mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-12 09:58:36 +00:00
4d65a7c695
Apply the following automated changes to try to eliminate no-longer-needed sys/cdefs.h includes as well as now-empty blank lines in a row. Remove /^#if.*\n#endif.*\n#include\s+<sys/cdefs.h>.*\n/ Remove /\n+#include\s+<sys/cdefs.h>.*\n+#if.*\n#endif.*\n+/ Remove /\n+#if.*\n#endif.*\n+/ Remove /^#if.*\n#endif.*\n/ Remove /\n+#include\s+<sys/cdefs.h>\n#include\s+<sys/types.h>/ Remove /\n+#include\s+<sys/cdefs.h>\n#include\s+<sys/param.h>/ Remove /\n+#include\s+<sys/cdefs.h>\n#include\s+<sys/capsicum.h>/ Sponsored by: Netflix
1203 lines
27 KiB
C
1203 lines
27 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*
|
|
* Copyright (c) 2012, Fabien Thomas
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Process hwpmc(4) samples as calltree.
|
|
*
|
|
* Output file format compatible with Kcachegrind (kdesdk).
|
|
* Handle top mode with a sorted tree display.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <assert.h>
|
|
#include <curses.h>
|
|
#include <ctype.h>
|
|
#include <err.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <pmc.h>
|
|
#include <pmclog.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <sysexits.h>
|
|
|
|
#include "pmcstat.h"
|
|
#include "pmcstat_log.h"
|
|
#include "pmcstat_top.h"
|
|
#include "pmcpl_calltree.h"
|
|
|
|
#define min(A,B) ((A) < (B) ? (A) : (B))
|
|
#define max(A,B) ((A) > (B) ? (A) : (B))
|
|
|
|
#define PMCPL_CT_GROWSIZE 4
|
|
|
|
static int pmcstat_skiplink = 0;
|
|
|
|
struct pmcpl_ct_node;
|
|
|
|
/* Get the sample value for PMC a. */
|
|
#define PMCPL_CT_SAMPLE(a, b) \
|
|
((a) < (b)->npmcs ? (b)->sb[a] : 0)
|
|
|
|
/* Get the sample value in percent related to rsamples. */
|
|
#define PMCPL_CT_SAMPLEP(a, b) \
|
|
(PMCPL_CT_SAMPLE(a, b) * 100.0 / rsamples->sb[a])
|
|
|
|
struct pmcpl_ct_sample {
|
|
int npmcs; /* Max pmc index available. */
|
|
unsigned *sb; /* Sample buffer for 0..npmcs. */
|
|
};
|
|
|
|
struct pmcpl_ct_arc {
|
|
struct pmcpl_ct_sample pcta_samples;
|
|
struct pmcpl_ct_sample pcta_callid;
|
|
unsigned pcta_call;
|
|
struct pmcpl_ct_node *pcta_child;
|
|
};
|
|
|
|
struct pmcpl_ct_instr {
|
|
uintfptr_t pctf_func;
|
|
struct pmcpl_ct_sample pctf_samples;
|
|
};
|
|
|
|
/*
|
|
* Each calltree node is tracked by a pmcpl_ct_node struct.
|
|
*/
|
|
struct pmcpl_ct_node {
|
|
struct pmcstat_image *pct_image;
|
|
uintfptr_t pct_func;
|
|
|
|
struct pmcstat_symbol *pct_sym;
|
|
pmcstat_interned_string pct_ifl;
|
|
pmcstat_interned_string pct_ifn;
|
|
|
|
struct pmcpl_ct_sample pct_samples;
|
|
|
|
int pct_narc;
|
|
int pct_arc_c;
|
|
struct pmcpl_ct_arc *pct_arc;
|
|
|
|
/* TODO: optimize for large number of items. */
|
|
int pct_ninstr;
|
|
int pct_instr_c;
|
|
struct pmcpl_ct_instr *pct_instr;
|
|
|
|
#define PMCPL_PCT_ADDR 0
|
|
#define PMCPL_PCT_NAME 1
|
|
char pct_type;
|
|
#define PMCPL_PCT_WHITE 0
|
|
#define PMCPL_PCT_GREY 1
|
|
#define PMCPL_PCT_BLACK 2
|
|
char pct_color;
|
|
};
|
|
|
|
struct pmcpl_ct_node_hash {
|
|
struct pmcpl_ct_node *pch_ctnode;
|
|
STAILQ_ENTRY(pmcpl_ct_node_hash) pch_next;
|
|
};
|
|
|
|
static struct pmcpl_ct_sample pmcpl_ct_callid;
|
|
|
|
#define PMCPL_CT_MAXCOL PMC_CALLCHAIN_DEPTH_MAX
|
|
#define PMCPL_CT_MAXLINE 1024 /* TODO: dynamic. */
|
|
|
|
struct pmcpl_ct_line {
|
|
unsigned ln_sum;
|
|
unsigned ln_index;
|
|
};
|
|
|
|
static struct pmcpl_ct_line pmcpl_ct_topmax[PMCPL_CT_MAXLINE+1];
|
|
static struct pmcpl_ct_node
|
|
*pmcpl_ct_topscreen[PMCPL_CT_MAXCOL+1][PMCPL_CT_MAXLINE+1];
|
|
|
|
/*
|
|
* All nodes indexed by function/image name are placed in a hash table.
|
|
*/
|
|
static STAILQ_HEAD(,pmcpl_ct_node_hash) pmcpl_ct_node_hash[PMCSTAT_NHASH];
|
|
|
|
/*
|
|
* Root node for the graph.
|
|
*/
|
|
static struct pmcpl_ct_node *pmcpl_ct_root;
|
|
|
|
/*
|
|
* Prototypes
|
|
*/
|
|
|
|
/*
|
|
* Initialize a samples.
|
|
*/
|
|
|
|
static void
|
|
pmcpl_ct_samples_init(struct pmcpl_ct_sample *samples)
|
|
{
|
|
|
|
samples->npmcs = 0;
|
|
samples->sb = NULL;
|
|
}
|
|
|
|
/*
|
|
* Free a samples.
|
|
*/
|
|
|
|
static void
|
|
pmcpl_ct_samples_free(struct pmcpl_ct_sample *samples)
|
|
{
|
|
|
|
samples->npmcs = 0;
|
|
free(samples->sb);
|
|
samples->sb = NULL;
|
|
}
|
|
|
|
/*
|
|
* Grow a sample block to store pmcstat_npmcs PMCs.
|
|
*/
|
|
|
|
static void
|
|
pmcpl_ct_samples_grow(struct pmcpl_ct_sample *samples)
|
|
{
|
|
unsigned int npmcs;
|
|
|
|
/* Enough storage. */
|
|
if (pmcstat_npmcs <= samples->npmcs)
|
|
return;
|
|
|
|
npmcs = samples->npmcs +
|
|
max(pmcstat_npmcs - samples->npmcs, PMCPL_CT_GROWSIZE);
|
|
samples->sb = reallocarray(samples->sb, npmcs, sizeof(unsigned));
|
|
if (samples->sb == NULL)
|
|
errx(EX_SOFTWARE, "ERROR: out of memory");
|
|
bzero((char *)samples->sb + samples->npmcs * sizeof(unsigned),
|
|
(npmcs - samples->npmcs) * sizeof(unsigned));
|
|
samples->npmcs = npmcs;
|
|
}
|
|
|
|
/*
|
|
* Compute the sum of all root arcs.
|
|
*/
|
|
|
|
static void
|
|
pmcpl_ct_samples_root(struct pmcpl_ct_sample *samples)
|
|
{
|
|
int i, pmcin;
|
|
|
|
pmcpl_ct_samples_init(samples);
|
|
pmcpl_ct_samples_grow(samples);
|
|
|
|
for (i = 0; i < pmcpl_ct_root->pct_narc; i++)
|
|
for (pmcin = 0; pmcin < pmcstat_npmcs; pmcin++)
|
|
samples->sb[pmcin] += PMCPL_CT_SAMPLE(pmcin,
|
|
&pmcpl_ct_root->pct_arc[i].pcta_samples);
|
|
}
|
|
|
|
/*
|
|
* Grow the arc table.
|
|
*/
|
|
|
|
static void
|
|
pmcpl_ct_arc_grow(int cursize, int *maxsize, struct pmcpl_ct_arc **items)
|
|
{
|
|
unsigned int nmaxsize;
|
|
|
|
if (cursize < *maxsize)
|
|
return;
|
|
|
|
nmaxsize = *maxsize + max(cursize + 1 - *maxsize, PMCPL_CT_GROWSIZE);
|
|
*items = reallocarray(*items, nmaxsize, sizeof(struct pmcpl_ct_arc));
|
|
if (*items == NULL)
|
|
errx(EX_SOFTWARE, "ERROR: out of memory");
|
|
bzero((char *)*items + *maxsize * sizeof(struct pmcpl_ct_arc),
|
|
(nmaxsize - *maxsize) * sizeof(struct pmcpl_ct_arc));
|
|
*maxsize = nmaxsize;
|
|
}
|
|
|
|
/*
|
|
* Grow the instr table.
|
|
*/
|
|
|
|
static void
|
|
pmcpl_ct_instr_grow(int cursize, int *maxsize, struct pmcpl_ct_instr **items)
|
|
{
|
|
unsigned int nmaxsize;
|
|
|
|
if (cursize < *maxsize)
|
|
return;
|
|
|
|
nmaxsize = *maxsize + max(cursize + 1 - *maxsize, PMCPL_CT_GROWSIZE);
|
|
*items = reallocarray(*items, nmaxsize, sizeof(struct pmcpl_ct_instr));
|
|
if (*items == NULL)
|
|
errx(EX_SOFTWARE, "ERROR: out of memory");
|
|
bzero((char *)*items + *maxsize * sizeof(struct pmcpl_ct_instr),
|
|
(nmaxsize - *maxsize) * sizeof(struct pmcpl_ct_instr));
|
|
*maxsize = nmaxsize;
|
|
}
|
|
|
|
/*
|
|
* Add a new instruction sample to given node.
|
|
*/
|
|
|
|
static void
|
|
pmcpl_ct_instr_add(struct pmcpl_ct_node *ct, int pmcin,
|
|
uintfptr_t pc, unsigned v)
|
|
{
|
|
int i;
|
|
struct pmcpl_ct_instr *in;
|
|
|
|
for (i = 0; i<ct->pct_ninstr; i++) {
|
|
if (ct->pct_instr[i].pctf_func == pc) {
|
|
in = &ct->pct_instr[i];
|
|
pmcpl_ct_samples_grow(&in->pctf_samples);
|
|
in->pctf_samples.sb[pmcin] += v;
|
|
return;
|
|
}
|
|
}
|
|
|
|
pmcpl_ct_instr_grow(ct->pct_ninstr, &ct->pct_instr_c, &ct->pct_instr);
|
|
in = &ct->pct_instr[ct->pct_ninstr];
|
|
in->pctf_func = pc;
|
|
pmcpl_ct_samples_init(&in->pctf_samples);
|
|
pmcpl_ct_samples_grow(&in->pctf_samples);
|
|
in->pctf_samples.sb[pmcin] = v;
|
|
ct->pct_ninstr++;
|
|
}
|
|
|
|
/*
|
|
* Allocate a new node.
|
|
*/
|
|
|
|
static struct pmcpl_ct_node *
|
|
pmcpl_ct_node_allocate(void)
|
|
{
|
|
struct pmcpl_ct_node *ct;
|
|
|
|
if ((ct = malloc(sizeof(*ct))) == NULL)
|
|
err(EX_OSERR, "ERROR: Cannot allocate callgraph node");
|
|
|
|
pmcpl_ct_samples_init(&ct->pct_samples);
|
|
|
|
ct->pct_sym = NULL;
|
|
ct->pct_image = NULL;
|
|
ct->pct_func = 0;
|
|
|
|
ct->pct_narc = 0;
|
|
ct->pct_arc_c = 0;
|
|
ct->pct_arc = NULL;
|
|
|
|
ct->pct_ninstr = 0;
|
|
ct->pct_instr_c = 0;
|
|
ct->pct_instr = NULL;
|
|
|
|
ct->pct_color = PMCPL_PCT_WHITE;
|
|
|
|
return (ct);
|
|
}
|
|
|
|
/*
|
|
* Free a node.
|
|
*/
|
|
|
|
static void
|
|
pmcpl_ct_node_free(struct pmcpl_ct_node *ct)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ct->pct_narc; i++) {
|
|
pmcpl_ct_samples_free(&ct->pct_arc[i].pcta_samples);
|
|
pmcpl_ct_samples_free(&ct->pct_arc[i].pcta_callid);
|
|
}
|
|
|
|
pmcpl_ct_samples_free(&ct->pct_samples);
|
|
free(ct->pct_arc);
|
|
free(ct->pct_instr);
|
|
free(ct);
|
|
}
|
|
|
|
/*
|
|
* Clear the graph tag on each node.
|
|
*/
|
|
static void
|
|
pmcpl_ct_node_cleartag(void)
|
|
{
|
|
int i;
|
|
struct pmcpl_ct_node_hash *pch;
|
|
|
|
for (i = 0; i < PMCSTAT_NHASH; i++)
|
|
STAILQ_FOREACH(pch, &pmcpl_ct_node_hash[i], pch_next)
|
|
pch->pch_ctnode->pct_color = PMCPL_PCT_WHITE;
|
|
|
|
pmcpl_ct_root->pct_color = PMCPL_PCT_WHITE;
|
|
}
|
|
|
|
/*
|
|
* Print the callchain line by line with maximum cost at top.
|
|
*/
|
|
|
|
static int
|
|
pmcpl_ct_node_dumptop(int pmcin, struct pmcpl_ct_node *ct,
|
|
struct pmcpl_ct_sample *rsamples, int x, int *y)
|
|
{
|
|
int i, terminal;
|
|
struct pmcpl_ct_arc *arc;
|
|
|
|
if (ct->pct_color == PMCPL_PCT_GREY)
|
|
return 0;
|
|
|
|
if (x >= PMCPL_CT_MAXCOL) {
|
|
pmcpl_ct_topscreen[x][*y] = NULL;
|
|
return 1;
|
|
}
|
|
pmcpl_ct_topscreen[x][*y] = ct;
|
|
|
|
/*
|
|
* Check if this is a terminal node.
|
|
* We need to check that some samples exist
|
|
* for at least one arc for that PMC.
|
|
*/
|
|
terminal = 1;
|
|
for (i = 0; i < ct->pct_narc; i++) {
|
|
arc = &ct->pct_arc[i];
|
|
if (arc->pcta_child->pct_color != PMCPL_PCT_GREY &&
|
|
PMCPL_CT_SAMPLE(pmcin,
|
|
&arc->pcta_samples) != 0 &&
|
|
PMCPL_CT_SAMPLEP(pmcin,
|
|
&arc->pcta_samples) > pmcstat_threshold) {
|
|
terminal = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ct->pct_narc == 0 || terminal) {
|
|
pmcpl_ct_topscreen[x+1][*y] = NULL;
|
|
if (*y >= PMCPL_CT_MAXLINE)
|
|
return 1;
|
|
*y = *y + 1;
|
|
for (i=0; i < x; i++)
|
|
pmcpl_ct_topscreen[i][*y] =
|
|
pmcpl_ct_topscreen[i][*y - 1];
|
|
return 0;
|
|
}
|
|
|
|
ct->pct_color = PMCPL_PCT_GREY;
|
|
for (i = 0; i < ct->pct_narc; i++) {
|
|
if (PMCPL_CT_SAMPLE(pmcin,
|
|
&ct->pct_arc[i].pcta_samples) == 0)
|
|
continue;
|
|
if (PMCPL_CT_SAMPLEP(pmcin,
|
|
&ct->pct_arc[i].pcta_samples) > pmcstat_threshold) {
|
|
if (pmcpl_ct_node_dumptop(pmcin,
|
|
ct->pct_arc[i].pcta_child,
|
|
rsamples, x+1, y)) {
|
|
ct->pct_color = PMCPL_PCT_BLACK;
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
ct->pct_color = PMCPL_PCT_BLACK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Compare two top line by sum.
|
|
*/
|
|
static int
|
|
pmcpl_ct_line_compare(const void *a, const void *b)
|
|
{
|
|
const struct pmcpl_ct_line *ct1, *ct2;
|
|
|
|
ct1 = (const struct pmcpl_ct_line *) a;
|
|
ct2 = (const struct pmcpl_ct_line *) b;
|
|
|
|
/* Sort in reverse order */
|
|
if (ct1->ln_sum < ct2->ln_sum)
|
|
return (1);
|
|
if (ct1->ln_sum > ct2->ln_sum)
|
|
return (-1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Format and display given PMC index.
|
|
*/
|
|
|
|
static void
|
|
pmcpl_ct_node_printtop(struct pmcpl_ct_sample *rsamples, int pmcin, int maxy)
|
|
{
|
|
#undef TS
|
|
#undef TSI
|
|
#define TS(x, y) (pmcpl_ct_topscreen[x][y])
|
|
#define TSI(x, y) (pmcpl_ct_topscreen[x][pmcpl_ct_topmax[y].ln_index])
|
|
|
|
int v_attrs, ns_len, vs_len, is_len, width, indentwidth, x, y;
|
|
float v;
|
|
char ns[30], vs[10], is[20];
|
|
struct pmcpl_ct_node *ct;
|
|
const char *space = " ";
|
|
|
|
/*
|
|
* Sort by line cost.
|
|
*/
|
|
for (y = 0; ; y++) {
|
|
ct = TS(1, y);
|
|
if (ct == NULL)
|
|
break;
|
|
|
|
pmcpl_ct_topmax[y].ln_sum = 0;
|
|
pmcpl_ct_topmax[y].ln_index = y;
|
|
for (x = 1; TS(x, y) != NULL; x++) {
|
|
pmcpl_ct_topmax[y].ln_sum +=
|
|
PMCPL_CT_SAMPLE(pmcin, &TS(x, y)->pct_samples);
|
|
}
|
|
}
|
|
qsort(pmcpl_ct_topmax, y, sizeof(pmcpl_ct_topmax[0]),
|
|
pmcpl_ct_line_compare);
|
|
pmcpl_ct_topmax[y].ln_index = y;
|
|
|
|
for (y = 0; y < maxy; y++) {
|
|
ct = TSI(1, y);
|
|
if (ct == NULL)
|
|
break;
|
|
|
|
if (y > 0)
|
|
PMCSTAT_PRINTW("\n");
|
|
|
|
/* Output sum. */
|
|
v = pmcpl_ct_topmax[y].ln_sum * 100.0 /
|
|
rsamples->sb[pmcin];
|
|
snprintf(vs, sizeof(vs), "%.1f", v);
|
|
v_attrs = PMCSTAT_ATTRPERCENT(v);
|
|
PMCSTAT_ATTRON(v_attrs);
|
|
PMCSTAT_PRINTW("%5.5s ", vs);
|
|
PMCSTAT_ATTROFF(v_attrs);
|
|
|
|
width = indentwidth = 5 + 1;
|
|
|
|
for (x = 1; (ct = TSI(x, y)) != NULL; x++) {
|
|
|
|
vs[0] = '\0'; vs_len = 0;
|
|
is[0] = '\0'; is_len = 0;
|
|
|
|
/* Format value. */
|
|
v = PMCPL_CT_SAMPLEP(pmcin, &ct->pct_samples);
|
|
if (v > pmcstat_threshold)
|
|
vs_len = snprintf(vs, sizeof(vs),
|
|
"(%.1f%%)", v);
|
|
v_attrs = PMCSTAT_ATTRPERCENT(v);
|
|
|
|
if (pmcstat_skiplink && v <= pmcstat_threshold) {
|
|
strlcpy(ns, ".", sizeof(ns));
|
|
ns_len = 1;
|
|
} else {
|
|
if (ct->pct_sym != NULL) {
|
|
ns_len = snprintf(ns, sizeof(ns), "%s",
|
|
pmcstat_string_unintern(ct->pct_sym->ps_name));
|
|
} else
|
|
ns_len = snprintf(ns, sizeof(ns), "%p",
|
|
(void *)ct->pct_func);
|
|
|
|
/* Format image. */
|
|
if (x == 1 ||
|
|
TSI(x-1, y)->pct_image != ct->pct_image)
|
|
is_len = snprintf(is, sizeof(is), "@%s",
|
|
pmcstat_string_unintern(ct->pct_image->pi_name));
|
|
|
|
/* Check for line wrap. */
|
|
width += ns_len + is_len + vs_len + 1;
|
|
}
|
|
if (width >= pmcstat_displaywidth) {
|
|
maxy--;
|
|
if (y >= maxy)
|
|
break;
|
|
PMCSTAT_PRINTW("\n%*s", indentwidth, space);
|
|
width = indentwidth + ns_len + is_len + vs_len;
|
|
}
|
|
|
|
PMCSTAT_ATTRON(v_attrs);
|
|
PMCSTAT_PRINTW("%s%s%s ", ns, is, vs);
|
|
PMCSTAT_ATTROFF(v_attrs);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Output top mode snapshot.
|
|
*/
|
|
|
|
void
|
|
pmcpl_ct_topdisplay(void)
|
|
{
|
|
int y;
|
|
struct pmcpl_ct_sample r, *rsamples;
|
|
|
|
rsamples = &r;
|
|
pmcpl_ct_samples_root(rsamples);
|
|
pmcpl_ct_node_cleartag();
|
|
|
|
PMCSTAT_PRINTW("%5.5s %s\n", "%SAMP", "CALLTREE");
|
|
|
|
y = 0;
|
|
if (pmcpl_ct_node_dumptop(pmcstat_pmcinfilter,
|
|
pmcpl_ct_root, rsamples, 0, &y))
|
|
PMCSTAT_PRINTW("...\n");
|
|
pmcpl_ct_topscreen[1][y] = NULL;
|
|
|
|
pmcpl_ct_node_printtop(rsamples,
|
|
pmcstat_pmcinfilter, pmcstat_displayheight - 2);
|
|
|
|
pmcpl_ct_samples_free(rsamples);
|
|
}
|
|
|
|
/*
|
|
* Handle top mode keypress.
|
|
*/
|
|
|
|
int
|
|
pmcpl_ct_topkeypress(int c, void *arg)
|
|
{
|
|
WINDOW *w;
|
|
|
|
w = (WINDOW *)arg;
|
|
|
|
switch (c) {
|
|
case 'f':
|
|
pmcstat_skiplink = !pmcstat_skiplink;
|
|
wprintw(w, "skip empty link %s",
|
|
pmcstat_skiplink ? "on" : "off");
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Look for a callgraph node associated with pmc `pmcid' in the global
|
|
* hash table that corresponds to the given `pc' value in the process map
|
|
* `ppm'.
|
|
*/
|
|
|
|
static void
|
|
pmcpl_ct_node_update(struct pmcpl_ct_node *parent,
|
|
struct pmcpl_ct_node *child, int pmcin, unsigned v, int cd)
|
|
{
|
|
struct pmcpl_ct_arc *arc;
|
|
int i;
|
|
|
|
assert(parent != NULL);
|
|
|
|
/*
|
|
* Find related arc in parent node and
|
|
* increment the sample count.
|
|
*/
|
|
for (i = 0; i < parent->pct_narc; i++) {
|
|
if (parent->pct_arc[i].pcta_child == child) {
|
|
arc = &parent->pct_arc[i];
|
|
pmcpl_ct_samples_grow(&arc->pcta_samples);
|
|
arc->pcta_samples.sb[pmcin] += v;
|
|
/* Estimate call count. */
|
|
if (cd) {
|
|
pmcpl_ct_samples_grow(&arc->pcta_callid);
|
|
if (pmcpl_ct_callid.sb[pmcin] -
|
|
arc->pcta_callid.sb[pmcin] > 1)
|
|
arc->pcta_call++;
|
|
arc->pcta_callid.sb[pmcin] =
|
|
pmcpl_ct_callid.sb[pmcin];
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* No arc found for us, add ourself to the parent.
|
|
*/
|
|
pmcpl_ct_arc_grow(parent->pct_narc,
|
|
&parent->pct_arc_c, &parent->pct_arc);
|
|
arc = &parent->pct_arc[parent->pct_narc];
|
|
pmcpl_ct_samples_grow(&arc->pcta_samples);
|
|
arc->pcta_samples.sb[pmcin] = v;
|
|
arc->pcta_call = 1;
|
|
if (cd) {
|
|
pmcpl_ct_samples_grow(&arc->pcta_callid);
|
|
arc->pcta_callid.sb[pmcin] = pmcpl_ct_callid.sb[pmcin];
|
|
}
|
|
arc->pcta_child = child;
|
|
parent->pct_narc++;
|
|
}
|
|
|
|
/*
|
|
* Lookup by image/pc.
|
|
*/
|
|
|
|
static struct pmcpl_ct_node *
|
|
pmcpl_ct_node_hash_lookup(struct pmcstat_image *image, uintfptr_t pc,
|
|
struct pmcstat_symbol *sym, char *fl, char *fn)
|
|
{
|
|
int i;
|
|
unsigned int hash;
|
|
struct pmcpl_ct_node *ct;
|
|
struct pmcpl_ct_node_hash *h;
|
|
pmcstat_interned_string ifl, ifn;
|
|
|
|
if (fn != NULL) {
|
|
ifl = pmcstat_string_intern(fl);
|
|
ifn = pmcstat_string_intern(fn);
|
|
} else {
|
|
ifl = 0;
|
|
ifn = 0;
|
|
}
|
|
|
|
for (hash = i = 0; i < (int)sizeof(uintfptr_t); i++)
|
|
hash += (pc >> i) & 0xFF;
|
|
|
|
hash &= PMCSTAT_HASH_MASK;
|
|
|
|
STAILQ_FOREACH(h, &pmcpl_ct_node_hash[hash], pch_next) {
|
|
ct = h->pch_ctnode;
|
|
|
|
assert(ct != NULL);
|
|
|
|
if (ct->pct_image == image && ct->pct_func == pc) {
|
|
if (fn == NULL)
|
|
return (ct);
|
|
if (ct->pct_type == PMCPL_PCT_NAME &&
|
|
ct->pct_ifl == ifl && ct->pct_ifn == ifn)
|
|
return (ct);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We haven't seen this (pmcid, pc) tuple yet, so allocate a
|
|
* new callgraph node and a new hash table entry for it.
|
|
*/
|
|
ct = pmcpl_ct_node_allocate();
|
|
if ((h = malloc(sizeof(*h))) == NULL)
|
|
err(EX_OSERR, "ERROR: Could not allocate callgraph node");
|
|
|
|
if (fn != NULL) {
|
|
ct->pct_type = PMCPL_PCT_NAME;
|
|
ct->pct_ifl = ifl;
|
|
ct->pct_ifn = ifn;
|
|
} else
|
|
ct->pct_type = PMCPL_PCT_ADDR;
|
|
ct->pct_image = image;
|
|
ct->pct_func = pc;
|
|
ct->pct_sym = sym;
|
|
|
|
h->pch_ctnode = ct;
|
|
STAILQ_INSERT_HEAD(&pmcpl_ct_node_hash[hash], h, pch_next);
|
|
return (ct);
|
|
}
|
|
|
|
/*
|
|
* Record a callchain.
|
|
*/
|
|
|
|
void
|
|
pmcpl_ct_process(struct pmcstat_process *pp, struct pmcstat_pmcrecord *pmcr,
|
|
uint32_t nsamples, uintfptr_t *cc, int usermode, uint32_t cpu)
|
|
{
|
|
int i, n, pmcin;
|
|
uintfptr_t pc, loadaddress;
|
|
struct pmcstat_image *image;
|
|
struct pmcstat_symbol *sym;
|
|
struct pmcstat_pcmap *ppm[PMC_CALLCHAIN_DEPTH_MAX];
|
|
struct pmcstat_process *km;
|
|
struct pmcpl_ct_node *ct;
|
|
struct pmcpl_ct_node *ctl[PMC_CALLCHAIN_DEPTH_MAX+1];
|
|
|
|
(void) cpu;
|
|
|
|
assert(nsamples>0 && nsamples<=PMC_CALLCHAIN_DEPTH_MAX);
|
|
|
|
/* Get the PMC index. */
|
|
pmcin = pmcr->pr_pmcin;
|
|
|
|
/*
|
|
* Validate mapping for the callchain.
|
|
* Go from bottom to first invalid entry.
|
|
*/
|
|
km = pmcstat_kernproc;
|
|
for (n = 0; n < (int)nsamples; n++) {
|
|
ppm[n] = pmcstat_process_find_map(usermode ?
|
|
pp : km, cc[n]);
|
|
if (ppm[n] == NULL) {
|
|
/* Detect full frame capture (kernel + user). */
|
|
if (!usermode) {
|
|
ppm[n] = pmcstat_process_find_map(pp, cc[n]);
|
|
if (ppm[n] != NULL)
|
|
km = pp;
|
|
}
|
|
}
|
|
if (ppm[n] == NULL)
|
|
break;
|
|
}
|
|
if (n-- == 0) {
|
|
pmcstat_stats.ps_callchain_dubious_frames++;
|
|
pmcr->pr_dubious_frames++;
|
|
return;
|
|
}
|
|
|
|
/* Increase the call generation counter. */
|
|
pmcpl_ct_samples_grow(&pmcpl_ct_callid);
|
|
pmcpl_ct_callid.sb[pmcin]++;
|
|
|
|
/*
|
|
* Build node list.
|
|
*/
|
|
ctl[0] = pmcpl_ct_root;
|
|
for (i = 1; n >= 0; n--) {
|
|
image = ppm[n]->ppm_image;
|
|
loadaddress = ppm[n]->ppm_lowpc +
|
|
image->pi_vaddr - image->pi_start;
|
|
/* Convert to an offset in the image. */
|
|
pc = cc[n] - loadaddress;
|
|
/*
|
|
* Try determine the function at this offset. If we can't
|
|
* find a function round leave the `pc' value alone.
|
|
*/
|
|
if ((sym = pmcstat_symbol_search(image, pc)) != NULL)
|
|
pc = sym->ps_start;
|
|
else
|
|
pmcstat_stats.ps_samples_unknown_function++;
|
|
|
|
ct = pmcpl_ct_node_hash_lookup(image, pc, sym, NULL, NULL);
|
|
if (ct == NULL) {
|
|
pmcstat_stats.ps_callchain_dubious_frames++;
|
|
continue;
|
|
}
|
|
ctl[i++] = ct;
|
|
}
|
|
/* No valid node found. */
|
|
if (i == 1)
|
|
return;
|
|
n = i;
|
|
|
|
ct = ctl[0];
|
|
for (i = 1; i < n; i++)
|
|
pmcpl_ct_node_update(ctl[i-1], ctl[i], pmcin, 1, 1);
|
|
|
|
/*
|
|
* Increment the sample count for this PMC.
|
|
*/
|
|
pmcpl_ct_samples_grow(&ctl[n-1]->pct_samples);
|
|
ctl[n-1]->pct_samples.sb[pmcin]++;
|
|
|
|
/* Update per instruction sample if required. */
|
|
if (args.pa_ctdumpinstr)
|
|
pmcpl_ct_instr_add(ctl[n-1], pmcin, cc[0] -
|
|
(ppm[0]->ppm_lowpc + ppm[0]->ppm_image->pi_vaddr -
|
|
ppm[0]->ppm_image->pi_start), 1);
|
|
}
|
|
|
|
/*
|
|
* Print node child cost.
|
|
*/
|
|
|
|
static void
|
|
pmcpl_ct_node_printchild(struct pmcpl_ct_node *ct, uintfptr_t paddr,
|
|
int pline)
|
|
{
|
|
int i, j, line;
|
|
uintfptr_t addr;
|
|
struct pmcpl_ct_node *child;
|
|
char sourcefile[PATH_MAX];
|
|
char funcname[PATH_MAX];
|
|
|
|
/*
|
|
* Child cost.
|
|
* TODO: attach child cost to the real position in the function.
|
|
* TODO: cfn=<fn> / call <ncall> addr(<fn>) / addr(call <fn>) <arccost>
|
|
*/
|
|
for (i=0 ; i<ct->pct_narc; i++) {
|
|
child = ct->pct_arc[i].pcta_child;
|
|
/* Object binary. */
|
|
fprintf(args.pa_graphfile, "cob=%s\n",
|
|
pmcstat_string_unintern(child->pct_image->pi_fullpath));
|
|
/* Child function name. */
|
|
addr = child->pct_image->pi_vaddr + child->pct_func;
|
|
line = 0;
|
|
/* Child function source file. */
|
|
if (child->pct_type == PMCPL_PCT_NAME) {
|
|
fprintf(args.pa_graphfile, "cfi=%s\ncfn=%s\n",
|
|
pmcstat_string_unintern(child->pct_ifl),
|
|
pmcstat_string_unintern(child->pct_ifn));
|
|
} else if (pmcstat_image_addr2line(child->pct_image, addr,
|
|
sourcefile, sizeof(sourcefile), &line,
|
|
funcname, sizeof(funcname))) {
|
|
fprintf(args.pa_graphfile, "cfi=%s\ncfn=%s\n",
|
|
sourcefile, funcname);
|
|
} else {
|
|
if (child->pct_sym != NULL)
|
|
fprintf(args.pa_graphfile,
|
|
"cfi=???\ncfn=%s\n",
|
|
pmcstat_string_unintern(
|
|
child->pct_sym->ps_name));
|
|
else
|
|
fprintf(args.pa_graphfile,
|
|
"cfi=???\ncfn=%p\n", (void *)addr);
|
|
}
|
|
|
|
/* Child function address, line and call count. */
|
|
fprintf(args.pa_graphfile, "calls=%u %p %u\n",
|
|
ct->pct_arc[i].pcta_call, (void *)addr, line);
|
|
|
|
/*
|
|
* Call address, line, sample.
|
|
* TODO: Associate call address to the right location.
|
|
*/
|
|
fprintf(args.pa_graphfile, "%p %u", (void *)paddr, pline);
|
|
for (j = 0; j<pmcstat_npmcs; j++)
|
|
fprintf(args.pa_graphfile, " %u",
|
|
PMCPL_CT_SAMPLE(j, &ct->pct_arc[i].pcta_samples));
|
|
fprintf(args.pa_graphfile, "\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Print node self cost.
|
|
*/
|
|
|
|
static void
|
|
pmcpl_ct_node_printself(struct pmcpl_ct_node *ct)
|
|
{
|
|
int i, j, fline, line;
|
|
uintfptr_t faddr, addr;
|
|
char sourcefile[PATH_MAX];
|
|
char funcname[PATH_MAX];
|
|
|
|
/*
|
|
* Object binary.
|
|
*/
|
|
fprintf(args.pa_graphfile, "ob=%s\n",
|
|
pmcstat_string_unintern(ct->pct_image->pi_fullpath));
|
|
|
|
/*
|
|
* Function name.
|
|
*/
|
|
faddr = ct->pct_image->pi_vaddr + ct->pct_func;
|
|
fline = 0;
|
|
if (ct->pct_type == PMCPL_PCT_NAME) {
|
|
fprintf(args.pa_graphfile, "fl=%s\nfn=%s\n",
|
|
pmcstat_string_unintern(ct->pct_ifl),
|
|
pmcstat_string_unintern(ct->pct_ifn));
|
|
} else if (pmcstat_image_addr2line(ct->pct_image, faddr,
|
|
sourcefile, sizeof(sourcefile), &fline,
|
|
funcname, sizeof(funcname))) {
|
|
fprintf(args.pa_graphfile, "fl=%s\nfn=%s\n",
|
|
sourcefile, funcname);
|
|
} else {
|
|
if (ct->pct_sym != NULL)
|
|
fprintf(args.pa_graphfile, "fl=???\nfn=%s\n",
|
|
pmcstat_string_unintern(ct->pct_sym->ps_name));
|
|
else
|
|
fprintf(args.pa_graphfile, "fl=???\nfn=%p\n",
|
|
(void *)(ct->pct_image->pi_vaddr + ct->pct_func));
|
|
}
|
|
|
|
/*
|
|
* Self cost.
|
|
*/
|
|
if (ct->pct_ninstr > 0) {
|
|
/*
|
|
* Per location cost.
|
|
*/
|
|
for (i = 0; i < ct->pct_ninstr; i++) {
|
|
addr = ct->pct_image->pi_vaddr +
|
|
ct->pct_instr[i].pctf_func;
|
|
line = 0;
|
|
pmcstat_image_addr2line(ct->pct_image, addr,
|
|
sourcefile, sizeof(sourcefile), &line,
|
|
funcname, sizeof(funcname));
|
|
fprintf(args.pa_graphfile, "%p %u",
|
|
(void *)addr, line);
|
|
for (j = 0; j<pmcstat_npmcs; j++)
|
|
fprintf(args.pa_graphfile, " %u",
|
|
PMCPL_CT_SAMPLE(j,
|
|
&ct->pct_instr[i].pctf_samples));
|
|
fprintf(args.pa_graphfile, "\n");
|
|
}
|
|
} else {
|
|
/* Global cost function cost. */
|
|
fprintf(args.pa_graphfile, "%p %u", (void *)faddr, fline);
|
|
for (i = 0; i<pmcstat_npmcs ; i++)
|
|
fprintf(args.pa_graphfile, " %u",
|
|
PMCPL_CT_SAMPLE(i, &ct->pct_samples));
|
|
fprintf(args.pa_graphfile, "\n");
|
|
}
|
|
|
|
pmcpl_ct_node_printchild(ct, faddr, fline);
|
|
}
|
|
|
|
static void
|
|
pmcpl_ct_printnode(struct pmcpl_ct_node *ct)
|
|
{
|
|
int i;
|
|
|
|
if (ct == pmcpl_ct_root) {
|
|
fprintf(args.pa_graphfile, "fn=root\n");
|
|
fprintf(args.pa_graphfile, "0x0 1");
|
|
for (i = 0; i<pmcstat_npmcs ; i++)
|
|
fprintf(args.pa_graphfile, " 0");
|
|
fprintf(args.pa_graphfile, "\n");
|
|
pmcpl_ct_node_printchild(ct, 0, 0);
|
|
} else
|
|
pmcpl_ct_node_printself(ct);
|
|
}
|
|
|
|
/*
|
|
* Breadth first traversal.
|
|
*/
|
|
|
|
static void
|
|
pmcpl_ct_bfs(struct pmcpl_ct_node *ct)
|
|
{
|
|
int i;
|
|
struct pmcpl_ct_node_hash *pch, *pchc;
|
|
struct pmcpl_ct_node *child;
|
|
STAILQ_HEAD(,pmcpl_ct_node_hash) q;
|
|
|
|
STAILQ_INIT(&q);
|
|
if ((pch = malloc(sizeof(*pch))) == NULL)
|
|
err(EX_OSERR, "ERROR: Cannot allocate queue");
|
|
pch->pch_ctnode = ct;
|
|
STAILQ_INSERT_TAIL(&q, pch, pch_next);
|
|
ct->pct_color = PMCPL_PCT_BLACK;
|
|
|
|
while (!STAILQ_EMPTY(&q)) {
|
|
pch = STAILQ_FIRST(&q);
|
|
STAILQ_REMOVE_HEAD(&q, pch_next);
|
|
pmcpl_ct_printnode(pch->pch_ctnode);
|
|
for (i = 0; i<pch->pch_ctnode->pct_narc; i++) {
|
|
child = pch->pch_ctnode->pct_arc[i].pcta_child;
|
|
if (child->pct_color == PMCPL_PCT_WHITE) {
|
|
child->pct_color = PMCPL_PCT_BLACK;
|
|
if ((pchc = malloc(sizeof(*pchc))) == NULL)
|
|
err(EX_OSERR,
|
|
"ERROR: Cannot allocate queue");
|
|
pchc->pch_ctnode = child;
|
|
STAILQ_INSERT_TAIL(&q, pchc, pch_next);
|
|
}
|
|
}
|
|
free(pch);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Detect and fix inlined location.
|
|
*/
|
|
|
|
static void
|
|
_pmcpl_ct_expand_inline(struct pmcpl_ct_node *ct)
|
|
{
|
|
int i, j;
|
|
unsigned fline, line, v;
|
|
uintfptr_t faddr, addr, pc;
|
|
char sourcefile[PATH_MAX];
|
|
char ffuncname[PATH_MAX], funcname[PATH_MAX];
|
|
char buffer[PATH_MAX];
|
|
struct pmcpl_ct_node *child;
|
|
|
|
/*
|
|
* Resolve parent and compare to each instr location.
|
|
*/
|
|
faddr = ct->pct_image->pi_vaddr + ct->pct_func;
|
|
fline = 0;
|
|
if (!pmcstat_image_addr2line(ct->pct_image, faddr,
|
|
sourcefile, sizeof(sourcefile), &fline,
|
|
ffuncname, sizeof(ffuncname)))
|
|
return;
|
|
|
|
for (i = 0; i < ct->pct_ninstr; i++) {
|
|
addr = ct->pct_image->pi_vaddr +
|
|
ct->pct_instr[i].pctf_func;
|
|
line = 0;
|
|
if (!pmcstat_image_addr2line(ct->pct_image, addr,
|
|
sourcefile, sizeof(sourcefile), &line,
|
|
funcname, sizeof(funcname)))
|
|
continue;
|
|
|
|
if (strcmp(funcname, ffuncname) == 0)
|
|
continue;
|
|
|
|
/*
|
|
* - Lookup/create inline node by function name.
|
|
* - Move instr PMCs to the inline node.
|
|
* - Link nodes.
|
|
* The lookup create a specific node per image/pc.
|
|
*/
|
|
if (args.pa_verbosity >= 2)
|
|
fprintf(args.pa_printfile,
|
|
"WARNING: inlined function at %p %s in %s\n",
|
|
(void *)addr, funcname, ffuncname);
|
|
|
|
snprintf(buffer, sizeof(buffer), "%s@%s",
|
|
funcname, ffuncname);
|
|
child = pmcpl_ct_node_hash_lookup(ct->pct_image,
|
|
ct->pct_func, ct->pct_sym, sourcefile, buffer);
|
|
assert(child != NULL);
|
|
pc = ct->pct_instr[i].pctf_func;
|
|
for (j = 0; j<pmcstat_npmcs; j++) {
|
|
v = PMCPL_CT_SAMPLE(j,
|
|
&ct->pct_instr[i].pctf_samples);
|
|
if (v == 0)
|
|
continue;
|
|
pmcpl_ct_instr_add(child, j, pc, v);
|
|
pmcpl_ct_node_update(ct, child, j, v, 0);
|
|
if (j < ct->pct_samples.npmcs)
|
|
ct->pct_samples.sb[j] -=
|
|
ct->pct_instr[i].pctf_samples.sb[j];
|
|
ct->pct_instr[i].pctf_samples.sb[j] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
pmcpl_ct_expand_inline(void)
|
|
{
|
|
int i;
|
|
struct pmcpl_ct_node_hash *pch;
|
|
|
|
if (!args.pa_ctdumpinstr)
|
|
return;
|
|
|
|
for (i = 0; i < PMCSTAT_NHASH; i++)
|
|
STAILQ_FOREACH(pch, &pmcpl_ct_node_hash[i], pch_next)
|
|
if (pch->pch_ctnode->pct_type == PMCPL_PCT_ADDR)
|
|
_pmcpl_ct_expand_inline(pch->pch_ctnode);
|
|
}
|
|
|
|
/*
|
|
* Clean the PMC name for Kcachegrind formula
|
|
*/
|
|
|
|
static void
|
|
pmcpl_ct_fixup_pmcname(char *s)
|
|
{
|
|
char *p;
|
|
|
|
for (p = s; *p; p++)
|
|
if (!isalnum(*p))
|
|
*p = '_';
|
|
}
|
|
|
|
/*
|
|
* Print a calltree (KCachegrind) for all PMCs.
|
|
*/
|
|
|
|
static void
|
|
pmcpl_ct_print(void)
|
|
{
|
|
int i;
|
|
char name[40];
|
|
struct pmcpl_ct_sample rsamples;
|
|
|
|
pmcpl_ct_samples_root(&rsamples);
|
|
pmcpl_ct_expand_inline();
|
|
|
|
fprintf(args.pa_graphfile,
|
|
"version: 1\n"
|
|
"creator: pmcstat\n"
|
|
"positions: instr line\n"
|
|
"events:");
|
|
for (i=0; i<pmcstat_npmcs; i++) {
|
|
snprintf(name, sizeof(name), "%s_%d",
|
|
pmcstat_pmcindex_to_name(i), i);
|
|
pmcpl_ct_fixup_pmcname(name);
|
|
fprintf(args.pa_graphfile, " %s", name);
|
|
}
|
|
fprintf(args.pa_graphfile, "\nsummary:");
|
|
for (i=0; i<pmcstat_npmcs ; i++)
|
|
fprintf(args.pa_graphfile, " %u",
|
|
PMCPL_CT_SAMPLE(i, &rsamples));
|
|
fprintf(args.pa_graphfile, "\n");
|
|
pmcpl_ct_bfs(pmcpl_ct_root);
|
|
pmcpl_ct_samples_free(&rsamples);
|
|
}
|
|
|
|
int
|
|
pmcpl_ct_configure(char *opt)
|
|
{
|
|
|
|
if (strncmp(opt, "skiplink=", 9) == 0) {
|
|
pmcstat_skiplink = atoi(opt+9);
|
|
} else
|
|
return (0);
|
|
|
|
return (1);
|
|
}
|
|
|
|
int
|
|
pmcpl_ct_init(void)
|
|
{
|
|
int i;
|
|
|
|
pmcpl_ct_root = pmcpl_ct_node_allocate();
|
|
|
|
for (i = 0; i < PMCSTAT_NHASH; i++)
|
|
STAILQ_INIT(&pmcpl_ct_node_hash[i]);
|
|
|
|
pmcpl_ct_samples_init(&pmcpl_ct_callid);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
pmcpl_ct_shutdown(FILE *mf)
|
|
{
|
|
int i;
|
|
struct pmcpl_ct_node_hash *pch, *pchtmp;
|
|
|
|
(void) mf;
|
|
|
|
if (args.pa_flags & FLAG_DO_CALLGRAPHS)
|
|
pmcpl_ct_print();
|
|
|
|
/*
|
|
* Free memory.
|
|
*/
|
|
|
|
for (i = 0; i < PMCSTAT_NHASH; i++) {
|
|
STAILQ_FOREACH_SAFE(pch, &pmcpl_ct_node_hash[i], pch_next,
|
|
pchtmp) {
|
|
pmcpl_ct_node_free(pch->pch_ctnode);
|
|
free(pch);
|
|
}
|
|
}
|
|
|
|
pmcpl_ct_node_free(pmcpl_ct_root);
|
|
pmcpl_ct_root = NULL;
|
|
|
|
pmcpl_ct_samples_free(&pmcpl_ct_callid);
|
|
}
|
|
|