{
u_int i;
for (i = 0; i < numvnodelocks; i++)
mtx_lock(&vnodelocks[i]);
}
static void
cache_unlock_all_vnodes(void)
{
u_int i;
for (i = 0; i < numvnodelocks; i++)
mtx_unlock(&vnodelocks[i]);
}
static int
cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
{
cache_sort_vnodes(&vlp1, &vlp2);
if (vlp1 != NULL) {
if (!mtx_trylock(vlp1))
return (EAGAIN);
}
if (!mtx_trylock(vlp2)) {
if (vlp1 != NULL)
mtx_unlock(vlp1);
return (EAGAIN);
}
return (0);
}
static void
cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
{
MPASS(vlp1 != NULL || vlp2 != NULL);
MPASS(vlp1 <= vlp2);
if (vlp1 != NULL)
mtx_lock(vlp1);
if (vlp2 != NULL)
mtx_lock(vlp2);
}
static void
cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
{
MPASS(vlp1 != NULL || vlp2 != NULL);
if (vlp1 != NULL)
mtx_unlock(vlp1);
if (vlp2 != NULL)
mtx_unlock(vlp2);
}
static int
sysctl_nchstats(SYSCTL_HANDLER_ARGS)
{
struct nchstats snap;
if (req->oldptr == NULL)
return (SYSCTL_OUT(req, 0, sizeof(snap)));
snap = nchstats;
snap.ncs_goodhits = counter_u64_fetch(numposhits);
snap.ncs_neghits = counter_u64_fetch(numneghits);
snap.ncs_badhits = counter_u64_fetch(numposzaps) +
counter_u64_fetch(numnegzaps);
snap.ncs_miss = counter_u64_fetch(nummisszap) +
counter_u64_fetch(nummiss);
return (SYSCTL_OUT(req, &snap, sizeof(snap)));
}
SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD |
CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU",
"VFS cache effectiveness statistics");
static int
sysctl_hitpct(SYSCTL_HANDLER_ARGS)
{
long poshits, neghits, miss, total;
long pct;
poshits = counter_u64_fetch(numposhits);
neghits = counter_u64_fetch(numneghits);
miss = counter_u64_fetch(nummiss);
total = poshits + neghits + miss;
pct = 0;
if (total != 0)
pct = ((poshits + neghits) * 100) / total;
return (sysctl_handle_int(oidp, 0, pct, req));
}
SYSCTL_PROC(_vfs_cache_stats, OID_AUTO, hitpct,
CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_hitpct,
"I", "Percentage of hits");
static void
cache_recalc_neg_min(void)
{
neg_min = (ncsize * ncnegminpct) / 100;
}
static int
sysctl_negminpct(SYSCTL_HANDLER_ARGS)
{
u_int val;
int error;
val = ncnegminpct;
error = sysctl_handle_int(oidp, &val, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (val == ncnegminpct)
return (0);
if (val < 0 || val > 99)
return (EINVAL);
ncnegminpct = val;
cache_recalc_neg_min();
return (0);
}
SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct,
CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct,
"I", "Negative entry \% of namecache capacity above which automatic eviction is allowed");
#ifdef DEBUG_CACHE
/*
* Grab an atomic snapshot of the name cache hash chain lengths
*/
static SYSCTL_NODE(_debug, OID_AUTO, hashstat,
CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
"hash table stats");
static int
sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)
{
struct nchashhead *ncpp;
struct namecache *ncp;
int i, error, n_nchash, *cntbuf;
retry:
n_nchash = nchash + 1; /* nchash is max index, not count */
if (req->oldptr == NULL)
return SYSCTL_OUT(req, 0, n_nchash * sizeof(int));
cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK);
cache_lock_all_buckets();
if (n_nchash != nchash + 1) {
cache_unlock_all_buckets();
free(cntbuf, M_TEMP);
goto retry;
}
/* Scan hash tables counting entries */
for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++)
CK_SLIST_FOREACH(ncp, ncpp, nc_hash)
cntbuf[i]++;
cache_unlock_all_buckets();
for (error = 0, i = 0; i < n_nchash; i++)
if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0)
break;
free(cntbuf, M_TEMP);
return (error);
}
SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD|
CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int",
"nchash chain lengths");
static int
sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)
{
int error;
struct nchashhead *ncpp;
struct namecache *ncp;
int n_nchash;
int count, maxlength, used, pct;
if (!req->oldptr)
return SYSCTL_OUT(req, 0, 4 * sizeof(int));
cache_lock_all_buckets();
n_nchash = nchash + 1; /* nchash is max index, not count */
used = 0;
maxlength = 0;
/* Scan hash tables for applicable entries */
for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) {
count = 0;
CK_SLIST_FOREACH(ncp, ncpp, nc_hash) {
count++;
}
if (count)
used++;
if (maxlength < count)
maxlength = count;
}
n_nchash = nchash + 1;
cache_unlock_all_buckets();
pct = (used * 100) / (n_nchash / 100);
error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash));
if (error)
return (error);
error = SYSCTL_OUT(req, &used, sizeof(used));
if (error)
return (error);
error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength));
if (error)
return (error);
error = SYSCTL_OUT(req, &pct, sizeof(pct));
if (error)
return (error);
return (0);
}
SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD|
CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I",
"nchash statistics (number of total/used buckets, maximum chain length, usage percentage)");
#endif
/*
* Negative entries management
*
* Various workloads create plenty of negative entries and barely use them
* afterwards. Moreover malicious users can keep performing bogus lookups
* adding even more entries. For example "make tinderbox" as of writing this
* comment ends up with 2.6M namecache entries in total, 1.2M of which are
* negative.
*
* As such, a rather aggressive eviction method is needed. The currently
* employed method is a placeholder.
*
* Entries are split over numneglists separate lists, each of which is further
* split into hot and cold entries. Entries get promoted after getting a hit.
* Eviction happens on addition of new entry.
*/
static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"Name cache negative entry statistics");
SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0,
"Number of negative cache entries");
static COUNTER_U64_DEFINE_EARLY(neg_created);
SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created,
"Number of created negative entries");
static COUNTER_U64_DEFINE_EARLY(neg_evicted);
SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted,
"Number of evicted negative entries");
static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty);
SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD,
&neg_evict_skipped_empty,
"Number of times evicting failed due to lack of entries");
static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed);
SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD,
&neg_evict_skipped_missed,
"Number of times evicting failed due to target entry disappearing");
static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended);
SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD,
&neg_evict_skipped_contended,
"Number of times evicting failed due to contention");
SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits,
"Number of cache hits (negative)");
static int
sysctl_neg_hot(SYSCTL_HANDLER_ARGS)
{
int i, out;
out = 0;
for (i = 0; i < numneglists; i++)
out += neglists[i].nl_hotnum;
return (SYSCTL_OUT(req, &out, sizeof(out)));
}
SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD |
CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I",
"Number of hot negative entries");
static void
cache_neg_init(struct namecache *ncp)
{
struct negstate *ns;
ncp->nc_flag |= NCF_NEGATIVE;
ns = NCP2NEGSTATE(ncp);
ns->neg_flag = 0;
ns->neg_hit = 0;
counter_u64_add(neg_created, 1);
}
#define CACHE_NEG_PROMOTION_THRESH 2
static bool
cache_neg_hit_prep(struct namecache *ncp)
{
struct negstate *ns;
u_char n;
ns = NCP2NEGSTATE(ncp);
n = atomic_load_char(&ns->neg_hit);
for (;;) {
if (n >= CACHE_NEG_PROMOTION_THRESH)
return (false);
if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1))
break;
}
return (n + 1 == CACHE_NEG_PROMOTION_THRESH);
}
/*
* Nothing to do here but it is provided for completeness as some
* cache_neg_hit_prep callers may end up returning without even
* trying to promote.
*/
#define cache_neg_hit_abort(ncp) do { } while (0)
static void
cache_neg_hit_finish(struct namecache *ncp)
{
SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name);
counter_u64_add(numneghits, 1);
}
/*
* Move a negative entry to the hot list.
*/
static void
cache_neg_promote_locked(struct namecache *ncp)
{
struct neglist *nl;
struct negstate *ns;
ns = NCP2NEGSTATE(ncp);
nl = NCP2NEGLIST(ncp);
mtx_assert(&nl->nl_lock, MA_OWNED);
if ((ns->neg_flag & NEG_HOT) == 0) {
TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst);
nl->nl_hotnum++;
ns->neg_flag |= NEG_HOT;
}
}
/*
* Move a hot negative entry to the cold list.
*/
static void
cache_neg_demote_locked(struct namecache *ncp)
{
struct neglist *nl;
struct negstate *ns;
ns = NCP2NEGSTATE(ncp);
nl = NCP2NEGLIST(ncp);
mtx_assert(&nl->nl_lock, MA_OWNED);
MPASS(ns->neg_flag & NEG_HOT);
TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
nl->nl_hotnum--;
ns->neg_flag &= ~NEG_HOT;
atomic_store_char(&ns->neg_hit, 0);
}
/*
* Move a negative entry to the hot list if it matches the lookup.
*
* We have to take locks, but they may be contended and in the worst
* case we may need to go off CPU. We don't want to spin within the
* smr section and we can't block with it. Exiting the section means
* the found entry could have been evicted. We are going to look it
* up again.
*/
static bool
cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp,
struct namecache *oncp, uint32_t hash)
{
struct namecache *ncp;
struct neglist *nl;
u_char nc_flag;
nl = NCP2NEGLIST(oncp);
mtx_lock(&nl->nl_lock);
/*
* For hash iteration.
*/
vfs_smr_enter();
/*
* Avoid all surprises by only succeeding if we got the same entry and
* bailing completely otherwise.
* XXX There are no provisions to keep the vnode around, meaning we may
* end up promoting a negative entry for a *new* vnode and returning
* ENOENT on its account. This is the error we want to return anyway
* and promotion is harmless.
*
* In particular at this point there can be a new ncp which matches the
* search but hashes to a different neglist.
*/
CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
if (ncp == oncp)
break;
}
/*
* No match to begin with.
*/
if (__predict_false(ncp == NULL)) {
goto out_abort;
}
/*
* The newly found entry may be something different...
*/
if (!(ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
!bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))) {
goto out_abort;
}
/*
* ... and not even negative.
*/
nc_flag = atomic_load_char(&ncp->nc_flag);
if ((nc_flag & NCF_NEGATIVE) == 0) {
goto out_abort;
}
if (!cache_ncp_canuse(ncp)) {
goto out_abort;
}
cache_neg_promote_locked(ncp);
cache_neg_hit_finish(ncp);
vfs_smr_exit();
mtx_unlock(&nl->nl_lock);
return (true);
out_abort:
vfs_smr_exit();
mtx_unlock(&nl->nl_lock);
return (false);
}
static void
cache_neg_promote(struct namecache *ncp)
{
struct neglist *nl;
nl = NCP2NEGLIST(ncp);
mtx_lock(&nl->nl_lock);
cache_neg_promote_locked(ncp);
mtx_unlock(&nl->nl_lock);
}
static void
cache_neg_insert(struct namecache *ncp)
{
struct neglist *nl;
MPASS(ncp->nc_flag & NCF_NEGATIVE);
cache_assert_bucket_locked(ncp);
nl = NCP2NEGLIST(ncp);
mtx_lock(&nl->nl_lock);
TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
mtx_unlock(&nl->nl_lock);
atomic_add_long(&numneg, 1);
}
static void
cache_neg_remove(struct namecache *ncp)
{
struct neglist *nl;
struct negstate *ns;
cache_assert_bucket_locked(ncp);
nl = NCP2NEGLIST(ncp);
ns = NCP2NEGSTATE(ncp);
mtx_lock(&nl->nl_lock);
if ((ns->neg_flag & NEG_HOT) != 0) {
TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
nl->nl_hotnum--;
} else {
TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
}
mtx_unlock(&nl->nl_lock);
atomic_subtract_long(&numneg, 1);
}
static struct neglist *
cache_neg_evict_select_list(void)
{
struct neglist *nl;
u_int c;
c = atomic_fetchadd_int(&neg_cycle, 1) + 1;
nl = &neglists[c % numneglists];
if (!mtx_trylock(&nl->nl_evict_lock)) {
counter_u64_add(neg_evict_skipped_contended, 1);
return (NULL);
}
return (nl);
}
static struct namecache *
cache_neg_evict_select_entry(struct neglist *nl)
{
struct namecache *ncp, *lncp;
struct negstate *ns, *lns;
int i;
mtx_assert(&nl->nl_evict_lock, MA_OWNED);
mtx_assert(&nl->nl_lock, MA_OWNED);
ncp = TAILQ_FIRST(&nl->nl_list);
if (ncp == NULL)
return (NULL);
lncp = ncp;
lns = NCP2NEGSTATE(lncp);
for (i = 1; i < 4; i++) {
ncp = TAILQ_NEXT(ncp, nc_dst);
if (ncp == NULL)
break;
ns = NCP2NEGSTATE(ncp);
if (ns->neg_hit < lns->neg_hit) {
lncp = ncp;
lns = ns;
}
}
return (lncp);
}
static bool
cache_neg_evict(void)
{
struct namecache *ncp, *ncp2;
struct neglist *nl;
struct vnode *dvp;
struct mtx *dvlp;
struct mtx *blp;
uint32_t hash;
u_char nlen;
bool evicted;
nl = cache_neg_evict_select_list();
if (nl == NULL) {
return (false);
}
mtx_lock(&nl->nl_lock);
ncp = TAILQ_FIRST(&nl->nl_hotlist);
if (ncp != NULL) {
cache_neg_demote_locked(ncp);
}
ncp = cache_neg_evict_select_entry(nl);
if (ncp == NULL) {
counter_u64_add(neg_evict_skipped_empty, 1);
mtx_unlock(&nl->nl_lock);
mtx_unlock(&nl->nl_evict_lock);
return (false);
}
nlen = ncp->nc_nlen;
dvp = ncp->nc_dvp;
hash = cache_get_hash(ncp->nc_name, nlen, dvp);
dvlp = VP2VNODELOCK(dvp);
blp = HASH2BUCKETLOCK(hash);
mtx_unlock(&nl->nl_lock);
mtx_unlock(&nl->nl_evict_lock);
mtx_lock(dvlp);
mtx_lock(blp);
/*
* Note that since all locks were dropped above, the entry may be
* gone or reallocated to be something else.
*/
CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) {
if (ncp2 == ncp && ncp2->nc_dvp == dvp &&
ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0)
break;
}
if (ncp2 == NULL) {
counter_u64_add(neg_evict_skipped_missed, 1);
ncp = NULL;
evicted = false;
} else {
MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp));
MPASS(blp == NCP2BUCKETLOCK(ncp));
SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp,
ncp->nc_name);
cache_zap_locked(ncp);
counter_u64_add(neg_evicted, 1);
evicted = true;
}
mtx_unlock(blp);
mtx_unlock(dvlp);
if (ncp != NULL)
cache_free(ncp);
return (evicted);
}
/*
* Maybe evict a negative entry to create more room.
*
* The ncnegfactor parameter limits what fraction of the total count
* can comprise of negative entries. However, if the cache is just
* warming up this leads to excessive evictions. As such, ncnegminpct
* (recomputed to neg_min) dictates whether the above should be
* applied.
*
* Try evicting if the cache is close to full capacity regardless of
* other considerations.
*/
static bool
cache_neg_evict_cond(u_long lnumcache)
{
u_long lnumneg;
if (ncsize - 1000 < lnumcache)
goto out_evict;
lnumneg = atomic_load_long(&numneg);
if (lnumneg < neg_min)
return (false);
if (lnumneg * ncnegfactor < lnumcache)
return (false);
out_evict:
return (cache_neg_evict());
}
/*
* cache_zap_locked():
*
* Removes a namecache entry from cache, whether it contains an actual
* pointer to a vnode or if it is just a negative cache entry.
*/
static void
cache_zap_locked(struct namecache *ncp)
{
struct nchashhead *ncpp;
struct vnode *dvp, *vp;
dvp = ncp->nc_dvp;
vp = ncp->nc_vp;
if (!(ncp->nc_flag & NCF_NEGATIVE))
cache_assert_vnode_locked(vp);
cache_assert_vnode_locked(dvp);
cache_assert_bucket_locked(ncp);
cache_ncp_invalidate(ncp);
ncpp = NCP2BUCKET(ncp);
CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash);
if (!(ncp->nc_flag & NCF_NEGATIVE)) {
SDT_PROBE3(vfs, namecache, zap, done, dvp, ncp->nc_name, vp);
TAILQ_REMOVE(&vp->v_cache_dst, ncp, nc_dst);
if (ncp == vp->v_cache_dd) {
atomic_store_ptr(&vp->v_cache_dd, NULL);
}
} else {
SDT_PROBE2(vfs, namecache, zap_negative, done, dvp, ncp->nc_name);
cache_neg_remove(ncp);
}
if (ncp->nc_flag & NCF_ISDOTDOT) {
if (ncp == dvp->v_cache_dd) {
atomic_store_ptr(&dvp->v_cache_dd, NULL);
}
} else {
LIST_REMOVE(ncp, nc_src);
if (LIST_EMPTY(&dvp->v_cache_src)) {
ncp->nc_flag |= NCF_DVDROP;
}
}
}
static void
cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp)
{
struct mtx *blp;
MPASS(ncp->nc_dvp == vp);
MPASS(ncp->nc_flag & NCF_NEGATIVE);
cache_assert_vnode_locked(vp);
blp = NCP2BUCKETLOCK(ncp);
mtx_lock(blp);
cache_zap_locked(ncp);
mtx_unlock(blp);
}
static bool
cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp,
struct mtx **vlpp)
{
struct mtx *pvlp, *vlp1, *vlp2, *to_unlock;
struct mtx *blp;
MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp);
cache_assert_vnode_locked(vp);
if (ncp->nc_flag & NCF_NEGATIVE) {
if (*vlpp != NULL) {
mtx_unlock(*vlpp);
*vlpp = NULL;
}
cache_zap_negative_locked_vnode_kl(ncp, vp);
return (true);
}
pvlp = VP2VNODELOCK(vp);
blp = NCP2BUCKETLOCK(ncp);
vlp1 = VP2VNODELOCK(ncp->nc_dvp);
vlp2 = VP2VNODELOCK(ncp->nc_vp);
if (*vlpp == vlp1 || *vlpp == vlp2) {
to_unlock = *vlpp;
*vlpp = NULL;
} else {
if (*vlpp != NULL) {
mtx_unlock(*vlpp);
*vlpp = NULL;
}
cache_sort_vnodes(&vlp1, &vlp2);
if (vlp1 == pvlp) {
mtx_lock(vlp2);
to_unlock = vlp2;
} else {
if (!mtx_trylock(vlp1))
goto out_relock;
to_unlock = vlp1;
}
}
mtx_lock(blp);
cache_zap_locked(ncp);
mtx_unlock(blp);
if (to_unlock != NULL)
mtx_unlock(to_unlock);
return (true);
out_relock:
mtx_unlock(vlp2);
mtx_lock(vlp1);
mtx_lock(vlp2);
MPASS(*vlpp == NULL);
*vlpp = vlp1;
return (false);
}
/*
* If trylocking failed we can get here. We know enough to take all needed locks
* in the right order and re-lookup the entry.
*/
static int
cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp,
struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash,
struct mtx *blp)
{
struct namecache *rncp;
struct mtx *rvlp;
cache_assert_bucket_unlocked(ncp);
cache_sort_vnodes(&dvlp, &vlp);
cache_lock_vnodes(dvlp, vlp);
mtx_lock(blp);
CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) {
if (rncp == ncp && rncp->nc_dvp == dvp &&
rncp->nc_nlen == cnp->cn_namelen &&
!bcmp(rncp->nc_name, cnp->cn_nameptr, rncp->nc_nlen))
break;
}
if (rncp == NULL)
goto out_mismatch;
if (!(ncp->nc_flag & NCF_NEGATIVE))
rvlp = VP2VNODELOCK(rncp->nc_vp);
else
rvlp = NULL;
if (rvlp != vlp)
goto out_mismatch;
cache_zap_locked(rncp);
mtx_unlock(blp);
cache_unlock_vnodes(dvlp, vlp);
atomic_add_long(&zap_bucket_relock_success, 1);
return (0);
out_mismatch:
mtx_unlock(blp);
cache_unlock_vnodes(dvlp, vlp);
return (EAGAIN);
}
static int __noinline
cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp,
uint32_t hash, struct mtx *blp)
{
struct mtx *dvlp, *vlp;
struct vnode *dvp;
cache_assert_bucket_locked(ncp);
dvlp = VP2VNODELOCK(ncp->nc_dvp);
vlp = NULL;
if (!(ncp->nc_flag & NCF_NEGATIVE))
vlp = VP2VNODELOCK(ncp->nc_vp);
if (cache_trylock_vnodes(dvlp, vlp) == 0) {
cache_zap_locked(ncp);
mtx_unlock(blp);
cache_unlock_vnodes(dvlp, vlp);
return (0);
}
dvp = ncp->nc_dvp;
mtx_unlock(blp);
return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp));
}
static __noinline int
cache_remove_cnp(struct vnode *dvp, struct componentname *cnp)
{
struct namecache *ncp;
struct mtx *blp;
struct mtx *dvlp, *dvlp2;
uint32_t hash;
int error;
if (cnp->cn_namelen == 2 &&
cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') {
dvlp = VP2VNODELOCK(dvp);
dvlp2 = NULL;
mtx_lock(dvlp);
retry_dotdot:
ncp = dvp->v_cache_dd;
if (ncp == NULL) {
mtx_unlock(dvlp);
if (dvlp2 != NULL)
mtx_unlock(dvlp2);
SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
return (0);
}
if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2))
goto retry_dotdot;
MPASS(dvp->v_cache_dd == NULL);
mtx_unlock(dvlp);
if (dvlp2 != NULL)
mtx_unlock(dvlp2);
cache_free(ncp);
} else {
atomic_store_ptr(&dvp->v_cache_dd, NULL);
mtx_unlock(dvlp);
if (dvlp2 != NULL)
mtx_unlock(dvlp2);
}
SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
return (1);
}
/*
* XXX note that access here is completely unlocked with no provisions
* to keep the hash allocated. If one is sufficiently unlucky a
* parallel cache resize can reallocate the hash, unmap backing pages
* and cause the empty check below to fault.
*
* Fixing this has epsilon priority, but can be done with no overhead
* for this codepath with sufficient effort.
*/
hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
blp = HASH2BUCKETLOCK(hash);
retry:
if (CK_SLIST_EMPTY(NCHHASH(hash)))
goto out_no_entry;
mtx_lock(blp);
CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
!bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
break;
}
if (ncp == NULL) {
mtx_unlock(blp);
goto out_no_entry;
}
error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
if (__predict_false(error != 0)) {
atomic_add_long(&zap_bucket_fail, 1);
goto retry;
}
counter_u64_add(numposzaps, 1);
SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
cache_free(ncp);
return (1);
out_no_entry:
counter_u64_add(nummisszap, 1);
SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
return (0);
}
static int __noinline
cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
struct timespec *tsp, int *ticksp)
{
int ltype;
*vpp = dvp;
SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp);
if (tsp != NULL)
timespecclear(tsp);
if (ticksp != NULL)
*ticksp = ticks;
vrefact(*vpp);
/*
* When we lookup "." we still can be asked to lock it
* differently...
*/
ltype = cnp->cn_lkflags & LK_TYPE_MASK;
if (ltype != VOP_ISLOCKED(*vpp)) {
if (ltype == LK_EXCLUSIVE) {
vn_lock(*vpp, LK_UPGRADE | LK_RETRY);
if (VN_IS_DOOMED((*vpp))) {
/* forced unmount */
vrele(*vpp);
*vpp = NULL;
return (ENOENT);
}
} else
vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY);
}
return (-1);
}
static int __noinline
cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
struct timespec *tsp, int *ticksp)
{
struct namecache_ts *ncp_ts;
struct namecache *ncp;
struct mtx *dvlp;
enum vgetstate vs;
int error, ltype;
bool whiteout;
MPASS((cnp->cn_flags & ISDOTDOT) != 0);
if ((cnp->cn_flags & MAKEENTRY) == 0) {
cache_remove_cnp(dvp, cnp);
return (0);
}
retry:
dvlp = VP2VNODELOCK(dvp);
mtx_lock(dvlp);
ncp = dvp->v_cache_dd;
if (ncp == NULL) {
SDT_PROBE2(vfs, namecache, lookup, miss, dvp, "..");
mtx_unlock(dvlp);
return (0);
}
if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
if (ncp->nc_flag & NCF_NEGATIVE)
*vpp = NULL;
else
*vpp = ncp->nc_vp;
} else
*vpp = ncp->nc_dvp;
if (*vpp == NULL)
goto negative_success;
SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp);
cache_out_ts(ncp, tsp, ticksp);
if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) ==
NCF_DTS && tsp != NULL) {
ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
*tsp = ncp_ts->nc_dotdottime;
}
MPASS(dvp != *vpp);
ltype = VOP_ISLOCKED(dvp);
VOP_UNLOCK(dvp);
vs = vget_prep(*vpp);
mtx_unlock(dvlp);
error = vget_finish(*vpp, cnp->cn_lkflags, vs);
vn_lock(dvp, ltype | LK_RETRY);
if (VN_IS_DOOMED(dvp)) {
if (error == 0)
vput(*vpp);
*vpp = NULL;
return (ENOENT);
}
if (error) {
*vpp = NULL;
goto retry;
}
return (-1);
negative_success:
if (__predict_false(cnp->cn_nameiop == CREATE)) {
if (cnp->cn_flags & ISLASTCN) {
counter_u64_add(numnegzaps, 1);
cache_zap_negative_locked_vnode_kl(ncp, dvp);
mtx_unlock(dvlp);
cache_free(ncp);
return (0);
}
}
whiteout = (ncp->nc_flag & NCF_WHITE);
cache_out_ts(ncp, tsp, ticksp);
if (cache_neg_hit_prep(ncp))
cache_neg_promote(ncp);
else
cache_neg_hit_finish(ncp);
mtx_unlock(dvlp);
if (whiteout)
cnp->cn_flags |= ISWHITEOUT;
return (ENOENT);
}
/**
* Lookup a name in the name cache
*
* # Arguments
*
* - dvp: Parent directory in which to search.
* - vpp: Return argument. Will contain desired vnode on cache hit.
* - cnp: Parameters of the name search. The most interesting bits of
* the cn_flags field have the following meanings:
* - MAKEENTRY: If clear, free an entry from the cache rather than look
* it up.
* - ISDOTDOT: Must be set if and only if cn_nameptr == ".."
* - tsp: Return storage for cache timestamp. On a successful (positive
* or negative) lookup, tsp will be filled with any timespec that
* was stored when this cache entry was created. However, it will
* be clear for "." entries.
* - ticks: Return storage for alternate cache timestamp. On a successful
* (positive or negative) lookup, it will contain the ticks value
* that was current when the cache entry was created, unless cnp
* was ".".
*
* Either both tsp and ticks have to be provided or neither of them.
*
* # Returns
*
* - -1: A positive cache hit. vpp will contain the desired vnode.
* - ENOENT: A negative cache hit, or dvp was recycled out from under us due
* to a forced unmount. vpp will not be modified. If the entry
* is a whiteout, then the ISWHITEOUT flag will be set in
* cnp->cn_flags.
* - 0: A cache miss. vpp will not be modified.
*
* # Locking
*
* On a cache hit, vpp will be returned locked and ref'd. If we're looking up
* .., dvp is unlocked. If we're looking up . an extra ref is taken, but the
* lock is not recursively acquired.
*/
static int __noinline
cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
struct timespec *tsp, int *ticksp)
{
struct namecache *ncp;
struct mtx *blp;
uint32_t hash;
enum vgetstate vs;
int error;
bool whiteout;
MPASS((cnp->cn_flags & ISDOTDOT) == 0);
MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0);
retry:
hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
blp = HASH2BUCKETLOCK(hash);
mtx_lock(blp);
CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
!bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
break;
}
if (__predict_false(ncp == NULL)) {
mtx_unlock(blp);
SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
counter_u64_add(nummiss, 1);
return (0);
}
if (ncp->nc_flag & NCF_NEGATIVE)
goto negative_success;
counter_u64_add(numposhits, 1);
*vpp = ncp->nc_vp;
SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
cache_out_ts(ncp, tsp, ticksp);
MPASS(dvp != *vpp);
vs = vget_prep(*vpp);
mtx_unlock(blp);
error = vget_finish(*vpp, cnp->cn_lkflags, vs);
if (error) {
*vpp = NULL;
goto retry;
}
return (-1);
negative_success:
/*
* We don't get here with regular lookup apart from corner cases.
*/
if (__predict_true(cnp->cn_nameiop == CREATE)) {
if (cnp->cn_flags & ISLASTCN) {
counter_u64_add(numnegzaps, 1);
error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
if (__predict_false(error != 0)) {
atomic_add_long(&zap_bucket_fail2, 1);
goto retry;
}
cache_free(ncp);
return (0);
}
}
whiteout = (ncp->nc_flag & NCF_WHITE);
cache_out_ts(ncp, tsp, ticksp);
if (cache_neg_hit_prep(ncp))
cache_neg_promote(ncp);
else
cache_neg_hit_finish(ncp);
mtx_unlock(blp);
if (whiteout)
cnp->cn_flags |= ISWHITEOUT;
return (ENOENT);
}
int
cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
struct timespec *tsp, int *ticksp)
{
struct namecache *ncp;
uint32_t hash;
enum vgetstate vs;
int error;
bool whiteout, neg_promote;
u_short nc_flag;
MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL));
#ifdef DEBUG_CACHE
if (__predict_false(!doingcache)) {
cnp->cn_flags &= ~MAKEENTRY;
return (0);
}
#endif
if (__predict_false(cnp->cn_nameptr[0] == '.')) {
if (cnp->cn_namelen == 1)
return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp));
if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.')
return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp));
}
MPASS((cnp->cn_flags & ISDOTDOT) == 0);
if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) {
cache_remove_cnp(dvp, cnp);
return (0);
}
hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
vfs_smr_enter();
CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
!bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
break;
}
if (__predict_false(ncp == NULL)) {
vfs_smr_exit();
SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
counter_u64_add(nummiss, 1);
return (0);
}
nc_flag = atomic_load_char(&ncp->nc_flag);
if (nc_flag & NCF_NEGATIVE)
goto negative_success;
counter_u64_add(numposhits, 1);
*vpp = ncp->nc_vp;
SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
cache_out_ts(ncp, tsp, ticksp);
MPASS(dvp != *vpp);
if (!cache_ncp_canuse(ncp)) {
vfs_smr_exit();
*vpp = NULL;
goto out_fallback;
}
vs = vget_prep_smr(*vpp);
vfs_smr_exit();
if (__predict_false(vs == VGET_NONE)) {
*vpp = NULL;
goto out_fallback;
}
error = vget_finish(*vpp, cnp->cn_lkflags, vs);
if (error) {
*vpp = NULL;
goto out_fallback;
}
return (-1);
negative_success:
if (cnp->cn_nameiop == CREATE) {
if (cnp->cn_flags & ISLASTCN) {
vfs_smr_exit();
goto out_fallback;
}
}
cache_out_ts(ncp, tsp, ticksp);
whiteout = (atomic_load_char(&ncp->nc_flag) & NCF_WHITE);
neg_promote = cache_neg_hit_prep(ncp);
if (!cache_ncp_canuse(ncp)) {
cache_neg_hit_abort(ncp);
vfs_smr_exit();
goto out_fallback;
}
if (neg_promote) {
vfs_smr_exit();
if (!cache_neg_promote_cond(dvp, cnp, ncp, hash))
goto out_fallback;
} else {
cache_neg_hit_finish(ncp);
vfs_smr_exit();
}
if (whiteout)
cnp->cn_flags |= ISWHITEOUT;
return (ENOENT);
out_fallback:
return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp));
}
struct celockstate {
struct mtx *vlp[3];
struct mtx *blp[2];
};
CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3));
CTASSERT((nitems(((struct celockstate *)0)->blp) == 2));
static inline void
cache_celockstate_init(struct celockstate *cel)
{
bzero(cel, sizeof(*cel));
}
static void
cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp,
struct vnode *dvp)
{
struct mtx *vlp1, *vlp2;
MPASS(cel->vlp[0] == NULL);
MPASS(cel->vlp[1] == NULL);
MPASS(cel->vlp[2] == NULL);
MPASS(vp != NULL || dvp != NULL);
vlp1 = VP2VNODELOCK(vp);
vlp2 = VP2VNODELOCK(dvp);
cache_sort_vnodes(&vlp1, &vlp2);
if (vlp1 != NULL) {
mtx_lock(vlp1);
cel->vlp[0] = vlp1;
}
mtx_lock(vlp2);
cel->vlp[1] = vlp2;
}
static void
cache_unlock_vnodes_cel(struct celockstate *cel)
{
MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL);
if (cel->vlp[0] != NULL)
mtx_unlock(cel->vlp[0]);
if (cel->vlp[1] != NULL)
mtx_unlock(cel->vlp[1]);
if (cel->vlp[2] != NULL)
mtx_unlock(cel->vlp[2]);
}
static bool
cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp)
{
struct mtx *vlp;
bool ret;
cache_assert_vlp_locked(cel->vlp[0]);
cache_assert_vlp_locked(cel->vlp[1]);
MPASS(cel->vlp[2] == NULL);
MPASS(vp != NULL);
vlp = VP2VNODELOCK(vp);
ret = true;
if (vlp >= cel->vlp[1]) {
mtx_lock(vlp);
} else {
if (mtx_trylock(vlp))
goto out;
cache_unlock_vnodes_cel(cel);
atomic_add_long(&cache_lock_vnodes_cel_3_failures, 1);
if (vlp < cel->vlp[0]) {
mtx_lock(vlp);
mtx_lock(cel->vlp[0]);
mtx_lock(cel->vlp[1]);
} else {
if (cel->vlp[0] != NULL)
mtx_lock(cel->vlp[0]);
mtx_lock(vlp);
mtx_lock(cel->vlp[1]);
}
ret = false;
}
out:
cel->vlp[2] = vlp;
return (ret);
}
static void
cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1,
struct mtx *blp2)
{
MPASS(cel->blp[0] == NULL);
MPASS(cel->blp[1] == NULL);
cache_sort_vnodes(&blp1, &blp2);
if (blp1 != NULL) {
mtx_lock(blp1);
cel->blp[0] = blp1;
}
mtx_lock(blp2);
cel->blp[1] = blp2;
}
static void
cache_unlock_buckets_cel(struct celockstate *cel)
{
if (cel->blp[0] != NULL)
mtx_unlock(cel->blp[0]);
mtx_unlock(cel->blp[1]);
}
/*
* Lock part of the cache affected by the insertion.
*
* This means vnodelocks for dvp, vp and the relevant bucketlock.
* However, insertion can result in removal of an old entry. In this
* case we have an additional vnode and bucketlock pair to lock.
*
* That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while
* preserving the locking order (smaller address first).
*/
static void
cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
uint32_t hash)
{
struct namecache *ncp;
struct mtx *blps[2];
u_char nc_flag;
blps[0] = HASH2BUCKETLOCK(hash);
for (;;) {
blps[1] = NULL;
cache_lock_vnodes_cel(cel, dvp, vp);
if (vp == NULL || vp->v_type != VDIR)
break;
ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
if (ncp == NULL)
break;
nc_flag = atomic_load_char(&ncp->nc_flag);
if ((nc_flag & NCF_ISDOTDOT) == 0)
break;
MPASS(ncp->nc_dvp == vp);
blps[1] = NCP2BUCKETLOCK(ncp);
if ((nc_flag & NCF_NEGATIVE) != 0)
break;
if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
break;
/*
* All vnodes got re-locked. Re-validate the state and if
* nothing changed we are done. Otherwise restart.
*/
if (ncp == vp->v_cache_dd &&
(ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
blps[1] == NCP2BUCKETLOCK(ncp) &&
VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
break;
cache_unlock_vnodes_cel(cel);
cel->vlp[0] = NULL;
cel->vlp[1] = NULL;
cel->vlp[2] = NULL;
}
cache_lock_buckets_cel(cel, blps[0], blps[1]);
}
static void
cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
uint32_t hash)
{
struct namecache *ncp;
struct mtx *blps[2];
u_char nc_flag;
blps[0] = HASH2BUCKETLOCK(hash);
for (;;) {
blps[1] = NULL;
cache_lock_vnodes_cel(cel, dvp, vp);
ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
if (ncp == NULL)
break;
nc_flag = atomic_load_char(&ncp->nc_flag);
if ((nc_flag & NCF_ISDOTDOT) == 0)
break;
MPASS(ncp->nc_dvp == dvp);
blps[1] = NCP2BUCKETLOCK(ncp);
if ((nc_flag & NCF_NEGATIVE) != 0)
break;
if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
break;
if (ncp == dvp->v_cache_dd &&
(ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
blps[1] == NCP2BUCKETLOCK(ncp) &&
VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
break;
cache_unlock_vnodes_cel(cel);
cel->vlp[0] = NULL;
cel->vlp[1] = NULL;
cel->vlp[2] = NULL;
}
cache_lock_buckets_cel(cel, blps[0], blps[1]);
}
static void
cache_enter_unlock(struct celockstate *cel)
{
cache_unlock_buckets_cel(cel);
cache_unlock_vnodes_cel(cel);
}
static void __noinline
cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp,
struct componentname *cnp)
{
struct celockstate cel;
struct namecache *ncp;
uint32_t hash;
int len;
if (atomic_load_ptr(&dvp->v_cache_dd) == NULL)
return;
len = cnp->cn_namelen;
cache_celockstate_init(&cel);
hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
cache_enter_lock_dd(&cel, dvp, vp, hash);
ncp = dvp->v_cache_dd;
if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) {
KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent"));
cache_zap_locked(ncp);
} else {
ncp = NULL;
}
atomic_store_ptr(&dvp->v_cache_dd, NULL);
cache_enter_unlock(&cel);
if (ncp != NULL)
cache_free(ncp);
}
/*
* Add an entry to the cache.
*/
void
cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
struct timespec *tsp, struct timespec *dtsp)
{
struct celockstate cel;
struct namecache *ncp, *n2, *ndd;
struct namecache_ts *ncp_ts;
struct nchashhead *ncpp;
uint32_t hash;
int flag;
int len;
KASSERT(cnp->cn_namelen <= NAME_MAX,
("%s: passed len %ld exceeds NAME_MAX (%d)", __func__, cnp->cn_namelen,
NAME_MAX));
VNPASS(!VN_IS_DOOMED(dvp), dvp);
VNPASS(dvp->v_type != VNON, dvp);
if (vp != NULL) {
VNPASS(!VN_IS_DOOMED(vp), vp);
VNPASS(vp->v_type != VNON, vp);
}
if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
KASSERT(dvp == vp,
("%s: different vnodes for dot entry (%p; %p)\n", __func__,
dvp, vp));
} else {
KASSERT(dvp != vp,
("%s: same vnode for non-dot entry [%s] (%p)\n", __func__,
cnp->cn_nameptr, dvp));
}
#ifdef DEBUG_CACHE
if (__predict_false(!doingcache))
return;
#endif
flag = 0;
if (__predict_false(cnp->cn_nameptr[0] == '.')) {
if (cnp->cn_namelen == 1)
return;
if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
cache_enter_dotdot_prep(dvp, vp, cnp);
flag = NCF_ISDOTDOT;
}
}
ncp = cache_alloc(cnp->cn_namelen, tsp != NULL);
if (ncp == NULL)
return;
cache_celockstate_init(&cel);
ndd = NULL;
ncp_ts = NULL;
/*
* Calculate the hash key and setup as much of the new
* namecache entry as possible before acquiring the lock.
*/
ncp->nc_flag = flag | NCF_WIP;
ncp->nc_vp = vp;
if (vp == NULL)
cache_neg_init(ncp);
ncp->nc_dvp = dvp;
if (tsp != NULL) {
ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
ncp_ts->nc_time = *tsp;
ncp_ts->nc_ticks = ticks;
ncp_ts->nc_nc.nc_flag |= NCF_TS;
if (dtsp != NULL) {
ncp_ts->nc_dotdottime = *dtsp;
ncp_ts->nc_nc.nc_flag |= NCF_DTS;
}
}
len = ncp->nc_nlen = cnp->cn_namelen;
hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
memcpy(ncp->nc_name, cnp->cn_nameptr, len);
ncp->nc_name[len] = '\0';
cache_enter_lock(&cel, dvp, vp, hash);
/*
* See if this vnode or negative entry is already in the cache
* with this name. This can happen with concurrent lookups of
* the same path name.
*/
ncpp = NCHHASH(hash);
CK_SLIST_FOREACH(n2, ncpp, nc_hash) {
if (n2->nc_dvp == dvp &&
n2->nc_nlen == cnp->cn_namelen &&
!bcmp(n2->nc_name, cnp->cn_nameptr, n2->nc_nlen)) {
MPASS(cache_ncp_canuse(n2));
if ((n2->nc_flag & NCF_NEGATIVE) != 0)
KASSERT(vp == NULL,
("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]",
__func__, NULL, vp, cnp->cn_nameptr));
else
KASSERT(n2->nc_vp == vp,
("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]",
__func__, n2->nc_vp, vp, cnp->cn_nameptr));
/*
* Entries are supposed to be immutable unless in the
* process of getting destroyed. Accommodating for
* changing timestamps is possible but not worth it.
* This should be harmless in terms of correctness, in
* the worst case resulting in an earlier expiration.
* Alternatively, the found entry can be replaced
* altogether.
*/
MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) == (ncp->nc_flag & (NCF_TS | NCF_DTS)));
#if 0
if (tsp != NULL) {
KASSERT((n2->nc_flag & NCF_TS) != 0,
("no NCF_TS"));
n2_ts = __containerof(n2, struct namecache_ts, nc_nc);
n2_ts->nc_time = ncp_ts->nc_time;
n2_ts->nc_ticks = ncp_ts->nc_ticks;
if (dtsp != NULL) {
n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime;
n2_ts->nc_nc.nc_flag |= NCF_DTS;
}
}
#endif
SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name,
vp);
goto out_unlock_free;
}
}
if (flag == NCF_ISDOTDOT) {
/*
* See if we are trying to add .. entry, but some other lookup
* has populated v_cache_dd pointer already.
*/
if (dvp->v_cache_dd != NULL)
goto out_unlock_free;
KASSERT(vp == NULL || vp->v_type == VDIR,
("wrong vnode type %p", vp));
atomic_thread_fence_rel();
atomic_store_ptr(&dvp->v_cache_dd, ncp);
}
if (vp != NULL) {
if (flag != NCF_ISDOTDOT) {
/*
* For this case, the cache entry maps both the
* directory name in it and the name ".." for the
* directory's parent.
*/
if ((ndd = vp->v_cache_dd) != NULL) {
if ((ndd->nc_flag & NCF_ISDOTDOT) != 0)
cache_zap_locked(ndd);
else
ndd = NULL;
}
atomic_thread_fence_rel();
atomic_store_ptr(&vp->v_cache_dd, ncp);
} else if (vp->v_type != VDIR) {
if (vp->v_cache_dd != NULL) {
atomic_store_ptr(&vp->v_cache_dd, NULL);
}
}
}
if (flag != NCF_ISDOTDOT) {
if (LIST_EMPTY(&dvp->v_cache_src)) {
cache_hold_vnode(dvp);
}
LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src);
}
/*
* If the entry is "negative", we place it into the
* "negative" cache queue, otherwise, we place it into the
* destination vnode's cache entries queue.
*/
if (vp != NULL) {
TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst);
SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name,
vp);
} else {
if (cnp->cn_flags & ISWHITEOUT)
atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_WHITE);
cache_neg_insert(ncp);
SDT_PROBE2(vfs, namecache, enter_negative, done, dvp,
ncp->nc_name);
}
/*
* Insert the new namecache entry into the appropriate chain
* within the cache entries table.
*/
CK_SLIST_INSERT_HEAD(ncpp, ncp, nc_hash);
atomic_thread_fence_rel();
/*
* Mark the entry as fully constructed.
* It is immutable past this point until its removal.
*/
atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP);
cache_enter_unlock(&cel);
if (ndd != NULL)
cache_free(ndd);
return;
out_unlock_free:
cache_enter_unlock(&cel);
cache_free(ncp);
return;
}
/*
* A variant of the above accepting flags.
*
* - VFS_CACHE_DROPOLD -- if a conflicting entry is found, drop it.
*
* TODO: this routine is a hack. It blindly removes the old entry, even if it
* happens to match and it is doing it in an inefficient manner. It was added
* to accommodate NFS which runs into a case where the target for a given name
* may change from under it. Note this does nothing to solve the following
* race: 2 callers of cache_enter_time_flags pass a different target vnode for
* the same [dvp, cnp]. It may be argued that code doing this is broken.
*/
void
cache_enter_time_flags(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
struct timespec *tsp, struct timespec *dtsp, int flags)
{
MPASS((flags & ~(VFS_CACHE_DROPOLD)) == 0);
if (flags & VFS_CACHE_DROPOLD)
cache_remove_cnp(dvp, cnp);
cache_enter_time(dvp, vp, cnp, tsp, dtsp);
}
static u_long
cache_roundup_2(u_long val)
{
u_long res;
for (res = 1; res <= val; res <<= 1)
continue;
return (res);
}
static struct nchashhead *
nchinittbl(u_long elements, u_long *hashmask)
{
struct nchashhead *hashtbl;
u_long hashsize, i;
hashsize = cache_roundup_2(elements) / 2;
hashtbl = malloc(hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK);
for (i = 0; i < hashsize; i++)
CK_SLIST_INIT(&hashtbl[i]);
*hashmask = hashsize - 1;
return (hashtbl);
}
static void
ncfreetbl(struct nchashhead *hashtbl)
{
free(hashtbl, M_VFSCACHE);
}
/*
* Name cache initialization, from vfs_init() when we are booting
*/
static void
nchinit(void *dummy __unused)
{
u_int i;
cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE,
NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE,
NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE,
NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE,
NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
VFS_SMR_ZONE_SET(cache_zone_small);
VFS_SMR_ZONE_SET(cache_zone_small_ts);
VFS_SMR_ZONE_SET(cache_zone_large);
VFS_SMR_ZONE_SET(cache_zone_large_ts);
ncsize = desiredvnodes * ncsizefactor;
cache_recalc_neg_min();
nchashtbl = nchinittbl(desiredvnodes * 2, &nchash);
ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1;
if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */
ncbuckethash = 7;
if (ncbuckethash > nchash)
ncbuckethash = nchash;
bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE,
M_WAITOK | M_ZERO);
for (i = 0; i < numbucketlocks; i++)
mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE);
ncvnodehash = ncbuckethash;
vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE,
M_WAITOK | M_ZERO);
for (i = 0; i < numvnodelocks; i++)
mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE);
for (i = 0; i < numneglists; i++) {
mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF);
mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF);
TAILQ_INIT(&neglists[i].nl_list);
TAILQ_INIT(&neglists[i].nl_hotlist);
}
}
SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL);
void
cache_vnode_init(struct vnode *vp)
{
LIST_INIT(&vp->v_cache_src);
TAILQ_INIT(&vp->v_cache_dst);
vp->v_cache_dd = NULL;
cache_prehash(vp);
}
/*
* Induce transient cache misses for lockless operation in cache_lookup() by
* using a temporary hash table.
*
* This will force a fs lookup.
*
* Synchronisation is done in 2 steps, calling vfs_smr_synchronize each time
* to observe all CPUs not performing the lookup.
*/
static void
cache_changesize_set_temp(struct nchashhead *temptbl, u_long temphash)
{
MPASS(temphash < nchash);
/*
* Change the size. The new size is smaller and can safely be used
* against the existing table. All lookups which now hash wrong will
* result in a cache miss, which all callers are supposed to know how
* to handle.
*/
atomic_store_long(&nchash, temphash);
atomic_thread_fence_rel();
vfs_smr_synchronize();
/*
* At this point everyone sees the updated hash value, but they still
* see the old table.
*/
atomic_store_ptr(&nchashtbl, temptbl);
atomic_thread_fence_rel();
vfs_smr_synchronize();
/*
* At this point everyone sees the updated table pointer and size pair.
*/
}
/*
* Set the new hash table.
*
* Similarly to cache_changesize_set_temp(), this has to synchronize against
* lockless operation in cache_lookup().
*/
static void
cache_changesize_set_new(struct nchashhead *new_tbl, u_long new_hash)
{
MPASS(nchash < new_hash);
/*
* Change the pointer first. This wont result in out of bounds access
* since the temporary table is guaranteed to be smaller.
*/
atomic_store_ptr(&nchashtbl, new_tbl);
atomic_thread_fence_rel();
vfs_smr_synchronize();
/*
* At this point everyone sees the updated pointer value, but they
* still see the old size.
*/
atomic_store_long(&nchash, new_hash);
atomic_thread_fence_rel();
vfs_smr_synchronize();
/*
* At this point everyone sees the updated table pointer and size pair.
*/
}
void
cache_changesize(u_long newmaxvnodes)
{
struct nchashhead *new_nchashtbl, *old_nchashtbl, *temptbl;
u_long new_nchash, old_nchash, temphash;
struct namecache *ncp;
uint32_t hash;
u_long newncsize;
u_long i;
newncsize = newmaxvnodes * ncsizefactor;
newmaxvnodes = cache_roundup_2(newmaxvnodes * 2);
if (newmaxvnodes < numbucketlocks)
newmaxvnodes = numbucketlocks;
new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash);
/* If same hash table size, nothing to do */
if (nchash == new_nchash) {
ncfreetbl(new_nchashtbl);
return;
}
temptbl = nchinittbl(1, &temphash);
/*
* Move everything from the old hash table to the new table.
* None of the namecache entries in the table can be removed
* because to do so, they have to be removed from the hash table.
*/
cache_lock_all_vnodes();
cache_lock_all_buckets();
old_nchashtbl = nchashtbl;
old_nchash = nchash;
cache_changesize_set_temp(temptbl, temphash);
for (i = 0; i <= old_nchash; i++) {
while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) {
hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen,
ncp->nc_dvp);
CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash);
CK_SLIST_INSERT_HEAD(&new_nchashtbl[hash & new_nchash], ncp, nc_hash);
}
}
ncsize = newncsize;
cache_recalc_neg_min();
cache_changesize_set_new(new_nchashtbl, new_nchash);
cache_unlock_all_buckets();
cache_unlock_all_vnodes();
ncfreetbl(old_nchashtbl);
ncfreetbl(temptbl);
}
/*
* Remove all entries from and to a particular vnode.
*/
static void
cache_purge_impl(struct vnode *vp)
{
struct cache_freebatch batch;
struct namecache *ncp;
struct mtx *vlp, *vlp2;
TAILQ_INIT(&batch);
vlp = VP2VNODELOCK(vp);
vlp2 = NULL;
mtx_lock(vlp);
retry:
while (!LIST_EMPTY(&vp->v_cache_src)) {
ncp = LIST_FIRST(&vp->v_cache_src);
if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
goto retry;
TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
}
while (!TAILQ_EMPTY(&vp->v_cache_dst)) {
ncp = TAILQ_FIRST(&vp->v_cache_dst);
if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
goto retry;
TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
}
ncp = vp->v_cache_dd;
if (ncp != NULL) {
KASSERT(ncp->nc_flag & NCF_ISDOTDOT,
("lost dotdot link"));
if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
goto retry;
TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
}
KASSERT(vp->v_cache_dd == NULL, ("incomplete purge"));
mtx_unlock(vlp);
if (vlp2 != NULL)
mtx_unlock(vlp2);
cache_free_batch(&batch);
}
/*
* Opportunistic check to see if there is anything to do.
*/
static bool
cache_has_entries(struct vnode *vp)
{
if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) &&
atomic_load_ptr(&vp->v_cache_dd) == NULL)
return (false);
return (true);
}
void
cache_purge(struct vnode *vp)
{
SDT_PROBE1(vfs, namecache, purge, done, vp);
if (!cache_has_entries(vp))
return;
cache_purge_impl(vp);
}
/*
* Only to be used by vgone.
*/
void
cache_purge_vgone(struct vnode *vp)
{
struct mtx *vlp;
VNPASS(VN_IS_DOOMED(vp), vp);
if (cache_has_entries(vp)) {
cache_purge_impl(vp);
return;
}
/*
* Serialize against a potential thread doing cache_purge.
*/
vlp = VP2VNODELOCK(vp);
mtx_wait_unlocked(vlp);
if (cache_has_entries(vp)) {
cache_purge_impl(vp);
return;
}
return;
}
/*
* Remove all negative entries for a particular directory vnode.
*/
void
cache_purge_negative(struct vnode *vp)
{
struct cache_freebatch batch;
struct namecache *ncp, *nnp;
struct mtx *vlp;
SDT_PROBE1(vfs, namecache, purge_negative, done, vp);
if (LIST_EMPTY(&vp->v_cache_src))
return;
TAILQ_INIT(&batch);
vlp = VP2VNODELOCK(vp);
mtx_lock(vlp);
LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) {
if (!(ncp->nc_flag & NCF_NEGATIVE))
continue;
cache_zap_negative_locked_vnode_kl(ncp, vp);
TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
}
mtx_unlock(vlp);
cache_free_batch(&batch);
}
/*
* Entry points for modifying VOP operations.
*/
void
cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp,
struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp)
{
ASSERT_VOP_IN_SEQC(fdvp);
ASSERT_VOP_IN_SEQC(fvp);
ASSERT_VOP_IN_SEQC(tdvp);
if (tvp != NULL)
ASSERT_VOP_IN_SEQC(tvp);
cache_purge(fvp);
if (tvp != NULL) {
cache_purge(tvp);
KASSERT(!cache_remove_cnp(tdvp, tcnp),
("%s: lingering negative entry", __func__));
} else {
cache_remove_cnp(tdvp, tcnp);
}
/*
* TODO
*
* Historically renaming was always purging all revelang entries,
* but that's quite wasteful. In particular turns out that in many cases
* the target file is immediately accessed after rename, inducing a cache
* miss.
*
* Recode this to reduce relocking and reuse the existing entry (if any)
* instead of just removing it above and allocating a new one here.
*/
cache_enter(tdvp, fvp, tcnp);
}
void
cache_vop_rmdir(struct vnode *dvp, struct vnode *vp)
{
ASSERT_VOP_IN_SEQC(dvp);
ASSERT_VOP_IN_SEQC(vp);
cache_purge(vp);
}
#ifdef INVARIANTS
/*
* Validate that if an entry exists it matches.
*/
void
cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
{
struct namecache *ncp;
struct mtx *blp;
uint32_t hash;
hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
if (CK_SLIST_EMPTY(NCHHASH(hash)))
return;
blp = HASH2BUCKETLOCK(hash);
mtx_lock(blp);
CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
!bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) {
if (ncp->nc_vp != vp)
panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p\n",
__func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp);
}
}
mtx_unlock(blp);
}
void
cache_assert_no_entries(struct vnode *vp)
{
VNPASS(TAILQ_EMPTY(&vp->v_cache_dst), vp);
VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
VNPASS(vp->v_cache_dd == NULL, vp);
}
#endif
/*
* Flush all entries referencing a particular filesystem.
*/
void
cache_purgevfs(struct mount *mp)
{
struct vnode *vp, *mvp;
size_t visited __sdt_used, purged __sdt_used;
visited = purged = 0;
/*
* Somewhat wasteful iteration over all vnodes. Would be better to
* support filtering and avoid the interlock to begin with.
*/
MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
visited++;
if (!cache_has_entries(vp)) {
VI_UNLOCK(vp);
continue;
}
vholdl(vp);
VI_UNLOCK(vp);
cache_purge(vp);
purged++;
vdrop(vp);
}
SDT_PROBE3(vfs, namecache, purgevfs, done, mp, visited, purged);
}
/*
* Perform canonical checks and cache lookup and pass on to filesystem
* through the vop_cachedlookup only if needed.
*/
int
vfs_cache_lookup(struct vop_lookup_args *ap)
{
struct vnode *dvp;
int error;
struct vnode **vpp = ap->a_vpp;
struct componentname *cnp = ap->a_cnp;
int flags = cnp->cn_flags;
*vpp = NULL;
dvp = ap->a_dvp;
if (dvp->v_type != VDIR)
return (ENOTDIR);
if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
(cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
return (EROFS);
error = vn_dir_check_exec(dvp, cnp);
if (error != 0)
return (error);
error = cache_lookup(dvp, vpp, cnp, NULL, NULL);
if (error == 0)
return (VOP_CACHEDLOOKUP(dvp, vpp, cnp));
if (error == -1)
return (0);
return (error);
}
/* Implementation of the getcwd syscall. */
int
sys___getcwd(struct thread *td, struct __getcwd_args *uap)
{
char *buf, *retbuf;
size_t buflen;
int error;
buflen = uap->buflen;
if (__predict_false(buflen < 2))
return (EINVAL);
if (buflen > MAXPATHLEN)
buflen = MAXPATHLEN;
buf = uma_zalloc(namei_zone, M_WAITOK);
error = vn_getcwd(buf, &retbuf, &buflen);
if (error == 0)
error = copyout(retbuf, uap->buf, buflen);
uma_zfree(namei_zone, buf);
return (error);
}
int
vn_getcwd(char *buf, char **retbuf, size_t *buflen)
{
struct pwd *pwd;
int error;
vfs_smr_enter();
pwd = pwd_get_smr();
error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf,
buflen, 0);
VFS_SMR_ASSERT_NOT_ENTERED();
if (error < 0) {
pwd = pwd_hold(curthread);
error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf,
retbuf, buflen);
pwd_drop(pwd);
}
#ifdef KTRACE
if (KTRPOINT(curthread, KTR_NAMEI) && error == 0)
ktrnamei(*retbuf);
#endif
return (error);
}
/*
* Canonicalize a path by walking it forward and back.
*
* BUGS:
* - Nothing guarantees the integrity of the entire chain. Consider the case
* where the path "foo/bar/baz/qux" is passed, but "bar" is moved out of
* "foo" into "quux" during the backwards walk. The result will be
* "quux/bar/baz/qux", which could not have been obtained by an incremental
* walk in userspace. Moreover, the path we return is inaccessible if the
* calling thread lacks permission to traverse "quux".
*/
static int
kern___realpathat(struct thread *td, int fd, const char *path, char *buf,
size_t size, int flags, enum uio_seg pathseg)
{
struct nameidata nd;
char *retbuf, *freebuf;
int error;
if (flags != 0)
return (EINVAL);
NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | WANTPARENT | AUDITVNODE1,
pathseg, path, fd, &cap_fstat_rights);
if ((error = namei(&nd)) != 0)
return (error);
if (nd.ni_vp->v_type == VREG && nd.ni_dvp->v_type != VDIR &&
(nd.ni_vp->v_vflag & VV_ROOT) != 0) {
struct vnode *covered_vp;
/*
* This happens if vp is a file mount. The call to
* vn_fullpath_hardlink can panic if path resolution can't be
* handled without the directory.
*
* To resolve this, we find the vnode which was mounted on -
* this should have a unique global path since we disallow
* mounting on linked files.
*/
error = vn_lock(nd.ni_vp, LK_SHARED);
if (error != 0)
goto out;
covered_vp = nd.ni_vp->v_mount->mnt_vnodecovered;
vref(covered_vp);
VOP_UNLOCK(nd.ni_vp);
error = vn_fullpath(covered_vp, &retbuf, &freebuf);
vrele(covered_vp);
} else {
error = vn_fullpath_hardlink(nd.ni_vp, nd.ni_dvp,
nd.ni_cnd.cn_nameptr, nd.ni_cnd.cn_namelen, &retbuf,
&freebuf, &size);
}
if (error == 0) {
size_t len;
len = strlen(retbuf) + 1;
if (size < len)
error = ENAMETOOLONG;
else if (pathseg == UIO_USERSPACE)
error = copyout(retbuf, buf, len);
else
memcpy(buf, retbuf, len);
free(freebuf, M_TEMP);
}
out:
vrele(nd.ni_vp);
vrele(nd.ni_dvp);
NDFREE_PNBUF(&nd);
return (error);
}
int
sys___realpathat(struct thread *td, struct __realpathat_args *uap)
{
return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size,
uap->flags, UIO_USERSPACE));
}
/*
* Retrieve the full filesystem path that correspond to a vnode from the name
* cache (if available)
*/
int
vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf)
{
struct pwd *pwd;
char *buf;
size_t buflen;
int error;
if (__predict_false(vp == NULL))
return (EINVAL);
buflen = MAXPATHLEN;
buf = malloc(buflen, M_TEMP, M_WAITOK);
vfs_smr_enter();
pwd = pwd_get_smr();
error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0);
VFS_SMR_ASSERT_NOT_ENTERED();
if (error < 0) {
pwd = pwd_hold(curthread);
error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen);
pwd_drop(pwd);
}
if (error == 0)
*freebuf = buf;
else
free(buf, M_TEMP);
return (error);
}
/*
* This function is similar to vn_fullpath, but it attempts to lookup the
* pathname relative to the global root mount point. This is required for the
* auditing sub-system, as audited pathnames must be absolute, relative to the
* global root mount point.
*/
int
vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf)
{
char *buf;
size_t buflen;
int error;
if (__predict_false(vp == NULL))
return (EINVAL);
buflen = MAXPATHLEN;
buf = malloc(buflen, M_TEMP, M_WAITOK);
vfs_smr_enter();
error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0);
VFS_SMR_ASSERT_NOT_ENTERED();
if (error < 0) {
error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen);
}
if (error == 0)
*freebuf = buf;
else
free(buf, M_TEMP);
return (error);
}
static struct namecache *
vn_dd_from_dst(struct vnode *vp)
{
struct namecache *ncp;
cache_assert_vnode_locked(vp);
TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) {
if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
return (ncp);
}
return (NULL);
}
int
vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen)
{
struct vnode *dvp;
struct namecache *ncp;
struct mtx *vlp;
int error;
vlp = VP2VNODELOCK(*vp);
mtx_lock(vlp);
ncp = (*vp)->v_cache_dd;
if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) {
KASSERT(ncp == vn_dd_from_dst(*vp),
("%s: mismatch for dd entry (%p != %p)", __func__,
ncp, vn_dd_from_dst(*vp)));
} else {
ncp = vn_dd_from_dst(*vp);
}
if (ncp != NULL) {
if (*buflen < ncp->nc_nlen) {
mtx_unlock(vlp);
vrele(*vp);
counter_u64_add(numfullpathfail4, 1);
error = ENOMEM;
SDT_PROBE3(vfs, namecache, fullpath, return, error,
vp, NULL);
return (error);
}
*buflen -= ncp->nc_nlen;
memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp,
ncp->nc_name, vp);
dvp = *vp;
*vp = ncp->nc_dvp;
vref(*vp);
mtx_unlock(vlp);
vrele(dvp);
return (0);
}
SDT_PROBE1(vfs, namecache, fullpath, miss, vp);
mtx_unlock(vlp);
vn_lock(*vp, LK_SHARED | LK_RETRY);
error = VOP_VPTOCNP(*vp, &dvp, buf, buflen);
vput(*vp);
if (error) {
counter_u64_add(numfullpathfail2, 1);
SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL);
return (error);
}
*vp = dvp;
if (VN_IS_DOOMED(dvp)) {
/* forced unmount */
vrele(dvp);
error = ENOENT;
SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL);
return (error);
}
/*
* *vp has its use count incremented still.
*/
return (0);
}
/*
* Resolve a directory to a pathname.
*
* The name of the directory can always be found in the namecache or fetched
* from the filesystem. There is also guaranteed to be only one parent, meaning
* we can just follow vnodes up until we find the root.
*
* The vnode must be referenced.
*/
static int
vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
size_t *len, size_t addend)
{
#ifdef KDTRACE_HOOKS
struct vnode *startvp = vp;
#endif
struct vnode *vp1;
size_t buflen;
int error;
bool slash_prefixed;
VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
VNPASS(vp->v_usecount > 0, vp);
buflen = *len;
slash_prefixed = true;
if (addend == 0) {
MPASS(*len >= 2);
buflen--;
buf[buflen] = '\0';
slash_prefixed = false;
}
error = 0;
SDT_PROBE1(vfs, namecache, fullpath, entry, vp);
counter_u64_add(numfullpathcalls, 1);
while (vp != rdir && vp != rootvnode) {
/*
* The vp vnode must be already fully constructed,
* since it is either found in namecache or obtained
* from VOP_VPTOCNP(). We may test for VV_ROOT safely
* without obtaining the vnode lock.
*/
if ((vp->v_vflag & VV_ROOT) != 0) {
vn_lock(vp, LK_RETRY | LK_SHARED);
/*
* With the vnode locked, check for races with
* unmount, forced or not. Note that we
* already verified that vp is not equal to
* the root vnode, which means that
* mnt_vnodecovered can be NULL only for the
* case of unmount.
*/
if (VN_IS_DOOMED(vp) ||
(vp1 = vp->v_mount->mnt_vnodecovered) == NULL ||
vp1->v_mountedhere != vp->v_mount) {
vput(vp);
error = ENOENT;
SDT_PROBE3(vfs, namecache, fullpath, return,
error, vp, NULL);
break;
}
vref(vp1);
vput(vp);
vp = vp1;
continue;
}
VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
error = vn_vptocnp(&vp, buf, &buflen);
if (error)
break;
if (buflen == 0) {
vrele(vp);
error = ENOMEM;
SDT_PROBE3(vfs, namecache, fullpath, return, error,
startvp, NULL);
break;
}
buf[--buflen] = '/';
slash_prefixed = true;
}
if (error)
return (error);
if (!slash_prefixed) {
if (buflen == 0) {
vrele(vp);
counter_u64_add(numfullpathfail4, 1);
SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM,
startvp, NULL);
return (ENOMEM);
}
buf[--buflen] = '/';
}
counter_u64_add(numfullpathfound, 1);
vrele(vp);
*retbuf = buf + buflen;
SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf);
*len -= buflen;
*len += addend;
return (0);
}
/*
* Resolve an arbitrary vnode to a pathname.
*
* Note 2 caveats:
* - hardlinks are not tracked, thus if the vnode is not a directory this can
* resolve to a different path than the one used to find it
* - namecache is not mandatory, meaning names are not guaranteed to be added
* (in which case resolving fails)
*/
static void __inline
cache_rev_failed_impl(int *reason, int line)
{
*reason = line;
}
#define cache_rev_failed(var) cache_rev_failed_impl((var), __LINE__)
static int
vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
char **retbuf, size_t *buflen, size_t addend)
{
#ifdef KDTRACE_HOOKS
struct vnode *startvp = vp;
#endif
struct vnode *tvp;
struct mount *mp;
struct namecache *ncp;
size_t orig_buflen;
int reason;
int error;
#ifdef KDTRACE_HOOKS
int i;
#endif
seqc_t vp_seqc, tvp_seqc;
u_char nc_flag;
VFS_SMR_ASSERT_ENTERED();
if (!atomic_load_char(&cache_fast_lookup_enabled)) {
vfs_smr_exit();
return (-1);
}
orig_buflen = *buflen;
if (addend == 0) {
MPASS(*buflen >= 2);
*buflen -= 1;
buf[*buflen] = '\0';
}
if (vp == rdir || vp == rootvnode) {
if (addend == 0) {
*buflen -= 1;
buf[*buflen] = '/';
}
goto out_ok;
}
#ifdef KDTRACE_HOOKS
i = 0;
#endif
error = -1;
ncp = NULL; /* for sdt probe down below */
vp_seqc = vn_seqc_read_any(vp);
if (seqc_in_modify(vp_seqc)) {
cache_rev_failed(&reason);
goto out_abort;
}
for (;;) {
#ifdef KDTRACE_HOOKS
i++;
#endif
if ((vp->v_vflag & VV_ROOT) != 0) {
mp = atomic_load_ptr(&vp->v_mount);
if (mp == NULL) {
cache_rev_failed(&reason);
goto out_abort;
}
tvp = atomic_load_ptr(&mp->mnt_vnodecovered);
tvp_seqc = vn_seqc_read_any(tvp);
if (seqc_in_modify(tvp_seqc)) {
cache_rev_failed(&reason);
goto out_abort;
}
if (!vn_seqc_consistent(vp, vp_seqc)) {
cache_rev_failed(&reason);
goto out_abort;
}
vp = tvp;
vp_seqc = tvp_seqc;
continue;
}
ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
if (ncp == NULL) {
cache_rev_failed(&reason);
goto out_abort;
}
nc_flag = atomic_load_char(&ncp->nc_flag);
if ((nc_flag & NCF_ISDOTDOT) != 0) {
cache_rev_failed(&reason);
goto out_abort;
}
if (ncp->nc_nlen >= *buflen) {
cache_rev_failed(&reason);
error = ENOMEM;
goto out_abort;
}
*buflen -= ncp->nc_nlen;
memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
*buflen -= 1;
buf[*buflen] = '/';
tvp = ncp->nc_dvp;
tvp_seqc = vn_seqc_read_any(tvp);
if (seqc_in_modify(tvp_seqc)) {
cache_rev_failed(&reason);
goto out_abort;
}
if (!vn_seqc_consistent(vp, vp_seqc)) {
cache_rev_failed(&reason);
goto out_abort;
}
/*
* Acquire fence provided by vn_seqc_read_any above.
*/
if (__predict_false(atomic_load_ptr(&vp->v_cache_dd) != ncp)) {
cache_rev_failed(&reason);
goto out_abort;
}
if (!cache_ncp_canuse(ncp)) {
cache_rev_failed(&reason);
goto out_abort;
}
vp = tvp;
vp_seqc = tvp_seqc;
if (vp == rdir || vp == rootvnode)
break;
}
out_ok:
vfs_smr_exit();
*retbuf = buf + *buflen;
*buflen = orig_buflen - *buflen + addend;
SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf);
return (0);
out_abort:
*buflen = orig_buflen;
SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i);
vfs_smr_exit();
return (error);
}
static int
vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
size_t *buflen)
{
size_t orig_buflen, addend;
int error;
if (*buflen < 2)
return (EINVAL);
orig_buflen = *buflen;
vref(vp);
addend = 0;
if (vp->v_type != VDIR) {
*buflen -= 1;
buf[*buflen] = '\0';
error = vn_vptocnp(&vp, buf, buflen);
if (error)
return (error);
if (*buflen == 0) {
vrele(vp);
return (ENOMEM);
}
*buflen -= 1;
buf[*buflen] = '/';
addend = orig_buflen - *buflen;
}
return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend));
}
/*
* Resolve an arbitrary vnode to a pathname (taking care of hardlinks).
*
* Since the namecache does not track hardlinks, the caller is expected to
* first look up the target vnode with WANTPARENT flag passed to namei to get
* dvp and vp.
*
* Then we have 2 cases:
* - if the found vnode is a directory, the path can be constructed just by
* following names up the chain
* - otherwise we populate the buffer with the saved name and start resolving
* from the parent
*/
int
vn_fullpath_hardlink(struct vnode *vp, struct vnode *dvp,
const char *hrdl_name, size_t hrdl_name_length,
char **retbuf, char **freebuf, size_t *buflen)
{
char *buf, *tmpbuf;
struct pwd *pwd;
size_t addend;
int error;
__enum_uint8(vtype) type;
if (*buflen < 2)
return (EINVAL);
if (*buflen > MAXPATHLEN)
*buflen = MAXPATHLEN;
buf = malloc(*buflen, M_TEMP, M_WAITOK);
addend = 0;
/*
* Check for VBAD to work around the vp_crossmp bug in lookup().
*
* For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be
* set to mount point's root vnode while ni_dvp will be vp_crossmp.
* If the type is VDIR (like in this very case) we can skip looking
* at ni_dvp in the first place. However, since vnodes get passed here
* unlocked the target may transition to doomed state (type == VBAD)
* before we get to evaluate the condition. If this happens, we will
* populate part of the buffer and descend to vn_fullpath_dir with
* vp == vp_crossmp. Prevent the problem by checking for VBAD.
*/
type = atomic_load_8(&vp->v_type);
if (type == VBAD) {
error = ENOENT;
goto out_bad;
}
if (type != VDIR) {
addend = hrdl_name_length + 2;
if (*buflen < addend) {
error = ENOMEM;
goto out_bad;
}
*buflen -= addend;
tmpbuf = buf + *buflen;
tmpbuf[0] = '/';
memcpy(&tmpbuf[1], hrdl_name, hrdl_name_length);
tmpbuf[addend - 1] = '\0';
vp = dvp;
}
vfs_smr_enter();
pwd = pwd_get_smr();
error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen,
addend);
VFS_SMR_ASSERT_NOT_ENTERED();
if (error < 0) {
pwd = pwd_hold(curthread);
vref(vp);
error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen,
addend);
pwd_drop(pwd);
}
if (error != 0)
goto out_bad;
*freebuf = buf;
return (0);
out_bad:
free(buf, M_TEMP);
return (error);
}
struct vnode *
vn_dir_dd_ino(struct vnode *vp)
{
struct namecache *ncp;
struct vnode *ddvp;
struct mtx *vlp;
enum vgetstate vs;
ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino");
vlp = VP2VNODELOCK(vp);
mtx_lock(vlp);
TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) {
if ((ncp->nc_flag & NCF_ISDOTDOT) != 0)
continue;
ddvp = ncp->nc_dvp;
vs = vget_prep(ddvp);
mtx_unlock(vlp);
if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs))
return (NULL);
return (ddvp);
}
mtx_unlock(vlp);
return (NULL);
}
int
vn_commname(struct vnode *vp, char *buf, u_int buflen)
{
struct namecache *ncp;
struct mtx *vlp;
int l;
vlp = VP2VNODELOCK(vp);
mtx_lock(vlp);
TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst)
if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
break;
if (ncp == NULL) {
mtx_unlock(vlp);
return (ENOENT);
}
l = min(ncp->nc_nlen, buflen - 1);
memcpy(buf, ncp->nc_name, l);
mtx_unlock(vlp);
buf[l] = '\0';
return (0);
}
/*
* This function updates path string to vnode's full global path
* and checks the size of the new path string against the pathlen argument.
*
* Requires a locked, referenced vnode.
* Vnode is re-locked on success or ENODEV, otherwise unlocked.
*
* If vp is a directory, the call to vn_fullpath_global() always succeeds
* because it falls back to the ".." lookup if the namecache lookup fails.
*/
int
vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path,
u_int pathlen)
{
struct nameidata nd;
struct vnode *vp1;
char *rpath, *fbuf;
int error;
ASSERT_VOP_ELOCKED(vp, __func__);
/* Construct global filesystem path from vp. */
VOP_UNLOCK(vp);
error = vn_fullpath_global(vp, &rpath, &fbuf);
if (error != 0) {
vrele(vp);
return (error);
}
if (strlen(rpath) >= pathlen) {
vrele(vp);
error = ENAMETOOLONG;
goto out;
}
/*
* Re-lookup the vnode by path to detect a possible rename.
* As a side effect, the vnode is relocked.
* If vnode was renamed, return ENOENT.
*/
NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
error = namei(&nd);
if (error != 0) {
vrele(vp);
goto out;
}
NDFREE_PNBUF(&nd);
vp1 = nd.ni_vp;
vrele(vp);
if (vp1 == vp)
strcpy(path, rpath);
else {
vput(vp1);
error = ENOENT;
}
out:
free(fbuf, M_TEMP);
return (error);
}
/*
* This is similar to vn_path_to_global_path but allows for regular
* files which may not be present in the cache.
*
* Requires a locked, referenced vnode.
* Vnode is re-locked on success or ENODEV, otherwise unlocked.
*/
int
vn_path_to_global_path_hardlink(struct thread *td, struct vnode *vp,
struct vnode *dvp, char *path, u_int pathlen, const char *leaf_name,
size_t leaf_length)
{
struct nameidata nd;
struct vnode *vp1;
char *rpath, *fbuf;
size_t len;
int error;
ASSERT_VOP_ELOCKED(vp, __func__);
/*
* Construct global filesystem path from dvp, vp and leaf
* name.
*/
VOP_UNLOCK(vp);
len = pathlen;
error = vn_fullpath_hardlink(vp, dvp, leaf_name, leaf_length,
&rpath, &fbuf, &len);
if (error != 0) {
vrele(vp);
return (error);
}
if (strlen(rpath) >= pathlen) {
vrele(vp);
error = ENAMETOOLONG;
goto out;
}
/*
* Re-lookup the vnode by path to detect a possible rename.
* As a side effect, the vnode is relocked.
* If vnode was renamed, return ENOENT.
*/
NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
error = namei(&nd);
if (error != 0) {
vrele(vp);
goto out;
}
NDFREE_PNBUF(&nd);
vp1 = nd.ni_vp;
vrele(vp);
if (vp1 == vp)
strcpy(path, rpath);
else {
vput(vp1);
error = ENOENT;
}
out:
free(fbuf, M_TEMP);
return (error);
}
#ifdef DDB
static void
db_print_vpath(struct vnode *vp)
{
while (vp != NULL) {
db_printf("%p: ", vp);
if (vp == rootvnode) {
db_printf("/");
vp = NULL;
} else {
if (vp->v_vflag & VV_ROOT) {
db_printf("<mount point>");
vp = vp->v_mount->mnt_vnodecovered;
} else {
struct namecache *ncp;
char *ncn;
int i;
ncp = TAILQ_FIRST(&vp->v_cache_dst);
if (ncp != NULL) {
ncn = ncp->nc_name;
for (i = 0; i < ncp->nc_nlen; i++)
db_printf("%c", *ncn++);
vp = ncp->nc_dvp;
} else {
vp = NULL;
}
}
}
db_printf("\n");
}
return;
}
DB_SHOW_COMMAND(vpath, db_show_vpath)
{
struct vnode *vp;
if (!have_addr) {
db_printf("usage: show vpath <struct vnode *>\n");
return;
}
vp = (struct vnode *)addr;
db_print_vpath(vp);
}
#endif
static int cache_fast_lookup = 1;
#define CACHE_FPL_FAILED -2020
static int
cache_vop_bad_vexec(struct vop_fplookup_vexec_args *v)
{
vn_printf(v->a_vp, "no proper vop_fplookup_vexec\n");
panic("no proper vop_fplookup_vexec");
}
static int
cache_vop_bad_symlink(struct vop_fplookup_symlink_args *v)
{
vn_printf(v->a_vp, "no proper vop_fplookup_symlink\n");
panic("no proper vop_fplookup_symlink");
}
void
cache_vop_vector_register(struct vop_vector *v)
{
size_t ops;
ops = 0;
if (v->vop_fplookup_vexec != NULL) {
ops++;
}
if (v->vop_fplookup_symlink != NULL) {
ops++;
}
if (ops == 2) {
return;
}
if (ops == 0) {
v->vop_fplookup_vexec = cache_vop_bad_vexec;
v->vop_fplookup_symlink = cache_vop_bad_symlink;
return;
}
printf("%s: invalid vop vector %p -- either all or none fplookup vops "
"need to be provided", __func__, v);
if (v->vop_fplookup_vexec == NULL) {
printf("%s: missing vop_fplookup_vexec\n", __func__);
}
if (v->vop_fplookup_symlink == NULL) {
printf("%s: missing vop_fplookup_symlink\n", __func__);
}
panic("bad vop vector %p", v);
}
#ifdef INVARIANTS
void
cache_validate_vop_vector(struct mount *mp, struct vop_vector *vops)
{
if (mp == NULL)
return;
if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
return;
if (vops->vop_fplookup_vexec == NULL ||
vops->vop_fplookup_vexec == cache_vop_bad_vexec)
panic("bad vop_fplookup_vexec on vector %p for filesystem %s",
vops, mp->mnt_vfc->vfc_name);
if (vops->vop_fplookup_symlink == NULL ||
vops->vop_fplookup_symlink == cache_vop_bad_symlink)
panic("bad vop_fplookup_symlink on vector %p for filesystem %s",
vops, mp->mnt_vfc->vfc_name);
}
#endif
void
cache_fast_lookup_enabled_recalc(void)
{
int lookup_flag;
int mac_on;
#ifdef MAC
mac_on = mac_vnode_check_lookup_enabled();
mac_on |= mac_vnode_check_readlink_enabled();
#else
mac_on = 0;
#endif
lookup_flag = atomic_load_int(&cache_fast_lookup);
if (lookup_flag && !mac_on) {
atomic_store_char(&cache_fast_lookup_enabled, true);
} else {
atomic_store_char(&cache_fast_lookup_enabled, false);
}
}
static int
syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS)
{
int error, old;
old = atomic_load_int(&cache_fast_lookup);
error = sysctl_handle_int(oidp, arg1, arg2, req);
if (error == 0 && req->newptr && old != atomic_load_int(&cache_fast_lookup))
cache_fast_lookup_enabled_recalc();
return (error);
}
SYSCTL_PROC(_vfs_cache_param, OID_AUTO, fast_lookup, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE,
&cache_fast_lookup, 0, syscal_vfs_cache_fast_lookup, "IU", "");
/*
* Components of nameidata (or objects it can point to) which may
* need restoring in case fast path lookup fails.
*/
struct nameidata_outer {
size_t ni_pathlen;
int cn_flags;
};
struct nameidata_saved {
#ifdef INVARIANTS
char *cn_nameptr;
size_t ni_pathlen;
#endif
};
#ifdef INVARIANTS
struct cache_fpl_debug {
size_t ni_pathlen;
};
#endif
struct cache_fpl {
struct nameidata *ndp;
struct componentname *cnp;
char *nulchar;
struct vnode *dvp;
struct vnode *tvp;
seqc_t dvp_seqc;
seqc_t tvp_seqc;
uint32_t hash;
struct nameidata_saved snd;
struct nameidata_outer snd_outer;
int line;
enum cache_fpl_status status:8;
bool in_smr;
bool fsearch;
struct pwd **pwd;
#ifdef INVARIANTS
struct cache_fpl_debug debug;
#endif
};
static bool cache_fplookup_mp_supported(struct mount *mp);
static bool cache_fplookup_is_mp(struct cache_fpl *fpl);
static int cache_fplookup_cross_mount(struct cache_fpl *fpl);
static int cache_fplookup_partial_setup(struct cache_fpl *fpl);
static int cache_fplookup_skip_slashes(struct cache_fpl *fpl);
static int cache_fplookup_trailingslash(struct cache_fpl *fpl);
static void cache_fpl_pathlen_dec(struct cache_fpl *fpl);
static void cache_fpl_pathlen_inc(struct cache_fpl *fpl);
static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n);
static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n);
static void
cache_fpl_cleanup_cnp(struct componentname *cnp)
{
uma_zfree(namei_zone, cnp->cn_pnbuf);
cnp->cn_pnbuf = NULL;
cnp->cn_nameptr = NULL;
}
static struct vnode *
cache_fpl_handle_root(struct cache_fpl *fpl)
{
struct nameidata *ndp;
struct componentname *cnp;
ndp = fpl->ndp;
cnp = fpl->cnp;
MPASS(*(cnp->cn_nameptr) == '/');
cnp->cn_nameptr++;
cache_fpl_pathlen_dec(fpl);
if (__predict_false(*(cnp->cn_nameptr) == '/')) {
do {
cnp->cn_nameptr++;
cache_fpl_pathlen_dec(fpl);
} while (*(cnp->cn_nameptr) == '/');
}
return (ndp->ni_rootdir);
}
static void
cache_fpl_checkpoint_outer(struct cache_fpl *fpl)
{
fpl->snd_outer.ni_pathlen = fpl->ndp->ni_pathlen;
fpl->snd_outer.cn_flags = fpl->ndp->ni_cnd.cn_flags;
}
static void
cache_fpl_checkpoint(struct cache_fpl *fpl)
{
#ifdef INVARIANTS
fpl->snd.cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr;
fpl->snd.ni_pathlen = fpl->debug.ni_pathlen;
#endif
}
static void
cache_fpl_restore_partial(struct cache_fpl *fpl)
{
fpl->ndp->ni_cnd.cn_flags = fpl->snd_outer.cn_flags;
#ifdef INVARIANTS
fpl->debug.ni_pathlen = fpl->snd.ni_pathlen;
#endif
}
static void
cache_fpl_restore_abort(struct cache_fpl *fpl)
{
cache_fpl_restore_partial(fpl);
/*
* It is 0 on entry by API contract.
*/
fpl->ndp->ni_resflags = 0;
fpl->ndp->ni_cnd.cn_nameptr = fpl->ndp->ni_cnd.cn_pnbuf;
fpl->ndp->ni_pathlen = fpl->snd_outer.ni_pathlen;
}
#ifdef INVARIANTS
#define cache_fpl_smr_assert_entered(fpl) ({ \
struct cache_fpl *_fpl = (fpl); \
MPASS(_fpl->in_smr == true); \
VFS_SMR_ASSERT_ENTERED(); \
})
#define cache_fpl_smr_assert_not_entered(fpl) ({ \
struct cache_fpl *_fpl = (fpl); \
MPASS(_fpl->in_smr == false); \
VFS_SMR_ASSERT_NOT_ENTERED(); \
})
static void
cache_fpl_assert_status(struct cache_fpl *fpl)
{
switch (fpl->status) {
case CACHE_FPL_STATUS_UNSET:
__assert_unreachable();
break;
case CACHE_FPL_STATUS_DESTROYED:
case CACHE_FPL_STATUS_ABORTED:
case CACHE_FPL_STATUS_PARTIAL:
case CACHE_FPL_STATUS_HANDLED:
break;
}
}
#else
#define cache_fpl_smr_assert_entered(fpl) do { } while (0)
#define cache_fpl_smr_assert_not_entered(fpl) do { } while (0)
#define cache_fpl_assert_status(fpl) do { } while (0)
#endif
#define cache_fpl_smr_enter_initial(fpl) ({ \
struct cache_fpl *_fpl = (fpl); \
vfs_smr_enter(); \
_fpl->in_smr = true; \
})
#define cache_fpl_smr_enter(fpl) ({ \
struct cache_fpl *_fpl = (fpl); \
MPASS(_fpl->in_smr == false); \
vfs_smr_enter(); \
_fpl->in_smr = true; \
})
#define cache_fpl_smr_exit(fpl) ({ \
struct cache_fpl *_fpl = (fpl); \
MPASS(_fpl->in_smr == true); \
vfs_smr_exit(); \
_fpl->in_smr = false; \
})
static int
cache_fpl_aborted_early_impl(struct cache_fpl *fpl, int line)
{
if (fpl->status != CACHE_FPL_STATUS_UNSET) {
KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
("%s: converting to abort from %d at %d, set at %d\n",
__func__, fpl->status, line, fpl->line));
}
cache_fpl_smr_assert_not_entered(fpl);
fpl->status = CACHE_FPL_STATUS_ABORTED;
fpl->line = line;
return (CACHE_FPL_FAILED);
}
#define cache_fpl_aborted_early(x) cache_fpl_aborted_early_impl((x), __LINE__)
static int __noinline
cache_fpl_aborted_impl(struct cache_fpl *fpl, int line)
{
struct nameidata *ndp;
struct componentname *cnp;
ndp = fpl->ndp;
cnp = fpl->cnp;
if (fpl->status != CACHE_FPL_STATUS_UNSET) {
KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
("%s: converting to abort from %d at %d, set at %d\n",
__func__, fpl->status, line, fpl->line));
}
fpl->status = CACHE_FPL_STATUS_ABORTED;
fpl->line = line;
if (fpl->in_smr)
cache_fpl_smr_exit(fpl);
cache_fpl_restore_abort(fpl);
/*
* Resolving symlinks overwrites data passed by the caller.
* Let namei know.
*/
if (ndp->ni_loopcnt > 0) {
fpl->status = CACHE_FPL_STATUS_DESTROYED;
cache_fpl_cleanup_cnp(cnp);
}
return (CACHE_FPL_FAILED);
}
#define cache_fpl_aborted(x) cache_fpl_aborted_impl((x), __LINE__)
static int __noinline
cache_fpl_partial_impl(struct cache_fpl *fpl, int line)
{
KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
("%s: setting to partial at %d, but already set to %d at %d\n",
__func__, line, fpl->status, fpl->line));
cache_fpl_smr_assert_entered(fpl);
fpl->status = CACHE_FPL_STATUS_PARTIAL;
fpl->line = line;
return (cache_fplookup_partial_setup(fpl));
}
#define cache_fpl_partial(x) cache_fpl_partial_impl((x), __LINE__)
static int
cache_fpl_handled_impl(struct cache_fpl *fpl, int line)
{
KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
("%s: setting to handled at %d, but already set to %d at %d\n",
__func__, line, fpl->status, fpl->line));
cache_fpl_smr_assert_not_entered(fpl);
fpl->status = CACHE_FPL_STATUS_HANDLED;
fpl->line = line;
return (0);
}
#define cache_fpl_handled(x) cache_fpl_handled_impl((x), __LINE__)
static int
cache_fpl_handled_error_impl(struct cache_fpl *fpl, int error, int line)
{
KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
("%s: setting to handled at %d, but already set to %d at %d\n",
__func__, line, fpl->status, fpl->line));
MPASS(error != 0);
MPASS(error != CACHE_FPL_FAILED);
cache_fpl_smr_assert_not_entered(fpl);
fpl->status = CACHE_FPL_STATUS_HANDLED;
fpl->line = line;
fpl->dvp = NULL;
fpl->tvp = NULL;
return (error);
}
#define cache_fpl_handled_error(x, e) cache_fpl_handled_error_impl((x), (e), __LINE__)
static bool
cache_fpl_terminated(struct cache_fpl *fpl)
{
return (fpl->status != CACHE_FPL_STATUS_UNSET);
}
#define CACHE_FPL_SUPPORTED_CN_FLAGS \
(NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \
FAILIFEXISTS | FOLLOW | EMPTYPATH | LOCKSHARED | ISRESTARTED | WILLBEDIR | \
ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK | OPENREAD | \
OPENWRITE | WANTIOCTLCAPS)
#define CACHE_FPL_INTERNAL_CN_FLAGS \
(ISDOTDOT | MAKEENTRY | ISLASTCN)
_Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
"supported and internal flags overlap");
static bool
cache_fpl_islastcn(struct nameidata *ndp)
{
return (*ndp->ni_next == 0);
}
static bool
cache_fpl_istrailingslash(struct cache_fpl *fpl)
{
MPASS(fpl->nulchar > fpl->cnp->cn_pnbuf);
return (*(fpl->nulchar - 1) == '/');
}
static bool
cache_fpl_isdotdot(struct componentname *cnp)
{
if (cnp->cn_namelen == 2 &&
cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
return (true);
return (false);
}
static bool
cache_can_fplookup(struct cache_fpl *fpl)
{
struct nameidata *ndp;
struct componentname *cnp;
struct thread *td;
ndp = fpl->ndp;
cnp = fpl->cnp;
td = curthread;
if (!atomic_load_char(&cache_fast_lookup_enabled)) {
cache_fpl_aborted_early(fpl);
return (false);
}
if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) {
cache_fpl_aborted_early(fpl);
return (false);
}
if (IN_CAPABILITY_MODE(td) || CAP_TRACING(td)) {
cache_fpl_aborted_early(fpl);
return (false);
}
if (AUDITING_TD(td)) {
cache_fpl_aborted_early(fpl);
return (false);
}
if (ndp->ni_startdir != NULL) {
cache_fpl_aborted_early(fpl);
return (false);
}
return (true);
}
static int __noinline
cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp)
{
struct nameidata *ndp;
struct componentname *cnp;
int error;
bool fsearch;
ndp = fpl->ndp;
cnp = fpl->cnp;
error = fgetvp_lookup_smr(ndp, vpp, &fsearch);
if (__predict_false(error != 0)) {
return (cache_fpl_aborted(fpl));
}
fpl->fsearch = fsearch;
if ((*vpp)->v_type != VDIR) {
if (!((cnp->cn_flags & EMPTYPATH) != 0 && cnp->cn_pnbuf[0] == '\0')) {
cache_fpl_smr_exit(fpl);
return (cache_fpl_handled_error(fpl, ENOTDIR));
}
}
return (0);
}
static int __noinline
cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp,
uint32_t hash)
{
struct componentname *cnp;
struct vnode *dvp;
cnp = fpl->cnp;
dvp = fpl->dvp;
cache_fpl_smr_exit(fpl);
if (cache_neg_promote_cond(dvp, cnp, oncp, hash))
return (cache_fpl_handled_error(fpl, ENOENT));
else
return (cache_fpl_aborted(fpl));
}
/*
* The target vnode is not supported, prepare for the slow path to take over.
*/
static int __noinline
cache_fplookup_partial_setup(struct cache_fpl *fpl)
{
struct nameidata *ndp;
struct componentname *cnp;
enum vgetstate dvs;
struct vnode *dvp;
struct pwd *pwd;
seqc_t dvp_seqc;
ndp = fpl->ndp;
cnp = fpl->cnp;
pwd = *(fpl->pwd);
dvp = fpl->dvp;
dvp_seqc = fpl->dvp_seqc;
if (!pwd_hold_smr(pwd)) {
return (cache_fpl_aborted(fpl));
}
/*
* Note that seqc is checked before the vnode is locked, so by
* the time regular lookup gets to it it may have moved.
*
* Ultimately this does not affect correctness, any lookup errors
* are userspace racing with itself. It is guaranteed that any
* path which ultimately gets found could also have been found
* by regular lookup going all the way in absence of concurrent
* modifications.
*/
dvs = vget_prep_smr(dvp);
cache_fpl_smr_exit(fpl);
if (__predict_false(dvs == VGET_NONE)) {
pwd_drop(pwd);
return (cache_fpl_aborted(fpl));
}
vget_finish_ref(dvp, dvs);
if (!vn_seqc_consistent(dvp, dvp_seqc)) {
vrele(dvp);
pwd_drop(pwd);
return (cache_fpl_aborted(fpl));
}
cache_fpl_restore_partial(fpl);
#ifdef INVARIANTS
if (cnp->cn_nameptr != fpl->snd.cn_nameptr) {
panic("%s: cn_nameptr mismatch (%p != %p) full [%s]\n", __func__,
cnp->cn_nameptr, fpl->snd.cn_nameptr, cnp->cn_pnbuf);
}
#endif
ndp->ni_startdir = dvp;
cnp->cn_flags |= MAKEENTRY;
if (cache_fpl_islastcn(ndp))
cnp->cn_flags |= ISLASTCN;
if (cache_fpl_isdotdot(cnp))
cnp->cn_flags |= ISDOTDOT;
/*
* Skip potential extra slashes parsing did not take care of.
* cache_fplookup_skip_slashes explains the mechanism.
*/
if (__predict_false(*(cnp->cn_nameptr) == '/')) {
do {
cnp->cn_nameptr++;
cache_fpl_pathlen_dec(fpl);
} while (*(cnp->cn_nameptr) == '/');
}
ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
#ifdef INVARIANTS
if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
__func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
}
#endif
return (0);
}
static int
cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs)
{
struct componentname *cnp;
struct vnode *tvp;
seqc_t tvp_seqc;
int error, lkflags;
cnp = fpl->cnp;
tvp = fpl->tvp;
tvp_seqc = fpl->tvp_seqc;
if ((cnp->cn_flags & LOCKLEAF) != 0) {
lkflags = LK_SHARED;
if ((cnp->cn_flags & LOCKSHARED) == 0)
lkflags = LK_EXCLUSIVE;
error = vget_finish(tvp, lkflags, tvs);
if (__predict_false(error != 0)) {
return (cache_fpl_aborted(fpl));
}
} else {
vget_finish_ref(tvp, tvs);
}
if (!vn_seqc_consistent(tvp, tvp_seqc)) {
if ((cnp->cn_flags & LOCKLEAF) != 0)
vput(tvp);
else
vrele(tvp);
return (cache_fpl_aborted(fpl));
}
return (cache_fpl_handled(fpl));
}
/*
* They want to possibly modify the state of the namecache.
*/
static int __noinline
cache_fplookup_final_modifying(struct cache_fpl *fpl)
{
struct nameidata *ndp __diagused;
struct componentname *cnp;
enum vgetstate dvs;
struct vnode *dvp, *tvp;
struct mount *mp;
seqc_t dvp_seqc;
int error;
bool docache;
ndp = fpl->ndp;
cnp = fpl->cnp;
dvp = fpl->dvp;
dvp_seqc = fpl->dvp_seqc;
MPASS(*(cnp->cn_nameptr) != '/');
MPASS(cache_fpl_islastcn(ndp));
if ((cnp->cn_flags & LOCKPARENT) == 0)
MPASS((cnp->cn_flags & WANTPARENT) != 0);
MPASS((cnp->cn_flags & TRAILINGSLASH) == 0);
MPASS(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == DELETE ||
cnp->cn_nameiop == RENAME);
MPASS((cnp->cn_flags & MAKEENTRY) == 0);
MPASS((cnp->cn_flags & ISDOTDOT) == 0);
docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE;
if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
docache = false;
/*
* Regular lookup nulifies the slash, which we don't do here.
* Don't take chances with filesystem routines seeing it for
* the last entry.
*/
if (cache_fpl_istrailingslash(fpl)) {
return (cache_fpl_partial(fpl));
}
mp = atomic_load_ptr(&dvp->v_mount);
if (__predict_false(mp == NULL)) {
return (cache_fpl_aborted(fpl));
}
if (__predict_false(mp->mnt_flag & MNT_RDONLY)) {
cache_fpl_smr_exit(fpl);
/*
* Original code keeps not checking for CREATE which
* might be a bug. For now let the old lookup decide.
*/
if (cnp->cn_nameiop == CREATE) {
return (cache_fpl_aborted(fpl));
}
return (cache_fpl_handled_error(fpl, EROFS));
}
if (fpl->tvp != NULL && (cnp->cn_flags & FAILIFEXISTS) != 0) {
cache_fpl_smr_exit(fpl);
return (cache_fpl_handled_error(fpl, EEXIST));
}
/*
* Secure access to dvp; check cache_fplookup_partial_setup for
* reasoning.
*
* XXX At least UFS requires its lookup routine to be called for
* the last path component, which leads to some level of complication
* and inefficiency:
* - the target routine always locks the target vnode, but our caller
* may not need it locked
* - some of the VOP machinery asserts that the parent is locked, which
* once more may be not required
*
* TODO: add a flag for filesystems which don't need this.
*/
dvs = vget_prep_smr(dvp);
cache_fpl_smr_exit(fpl);
if (__predict_false(dvs == VGET_NONE)) {
return (cache_fpl_aborted(fpl));
}
vget_finish_ref(dvp, dvs);
if (!vn_seqc_consistent(dvp, dvp_seqc)) {
vrele(dvp);
return (cache_fpl_aborted(fpl));
}
error = vn_lock(dvp, LK_EXCLUSIVE);
if (__predict_false(error != 0)) {
vrele(dvp);
return (cache_fpl_aborted(fpl));
}
tvp = NULL;
cnp->cn_flags |= ISLASTCN;
if (docache)
cnp->cn_flags |= MAKEENTRY;
if (cache_fpl_isdotdot(cnp))
cnp->cn_flags |= ISDOTDOT;
cnp->cn_lkflags = LK_EXCLUSIVE;
error = VOP_LOOKUP(dvp, &tvp, cnp);
switch (error) {
case EJUSTRETURN:
case 0:
break;
case ENOTDIR:
case ENOENT:
vput(dvp);
return (cache_fpl_handled_error(fpl, error));
default:
vput(dvp);
return (cache_fpl_aborted(fpl));
}
fpl->tvp = tvp;
if (tvp == NULL) {
MPASS(error == EJUSTRETURN);
if ((cnp->cn_flags & LOCKPARENT) == 0) {
VOP_UNLOCK(dvp);
}
return (cache_fpl_handled(fpl));
}
/*
* There are very hairy corner cases concerning various flag combinations
* and locking state. In particular here we only hold one lock instead of
* two.
*
* Skip the complexity as it is of no significance for normal workloads.
*/
if (__predict_false(tvp == dvp)) {
vput(dvp);
vrele(tvp);
return (cache_fpl_aborted(fpl));
}
/*
* If they want the symlink itself we are fine, but if they want to
* follow it regular lookup has to be engaged.
*/
if (tvp->v_type == VLNK) {
if ((cnp->cn_flags & FOLLOW) != 0) {
vput(dvp);
vput(tvp);
return (cache_fpl_aborted(fpl));
}
}
/*
* Since we expect this to be the terminal vnode it should almost never
* be a mount point.
*/
if (__predict_false(cache_fplookup_is_mp(fpl))) {
vput(dvp);
vput(tvp);
return (cache_fpl_aborted(fpl));
}
if ((cnp->cn_flags & FAILIFEXISTS) != 0) {
vput(dvp);
vput(tvp);
return (cache_fpl_handled_error(fpl, EEXIST));
}
if ((cnp->cn_flags & LOCKLEAF) == 0) {
VOP_UNLOCK(tvp);
}
if ((cnp->cn_flags & LOCKPARENT) == 0) {
VOP_UNLOCK(dvp);
}
return (cache_fpl_handled(fpl));
}
static int __noinline
cache_fplookup_modifying(struct cache_fpl *fpl)
{
struct nameidata *ndp;
ndp = fpl->ndp;
if (!cache_fpl_islastcn(ndp)) {
return (cache_fpl_partial(fpl));
}
return (cache_fplookup_final_modifying(fpl));
}
static int __noinline
cache_fplookup_final_withparent(struct cache_fpl *fpl)
{
struct componentname *cnp;
enum vgetstate dvs, tvs;
struct vnode *dvp, *tvp;
seqc_t dvp_seqc;
int error;
cnp = fpl->cnp;
dvp = fpl->dvp;
dvp_seqc = fpl->dvp_seqc;
tvp = fpl->tvp;
MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0);
/*
* This is less efficient than it can be for simplicity.
*/
dvs = vget_prep_smr(dvp);
if (__predict_false(dvs == VGET_NONE)) {
return (cache_fpl_aborted(fpl));
}
tvs = vget_prep_smr(tvp);
if (__predict_false(tvs == VGET_NONE)) {
cache_fpl_smr_exit(fpl);
vget_abort(dvp, dvs);
return (cache_fpl_aborted(fpl));
}
cache_fpl_smr_exit(fpl);
if ((cnp->cn_flags & LOCKPARENT) != 0) {
error = vget_finish(dvp, LK_EXCLUSIVE, dvs);
if (__predict_false(error != 0)) {
vget_abort(tvp, tvs);
return (cache_fpl_aborted(fpl));
}
} else {
vget_finish_ref(dvp, dvs);
}
if (!vn_seqc_consistent(dvp, dvp_seqc)) {
vget_abort(tvp, tvs);
if ((cnp->cn_flags & LOCKPARENT) != 0)
vput(dvp);
else
vrele(dvp);
return (cache_fpl_aborted(fpl));
}
error = cache_fplookup_final_child(fpl, tvs);
if (__predict_false(error != 0)) {
MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED ||
fpl->status == CACHE_FPL_STATUS_DESTROYED);
if ((cnp->cn_flags & LOCKPARENT) != 0)
vput(dvp);
else
vrele(dvp);
return (error);
}
MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED);
return (0);
}
static int
cache_fplookup_final(struct cache_fpl *fpl)
{
struct componentname *cnp;
enum vgetstate tvs;
struct vnode *dvp, *tvp;
seqc_t dvp_seqc;
cnp = fpl->cnp;
dvp = fpl->dvp;
dvp_seqc = fpl->dvp_seqc;
tvp = fpl->tvp;
MPASS(*(cnp->cn_nameptr) != '/');
if (cnp->cn_nameiop != LOOKUP) {
return (cache_fplookup_final_modifying(fpl));
}
if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0)
return (cache_fplookup_final_withparent(fpl));
tvs = vget_prep_smr(tvp);
if (__predict_false(tvs == VGET_NONE)) {
return (cache_fpl_partial(fpl));
}
if (!vn_seqc_consistent(dvp, dvp_seqc)) {
cache_fpl_smr_exit(fpl);
vget_abort(tvp, tvs);
return (cache_fpl_aborted(fpl));
}
cache_fpl_smr_exit(fpl);
return (cache_fplookup_final_child(fpl, tvs));
}
/*
* Comment from locked lookup:
* Check for degenerate name (e.g. / or "") which is a way of talking about a
* directory, e.g. like "/." or ".".
*/
static int __noinline
cache_fplookup_degenerate(struct cache_fpl *fpl)
{
struct componentname *cnp;
struct vnode *dvp;
enum vgetstate dvs;
int error, lkflags;
#ifdef INVARIANTS
char *cp;
#endif
fpl->tvp = fpl->dvp;
fpl->tvp_seqc = fpl->dvp_seqc;
cnp = fpl->cnp;
dvp = fpl->dvp;
#ifdef INVARIANTS
for (cp = cnp->cn_pnbuf; *cp != '\0'; cp++) {
KASSERT(*cp == '/',
("%s: encountered non-slash; string [%s]\n", __func__,
cnp->cn_pnbuf));
}
#endif
if (__predict_false(cnp->cn_nameiop != LOOKUP)) {
cache_fpl_smr_exit(fpl);
return (cache_fpl_handled_error(fpl, EISDIR));
}
if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) {
return (cache_fplookup_final_withparent(fpl));
}
dvs = vget_prep_smr(dvp);
cache_fpl_smr_exit(fpl);
if (__predict_false(dvs == VGET_NONE)) {
return (cache_fpl_aborted(fpl));
}
if ((cnp->cn_flags & LOCKLEAF) != 0) {
lkflags = LK_SHARED;
if ((cnp->cn_flags & LOCKSHARED) == 0)
lkflags = LK_EXCLUSIVE;
error = vget_finish(dvp, lkflags, dvs);
if (__predict_false(error != 0)) {
return (cache_fpl_aborted(fpl));
}
} else {
vget_finish_ref(dvp, dvs);
}
return (cache_fpl_handled(fpl));
}
static int __noinline
cache_fplookup_emptypath(struct cache_fpl *fpl)
{
struct nameidata *ndp;
struct componentname *cnp;
enum vgetstate tvs;
struct vnode *tvp;
int error, lkflags;
fpl->tvp = fpl->dvp;
fpl->tvp_seqc = fpl->dvp_seqc;
ndp = fpl->ndp;
cnp = fpl->cnp;
tvp = fpl->tvp;
MPASS(*cnp->cn_pnbuf == '\0');
if (__predict_false((cnp->cn_flags & EMPTYPATH) == 0)) {
cache_fpl_smr_exit(fpl);
return (cache_fpl_handled_error(fpl, ENOENT));
}
MPASS((cnp->cn_flags & (LOCKPARENT | WANTPARENT)) == 0);
tvs = vget_prep_smr(tvp);
cache_fpl_smr_exit(fpl);
if (__predict_false(tvs == VGET_NONE)) {
return (cache_fpl_aborted(fpl));
}
if ((cnp->cn_flags & LOCKLEAF) != 0) {
lkflags = LK_SHARED;
if ((cnp->cn_flags & LOCKSHARED) == 0)
lkflags = LK_EXCLUSIVE;
error = vget_finish(tvp, lkflags, tvs);
if (__predict_false(error != 0)) {
return (cache_fpl_aborted(fpl));
}
} else {
vget_finish_ref(tvp, tvs);
}
ndp->ni_resflags |= NIRES_EMPTYPATH;
return (cache_fpl_handled(fpl));
}
static int __noinline
cache_fplookup_noentry(struct cache_fpl *fpl)
{
struct nameidata *ndp;
struct componentname *cnp;
enum vgetstate dvs;
struct vnode *dvp, *tvp;
seqc_t dvp_seqc;
int error;
ndp = fpl->ndp;
cnp = fpl->cnp;
dvp = fpl->dvp;
dvp_seqc = fpl->dvp_seqc;
MPASS((cnp->cn_flags & MAKEENTRY) == 0);
MPASS((cnp->cn_flags & ISDOTDOT) == 0);
if (cnp->cn_nameiop == LOOKUP)
MPASS((cnp->cn_flags & NOCACHE) == 0);
MPASS(!cache_fpl_isdotdot(cnp));
/*
* Hack: delayed name len checking.
*/
if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
cache_fpl_smr_exit(fpl);
return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
}
if (cnp->cn_nameptr[0] == '/') {
return (cache_fplookup_skip_slashes(fpl));
}
if (cnp->cn_pnbuf[0] == '\0') {
return (cache_fplookup_emptypath(fpl));
}
if (cnp->cn_nameptr[0] == '\0') {
if (fpl->tvp == NULL) {
return (cache_fplookup_degenerate(fpl));
}
return (cache_fplookup_trailingslash(fpl));
}
if (cnp->cn_nameiop != LOOKUP) {
fpl->tvp = NULL;
return (cache_fplookup_modifying(fpl));
}
/*
* Only try to fill in the component if it is the last one,
* otherwise not only there may be several to handle but the
* walk may be complicated.
*/
if (!cache_fpl_islastcn(ndp)) {
return (cache_fpl_partial(fpl));
}
/*
* Regular lookup nulifies the slash, which we don't do here.
* Don't take chances with filesystem routines seeing it for
* the last entry.
*/
if (cache_fpl_istrailingslash(fpl)) {
return (cache_fpl_partial(fpl));
}
/*
* Secure access to dvp; check cache_fplookup_partial_setup for
* reasoning.
*/
dvs = vget_prep_smr(dvp);
cache_fpl_smr_exit(fpl);
if (__predict_false(dvs == VGET_NONE)) {
return (cache_fpl_aborted(fpl));
}
vget_finish_ref(dvp, dvs);
if (!vn_seqc_consistent(dvp, dvp_seqc)) {
vrele(dvp);
return (cache_fpl_aborted(fpl));
}
error = vn_lock(dvp, LK_SHARED);
if (__predict_false(error != 0)) {
vrele(dvp);
return (cache_fpl_aborted(fpl));
}
tvp = NULL;
/*
* TODO: provide variants which don't require locking either vnode.
*/
cnp->cn_flags |= ISLASTCN | MAKEENTRY;
cnp->cn_lkflags = LK_SHARED;
if ((cnp->cn_flags & LOCKSHARED) == 0) {
cnp->cn_lkflags = LK_EXCLUSIVE;
}
error = VOP_LOOKUP(dvp, &tvp, cnp);
switch (error) {
case EJUSTRETURN:
case 0:
break;
case ENOTDIR:
case ENOENT:
vput(dvp);
return (cache_fpl_handled_error(fpl, error));
default:
vput(dvp);
return (cache_fpl_aborted(fpl));
}
fpl->tvp = tvp;
if (tvp == NULL) {
MPASS(error == EJUSTRETURN);
if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
vput(dvp);
} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
VOP_UNLOCK(dvp);
}
return (cache_fpl_handled(fpl));
}
if (tvp->v_type == VLNK) {
if ((cnp->cn_flags & FOLLOW) != 0) {
vput(dvp);
vput(tvp);
return (cache_fpl_aborted(fpl));
}
}
if (__predict_false(cache_fplookup_is_mp(fpl))) {
vput(dvp);
vput(tvp);
return (cache_fpl_aborted(fpl));
}
if ((cnp->cn_flags & LOCKLEAF) == 0) {
VOP_UNLOCK(tvp);
}
if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
vput(dvp);
} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
VOP_UNLOCK(dvp);
}
return (cache_fpl_handled(fpl));
}
static int __noinline
cache_fplookup_dot(struct cache_fpl *fpl)
{
int error;
MPASS(!seqc_in_modify(fpl->dvp_seqc));
if (__predict_false(fpl->dvp->v_type != VDIR)) {
cache_fpl_smr_exit(fpl);
return (cache_fpl_handled_error(fpl, ENOTDIR));
}
/*
* Just re-assign the value. seqc will be checked later for the first
* non-dot path component in line and/or before deciding to return the
* vnode.
*/
fpl->tvp = fpl->dvp;
fpl->tvp_seqc = fpl->dvp_seqc;
SDT_PROBE3(vfs, namecache, lookup, hit, fpl->dvp, ".", fpl->dvp);
error = 0;
if (cache_fplookup_is_mp(fpl)) {
error = cache_fplookup_cross_mount(fpl);
}
return (error);
}
static int __noinline
cache_fplookup_dotdot(struct cache_fpl *fpl)
{
struct nameidata *ndp;
struct componentname *cnp;
struct namecache *ncp;
struct vnode *dvp;
struct prison *pr;
u_char nc_flag;
ndp = fpl->ndp;
cnp = fpl->cnp;
dvp = fpl->dvp;
MPASS(cache_fpl_isdotdot(cnp));
/*
* XXX this is racy the same way regular lookup is
*/
for (pr = cnp->cn_cred->cr_prison; pr != NULL;
pr = pr->pr_parent)
if (dvp == pr->pr_root)
break;
if (dvp == ndp->ni_rootdir ||
dvp == ndp->ni_topdir ||
dvp == rootvnode ||
pr != NULL) {
fpl->tvp = dvp;
fpl->tvp_seqc = vn_seqc_read_any(dvp);
if (seqc_in_modify(fpl->tvp_seqc)) {
return (cache_fpl_aborted(fpl));
}
return (0);
}
if ((dvp->v_vflag & VV_ROOT) != 0) {
/*
* TODO
* The opposite of climb mount is needed here.
*/
return (cache_fpl_partial(fpl));
}
if (__predict_false(dvp->v_type != VDIR)) {
cache_fpl_smr_exit(fpl);
return (cache_fpl_handled_error(fpl, ENOTDIR));
}
ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
if (ncp == NULL) {
return (cache_fpl_aborted(fpl));
}
nc_flag = atomic_load_char(&ncp->nc_flag);
if ((nc_flag & NCF_ISDOTDOT) != 0) {
if ((nc_flag & NCF_NEGATIVE) != 0)
return (cache_fpl_aborted(fpl));
fpl->tvp = ncp->nc_vp;
} else {
fpl->tvp = ncp->nc_dvp;
}
fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp);
if (seqc_in_modify(fpl->tvp_seqc)) {
return (cache_fpl_partial(fpl));
}
/*
* Acquire fence provided by vn_seqc_read_any above.
*/
if (__predict_false(atomic_load_ptr(&dvp->v_cache_dd) != ncp)) {
return (cache_fpl_aborted(fpl));
}
if (!cache_ncp_canuse(ncp)) {
return (cache_fpl_aborted(fpl));
}
return (0);
}
static int __noinline
cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash)
{
u_char nc_flag __diagused;
bool neg_promote;
#ifdef INVARIANTS
nc_flag = atomic_load_char(&ncp->nc_flag);
MPASS((nc_flag & NCF_NEGATIVE) != 0);
#endif
/*
* If they want to create an entry we need to replace this one.
*/
if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) {
fpl->tvp = NULL;
return (cache_fplookup_modifying(fpl));
}
neg_promote = cache_neg_hit_prep(ncp);
if (!cache_fpl_neg_ncp_canuse(ncp)) {
cache_neg_hit_abort(ncp);
return (cache_fpl_partial(fpl));
}
if (neg_promote) {
return (cache_fplookup_negative_promote(fpl, ncp, hash));
}
cache_neg_hit_finish(ncp);
cache_fpl_smr_exit(fpl);
return (cache_fpl_handled_error(fpl, ENOENT));
}
/*
* Resolve a symlink. Called by filesystem-specific routines.
*
* Code flow is:
* ... -> cache_fplookup_symlink -> VOP_FPLOOKUP_SYMLINK -> cache_symlink_resolve
*/
int
cache_symlink_resolve(struct cache_fpl *fpl, const char *string, size_t len)
{
struct nameidata *ndp;
struct componentname *cnp;
size_t adjust;
ndp = fpl->ndp;
cnp = fpl->cnp;
if (__predict_false(len == 0)) {
return (ENOENT);
}
if (__predict_false(len > MAXPATHLEN - 2)) {
if (cache_fpl_istrailingslash(fpl)) {
return (EAGAIN);
}
}
ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr - cnp->cn_namelen + 1;
#ifdef INVARIANTS
if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
__func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
}
#endif
if (__predict_false(len + ndp->ni_pathlen > MAXPATHLEN)) {
return (ENAMETOOLONG);
}
if (__predict_false(ndp->ni_loopcnt++ >= MAXSYMLINKS)) {
return (ELOOP);
}
adjust = len;
if (ndp->ni_pathlen > 1) {
bcopy(ndp->ni_next, cnp->cn_pnbuf + len, ndp->ni_pathlen);
} else {
if (cache_fpl_istrailingslash(fpl)) {
adjust = len + 1;
cnp->cn_pnbuf[len] = '/';
cnp->cn_pnbuf[len + 1] = '\0';
} else {
cnp->cn_pnbuf[len] = '\0';
}
}
bcopy(string, cnp->cn_pnbuf, len);
ndp->ni_pathlen += adjust;
cache_fpl_pathlen_add(fpl, adjust);
cnp->cn_nameptr = cnp->cn_pnbuf;
fpl->nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
fpl->tvp = NULL;
return (0);
}
static int __noinline
cache_fplookup_symlink(struct cache_fpl *fpl)
{
struct mount *mp;
struct nameidata *ndp;
struct componentname *cnp;
struct vnode *dvp, *tvp;
struct pwd *pwd;
int error;
ndp = fpl->ndp;
cnp = fpl->cnp;
dvp = fpl->dvp;
tvp = fpl->tvp;
pwd = *(fpl->pwd);
if (cache_fpl_islastcn(ndp)) {
if ((cnp->cn_flags & FOLLOW) == 0) {
return (cache_fplookup_final(fpl));
}
}
mp = atomic_load_ptr(&dvp->v_mount);
if (__predict_false(mp == NULL)) {
return (cache_fpl_aborted(fpl));
}
/*
* Note this check races against setting the flag just like regular
* lookup.
*/
if (__predict_false((mp->mnt_flag & MNT_NOSYMFOLLOW) != 0)) {
cache_fpl_smr_exit(fpl);
return (cache_fpl_handled_error(fpl, EACCES));
}
error = VOP_FPLOOKUP_SYMLINK(tvp, fpl);
if (__predict_false(error != 0)) {
switch (error) {
case EAGAIN:
return (cache_fpl_partial(fpl));
case ENOENT:
case ENAMETOOLONG:
case ELOOP:
cache_fpl_smr_exit(fpl);
return (cache_fpl_handled_error(fpl, error));
default:
return (cache_fpl_aborted(fpl));
}
}
if (*(cnp->cn_nameptr) == '/') {
fpl->dvp = cache_fpl_handle_root(fpl);
fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
if (seqc_in_modify(fpl->dvp_seqc)) {
return (cache_fpl_aborted(fpl));
}
/*
* The main loop assumes that ->dvp points to a vnode belonging
* to a filesystem which can do lockless lookup, but the absolute
* symlink can be wandering off to one which does not.
*/
mp = atomic_load_ptr(&fpl->dvp->v_mount);
if (__predict_false(mp == NULL)) {
return (cache_fpl_aborted(fpl));
}
if (!cache_fplookup_mp_supported(mp)) {
cache_fpl_checkpoint(fpl);
return (cache_fpl_partial(fpl));
}
if (__predict_false(pwd->pwd_adir != pwd->pwd_rdir)) {
return (cache_fpl_aborted(fpl));
}
}
return (0);
}
static int
cache_fplookup_next(struct cache_fpl *fpl)
{
struct componentname *cnp;
struct namecache *ncp;
struct vnode *dvp, *tvp;
u_char nc_flag;
uint32_t hash;
int error;
cnp = fpl->cnp;
dvp = fpl->dvp;
hash = fpl->hash;
if (__predict_false(cnp->cn_nameptr[0] == '.')) {
if (cnp->cn_namelen == 1) {
return (cache_fplookup_dot(fpl));
}
if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
return (cache_fplookup_dotdot(fpl));
}
}
MPASS(!cache_fpl_isdotdot(cnp));
CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
!bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
break;
}
if (__predict_false(ncp == NULL)) {
return (cache_fplookup_noentry(fpl));
}
tvp = atomic_load_ptr(&ncp->nc_vp);
nc_flag = atomic_load_char(&ncp->nc_flag);
if ((nc_flag & NCF_NEGATIVE) != 0) {
return (cache_fplookup_neg(fpl, ncp, hash));
}
if (!cache_ncp_canuse(ncp)) {
return (cache_fpl_partial(fpl));
}
fpl->tvp = tvp;
fpl->tvp_seqc = vn_seqc_read_any(tvp);
if (seqc_in_modify(fpl->tvp_seqc)) {
return (cache_fpl_partial(fpl));
}
counter_u64_add(numposhits, 1);
SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp);
error = 0;
if (cache_fplookup_is_mp(fpl)) {
error = cache_fplookup_cross_mount(fpl);
}
return (error);
}
static bool
cache_fplookup_mp_supported(struct mount *mp)
{
MPASS(mp != NULL);
if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
return (false);
return (true);
}
/*
* Walk up the mount stack (if any).
*
* Correctness is provided in the following ways:
* - all vnodes are protected from freeing with SMR
* - struct mount objects are type stable making them always safe to access
* - stability of the particular mount is provided by busying it
* - relationship between the vnode which is mounted on and the mount is
* verified with the vnode sequence counter after busying
* - association between root vnode of the mount and the mount is protected
* by busy
*
* From that point on we can read the sequence counter of the root vnode
* and get the next mount on the stack (if any) using the same protection.
*
* By the end of successful walk we are guaranteed the reached state was
* indeed present at least at some point which matches the regular lookup.
*/
static int __noinline
cache_fplookup_climb_mount(struct cache_fpl *fpl)
{
struct mount *mp, *prev_mp;
struct mount_pcpu *mpcpu, *prev_mpcpu;
struct vnode *vp;
seqc_t vp_seqc;
vp = fpl->tvp;
vp_seqc = fpl->tvp_seqc;
VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
mp = atomic_load_ptr(&vp->v_mountedhere);
if (__predict_false(mp == NULL)) {
return (0);
}
prev_mp = NULL;
for (;;) {
if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
if (prev_mp != NULL)
vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
return (cache_fpl_partial(fpl));
}
if (prev_mp != NULL)
vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
if (!vn_seqc_consistent(vp, vp_seqc)) {
vfs_op_thread_exit_crit(mp, mpcpu);
return (cache_fpl_partial(fpl));
}
if (!cache_fplookup_mp_supported(mp)) {
vfs_op_thread_exit_crit(mp, mpcpu);
return (cache_fpl_partial(fpl));
}
vp = atomic_load_ptr(&mp->mnt_rootvnode);
if (vp == NULL) {
vfs_op_thread_exit_crit(mp, mpcpu);
return (cache_fpl_partial(fpl));
}
vp_seqc = vn_seqc_read_any(vp);
if (seqc_in_modify(vp_seqc)) {
vfs_op_thread_exit_crit(mp, mpcpu);
return (cache_fpl_partial(fpl));
}
prev_mp = mp;
prev_mpcpu = mpcpu;
mp = atomic_load_ptr(&vp->v_mountedhere);
if (mp == NULL)
break;
}
vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
fpl->tvp = vp;
fpl->tvp_seqc = vp_seqc;
return (0);
}
static int __noinline
cache_fplookup_cross_mount(struct cache_fpl *fpl)
{
struct mount *mp;
struct mount_pcpu *mpcpu;
struct vnode *vp;
seqc_t vp_seqc;
vp = fpl->tvp;
vp_seqc = fpl->tvp_seqc;
VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
mp = atomic_load_ptr(&vp->v_mountedhere);
if (__predict_false(mp == NULL)) {
return (0);
}
if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
return (cache_fpl_partial(fpl));
}
if (!vn_seqc_consistent(vp, vp_seqc)) {
vfs_op_thread_exit_crit(mp, mpcpu);
return (cache_fpl_partial(fpl));
}
if (!cache_fplookup_mp_supported(mp)) {
vfs_op_thread_exit_crit(mp, mpcpu);
return (cache_fpl_partial(fpl));
}
vp = atomic_load_ptr(&mp->mnt_rootvnode);
if (__predict_false(vp == NULL)) {
vfs_op_thread_exit_crit(mp, mpcpu);
return (cache_fpl_partial(fpl));
}
vp_seqc = vn_seqc_read_any(vp);
vfs_op_thread_exit_crit(mp, mpcpu);
if (seqc_in_modify(vp_seqc)) {
return (cache_fpl_partial(fpl));
}
mp = atomic_load_ptr(&vp->v_mountedhere);
if (__predict_false(mp != NULL)) {
/*
* There are possibly more mount points on top.
* Normally this does not happen so for simplicity just start
* over.
*/
return (cache_fplookup_climb_mount(fpl));
}
fpl->tvp = vp;
fpl->tvp_seqc = vp_seqc;
return (0);
}
/*
* Check if a vnode is mounted on.
*/
static bool
cache_fplookup_is_mp(struct cache_fpl *fpl)
{
struct vnode *vp;
vp = fpl->tvp;
return ((vn_irflag_read(vp) & VIRF_MOUNTPOINT) != 0);
}
/*
* Parse the path.
*
* The code was originally copy-pasted from regular lookup and despite
* clean ups leaves performance on the table. Any modifications here
* must take into account that in case off fallback the resulting
* nameidata state has to be compatible with the original.
*/
/*
* Debug ni_pathlen tracking.
*/
#ifdef INVARIANTS
static void
cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
{
fpl->debug.ni_pathlen += n;
KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
("%s: pathlen overflow to %zd\n", __func__, fpl->debug.ni_pathlen));
}
static void
cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
{
fpl->debug.ni_pathlen -= n;
KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
("%s: pathlen underflow to %zd\n", __func__, fpl->debug.ni_pathlen));
}
static void
cache_fpl_pathlen_inc(struct cache_fpl *fpl)
{
cache_fpl_pathlen_add(fpl, 1);
}
static void
cache_fpl_pathlen_dec(struct cache_fpl *fpl)
{
cache_fpl_pathlen_sub(fpl, 1);
}
#else
static void
cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
{
}
static void
cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
{
}
static void
cache_fpl_pathlen_inc(struct cache_fpl *fpl)
{
}
static void
cache_fpl_pathlen_dec(struct cache_fpl *fpl)
{
}
#endif
static void
cache_fplookup_parse(struct cache_fpl *fpl)
{
struct nameidata *ndp;
struct componentname *cnp;
struct vnode *dvp;
char *cp;
uint32_t hash;
ndp = fpl->ndp;
cnp = fpl->cnp;
dvp = fpl->dvp;
/*
* Find the end of this path component, it is either / or nul.
*
* Store / as a temporary sentinel so that we only have one character
* to test for. Pathnames tend to be short so this should not be
* resulting in cache misses.
*
* TODO: fix this to be word-sized.
*/
MPASS(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] >= cnp->cn_pnbuf);
KASSERT(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] == fpl->nulchar,
("%s: mismatch between pathlen (%zu) and nulchar (%p != %p), string [%s]\n",
__func__, fpl->debug.ni_pathlen, &cnp->cn_nameptr[fpl->debug.ni_pathlen - 1],
fpl->nulchar, cnp->cn_pnbuf));
KASSERT(*fpl->nulchar == '\0',
("%s: expected nul at %p; string [%s]\n", __func__, fpl->nulchar,
cnp->cn_pnbuf));
hash = cache_get_hash_iter_start(dvp);
*fpl->nulchar = '/';
for (cp = cnp->cn_nameptr; *cp != '/'; cp++) {
KASSERT(*cp != '\0',
("%s: encountered unexpected nul; string [%s]\n", __func__,
cnp->cn_nameptr));
hash = cache_get_hash_iter(*cp, hash);
continue;
}
*fpl->nulchar = '\0';
fpl->hash = cache_get_hash_iter_finish(hash);
cnp->cn_namelen = cp - cnp->cn_nameptr;
cache_fpl_pathlen_sub(fpl, cnp->cn_namelen);
#ifdef INVARIANTS
/*
* cache_get_hash only accepts lengths up to NAME_MAX. This is fine since
* we are going to fail this lookup with ENAMETOOLONG (see below).
*/
if (cnp->cn_namelen <= NAME_MAX) {
if (fpl->hash != cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp)) {
panic("%s: mismatched hash for [%s] len %ld", __func__,
cnp->cn_nameptr, cnp->cn_namelen);
}
}
#endif
/*
* Hack: we have to check if the found path component's length exceeds
* NAME_MAX. However, the condition is very rarely true and check can
* be elided in the common case -- if an entry was found in the cache,
* then it could not have been too long to begin with.
*/
ndp->ni_next = cp;
}
static void
cache_fplookup_parse_advance(struct cache_fpl *fpl)
{
struct nameidata *ndp;
struct componentname *cnp;
ndp = fpl->ndp;
cnp = fpl->cnp;
cnp->cn_nameptr = ndp->ni_next;
KASSERT(*(cnp->cn_nameptr) == '/',
("%s: should have seen slash at %p ; buf %p [%s]\n", __func__,
cnp->cn_nameptr, cnp->cn_pnbuf, cnp->cn_pnbuf));
cnp->cn_nameptr++;
cache_fpl_pathlen_dec(fpl);
}
/*
* Skip spurious slashes in a pathname (e.g., "foo///bar") and retry.
*
* Lockless lookup tries to elide checking for spurious slashes and should they
* be present is guaranteed to fail to find an entry. In this case the caller
* must check if the name starts with a slash and call this routine. It is
* going to fast forward across the spurious slashes and set the state up for
* retry.
*/
static int __noinline
cache_fplookup_skip_slashes(struct cache_fpl *fpl)
{
struct nameidata *ndp;
struct componentname *cnp;
ndp = fpl->ndp;
cnp = fpl->cnp;
MPASS(*(cnp->cn_nameptr) == '/');
do {
cnp->cn_nameptr++;
cache_fpl_pathlen_dec(fpl);
} while (*(cnp->cn_nameptr) == '/');
/*
* Go back to one slash so that cache_fplookup_parse_advance has
* something to skip.
*/
cnp->cn_nameptr--;
cache_fpl_pathlen_inc(fpl);
/*
* cache_fplookup_parse_advance starts from ndp->ni_next
*/
ndp->ni_next = cnp->cn_nameptr;
/*
* See cache_fplookup_dot.
*/
fpl->tvp = fpl->dvp;
fpl->tvp_seqc = fpl->dvp_seqc;
return (0);
}
/*
* Handle trailing slashes (e.g., "foo/").
*
* If a trailing slash is found the terminal vnode must be a directory.
* Regular lookup shortens the path by nulifying the first trailing slash and
* sets the TRAILINGSLASH flag to denote this took place. There are several
* checks on it performed later.
*
* Similarly to spurious slashes, lockless lookup handles this in a speculative
* manner relying on an invariant that a non-directory vnode will get a miss.
* In this case cn_nameptr[0] == '\0' and cn_namelen == 0.
*
* Thus for a path like "foo/bar/" the code unwinds the state back to "bar/"
* and denotes this is the last path component, which avoids looping back.
*
* Only plain lookups are supported for now to restrict corner cases to handle.
*/
static int __noinline
cache_fplookup_trailingslash(struct cache_fpl *fpl)
{
#ifdef INVARIANTS
size_t ni_pathlen;
#endif
struct nameidata *ndp;
struct componentname *cnp;
struct namecache *ncp;
struct vnode *tvp;
char *cn_nameptr_orig, *cn_nameptr_slash;
seqc_t tvp_seqc;
u_char nc_flag;
ndp = fpl->ndp;
cnp = fpl->cnp;
tvp = fpl->tvp;
tvp_seqc = fpl->tvp_seqc;
MPASS(fpl->dvp == fpl->tvp);
KASSERT(cache_fpl_istrailingslash(fpl),
("%s: expected trailing slash at %p; string [%s]\n", __func__, fpl->nulchar - 1,
cnp->cn_pnbuf));
KASSERT(cnp->cn_nameptr[0] == '\0',
("%s: expected nul char at %p; string [%s]\n", __func__, &cnp->cn_nameptr[0],
cnp->cn_pnbuf));
KASSERT(cnp->cn_namelen == 0,
("%s: namelen 0 but got %ld; string [%s]\n", __func__, cnp->cn_namelen,
cnp->cn_pnbuf));
MPASS(cnp->cn_nameptr > cnp->cn_pnbuf);
if (cnp->cn_nameiop != LOOKUP) {
return (cache_fpl_aborted(fpl));
}
if (__predict_false(tvp->v_type != VDIR)) {
if (!vn_seqc_consistent(tvp, tvp_seqc)) {
return (cache_fpl_aborted(fpl));
}
cache_fpl_smr_exit(fpl);
return (cache_fpl_handled_error(fpl, ENOTDIR));
}
/*
* Denote the last component.
*/
ndp->ni_next = &cnp->cn_nameptr[0];
MPASS(cache_fpl_islastcn(ndp));
/*
* Unwind trailing slashes.
*/
cn_nameptr_orig = cnp->cn_nameptr;
while (cnp->cn_nameptr >= cnp->cn_pnbuf) {
cnp->cn_nameptr--;
if (cnp->cn_nameptr[0] != '/') {
break;
}
}
/*
* Unwind to the beginning of the path component.
*
* Note the path may or may not have started with a slash.
*/
cn_nameptr_slash = cnp->cn_nameptr;
while (cnp->cn_nameptr > cnp->cn_pnbuf) {
cnp->cn_nameptr--;
if (cnp->cn_nameptr[0] == '/') {
break;
}
}
if (cnp->cn_nameptr[0] == '/') {
cnp->cn_nameptr++;
}
cnp->cn_namelen = cn_nameptr_slash - cnp->cn_nameptr + 1;
cache_fpl_pathlen_add(fpl, cn_nameptr_orig - cnp->cn_nameptr);
cache_fpl_checkpoint(fpl);
#ifdef INVARIANTS
ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
if (ni_pathlen != fpl->debug.ni_pathlen) {
panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
__func__, ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
}
#endif
/*
* If this was a "./" lookup the parent directory is already correct.
*/
if (cnp->cn_nameptr[0] == '.' && cnp->cn_namelen == 1) {
return (0);
}
/*
* Otherwise we need to look it up.
*/
tvp = fpl->tvp;
ncp = atomic_load_consume_ptr(&tvp->v_cache_dd);
if (__predict_false(ncp == NULL)) {
return (cache_fpl_aborted(fpl));
}
nc_flag = atomic_load_char(&ncp->nc_flag);
if ((nc_flag & NCF_ISDOTDOT) != 0) {
return (cache_fpl_aborted(fpl));
}
fpl->dvp = ncp->nc_dvp;
fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
if (seqc_in_modify(fpl->dvp_seqc)) {
return (cache_fpl_aborted(fpl));
}
return (0);
}
/*
* See the API contract for VOP_FPLOOKUP_VEXEC.
*/
static int __noinline
cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error)
{
struct componentname *cnp;
struct vnode *dvp;
seqc_t dvp_seqc;
cnp = fpl->cnp;
dvp = fpl->dvp;
dvp_seqc = fpl->dvp_seqc;
/*
* Hack: delayed empty path checking.
*/
if (cnp->cn_pnbuf[0] == '\0') {
return (cache_fplookup_emptypath(fpl));
}
/*
* TODO: Due to ignoring trailing slashes lookup will perform a
* permission check on the last dir when it should not be doing it. It
* may fail, but said failure should be ignored. It is possible to fix
* it up fully without resorting to regular lookup, but for now just
* abort.
*/
if (cache_fpl_istrailingslash(fpl)) {
return (cache_fpl_aborted(fpl));
}
/*
* Hack: delayed degenerate path checking.
*/
if (cnp->cn_nameptr[0] == '\0' && fpl->tvp == NULL) {
return (cache_fplookup_degenerate(fpl));
}
/*
* Hack: delayed name len checking.
*/
if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
cache_fpl_smr_exit(fpl);
return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
}
/*
* Hack: they may be looking up foo/bar, where foo is not a directory.
* In such a case we need to return ENOTDIR, but we may happen to get
* here with a different error.
*/
if (dvp->v_type != VDIR) {
error = ENOTDIR;
}
/*
* Hack: handle O_SEARCH.
*
* Open Group Base Specifications Issue 7, 2018 edition states:
* <quote>
* If the access mode of the open file description associated with the
* file descriptor is not O_SEARCH, the function shall check whether
* directory searches are permitted using the current permissions of
* the directory underlying the file descriptor. If the access mode is
* O_SEARCH, the function shall not perform the check.
* </quote>
*
* Regular lookup tests for the NOEXECCHECK flag for every path
* component to decide whether to do the permission check. However,
* since most lookups never have the flag (and when they do it is only
* present for the first path component), lockless lookup only acts on
* it if there is a permission problem. Here the flag is represented
* with a boolean so that we don't have to clear it on the way out.
*
* For simplicity this always aborts.
* TODO: check if this is the first lookup and ignore the permission
* problem. Note the flag has to survive fallback (if it happens to be
* performed).
*/
if (fpl->fsearch) {
return (cache_fpl_aborted(fpl));
}
switch (error) {
case EAGAIN:
if (!vn_seqc_consistent(dvp, dvp_seqc)) {
error = cache_fpl_aborted(fpl);
} else {
cache_fpl_partial(fpl);
}
break;
default:
if (!vn_seqc_consistent(dvp, dvp_seqc)) {
error = cache_fpl_aborted(fpl);
} else {
cache_fpl_smr_exit(fpl);
cache_fpl_handled_error(fpl, error);
}
break;
}
return (error);
}
static int
cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl)
{
struct nameidata *ndp;
struct componentname *cnp;
struct mount *mp;
int error;
ndp = fpl->ndp;
cnp = fpl->cnp;
cache_fpl_checkpoint(fpl);
/*
* The vnode at hand is almost always stable, skip checking for it.
* Worst case this postpones the check towards the end of the iteration
* of the main loop.
*/
fpl->dvp = dvp;
fpl->dvp_seqc = vn_seqc_read_notmodify(fpl->dvp);
mp = atomic_load_ptr(&dvp->v_mount);
if (__predict_false(mp == NULL || !cache_fplookup_mp_supported(mp))) {
return (cache_fpl_aborted(fpl));
}
MPASS(fpl->tvp == NULL);
for (;;) {
cache_fplookup_parse(fpl);
error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred);
if (__predict_false(error != 0)) {
error = cache_fplookup_failed_vexec(fpl, error);
break;
}
error = cache_fplookup_next(fpl);
if (__predict_false(cache_fpl_terminated(fpl))) {
break;
}
VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp);
if (fpl->tvp->v_type == VLNK) {
error = cache_fplookup_symlink(fpl);
if (cache_fpl_terminated(fpl)) {
break;
}
} else {
if (cache_fpl_islastcn(ndp)) {
error = cache_fplookup_final(fpl);
break;
}
if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) {
error = cache_fpl_aborted(fpl);
break;
}
fpl->dvp = fpl->tvp;
fpl->dvp_seqc = fpl->tvp_seqc;
cache_fplookup_parse_advance(fpl);
}
cache_fpl_checkpoint(fpl);
}
return (error);
}
/*
* Fast path lookup protected with SMR and sequence counters.
*
* Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one.
*
* Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria
* outlined below.
*
* Traditional vnode lookup conceptually looks like this:
*
* vn_lock(current);
* for (;;) {
* next = find();
* vn_lock(next);
* vn_unlock(current);
* current = next;
* if (last)
* break;
* }
* return (current);
*
* Each jump to the next vnode is safe memory-wise and atomic with respect to
* any modifications thanks to holding respective locks.
*
* The same guarantee can be provided with a combination of safe memory
* reclamation and sequence counters instead. If all operations which affect
* the relationship between the current vnode and the one we are looking for
* also modify the counter, we can verify whether all the conditions held as
* we made the jump. This includes things like permissions, mount points etc.
* Counter modification is provided by enclosing relevant places in
* vn_seqc_write_begin()/end() calls.
*
* Thus this translates to:
*
* vfs_smr_enter();
* dvp_seqc = seqc_read_any(dvp);
* if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode
* abort();
* for (;;) {
* tvp = find();
* tvp_seqc = seqc_read_any(tvp);
* if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode
* abort();
* if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode
* abort();
* dvp = tvp; // we know nothing of importance has changed
* dvp_seqc = tvp_seqc; // store the counter for the tvp iteration
* if (last)
* break;
* }
* vget(); // secure the vnode
* if (!seqc_consistent(tvp, tvp_seqc) // final check
* abort();
* // at this point we know nothing has changed for any parent<->child pair
* // as they were crossed during the lookup, meaning we matched the guarantee
* // of the locked variant
* return (tvp);
*
* The API contract for VOP_FPLOOKUP_VEXEC routines is as follows:
* - they are called while within vfs_smr protection which they must never exit
* - EAGAIN can be returned to denote checking could not be performed, it is
* always valid to return it
* - if the sequence counter has not changed the result must be valid
* - if the sequence counter has changed both false positives and false negatives
* are permitted (since the result will be rejected later)
* - for simple cases of unix permission checks vaccess_vexec_smr can be used
*
* Caveats to watch out for:
* - vnodes are passed unlocked and unreferenced with nothing stopping
* VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised
* to use atomic_load_ptr to fetch it.
* - the aforementioned object can also get freed, meaning absent other means it
* should be protected with vfs_smr
* - either safely checking permissions as they are modified or guaranteeing
* their stability is left to the routine
*/
int
cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status,
struct pwd **pwdp)
{
struct cache_fpl fpl;
struct pwd *pwd;
struct vnode *dvp;
struct componentname *cnp;
int error;
fpl.status = CACHE_FPL_STATUS_UNSET;
fpl.in_smr = false;
fpl.ndp = ndp;
fpl.cnp = cnp = &ndp->ni_cnd;
MPASS(ndp->ni_lcf == 0);
KASSERT ((cnp->cn_flags & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
("%s: internal flags found in cn_flags %" PRIx64, __func__,
cnp->cn_flags));
MPASS(cnp->cn_nameptr == cnp->cn_pnbuf);
MPASS(ndp->ni_resflags == 0);
if (__predict_false(!cache_can_fplookup(&fpl))) {
*status = fpl.status;
SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
return (EOPNOTSUPP);
}
cache_fpl_checkpoint_outer(&fpl);
cache_fpl_smr_enter_initial(&fpl);
#ifdef INVARIANTS
fpl.debug.ni_pathlen = ndp->ni_pathlen;
#endif
fpl.nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
fpl.fsearch = false;
fpl.tvp = NULL; /* for degenerate path handling */
fpl.pwd = pwdp;
pwd = pwd_get_smr();
*(fpl.pwd) = pwd;
namei_setup_rootdir(ndp, cnp, pwd);
ndp->ni_topdir = pwd->pwd_jdir;
if (cnp->cn_pnbuf[0] == '/') {
dvp = cache_fpl_handle_root(&fpl);
ndp->ni_resflags = NIRES_ABS;
} else {
if (ndp->ni_dirfd == AT_FDCWD) {
dvp = pwd->pwd_cdir;
} else {
error = cache_fplookup_dirfd(&fpl, &dvp);
if (__predict_false(error != 0)) {
goto out;
}
}
}
SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true);
error = cache_fplookup_impl(dvp, &fpl);
out:
cache_fpl_smr_assert_not_entered(&fpl);
cache_fpl_assert_status(&fpl);
*status = fpl.status;
if (SDT_PROBES_ENABLED()) {
SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
if (fpl.status == CACHE_FPL_STATUS_HANDLED)
SDT_PROBE4(vfs, namei, lookup, return, error, ndp->ni_vp, true,
ndp);
}
if (__predict_true(fpl.status == CACHE_FPL_STATUS_HANDLED)) {
MPASS(error != CACHE_FPL_FAILED);
if (error != 0) {
cache_fpl_cleanup_cnp(fpl.cnp);
MPASS(fpl.dvp == NULL);
MPASS(fpl.tvp == NULL);
}
ndp->ni_dvp = fpl.dvp;
ndp->ni_vp = fpl.tvp;
}
return (error);
}