mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-26 11:47:31 +00:00
c25290420e
from the FreeBSD network code. The flag is still kept around in the "sys/mbuf.h" header file, but does no longer have any users. Instead the "m_pkthdr.rsstype" field in the mbuf structure is now used to decide the meaning of the "m_pkthdr.flowid" field. To modify the "m_pkthdr.rsstype" field please use the existing "M_HASHTYPE_XXX" macros as defined in the "sys/mbuf.h" header file. This patch introduces new behaviour in the transmit direction. Previously network drivers checked if "M_FLOWID" was set in "m_flags" before using the "m_pkthdr.flowid" field. This check has now now been replaced by checking if "M_HASHTYPE_GET(m)" is different from "M_HASHTYPE_NONE". In the future more hashtypes will be added, for example hashtypes for hardware dedicated flows. "M_HASHTYPE_OPAQUE" indicates that the "m_pkthdr.flowid" value is valid and has no particular type. This change removes the need for an "if" statement in TCP transmit code checking for the presence of a valid flowid value. The "if" statement mentioned above is now a direct variable assignment which is then later checked by the respective network drivers like before. Additional notes: - The SCTP code changes will be committed as a separate patch. - Removal of the "M_FLOWID" flag will also be done separately. - The FreeBSD version has been bumped. MFC after: 1 month Sponsored by: Mellanox Technologies
1370 lines
40 KiB
C
1370 lines
40 KiB
C
/*-
|
|
* Copyright (c) 2007-2009 Robert N. M. Watson
|
|
* Copyright (c) 2010-2011 Juniper Networks, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This software was developed by Robert N. M. Watson under contract
|
|
* to Juniper Networks, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* netisr is a packet dispatch service, allowing synchronous (directly
|
|
* dispatched) and asynchronous (deferred dispatch) processing of packets by
|
|
* registered protocol handlers. Callers pass a protocol identifier and
|
|
* packet to netisr, along with a direct dispatch hint, and work will either
|
|
* be immediately processed by the registered handler, or passed to a
|
|
* software interrupt (SWI) thread for deferred dispatch. Callers will
|
|
* generally select one or the other based on:
|
|
*
|
|
* - Whether directly dispatching a netisr handler lead to code reentrance or
|
|
* lock recursion, such as entering the socket code from the socket code.
|
|
* - Whether directly dispatching a netisr handler lead to recursive
|
|
* processing, such as when decapsulating several wrapped layers of tunnel
|
|
* information (IPSEC within IPSEC within ...).
|
|
*
|
|
* Maintaining ordering for protocol streams is a critical design concern.
|
|
* Enforcing ordering limits the opportunity for concurrency, but maintains
|
|
* the strong ordering requirements found in some protocols, such as TCP. Of
|
|
* related concern is CPU affinity--it is desirable to process all data
|
|
* associated with a particular stream on the same CPU over time in order to
|
|
* avoid acquiring locks associated with the connection on different CPUs,
|
|
* keep connection data in one cache, and to generally encourage associated
|
|
* user threads to live on the same CPU as the stream. It's also desirable
|
|
* to avoid lock migration and contention where locks are associated with
|
|
* more than one flow.
|
|
*
|
|
* netisr supports several policy variations, represented by the
|
|
* NETISR_POLICY_* constants, allowing protocols to play various roles in
|
|
* identifying flows, assigning work to CPUs, etc. These are described in
|
|
* netisr.h.
|
|
*/
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_device_polling.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/interrupt.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/pcpu.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/rmlock.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
#endif
|
|
|
|
#define _WANT_NETISR_INTERNAL /* Enable definitions from netisr_internal.h */
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/netisr.h>
|
|
#include <net/netisr_internal.h>
|
|
#include <net/vnet.h>
|
|
|
|
/*-
|
|
* Synchronize use and modification of the registered netisr data structures;
|
|
* acquire a read lock while modifying the set of registered protocols to
|
|
* prevent partially registered or unregistered protocols from being run.
|
|
*
|
|
* The following data structures and fields are protected by this lock:
|
|
*
|
|
* - The netisr_proto array, including all fields of struct netisr_proto.
|
|
* - The nws array, including all fields of struct netisr_worker.
|
|
* - The nws_array array.
|
|
*
|
|
* Note: the NETISR_LOCKING define controls whether read locks are acquired
|
|
* in packet processing paths requiring netisr registration stability. This
|
|
* is disabled by default as it can lead to measurable performance
|
|
* degradation even with rmlocks (3%-6% for loopback ping-pong traffic), and
|
|
* because netisr registration and unregistration is extremely rare at
|
|
* runtime. If it becomes more common, this decision should be revisited.
|
|
*
|
|
* XXXRW: rmlocks don't support assertions.
|
|
*/
|
|
static struct rmlock netisr_rmlock;
|
|
#define NETISR_LOCK_INIT() rm_init_flags(&netisr_rmlock, "netisr", \
|
|
RM_NOWITNESS)
|
|
#define NETISR_LOCK_ASSERT()
|
|
#define NETISR_RLOCK(tracker) rm_rlock(&netisr_rmlock, (tracker))
|
|
#define NETISR_RUNLOCK(tracker) rm_runlock(&netisr_rmlock, (tracker))
|
|
#define NETISR_WLOCK() rm_wlock(&netisr_rmlock)
|
|
#define NETISR_WUNLOCK() rm_wunlock(&netisr_rmlock)
|
|
/* #define NETISR_LOCKING */
|
|
|
|
static SYSCTL_NODE(_net, OID_AUTO, isr, CTLFLAG_RW, 0, "netisr");
|
|
|
|
/*-
|
|
* Three global direct dispatch policies are supported:
|
|
*
|
|
* NETISR_DISPATCH_DEFERRED: All work is deferred for a netisr, regardless of
|
|
* context (may be overriden by protocols).
|
|
*
|
|
* NETISR_DISPATCH_HYBRID: If the executing context allows direct dispatch,
|
|
* and we're running on the CPU the work would be performed on, then direct
|
|
* dispatch it if it wouldn't violate ordering constraints on the workstream.
|
|
*
|
|
* NETISR_DISPATCH_DIRECT: If the executing context allows direct dispatch,
|
|
* always direct dispatch. (The default.)
|
|
*
|
|
* Notice that changing the global policy could lead to short periods of
|
|
* misordered processing, but this is considered acceptable as compared to
|
|
* the complexity of enforcing ordering during policy changes. Protocols can
|
|
* override the global policy (when they're not doing that, they select
|
|
* NETISR_DISPATCH_DEFAULT).
|
|
*/
|
|
#define NETISR_DISPATCH_POLICY_DEFAULT NETISR_DISPATCH_DIRECT
|
|
#define NETISR_DISPATCH_POLICY_MAXSTR 20 /* Used for temporary buffers. */
|
|
static u_int netisr_dispatch_policy = NETISR_DISPATCH_POLICY_DEFAULT;
|
|
static int sysctl_netisr_dispatch_policy(SYSCTL_HANDLER_ARGS);
|
|
SYSCTL_PROC(_net_isr, OID_AUTO, dispatch, CTLTYPE_STRING | CTLFLAG_RWTUN,
|
|
0, 0, sysctl_netisr_dispatch_policy, "A",
|
|
"netisr dispatch policy");
|
|
|
|
/*
|
|
* Allow the administrator to limit the number of threads (CPUs) to use for
|
|
* netisr. We don't check netisr_maxthreads before creating the thread for
|
|
* CPU 0, so in practice we ignore values <= 1. This must be set at boot.
|
|
* We will create at most one thread per CPU.
|
|
*/
|
|
static int netisr_maxthreads = -1; /* Max number of threads. */
|
|
SYSCTL_INT(_net_isr, OID_AUTO, maxthreads, CTLFLAG_RDTUN,
|
|
&netisr_maxthreads, 0,
|
|
"Use at most this many CPUs for netisr processing");
|
|
|
|
static int netisr_bindthreads = 0; /* Bind threads to CPUs. */
|
|
SYSCTL_INT(_net_isr, OID_AUTO, bindthreads, CTLFLAG_RDTUN,
|
|
&netisr_bindthreads, 0, "Bind netisr threads to CPUs.");
|
|
|
|
/*
|
|
* Limit per-workstream mbuf queue limits s to at most net.isr.maxqlimit,
|
|
* both for initial configuration and later modification using
|
|
* netisr_setqlimit().
|
|
*/
|
|
#define NETISR_DEFAULT_MAXQLIMIT 10240
|
|
static u_int netisr_maxqlimit = NETISR_DEFAULT_MAXQLIMIT;
|
|
SYSCTL_UINT(_net_isr, OID_AUTO, maxqlimit, CTLFLAG_RDTUN,
|
|
&netisr_maxqlimit, 0,
|
|
"Maximum netisr per-protocol, per-CPU queue depth.");
|
|
|
|
/*
|
|
* The default per-workstream mbuf queue limit for protocols that don't
|
|
* initialize the nh_qlimit field of their struct netisr_handler. If this is
|
|
* set above netisr_maxqlimit, we truncate it to the maximum during boot.
|
|
*/
|
|
#define NETISR_DEFAULT_DEFAULTQLIMIT 256
|
|
static u_int netisr_defaultqlimit = NETISR_DEFAULT_DEFAULTQLIMIT;
|
|
SYSCTL_UINT(_net_isr, OID_AUTO, defaultqlimit, CTLFLAG_RDTUN,
|
|
&netisr_defaultqlimit, 0,
|
|
"Default netisr per-protocol, per-CPU queue limit if not set by protocol");
|
|
|
|
/*
|
|
* Store and export the compile-time constant NETISR_MAXPROT limit on the
|
|
* number of protocols that can register with netisr at a time. This is
|
|
* required for crashdump analysis, as it sizes netisr_proto[].
|
|
*/
|
|
static u_int netisr_maxprot = NETISR_MAXPROT;
|
|
SYSCTL_UINT(_net_isr, OID_AUTO, maxprot, CTLFLAG_RD,
|
|
&netisr_maxprot, 0,
|
|
"Compile-time limit on the number of protocols supported by netisr.");
|
|
|
|
/*
|
|
* The netisr_proto array describes all registered protocols, indexed by
|
|
* protocol number. See netisr_internal.h for more details.
|
|
*/
|
|
static struct netisr_proto netisr_proto[NETISR_MAXPROT];
|
|
|
|
/*
|
|
* Per-CPU workstream data. See netisr_internal.h for more details.
|
|
*/
|
|
DPCPU_DEFINE(struct netisr_workstream, nws);
|
|
|
|
/*
|
|
* Map contiguous values between 0 and nws_count into CPU IDs appropriate for
|
|
* accessing workstreams. This allows constructions of the form
|
|
* DPCPU_ID_GET(nws_array[arbitraryvalue % nws_count], nws).
|
|
*/
|
|
static u_int nws_array[MAXCPU];
|
|
|
|
/*
|
|
* Number of registered workstreams. Will be at most the number of running
|
|
* CPUs once fully started.
|
|
*/
|
|
static u_int nws_count;
|
|
SYSCTL_UINT(_net_isr, OID_AUTO, numthreads, CTLFLAG_RD,
|
|
&nws_count, 0, "Number of extant netisr threads.");
|
|
|
|
/*
|
|
* Synchronization for each workstream: a mutex protects all mutable fields
|
|
* in each stream, including per-protocol state (mbuf queues). The SWI is
|
|
* woken up if asynchronous dispatch is required.
|
|
*/
|
|
#define NWS_LOCK(s) mtx_lock(&(s)->nws_mtx)
|
|
#define NWS_LOCK_ASSERT(s) mtx_assert(&(s)->nws_mtx, MA_OWNED)
|
|
#define NWS_UNLOCK(s) mtx_unlock(&(s)->nws_mtx)
|
|
#define NWS_SIGNAL(s) swi_sched((s)->nws_swi_cookie, 0)
|
|
|
|
/*
|
|
* Utility routines for protocols that implement their own mapping of flows
|
|
* to CPUs.
|
|
*/
|
|
u_int
|
|
netisr_get_cpucount(void)
|
|
{
|
|
|
|
return (nws_count);
|
|
}
|
|
|
|
u_int
|
|
netisr_get_cpuid(u_int cpunumber)
|
|
{
|
|
|
|
KASSERT(cpunumber < nws_count, ("%s: %u > %u", __func__, cpunumber,
|
|
nws_count));
|
|
|
|
return (nws_array[cpunumber]);
|
|
}
|
|
|
|
/*
|
|
* The default implementation of flow -> CPU ID mapping.
|
|
*
|
|
* Non-static so that protocols can use it to map their own work to specific
|
|
* CPUs in a manner consistent to netisr for affinity purposes.
|
|
*/
|
|
u_int
|
|
netisr_default_flow2cpu(u_int flowid)
|
|
{
|
|
|
|
return (nws_array[flowid % nws_count]);
|
|
}
|
|
|
|
/*
|
|
* Dispatch tunable and sysctl configuration.
|
|
*/
|
|
struct netisr_dispatch_table_entry {
|
|
u_int ndte_policy;
|
|
const char *ndte_policy_str;
|
|
};
|
|
static const struct netisr_dispatch_table_entry netisr_dispatch_table[] = {
|
|
{ NETISR_DISPATCH_DEFAULT, "default" },
|
|
{ NETISR_DISPATCH_DEFERRED, "deferred" },
|
|
{ NETISR_DISPATCH_HYBRID, "hybrid" },
|
|
{ NETISR_DISPATCH_DIRECT, "direct" },
|
|
};
|
|
static const u_int netisr_dispatch_table_len =
|
|
(sizeof(netisr_dispatch_table) / sizeof(netisr_dispatch_table[0]));
|
|
|
|
static void
|
|
netisr_dispatch_policy_to_str(u_int dispatch_policy, char *buffer,
|
|
u_int buflen)
|
|
{
|
|
const struct netisr_dispatch_table_entry *ndtep;
|
|
const char *str;
|
|
u_int i;
|
|
|
|
str = "unknown";
|
|
for (i = 0; i < netisr_dispatch_table_len; i++) {
|
|
ndtep = &netisr_dispatch_table[i];
|
|
if (ndtep->ndte_policy == dispatch_policy) {
|
|
str = ndtep->ndte_policy_str;
|
|
break;
|
|
}
|
|
}
|
|
snprintf(buffer, buflen, "%s", str);
|
|
}
|
|
|
|
static int
|
|
netisr_dispatch_policy_from_str(const char *str, u_int *dispatch_policyp)
|
|
{
|
|
const struct netisr_dispatch_table_entry *ndtep;
|
|
u_int i;
|
|
|
|
for (i = 0; i < netisr_dispatch_table_len; i++) {
|
|
ndtep = &netisr_dispatch_table[i];
|
|
if (strcmp(ndtep->ndte_policy_str, str) == 0) {
|
|
*dispatch_policyp = ndtep->ndte_policy;
|
|
return (0);
|
|
}
|
|
}
|
|
return (EINVAL);
|
|
}
|
|
|
|
static int
|
|
sysctl_netisr_dispatch_policy(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
char tmp[NETISR_DISPATCH_POLICY_MAXSTR];
|
|
u_int dispatch_policy;
|
|
int error;
|
|
|
|
netisr_dispatch_policy_to_str(netisr_dispatch_policy, tmp,
|
|
sizeof(tmp));
|
|
error = sysctl_handle_string(oidp, tmp, sizeof(tmp), req);
|
|
if (error == 0 && req->newptr != NULL) {
|
|
error = netisr_dispatch_policy_from_str(tmp,
|
|
&dispatch_policy);
|
|
if (error == 0 && dispatch_policy == NETISR_DISPATCH_DEFAULT)
|
|
error = EINVAL;
|
|
if (error == 0)
|
|
netisr_dispatch_policy = dispatch_policy;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Register a new netisr handler, which requires initializing per-protocol
|
|
* fields for each workstream. All netisr work is briefly suspended while
|
|
* the protocol is installed.
|
|
*/
|
|
void
|
|
netisr_register(const struct netisr_handler *nhp)
|
|
{
|
|
struct netisr_work *npwp;
|
|
const char *name;
|
|
u_int i, proto;
|
|
|
|
proto = nhp->nh_proto;
|
|
name = nhp->nh_name;
|
|
|
|
/*
|
|
* Test that the requested registration is valid.
|
|
*/
|
|
KASSERT(nhp->nh_name != NULL,
|
|
("%s: nh_name NULL for %u", __func__, proto));
|
|
KASSERT(nhp->nh_handler != NULL,
|
|
("%s: nh_handler NULL for %s", __func__, name));
|
|
KASSERT(nhp->nh_policy == NETISR_POLICY_SOURCE ||
|
|
nhp->nh_policy == NETISR_POLICY_FLOW ||
|
|
nhp->nh_policy == NETISR_POLICY_CPU,
|
|
("%s: unsupported nh_policy %u for %s", __func__,
|
|
nhp->nh_policy, name));
|
|
KASSERT(nhp->nh_policy == NETISR_POLICY_FLOW ||
|
|
nhp->nh_m2flow == NULL,
|
|
("%s: nh_policy != FLOW but m2flow defined for %s", __func__,
|
|
name));
|
|
KASSERT(nhp->nh_policy == NETISR_POLICY_CPU || nhp->nh_m2cpuid == NULL,
|
|
("%s: nh_policy != CPU but m2cpuid defined for %s", __func__,
|
|
name));
|
|
KASSERT(nhp->nh_policy != NETISR_POLICY_CPU || nhp->nh_m2cpuid != NULL,
|
|
("%s: nh_policy == CPU but m2cpuid not defined for %s", __func__,
|
|
name));
|
|
KASSERT(nhp->nh_dispatch == NETISR_DISPATCH_DEFAULT ||
|
|
nhp->nh_dispatch == NETISR_DISPATCH_DEFERRED ||
|
|
nhp->nh_dispatch == NETISR_DISPATCH_HYBRID ||
|
|
nhp->nh_dispatch == NETISR_DISPATCH_DIRECT,
|
|
("%s: invalid nh_dispatch (%u)", __func__, nhp->nh_dispatch));
|
|
|
|
KASSERT(proto < NETISR_MAXPROT,
|
|
("%s(%u, %s): protocol too big", __func__, proto, name));
|
|
|
|
/*
|
|
* Test that no existing registration exists for this protocol.
|
|
*/
|
|
NETISR_WLOCK();
|
|
KASSERT(netisr_proto[proto].np_name == NULL,
|
|
("%s(%u, %s): name present", __func__, proto, name));
|
|
KASSERT(netisr_proto[proto].np_handler == NULL,
|
|
("%s(%u, %s): handler present", __func__, proto, name));
|
|
|
|
netisr_proto[proto].np_name = name;
|
|
netisr_proto[proto].np_handler = nhp->nh_handler;
|
|
netisr_proto[proto].np_m2flow = nhp->nh_m2flow;
|
|
netisr_proto[proto].np_m2cpuid = nhp->nh_m2cpuid;
|
|
netisr_proto[proto].np_drainedcpu = nhp->nh_drainedcpu;
|
|
if (nhp->nh_qlimit == 0)
|
|
netisr_proto[proto].np_qlimit = netisr_defaultqlimit;
|
|
else if (nhp->nh_qlimit > netisr_maxqlimit) {
|
|
printf("%s: %s requested queue limit %u capped to "
|
|
"net.isr.maxqlimit %u\n", __func__, name, nhp->nh_qlimit,
|
|
netisr_maxqlimit);
|
|
netisr_proto[proto].np_qlimit = netisr_maxqlimit;
|
|
} else
|
|
netisr_proto[proto].np_qlimit = nhp->nh_qlimit;
|
|
netisr_proto[proto].np_policy = nhp->nh_policy;
|
|
netisr_proto[proto].np_dispatch = nhp->nh_dispatch;
|
|
CPU_FOREACH(i) {
|
|
npwp = &(DPCPU_ID_PTR(i, nws))->nws_work[proto];
|
|
bzero(npwp, sizeof(*npwp));
|
|
npwp->nw_qlimit = netisr_proto[proto].np_qlimit;
|
|
}
|
|
NETISR_WUNLOCK();
|
|
}
|
|
|
|
/*
|
|
* Clear drop counters across all workstreams for a protocol.
|
|
*/
|
|
void
|
|
netisr_clearqdrops(const struct netisr_handler *nhp)
|
|
{
|
|
struct netisr_work *npwp;
|
|
#ifdef INVARIANTS
|
|
const char *name;
|
|
#endif
|
|
u_int i, proto;
|
|
|
|
proto = nhp->nh_proto;
|
|
#ifdef INVARIANTS
|
|
name = nhp->nh_name;
|
|
#endif
|
|
KASSERT(proto < NETISR_MAXPROT,
|
|
("%s(%u): protocol too big for %s", __func__, proto, name));
|
|
|
|
NETISR_WLOCK();
|
|
KASSERT(netisr_proto[proto].np_handler != NULL,
|
|
("%s(%u): protocol not registered for %s", __func__, proto,
|
|
name));
|
|
|
|
CPU_FOREACH(i) {
|
|
npwp = &(DPCPU_ID_PTR(i, nws))->nws_work[proto];
|
|
npwp->nw_qdrops = 0;
|
|
}
|
|
NETISR_WUNLOCK();
|
|
}
|
|
|
|
/*
|
|
* Query current drop counters across all workstreams for a protocol.
|
|
*/
|
|
void
|
|
netisr_getqdrops(const struct netisr_handler *nhp, u_int64_t *qdropp)
|
|
{
|
|
struct netisr_work *npwp;
|
|
struct rm_priotracker tracker;
|
|
#ifdef INVARIANTS
|
|
const char *name;
|
|
#endif
|
|
u_int i, proto;
|
|
|
|
*qdropp = 0;
|
|
proto = nhp->nh_proto;
|
|
#ifdef INVARIANTS
|
|
name = nhp->nh_name;
|
|
#endif
|
|
KASSERT(proto < NETISR_MAXPROT,
|
|
("%s(%u): protocol too big for %s", __func__, proto, name));
|
|
|
|
NETISR_RLOCK(&tracker);
|
|
KASSERT(netisr_proto[proto].np_handler != NULL,
|
|
("%s(%u): protocol not registered for %s", __func__, proto,
|
|
name));
|
|
|
|
CPU_FOREACH(i) {
|
|
npwp = &(DPCPU_ID_PTR(i, nws))->nws_work[proto];
|
|
*qdropp += npwp->nw_qdrops;
|
|
}
|
|
NETISR_RUNLOCK(&tracker);
|
|
}
|
|
|
|
/*
|
|
* Query current per-workstream queue limit for a protocol.
|
|
*/
|
|
void
|
|
netisr_getqlimit(const struct netisr_handler *nhp, u_int *qlimitp)
|
|
{
|
|
struct rm_priotracker tracker;
|
|
#ifdef INVARIANTS
|
|
const char *name;
|
|
#endif
|
|
u_int proto;
|
|
|
|
proto = nhp->nh_proto;
|
|
#ifdef INVARIANTS
|
|
name = nhp->nh_name;
|
|
#endif
|
|
KASSERT(proto < NETISR_MAXPROT,
|
|
("%s(%u): protocol too big for %s", __func__, proto, name));
|
|
|
|
NETISR_RLOCK(&tracker);
|
|
KASSERT(netisr_proto[proto].np_handler != NULL,
|
|
("%s(%u): protocol not registered for %s", __func__, proto,
|
|
name));
|
|
*qlimitp = netisr_proto[proto].np_qlimit;
|
|
NETISR_RUNLOCK(&tracker);
|
|
}
|
|
|
|
/*
|
|
* Update the queue limit across per-workstream queues for a protocol. We
|
|
* simply change the limits, and don't drain overflowed packets as they will
|
|
* (hopefully) take care of themselves shortly.
|
|
*/
|
|
int
|
|
netisr_setqlimit(const struct netisr_handler *nhp, u_int qlimit)
|
|
{
|
|
struct netisr_work *npwp;
|
|
#ifdef INVARIANTS
|
|
const char *name;
|
|
#endif
|
|
u_int i, proto;
|
|
|
|
if (qlimit > netisr_maxqlimit)
|
|
return (EINVAL);
|
|
|
|
proto = nhp->nh_proto;
|
|
#ifdef INVARIANTS
|
|
name = nhp->nh_name;
|
|
#endif
|
|
KASSERT(proto < NETISR_MAXPROT,
|
|
("%s(%u): protocol too big for %s", __func__, proto, name));
|
|
|
|
NETISR_WLOCK();
|
|
KASSERT(netisr_proto[proto].np_handler != NULL,
|
|
("%s(%u): protocol not registered for %s", __func__, proto,
|
|
name));
|
|
|
|
netisr_proto[proto].np_qlimit = qlimit;
|
|
CPU_FOREACH(i) {
|
|
npwp = &(DPCPU_ID_PTR(i, nws))->nws_work[proto];
|
|
npwp->nw_qlimit = qlimit;
|
|
}
|
|
NETISR_WUNLOCK();
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Drain all packets currently held in a particular protocol work queue.
|
|
*/
|
|
static void
|
|
netisr_drain_proto(struct netisr_work *npwp)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
/*
|
|
* We would assert the lock on the workstream but it's not passed in.
|
|
*/
|
|
while ((m = npwp->nw_head) != NULL) {
|
|
npwp->nw_head = m->m_nextpkt;
|
|
m->m_nextpkt = NULL;
|
|
if (npwp->nw_head == NULL)
|
|
npwp->nw_tail = NULL;
|
|
npwp->nw_len--;
|
|
m_freem(m);
|
|
}
|
|
KASSERT(npwp->nw_tail == NULL, ("%s: tail", __func__));
|
|
KASSERT(npwp->nw_len == 0, ("%s: len", __func__));
|
|
}
|
|
|
|
/*
|
|
* Remove the registration of a network protocol, which requires clearing
|
|
* per-protocol fields across all workstreams, including freeing all mbufs in
|
|
* the queues at time of unregister. All work in netisr is briefly suspended
|
|
* while this takes place.
|
|
*/
|
|
void
|
|
netisr_unregister(const struct netisr_handler *nhp)
|
|
{
|
|
struct netisr_work *npwp;
|
|
#ifdef INVARIANTS
|
|
const char *name;
|
|
#endif
|
|
u_int i, proto;
|
|
|
|
proto = nhp->nh_proto;
|
|
#ifdef INVARIANTS
|
|
name = nhp->nh_name;
|
|
#endif
|
|
KASSERT(proto < NETISR_MAXPROT,
|
|
("%s(%u): protocol too big for %s", __func__, proto, name));
|
|
|
|
NETISR_WLOCK();
|
|
KASSERT(netisr_proto[proto].np_handler != NULL,
|
|
("%s(%u): protocol not registered for %s", __func__, proto,
|
|
name));
|
|
|
|
netisr_proto[proto].np_name = NULL;
|
|
netisr_proto[proto].np_handler = NULL;
|
|
netisr_proto[proto].np_m2flow = NULL;
|
|
netisr_proto[proto].np_m2cpuid = NULL;
|
|
netisr_proto[proto].np_qlimit = 0;
|
|
netisr_proto[proto].np_policy = 0;
|
|
CPU_FOREACH(i) {
|
|
npwp = &(DPCPU_ID_PTR(i, nws))->nws_work[proto];
|
|
netisr_drain_proto(npwp);
|
|
bzero(npwp, sizeof(*npwp));
|
|
}
|
|
NETISR_WUNLOCK();
|
|
}
|
|
|
|
/*
|
|
* Compose the global and per-protocol policies on dispatch, and return the
|
|
* dispatch policy to use.
|
|
*/
|
|
static u_int
|
|
netisr_get_dispatch(struct netisr_proto *npp)
|
|
{
|
|
|
|
/*
|
|
* Protocol-specific configuration overrides the global default.
|
|
*/
|
|
if (npp->np_dispatch != NETISR_DISPATCH_DEFAULT)
|
|
return (npp->np_dispatch);
|
|
return (netisr_dispatch_policy);
|
|
}
|
|
|
|
/*
|
|
* Look up the workstream given a packet and source identifier. Do this by
|
|
* checking the protocol's policy, and optionally call out to the protocol
|
|
* for assistance if required.
|
|
*/
|
|
static struct mbuf *
|
|
netisr_select_cpuid(struct netisr_proto *npp, u_int dispatch_policy,
|
|
uintptr_t source, struct mbuf *m, u_int *cpuidp)
|
|
{
|
|
struct ifnet *ifp;
|
|
u_int policy;
|
|
|
|
NETISR_LOCK_ASSERT();
|
|
|
|
/*
|
|
* In the event we have only one worker, shortcut and deliver to it
|
|
* without further ado.
|
|
*/
|
|
if (nws_count == 1) {
|
|
*cpuidp = nws_array[0];
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* What happens next depends on the policy selected by the protocol.
|
|
* If we want to support per-interface policies, we should do that
|
|
* here first.
|
|
*/
|
|
policy = npp->np_policy;
|
|
if (policy == NETISR_POLICY_CPU) {
|
|
m = npp->np_m2cpuid(m, source, cpuidp);
|
|
if (m == NULL)
|
|
return (NULL);
|
|
|
|
/*
|
|
* It's possible for a protocol not to have a good idea about
|
|
* where to process a packet, in which case we fall back on
|
|
* the netisr code to decide. In the hybrid case, return the
|
|
* current CPU ID, which will force an immediate direct
|
|
* dispatch. In the queued case, fall back on the SOURCE
|
|
* policy.
|
|
*/
|
|
if (*cpuidp != NETISR_CPUID_NONE)
|
|
return (m);
|
|
if (dispatch_policy == NETISR_DISPATCH_HYBRID) {
|
|
*cpuidp = curcpu;
|
|
return (m);
|
|
}
|
|
policy = NETISR_POLICY_SOURCE;
|
|
}
|
|
|
|
if (policy == NETISR_POLICY_FLOW) {
|
|
if (M_HASHTYPE_GET(m) == M_HASHTYPE_NONE &&
|
|
npp->np_m2flow != NULL) {
|
|
m = npp->np_m2flow(m, source);
|
|
if (m == NULL)
|
|
return (NULL);
|
|
}
|
|
if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
|
|
*cpuidp =
|
|
netisr_default_flow2cpu(m->m_pkthdr.flowid);
|
|
return (m);
|
|
}
|
|
policy = NETISR_POLICY_SOURCE;
|
|
}
|
|
|
|
KASSERT(policy == NETISR_POLICY_SOURCE,
|
|
("%s: invalid policy %u for %s", __func__, npp->np_policy,
|
|
npp->np_name));
|
|
|
|
ifp = m->m_pkthdr.rcvif;
|
|
if (ifp != NULL)
|
|
*cpuidp = nws_array[(ifp->if_index + source) % nws_count];
|
|
else
|
|
*cpuidp = nws_array[source % nws_count];
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* Process packets associated with a workstream and protocol. For reasons of
|
|
* fairness, we process up to one complete netisr queue at a time, moving the
|
|
* queue to a stack-local queue for processing, but do not loop refreshing
|
|
* from the global queue. The caller is responsible for deciding whether to
|
|
* loop, and for setting the NWS_RUNNING flag. The passed workstream will be
|
|
* locked on entry and relocked before return, but will be released while
|
|
* processing. The number of packets processed is returned.
|
|
*/
|
|
static u_int
|
|
netisr_process_workstream_proto(struct netisr_workstream *nwsp, u_int proto)
|
|
{
|
|
struct netisr_work local_npw, *npwp;
|
|
u_int handled;
|
|
struct mbuf *m;
|
|
|
|
NETISR_LOCK_ASSERT();
|
|
NWS_LOCK_ASSERT(nwsp);
|
|
|
|
KASSERT(nwsp->nws_flags & NWS_RUNNING,
|
|
("%s(%u): not running", __func__, proto));
|
|
KASSERT(proto >= 0 && proto < NETISR_MAXPROT,
|
|
("%s(%u): invalid proto\n", __func__, proto));
|
|
|
|
npwp = &nwsp->nws_work[proto];
|
|
if (npwp->nw_len == 0)
|
|
return (0);
|
|
|
|
/*
|
|
* Move the global work queue to a thread-local work queue.
|
|
*
|
|
* Notice that this means the effective maximum length of the queue
|
|
* is actually twice that of the maximum queue length specified in
|
|
* the protocol registration call.
|
|
*/
|
|
handled = npwp->nw_len;
|
|
local_npw = *npwp;
|
|
npwp->nw_head = NULL;
|
|
npwp->nw_tail = NULL;
|
|
npwp->nw_len = 0;
|
|
nwsp->nws_pendingbits &= ~(1 << proto);
|
|
NWS_UNLOCK(nwsp);
|
|
while ((m = local_npw.nw_head) != NULL) {
|
|
local_npw.nw_head = m->m_nextpkt;
|
|
m->m_nextpkt = NULL;
|
|
if (local_npw.nw_head == NULL)
|
|
local_npw.nw_tail = NULL;
|
|
local_npw.nw_len--;
|
|
VNET_ASSERT(m->m_pkthdr.rcvif != NULL,
|
|
("%s:%d rcvif == NULL: m=%p", __func__, __LINE__, m));
|
|
CURVNET_SET(m->m_pkthdr.rcvif->if_vnet);
|
|
netisr_proto[proto].np_handler(m);
|
|
CURVNET_RESTORE();
|
|
}
|
|
KASSERT(local_npw.nw_len == 0,
|
|
("%s(%u): len %u", __func__, proto, local_npw.nw_len));
|
|
if (netisr_proto[proto].np_drainedcpu)
|
|
netisr_proto[proto].np_drainedcpu(nwsp->nws_cpu);
|
|
NWS_LOCK(nwsp);
|
|
npwp->nw_handled += handled;
|
|
return (handled);
|
|
}
|
|
|
|
/*
|
|
* SWI handler for netisr -- processes packets in a set of workstreams that
|
|
* it owns, woken up by calls to NWS_SIGNAL(). If this workstream is already
|
|
* being direct dispatched, go back to sleep and wait for the dispatching
|
|
* thread to wake us up again.
|
|
*/
|
|
static void
|
|
swi_net(void *arg)
|
|
{
|
|
#ifdef NETISR_LOCKING
|
|
struct rm_priotracker tracker;
|
|
#endif
|
|
struct netisr_workstream *nwsp;
|
|
u_int bits, prot;
|
|
|
|
nwsp = arg;
|
|
|
|
#ifdef DEVICE_POLLING
|
|
KASSERT(nws_count == 1,
|
|
("%s: device_polling but nws_count != 1", __func__));
|
|
netisr_poll();
|
|
#endif
|
|
#ifdef NETISR_LOCKING
|
|
NETISR_RLOCK(&tracker);
|
|
#endif
|
|
NWS_LOCK(nwsp);
|
|
KASSERT(!(nwsp->nws_flags & NWS_RUNNING), ("swi_net: running"));
|
|
if (nwsp->nws_flags & NWS_DISPATCHING)
|
|
goto out;
|
|
nwsp->nws_flags |= NWS_RUNNING;
|
|
nwsp->nws_flags &= ~NWS_SCHEDULED;
|
|
while ((bits = nwsp->nws_pendingbits) != 0) {
|
|
while ((prot = ffs(bits)) != 0) {
|
|
prot--;
|
|
bits &= ~(1 << prot);
|
|
(void)netisr_process_workstream_proto(nwsp, prot);
|
|
}
|
|
}
|
|
nwsp->nws_flags &= ~NWS_RUNNING;
|
|
out:
|
|
NWS_UNLOCK(nwsp);
|
|
#ifdef NETISR_LOCKING
|
|
NETISR_RUNLOCK(&tracker);
|
|
#endif
|
|
#ifdef DEVICE_POLLING
|
|
netisr_pollmore();
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
netisr_queue_workstream(struct netisr_workstream *nwsp, u_int proto,
|
|
struct netisr_work *npwp, struct mbuf *m, int *dosignalp)
|
|
{
|
|
|
|
NWS_LOCK_ASSERT(nwsp);
|
|
|
|
*dosignalp = 0;
|
|
if (npwp->nw_len < npwp->nw_qlimit) {
|
|
m->m_nextpkt = NULL;
|
|
if (npwp->nw_head == NULL) {
|
|
npwp->nw_head = m;
|
|
npwp->nw_tail = m;
|
|
} else {
|
|
npwp->nw_tail->m_nextpkt = m;
|
|
npwp->nw_tail = m;
|
|
}
|
|
npwp->nw_len++;
|
|
if (npwp->nw_len > npwp->nw_watermark)
|
|
npwp->nw_watermark = npwp->nw_len;
|
|
|
|
/*
|
|
* We must set the bit regardless of NWS_RUNNING, so that
|
|
* swi_net() keeps calling netisr_process_workstream_proto().
|
|
*/
|
|
nwsp->nws_pendingbits |= (1 << proto);
|
|
if (!(nwsp->nws_flags &
|
|
(NWS_RUNNING | NWS_DISPATCHING | NWS_SCHEDULED))) {
|
|
nwsp->nws_flags |= NWS_SCHEDULED;
|
|
*dosignalp = 1; /* Defer until unlocked. */
|
|
}
|
|
npwp->nw_queued++;
|
|
return (0);
|
|
} else {
|
|
m_freem(m);
|
|
npwp->nw_qdrops++;
|
|
return (ENOBUFS);
|
|
}
|
|
}
|
|
|
|
static int
|
|
netisr_queue_internal(u_int proto, struct mbuf *m, u_int cpuid)
|
|
{
|
|
struct netisr_workstream *nwsp;
|
|
struct netisr_work *npwp;
|
|
int dosignal, error;
|
|
|
|
#ifdef NETISR_LOCKING
|
|
NETISR_LOCK_ASSERT();
|
|
#endif
|
|
KASSERT(cpuid <= mp_maxid, ("%s: cpuid too big (%u, %u)", __func__,
|
|
cpuid, mp_maxid));
|
|
KASSERT(!CPU_ABSENT(cpuid), ("%s: CPU %u absent", __func__, cpuid));
|
|
|
|
dosignal = 0;
|
|
error = 0;
|
|
nwsp = DPCPU_ID_PTR(cpuid, nws);
|
|
npwp = &nwsp->nws_work[proto];
|
|
NWS_LOCK(nwsp);
|
|
error = netisr_queue_workstream(nwsp, proto, npwp, m, &dosignal);
|
|
NWS_UNLOCK(nwsp);
|
|
if (dosignal)
|
|
NWS_SIGNAL(nwsp);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
netisr_queue_src(u_int proto, uintptr_t source, struct mbuf *m)
|
|
{
|
|
#ifdef NETISR_LOCKING
|
|
struct rm_priotracker tracker;
|
|
#endif
|
|
u_int cpuid;
|
|
int error;
|
|
|
|
KASSERT(proto < NETISR_MAXPROT,
|
|
("%s: invalid proto %u", __func__, proto));
|
|
|
|
#ifdef NETISR_LOCKING
|
|
NETISR_RLOCK(&tracker);
|
|
#endif
|
|
KASSERT(netisr_proto[proto].np_handler != NULL,
|
|
("%s: invalid proto %u", __func__, proto));
|
|
|
|
m = netisr_select_cpuid(&netisr_proto[proto], NETISR_DISPATCH_DEFERRED,
|
|
source, m, &cpuid);
|
|
if (m != NULL) {
|
|
KASSERT(!CPU_ABSENT(cpuid), ("%s: CPU %u absent", __func__,
|
|
cpuid));
|
|
error = netisr_queue_internal(proto, m, cpuid);
|
|
} else
|
|
error = ENOBUFS;
|
|
#ifdef NETISR_LOCKING
|
|
NETISR_RUNLOCK(&tracker);
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
netisr_queue(u_int proto, struct mbuf *m)
|
|
{
|
|
|
|
return (netisr_queue_src(proto, 0, m));
|
|
}
|
|
|
|
/*
|
|
* Dispatch a packet for netisr processing; direct dispatch is permitted by
|
|
* calling context.
|
|
*/
|
|
int
|
|
netisr_dispatch_src(u_int proto, uintptr_t source, struct mbuf *m)
|
|
{
|
|
#ifdef NETISR_LOCKING
|
|
struct rm_priotracker tracker;
|
|
#endif
|
|
struct netisr_workstream *nwsp;
|
|
struct netisr_proto *npp;
|
|
struct netisr_work *npwp;
|
|
int dosignal, error;
|
|
u_int cpuid, dispatch_policy;
|
|
|
|
KASSERT(proto < NETISR_MAXPROT,
|
|
("%s: invalid proto %u", __func__, proto));
|
|
#ifdef NETISR_LOCKING
|
|
NETISR_RLOCK(&tracker);
|
|
#endif
|
|
npp = &netisr_proto[proto];
|
|
KASSERT(npp->np_handler != NULL, ("%s: invalid proto %u", __func__,
|
|
proto));
|
|
|
|
dispatch_policy = netisr_get_dispatch(npp);
|
|
if (dispatch_policy == NETISR_DISPATCH_DEFERRED)
|
|
return (netisr_queue_src(proto, source, m));
|
|
|
|
/*
|
|
* If direct dispatch is forced, then unconditionally dispatch
|
|
* without a formal CPU selection. Borrow the current CPU's stats,
|
|
* even if there's no worker on it. In this case we don't update
|
|
* nws_flags because all netisr processing will be source ordered due
|
|
* to always being forced to directly dispatch.
|
|
*/
|
|
if (dispatch_policy == NETISR_DISPATCH_DIRECT) {
|
|
nwsp = DPCPU_PTR(nws);
|
|
npwp = &nwsp->nws_work[proto];
|
|
npwp->nw_dispatched++;
|
|
npwp->nw_handled++;
|
|
netisr_proto[proto].np_handler(m);
|
|
error = 0;
|
|
goto out_unlock;
|
|
}
|
|
|
|
KASSERT(dispatch_policy == NETISR_DISPATCH_HYBRID,
|
|
("%s: unknown dispatch policy (%u)", __func__, dispatch_policy));
|
|
|
|
/*
|
|
* Otherwise, we execute in a hybrid mode where we will try to direct
|
|
* dispatch if we're on the right CPU and the netisr worker isn't
|
|
* already running.
|
|
*/
|
|
sched_pin();
|
|
m = netisr_select_cpuid(&netisr_proto[proto], NETISR_DISPATCH_HYBRID,
|
|
source, m, &cpuid);
|
|
if (m == NULL) {
|
|
error = ENOBUFS;
|
|
goto out_unpin;
|
|
}
|
|
KASSERT(!CPU_ABSENT(cpuid), ("%s: CPU %u absent", __func__, cpuid));
|
|
if (cpuid != curcpu)
|
|
goto queue_fallback;
|
|
nwsp = DPCPU_PTR(nws);
|
|
npwp = &nwsp->nws_work[proto];
|
|
|
|
/*-
|
|
* We are willing to direct dispatch only if three conditions hold:
|
|
*
|
|
* (1) The netisr worker isn't already running,
|
|
* (2) Another thread isn't already directly dispatching, and
|
|
* (3) The netisr hasn't already been woken up.
|
|
*/
|
|
NWS_LOCK(nwsp);
|
|
if (nwsp->nws_flags & (NWS_RUNNING | NWS_DISPATCHING | NWS_SCHEDULED)) {
|
|
error = netisr_queue_workstream(nwsp, proto, npwp, m,
|
|
&dosignal);
|
|
NWS_UNLOCK(nwsp);
|
|
if (dosignal)
|
|
NWS_SIGNAL(nwsp);
|
|
goto out_unpin;
|
|
}
|
|
|
|
/*
|
|
* The current thread is now effectively the netisr worker, so set
|
|
* the dispatching flag to prevent concurrent processing of the
|
|
* stream from another thread (even the netisr worker), which could
|
|
* otherwise lead to effective misordering of the stream.
|
|
*/
|
|
nwsp->nws_flags |= NWS_DISPATCHING;
|
|
NWS_UNLOCK(nwsp);
|
|
netisr_proto[proto].np_handler(m);
|
|
NWS_LOCK(nwsp);
|
|
nwsp->nws_flags &= ~NWS_DISPATCHING;
|
|
npwp->nw_handled++;
|
|
npwp->nw_hybrid_dispatched++;
|
|
|
|
/*
|
|
* If other work was enqueued by another thread while we were direct
|
|
* dispatching, we need to signal the netisr worker to do that work.
|
|
* In the future, we might want to do some of that work in the
|
|
* current thread, rather than trigger further context switches. If
|
|
* so, we'll want to establish a reasonable bound on the work done in
|
|
* the "borrowed" context.
|
|
*/
|
|
if (nwsp->nws_pendingbits != 0) {
|
|
nwsp->nws_flags |= NWS_SCHEDULED;
|
|
dosignal = 1;
|
|
} else
|
|
dosignal = 0;
|
|
NWS_UNLOCK(nwsp);
|
|
if (dosignal)
|
|
NWS_SIGNAL(nwsp);
|
|
error = 0;
|
|
goto out_unpin;
|
|
|
|
queue_fallback:
|
|
error = netisr_queue_internal(proto, m, cpuid);
|
|
out_unpin:
|
|
sched_unpin();
|
|
out_unlock:
|
|
#ifdef NETISR_LOCKING
|
|
NETISR_RUNLOCK(&tracker);
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
netisr_dispatch(u_int proto, struct mbuf *m)
|
|
{
|
|
|
|
return (netisr_dispatch_src(proto, 0, m));
|
|
}
|
|
|
|
#ifdef DEVICE_POLLING
|
|
/*
|
|
* Kernel polling borrows a netisr thread to run interface polling in; this
|
|
* function allows kernel polling to request that the netisr thread be
|
|
* scheduled even if no packets are pending for protocols.
|
|
*/
|
|
void
|
|
netisr_sched_poll(void)
|
|
{
|
|
struct netisr_workstream *nwsp;
|
|
|
|
nwsp = DPCPU_ID_PTR(nws_array[0], nws);
|
|
NWS_SIGNAL(nwsp);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
netisr_start_swi(u_int cpuid, struct pcpu *pc)
|
|
{
|
|
char swiname[12];
|
|
struct netisr_workstream *nwsp;
|
|
int error;
|
|
|
|
KASSERT(!CPU_ABSENT(cpuid), ("%s: CPU %u absent", __func__, cpuid));
|
|
|
|
nwsp = DPCPU_ID_PTR(cpuid, nws);
|
|
mtx_init(&nwsp->nws_mtx, "netisr_mtx", NULL, MTX_DEF);
|
|
nwsp->nws_cpu = cpuid;
|
|
snprintf(swiname, sizeof(swiname), "netisr %u", cpuid);
|
|
error = swi_add(&nwsp->nws_intr_event, swiname, swi_net, nwsp,
|
|
SWI_NET, INTR_MPSAFE, &nwsp->nws_swi_cookie);
|
|
if (error)
|
|
panic("%s: swi_add %d", __func__, error);
|
|
pc->pc_netisr = nwsp->nws_intr_event;
|
|
if (netisr_bindthreads) {
|
|
error = intr_event_bind(nwsp->nws_intr_event, cpuid);
|
|
if (error != 0)
|
|
printf("%s: cpu %u: intr_event_bind: %d", __func__,
|
|
cpuid, error);
|
|
}
|
|
NETISR_WLOCK();
|
|
nws_array[nws_count] = nwsp->nws_cpu;
|
|
nws_count++;
|
|
NETISR_WUNLOCK();
|
|
}
|
|
|
|
/*
|
|
* Initialize the netisr subsystem. We rely on BSS and static initialization
|
|
* of most fields in global data structures.
|
|
*
|
|
* Start a worker thread for the boot CPU so that we can support network
|
|
* traffic immediately in case the network stack is used before additional
|
|
* CPUs are started (for example, diskless boot).
|
|
*/
|
|
static void
|
|
netisr_init(void *arg)
|
|
{
|
|
KASSERT(curcpu == 0, ("%s: not on CPU 0", __func__));
|
|
|
|
NETISR_LOCK_INIT();
|
|
if (netisr_maxthreads < 1)
|
|
netisr_maxthreads = 1;
|
|
if (netisr_maxthreads > mp_ncpus) {
|
|
printf("netisr_init: forcing maxthreads from %d to %d\n",
|
|
netisr_maxthreads, mp_ncpus);
|
|
netisr_maxthreads = mp_ncpus;
|
|
}
|
|
if (netisr_defaultqlimit > netisr_maxqlimit) {
|
|
printf("netisr_init: forcing defaultqlimit from %d to %d\n",
|
|
netisr_defaultqlimit, netisr_maxqlimit);
|
|
netisr_defaultqlimit = netisr_maxqlimit;
|
|
}
|
|
#ifdef DEVICE_POLLING
|
|
/*
|
|
* The device polling code is not yet aware of how to deal with
|
|
* multiple netisr threads, so for the time being compiling in device
|
|
* polling disables parallel netisr workers.
|
|
*/
|
|
if (netisr_maxthreads != 1 || netisr_bindthreads != 0) {
|
|
printf("netisr_init: forcing maxthreads to 1 and "
|
|
"bindthreads to 0 for device polling\n");
|
|
netisr_maxthreads = 1;
|
|
netisr_bindthreads = 0;
|
|
}
|
|
#endif
|
|
netisr_start_swi(curcpu, pcpu_find(curcpu));
|
|
}
|
|
SYSINIT(netisr_init, SI_SUB_SOFTINTR, SI_ORDER_FIRST, netisr_init, NULL);
|
|
|
|
/*
|
|
* Start worker threads for additional CPUs. No attempt to gracefully handle
|
|
* work reassignment, we don't yet support dynamic reconfiguration.
|
|
*/
|
|
static void
|
|
netisr_start(void *arg)
|
|
{
|
|
struct pcpu *pc;
|
|
|
|
STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
|
|
if (nws_count >= netisr_maxthreads)
|
|
break;
|
|
/* XXXRW: Is skipping absent CPUs still required here? */
|
|
if (CPU_ABSENT(pc->pc_cpuid))
|
|
continue;
|
|
/* Worker will already be present for boot CPU. */
|
|
if (pc->pc_netisr != NULL)
|
|
continue;
|
|
netisr_start_swi(pc->pc_cpuid, pc);
|
|
}
|
|
}
|
|
SYSINIT(netisr_start, SI_SUB_SMP, SI_ORDER_MIDDLE, netisr_start, NULL);
|
|
|
|
/*
|
|
* Sysctl monitoring for netisr: query a list of registered protocols.
|
|
*/
|
|
static int
|
|
sysctl_netisr_proto(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct rm_priotracker tracker;
|
|
struct sysctl_netisr_proto *snpp, *snp_array;
|
|
struct netisr_proto *npp;
|
|
u_int counter, proto;
|
|
int error;
|
|
|
|
if (req->newptr != NULL)
|
|
return (EINVAL);
|
|
snp_array = malloc(sizeof(*snp_array) * NETISR_MAXPROT, M_TEMP,
|
|
M_ZERO | M_WAITOK);
|
|
counter = 0;
|
|
NETISR_RLOCK(&tracker);
|
|
for (proto = 0; proto < NETISR_MAXPROT; proto++) {
|
|
npp = &netisr_proto[proto];
|
|
if (npp->np_name == NULL)
|
|
continue;
|
|
snpp = &snp_array[counter];
|
|
snpp->snp_version = sizeof(*snpp);
|
|
strlcpy(snpp->snp_name, npp->np_name, NETISR_NAMEMAXLEN);
|
|
snpp->snp_proto = proto;
|
|
snpp->snp_qlimit = npp->np_qlimit;
|
|
snpp->snp_policy = npp->np_policy;
|
|
snpp->snp_dispatch = npp->np_dispatch;
|
|
if (npp->np_m2flow != NULL)
|
|
snpp->snp_flags |= NETISR_SNP_FLAGS_M2FLOW;
|
|
if (npp->np_m2cpuid != NULL)
|
|
snpp->snp_flags |= NETISR_SNP_FLAGS_M2CPUID;
|
|
if (npp->np_drainedcpu != NULL)
|
|
snpp->snp_flags |= NETISR_SNP_FLAGS_DRAINEDCPU;
|
|
counter++;
|
|
}
|
|
NETISR_RUNLOCK(&tracker);
|
|
KASSERT(counter <= NETISR_MAXPROT,
|
|
("sysctl_netisr_proto: counter too big (%d)", counter));
|
|
error = SYSCTL_OUT(req, snp_array, sizeof(*snp_array) * counter);
|
|
free(snp_array, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_net_isr, OID_AUTO, proto,
|
|
CTLFLAG_RD|CTLTYPE_STRUCT|CTLFLAG_MPSAFE, 0, 0, sysctl_netisr_proto,
|
|
"S,sysctl_netisr_proto",
|
|
"Return list of protocols registered with netisr");
|
|
|
|
/*
|
|
* Sysctl monitoring for netisr: query a list of workstreams.
|
|
*/
|
|
static int
|
|
sysctl_netisr_workstream(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct rm_priotracker tracker;
|
|
struct sysctl_netisr_workstream *snwsp, *snws_array;
|
|
struct netisr_workstream *nwsp;
|
|
u_int counter, cpuid;
|
|
int error;
|
|
|
|
if (req->newptr != NULL)
|
|
return (EINVAL);
|
|
snws_array = malloc(sizeof(*snws_array) * MAXCPU, M_TEMP,
|
|
M_ZERO | M_WAITOK);
|
|
counter = 0;
|
|
NETISR_RLOCK(&tracker);
|
|
CPU_FOREACH(cpuid) {
|
|
nwsp = DPCPU_ID_PTR(cpuid, nws);
|
|
if (nwsp->nws_intr_event == NULL)
|
|
continue;
|
|
NWS_LOCK(nwsp);
|
|
snwsp = &snws_array[counter];
|
|
snwsp->snws_version = sizeof(*snwsp);
|
|
|
|
/*
|
|
* For now, we equate workstream IDs and CPU IDs in the
|
|
* kernel, but expose them independently to userspace in case
|
|
* that assumption changes in the future.
|
|
*/
|
|
snwsp->snws_wsid = cpuid;
|
|
snwsp->snws_cpu = cpuid;
|
|
if (nwsp->nws_intr_event != NULL)
|
|
snwsp->snws_flags |= NETISR_SNWS_FLAGS_INTR;
|
|
NWS_UNLOCK(nwsp);
|
|
counter++;
|
|
}
|
|
NETISR_RUNLOCK(&tracker);
|
|
KASSERT(counter <= MAXCPU,
|
|
("sysctl_netisr_workstream: counter too big (%d)", counter));
|
|
error = SYSCTL_OUT(req, snws_array, sizeof(*snws_array) * counter);
|
|
free(snws_array, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_net_isr, OID_AUTO, workstream,
|
|
CTLFLAG_RD|CTLTYPE_STRUCT|CTLFLAG_MPSAFE, 0, 0, sysctl_netisr_workstream,
|
|
"S,sysctl_netisr_workstream",
|
|
"Return list of workstreams implemented by netisr");
|
|
|
|
/*
|
|
* Sysctl monitoring for netisr: query per-protocol data across all
|
|
* workstreams.
|
|
*/
|
|
static int
|
|
sysctl_netisr_work(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct rm_priotracker tracker;
|
|
struct sysctl_netisr_work *snwp, *snw_array;
|
|
struct netisr_workstream *nwsp;
|
|
struct netisr_proto *npp;
|
|
struct netisr_work *nwp;
|
|
u_int counter, cpuid, proto;
|
|
int error;
|
|
|
|
if (req->newptr != NULL)
|
|
return (EINVAL);
|
|
snw_array = malloc(sizeof(*snw_array) * MAXCPU * NETISR_MAXPROT,
|
|
M_TEMP, M_ZERO | M_WAITOK);
|
|
counter = 0;
|
|
NETISR_RLOCK(&tracker);
|
|
CPU_FOREACH(cpuid) {
|
|
nwsp = DPCPU_ID_PTR(cpuid, nws);
|
|
if (nwsp->nws_intr_event == NULL)
|
|
continue;
|
|
NWS_LOCK(nwsp);
|
|
for (proto = 0; proto < NETISR_MAXPROT; proto++) {
|
|
npp = &netisr_proto[proto];
|
|
if (npp->np_name == NULL)
|
|
continue;
|
|
nwp = &nwsp->nws_work[proto];
|
|
snwp = &snw_array[counter];
|
|
snwp->snw_version = sizeof(*snwp);
|
|
snwp->snw_wsid = cpuid; /* See comment above. */
|
|
snwp->snw_proto = proto;
|
|
snwp->snw_len = nwp->nw_len;
|
|
snwp->snw_watermark = nwp->nw_watermark;
|
|
snwp->snw_dispatched = nwp->nw_dispatched;
|
|
snwp->snw_hybrid_dispatched =
|
|
nwp->nw_hybrid_dispatched;
|
|
snwp->snw_qdrops = nwp->nw_qdrops;
|
|
snwp->snw_queued = nwp->nw_queued;
|
|
snwp->snw_handled = nwp->nw_handled;
|
|
counter++;
|
|
}
|
|
NWS_UNLOCK(nwsp);
|
|
}
|
|
KASSERT(counter <= MAXCPU * NETISR_MAXPROT,
|
|
("sysctl_netisr_work: counter too big (%d)", counter));
|
|
NETISR_RUNLOCK(&tracker);
|
|
error = SYSCTL_OUT(req, snw_array, sizeof(*snw_array) * counter);
|
|
free(snw_array, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_net_isr, OID_AUTO, work,
|
|
CTLFLAG_RD|CTLTYPE_STRUCT|CTLFLAG_MPSAFE, 0, 0, sysctl_netisr_work,
|
|
"S,sysctl_netisr_work",
|
|
"Return list of per-workstream, per-protocol work in netisr");
|
|
|
|
#ifdef DDB
|
|
DB_SHOW_COMMAND(netisr, db_show_netisr)
|
|
{
|
|
struct netisr_workstream *nwsp;
|
|
struct netisr_work *nwp;
|
|
int first, proto;
|
|
u_int cpuid;
|
|
|
|
db_printf("%3s %6s %5s %5s %5s %8s %8s %8s %8s\n", "CPU", "Proto",
|
|
"Len", "WMark", "Max", "Disp", "HDisp", "Drop", "Queue");
|
|
CPU_FOREACH(cpuid) {
|
|
nwsp = DPCPU_ID_PTR(cpuid, nws);
|
|
if (nwsp->nws_intr_event == NULL)
|
|
continue;
|
|
first = 1;
|
|
for (proto = 0; proto < NETISR_MAXPROT; proto++) {
|
|
if (netisr_proto[proto].np_handler == NULL)
|
|
continue;
|
|
nwp = &nwsp->nws_work[proto];
|
|
if (first) {
|
|
db_printf("%3d ", cpuid);
|
|
first = 0;
|
|
} else
|
|
db_printf("%3s ", "");
|
|
db_printf(
|
|
"%6s %5d %5d %5d %8ju %8ju %8ju %8ju\n",
|
|
netisr_proto[proto].np_name, nwp->nw_len,
|
|
nwp->nw_watermark, nwp->nw_qlimit,
|
|
nwp->nw_dispatched, nwp->nw_hybrid_dispatched,
|
|
nwp->nw_qdrops, nwp->nw_queued);
|
|
}
|
|
}
|
|
}
|
|
#endif
|