mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-28 11:57:28 +00:00
36b369163b
- Default pick_pri to off. It is not faster in most cases.
2203 lines
55 KiB
C
2203 lines
55 KiB
C
/*-
|
|
* Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_hwpmc_hooks.h"
|
|
#include "opt_sched.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/turnstile.h>
|
|
#include <sys/umtx.h>
|
|
#include <sys/vmmeter.h>
|
|
#ifdef KTRACE
|
|
#include <sys/uio.h>
|
|
#include <sys/ktrace.h>
|
|
#endif
|
|
|
|
#ifdef HWPMC_HOOKS
|
|
#include <sys/pmckern.h>
|
|
#endif
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/smp.h>
|
|
|
|
#ifndef PREEMPTION
|
|
#error "SCHED_ULE requires options PREEMPTION"
|
|
#endif
|
|
|
|
/*
|
|
* TODO:
|
|
* Pick idle from affinity group or self group first.
|
|
* Implement pick_score.
|
|
*/
|
|
|
|
#define KTR_ULE 0x0 /* Enable for pickpri debugging. */
|
|
|
|
/*
|
|
* Thread scheduler specific section.
|
|
*/
|
|
struct td_sched {
|
|
TAILQ_ENTRY(td_sched) ts_procq; /* (j/z) Run queue. */
|
|
int ts_flags; /* (j) TSF_* flags. */
|
|
struct thread *ts_thread; /* (*) Active associated thread. */
|
|
u_char ts_rqindex; /* (j) Run queue index. */
|
|
int ts_slptime;
|
|
int ts_slice;
|
|
struct runq *ts_runq;
|
|
u_char ts_cpu; /* CPU that we have affinity for. */
|
|
/* The following variables are only used for pctcpu calculation */
|
|
int ts_ltick; /* Last tick that we were running on */
|
|
int ts_ftick; /* First tick that we were running on */
|
|
int ts_ticks; /* Tick count */
|
|
#ifdef SMP
|
|
int ts_rltick; /* Real last tick, for affinity. */
|
|
#endif
|
|
|
|
/* originally from kg_sched */
|
|
u_int skg_slptime; /* Number of ticks we vol. slept */
|
|
u_int skg_runtime; /* Number of ticks we were running */
|
|
};
|
|
/* flags kept in ts_flags */
|
|
#define TSF_BOUND 0x0001 /* Thread can not migrate. */
|
|
#define TSF_XFERABLE 0x0002 /* Thread was added as transferable. */
|
|
|
|
static struct td_sched td_sched0;
|
|
|
|
/*
|
|
* Cpu percentage computation macros and defines.
|
|
*
|
|
* SCHED_TICK_SECS: Number of seconds to average the cpu usage across.
|
|
* SCHED_TICK_TARG: Number of hz ticks to average the cpu usage across.
|
|
* SCHED_TICK_MAX: Maximum number of ticks before scaling back.
|
|
* SCHED_TICK_SHIFT: Shift factor to avoid rounding away results.
|
|
* SCHED_TICK_HZ: Compute the number of hz ticks for a given ticks count.
|
|
* SCHED_TICK_TOTAL: Gives the amount of time we've been recording ticks.
|
|
*/
|
|
#define SCHED_TICK_SECS 10
|
|
#define SCHED_TICK_TARG (hz * SCHED_TICK_SECS)
|
|
#define SCHED_TICK_MAX (SCHED_TICK_TARG + hz)
|
|
#define SCHED_TICK_SHIFT 10
|
|
#define SCHED_TICK_HZ(ts) ((ts)->ts_ticks >> SCHED_TICK_SHIFT)
|
|
#define SCHED_TICK_TOTAL(ts) (max((ts)->ts_ltick - (ts)->ts_ftick, hz))
|
|
|
|
/*
|
|
* These macros determine priorities for non-interactive threads. They are
|
|
* assigned a priority based on their recent cpu utilization as expressed
|
|
* by the ratio of ticks to the tick total. NHALF priorities at the start
|
|
* and end of the MIN to MAX timeshare range are only reachable with negative
|
|
* or positive nice respectively.
|
|
*
|
|
* PRI_RANGE: Priority range for utilization dependent priorities.
|
|
* PRI_NRESV: Number of nice values.
|
|
* PRI_TICKS: Compute a priority in PRI_RANGE from the ticks count and total.
|
|
* PRI_NICE: Determines the part of the priority inherited from nice.
|
|
*/
|
|
#define SCHED_PRI_NRESV (PRIO_MAX - PRIO_MIN)
|
|
#define SCHED_PRI_NHALF (SCHED_PRI_NRESV / 2)
|
|
#define SCHED_PRI_MIN (PRI_MIN_TIMESHARE + SCHED_PRI_NHALF)
|
|
#define SCHED_PRI_MAX (PRI_MAX_TIMESHARE - SCHED_PRI_NHALF)
|
|
#define SCHED_PRI_RANGE (SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
|
|
#define SCHED_PRI_TICKS(ts) \
|
|
(SCHED_TICK_HZ((ts)) / \
|
|
(roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
|
|
#define SCHED_PRI_NICE(nice) (nice)
|
|
|
|
/*
|
|
* These determine the interactivity of a process. Interactivity differs from
|
|
* cpu utilization in that it expresses the voluntary time slept vs time ran
|
|
* while cpu utilization includes all time not running. This more accurately
|
|
* models the intent of the thread.
|
|
*
|
|
* SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate
|
|
* before throttling back.
|
|
* SLP_RUN_FORK: Maximum slp+run time to inherit at fork time.
|
|
* INTERACT_MAX: Maximum interactivity value. Smaller is better.
|
|
* INTERACT_THRESH: Threshhold for placement on the current runq.
|
|
*/
|
|
#define SCHED_SLP_RUN_MAX ((hz * 5) << SCHED_TICK_SHIFT)
|
|
#define SCHED_SLP_RUN_FORK ((hz / 2) << SCHED_TICK_SHIFT)
|
|
#define SCHED_INTERACT_MAX (100)
|
|
#define SCHED_INTERACT_HALF (SCHED_INTERACT_MAX / 2)
|
|
#define SCHED_INTERACT_THRESH (30)
|
|
|
|
/*
|
|
* tickincr: Converts a stathz tick into a hz domain scaled by
|
|
* the shift factor. Without the shift the error rate
|
|
* due to rounding would be unacceptably high.
|
|
* realstathz: stathz is sometimes 0 and run off of hz.
|
|
* sched_slice: Runtime of each thread before rescheduling.
|
|
*/
|
|
static int sched_interact = SCHED_INTERACT_THRESH;
|
|
static int realstathz;
|
|
static int tickincr;
|
|
static int sched_slice;
|
|
|
|
/*
|
|
* tdq - per processor runqs and statistics.
|
|
*/
|
|
struct tdq {
|
|
struct runq tdq_idle; /* Queue of IDLE threads. */
|
|
struct runq tdq_timeshare; /* timeshare run queue. */
|
|
struct runq tdq_realtime; /* real-time run queue. */
|
|
u_char tdq_idx; /* Current insert index. */
|
|
u_char tdq_ridx; /* Current removal index. */
|
|
short tdq_flags; /* Thread queue flags */
|
|
int tdq_load; /* Aggregate load. */
|
|
#ifdef SMP
|
|
int tdq_transferable;
|
|
LIST_ENTRY(tdq) tdq_siblings; /* Next in tdq group. */
|
|
struct tdq_group *tdq_group; /* Our processor group. */
|
|
#else
|
|
int tdq_sysload; /* For loadavg, !ITHD load. */
|
|
#endif
|
|
};
|
|
|
|
#define TDQF_BUSY 0x0001 /* Queue is marked as busy */
|
|
|
|
#ifdef SMP
|
|
/*
|
|
* tdq groups are groups of processors which can cheaply share threads. When
|
|
* one processor in the group goes idle it will check the runqs of the other
|
|
* processors in its group prior to halting and waiting for an interrupt.
|
|
* These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
|
|
* In a numa environment we'd want an idle bitmap per group and a two tiered
|
|
* load balancer.
|
|
*/
|
|
struct tdq_group {
|
|
int tdg_cpus; /* Count of CPUs in this tdq group. */
|
|
cpumask_t tdg_cpumask; /* Mask of cpus in this group. */
|
|
cpumask_t tdg_idlemask; /* Idle cpus in this group. */
|
|
cpumask_t tdg_mask; /* Bit mask for first cpu. */
|
|
int tdg_load; /* Total load of this group. */
|
|
int tdg_transferable; /* Transferable load of this group. */
|
|
LIST_HEAD(, tdq) tdg_members; /* Linked list of all members. */
|
|
};
|
|
|
|
#define SCHED_AFFINITY_DEFAULT (hz / 100)
|
|
#define SCHED_AFFINITY(ts) ((ts)->ts_rltick > ticks - affinity)
|
|
|
|
/*
|
|
* Run-time tunables.
|
|
*/
|
|
static int rebalance = 0;
|
|
static int pick_pri = 0;
|
|
static int affinity;
|
|
static int tryself = 1;
|
|
static int tryselfidle = 1;
|
|
static int ipi_ast = 0;
|
|
static int ipi_preempt = 1;
|
|
static int ipi_thresh = PRI_MIN_KERN;
|
|
static int steal_htt = 1;
|
|
static int steal_busy = 1;
|
|
static int busy_thresh = 4;
|
|
static int topology = 0;
|
|
|
|
/*
|
|
* One thread queue per processor.
|
|
*/
|
|
static volatile cpumask_t tdq_idle;
|
|
static volatile cpumask_t tdq_busy;
|
|
static int tdg_maxid;
|
|
static struct tdq tdq_cpu[MAXCPU];
|
|
static struct tdq_group tdq_groups[MAXCPU];
|
|
static int bal_tick;
|
|
static int gbal_tick;
|
|
static int balance_groups;
|
|
|
|
#define TDQ_SELF() (&tdq_cpu[PCPU_GET(cpuid)])
|
|
#define TDQ_CPU(x) (&tdq_cpu[(x)])
|
|
#define TDQ_ID(x) ((x) - tdq_cpu)
|
|
#define TDQ_GROUP(x) (&tdq_groups[(x)])
|
|
#else /* !SMP */
|
|
static struct tdq tdq_cpu;
|
|
|
|
#define TDQ_ID(x) (0)
|
|
#define TDQ_SELF() (&tdq_cpu)
|
|
#define TDQ_CPU(x) (&tdq_cpu)
|
|
#endif
|
|
|
|
static void sched_priority(struct thread *);
|
|
static void sched_thread_priority(struct thread *, u_char);
|
|
static int sched_interact_score(struct thread *);
|
|
static void sched_interact_update(struct thread *);
|
|
static void sched_interact_fork(struct thread *);
|
|
static void sched_pctcpu_update(struct td_sched *);
|
|
static inline void sched_pin_td(struct thread *td);
|
|
static inline void sched_unpin_td(struct thread *td);
|
|
|
|
/* Operations on per processor queues */
|
|
static struct td_sched * tdq_choose(struct tdq *);
|
|
static void tdq_setup(struct tdq *);
|
|
static void tdq_load_add(struct tdq *, struct td_sched *);
|
|
static void tdq_load_rem(struct tdq *, struct td_sched *);
|
|
static __inline void tdq_runq_add(struct tdq *, struct td_sched *, int);
|
|
static __inline void tdq_runq_rem(struct tdq *, struct td_sched *);
|
|
void tdq_print(int cpu);
|
|
static void runq_print(struct runq *rq);
|
|
#ifdef SMP
|
|
static int tdq_pickidle(struct tdq *, struct td_sched *);
|
|
static int tdq_pickpri(struct tdq *, struct td_sched *, int);
|
|
static struct td_sched *runq_steal(struct runq *);
|
|
static void sched_balance(void);
|
|
static void sched_balance_groups(void);
|
|
static void sched_balance_group(struct tdq_group *);
|
|
static void sched_balance_pair(struct tdq *, struct tdq *);
|
|
static void sched_smp_tick(struct thread *);
|
|
static void tdq_move(struct tdq *, int);
|
|
static int tdq_idled(struct tdq *);
|
|
static void tdq_notify(struct td_sched *);
|
|
static struct td_sched *tdq_steal(struct tdq *, int);
|
|
|
|
#define THREAD_CAN_MIGRATE(td) ((td)->td_pinned == 0)
|
|
#endif
|
|
|
|
static void sched_setup(void *dummy);
|
|
SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
|
|
|
|
static void sched_initticks(void *dummy);
|
|
SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks, NULL)
|
|
|
|
static inline void
|
|
sched_pin_td(struct thread *td)
|
|
{
|
|
td->td_pinned++;
|
|
}
|
|
|
|
static inline void
|
|
sched_unpin_td(struct thread *td)
|
|
{
|
|
td->td_pinned--;
|
|
}
|
|
|
|
static void
|
|
runq_print(struct runq *rq)
|
|
{
|
|
struct rqhead *rqh;
|
|
struct td_sched *ts;
|
|
int pri;
|
|
int j;
|
|
int i;
|
|
|
|
for (i = 0; i < RQB_LEN; i++) {
|
|
printf("\t\trunq bits %d 0x%zx\n",
|
|
i, rq->rq_status.rqb_bits[i]);
|
|
for (j = 0; j < RQB_BPW; j++)
|
|
if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
|
|
pri = j + (i << RQB_L2BPW);
|
|
rqh = &rq->rq_queues[pri];
|
|
TAILQ_FOREACH(ts, rqh, ts_procq) {
|
|
printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
|
|
ts->ts_thread, ts->ts_thread->td_proc->p_comm, ts->ts_thread->td_priority, ts->ts_rqindex, pri);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
tdq_print(int cpu)
|
|
{
|
|
struct tdq *tdq;
|
|
|
|
tdq = TDQ_CPU(cpu);
|
|
|
|
printf("tdq:\n");
|
|
printf("\tload: %d\n", tdq->tdq_load);
|
|
printf("\ttimeshare idx: %d\n", tdq->tdq_idx);
|
|
printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
|
|
printf("\trealtime runq:\n");
|
|
runq_print(&tdq->tdq_realtime);
|
|
printf("\ttimeshare runq:\n");
|
|
runq_print(&tdq->tdq_timeshare);
|
|
printf("\tidle runq:\n");
|
|
runq_print(&tdq->tdq_idle);
|
|
#ifdef SMP
|
|
printf("\tload transferable: %d\n", tdq->tdq_transferable);
|
|
#endif
|
|
}
|
|
|
|
static __inline void
|
|
tdq_runq_add(struct tdq *tdq, struct td_sched *ts, int flags)
|
|
{
|
|
#ifdef SMP
|
|
if (THREAD_CAN_MIGRATE(ts->ts_thread)) {
|
|
tdq->tdq_transferable++;
|
|
tdq->tdq_group->tdg_transferable++;
|
|
ts->ts_flags |= TSF_XFERABLE;
|
|
if (tdq->tdq_transferable >= busy_thresh &&
|
|
(tdq->tdq_flags & TDQF_BUSY) == 0) {
|
|
tdq->tdq_flags |= TDQF_BUSY;
|
|
atomic_set_int(&tdq_busy, 1 << TDQ_ID(tdq));
|
|
}
|
|
}
|
|
#endif
|
|
if (ts->ts_runq == &tdq->tdq_timeshare) {
|
|
u_char pri;
|
|
|
|
pri = ts->ts_thread->td_priority;
|
|
KASSERT(pri <= PRI_MAX_TIMESHARE && pri >= PRI_MIN_TIMESHARE,
|
|
("Invalid priority %d on timeshare runq", pri));
|
|
/*
|
|
* This queue contains only priorities between MIN and MAX
|
|
* realtime. Use the whole queue to represent these values.
|
|
*/
|
|
#define TS_RQ_PPQ (((PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE) + 1) / RQ_NQS)
|
|
if ((flags & SRQ_BORROWING) == 0) {
|
|
pri = (pri - PRI_MIN_TIMESHARE) / TS_RQ_PPQ;
|
|
pri = (pri + tdq->tdq_idx) % RQ_NQS;
|
|
/*
|
|
* This effectively shortens the queue by one so we
|
|
* can have a one slot difference between idx and
|
|
* ridx while we wait for threads to drain.
|
|
*/
|
|
if (tdq->tdq_ridx != tdq->tdq_idx &&
|
|
pri == tdq->tdq_ridx)
|
|
pri = (unsigned char)(pri - 1) % RQ_NQS;
|
|
} else
|
|
pri = tdq->tdq_ridx;
|
|
runq_add_pri(ts->ts_runq, ts, pri, flags);
|
|
} else
|
|
runq_add(ts->ts_runq, ts, flags);
|
|
}
|
|
|
|
static __inline void
|
|
tdq_runq_rem(struct tdq *tdq, struct td_sched *ts)
|
|
{
|
|
#ifdef SMP
|
|
if (ts->ts_flags & TSF_XFERABLE) {
|
|
tdq->tdq_transferable--;
|
|
tdq->tdq_group->tdg_transferable--;
|
|
ts->ts_flags &= ~TSF_XFERABLE;
|
|
if (tdq->tdq_transferable < busy_thresh &&
|
|
(tdq->tdq_flags & TDQF_BUSY)) {
|
|
atomic_clear_int(&tdq_busy, 1 << TDQ_ID(tdq));
|
|
tdq->tdq_flags &= ~TDQF_BUSY;
|
|
}
|
|
}
|
|
#endif
|
|
if (ts->ts_runq == &tdq->tdq_timeshare) {
|
|
if (tdq->tdq_idx != tdq->tdq_ridx)
|
|
runq_remove_idx(ts->ts_runq, ts, &tdq->tdq_ridx);
|
|
else
|
|
runq_remove_idx(ts->ts_runq, ts, NULL);
|
|
/*
|
|
* For timeshare threads we update the priority here so
|
|
* the priority reflects the time we've been sleeping.
|
|
*/
|
|
ts->ts_ltick = ticks;
|
|
sched_pctcpu_update(ts);
|
|
sched_priority(ts->ts_thread);
|
|
} else
|
|
runq_remove(ts->ts_runq, ts);
|
|
}
|
|
|
|
static void
|
|
tdq_load_add(struct tdq *tdq, struct td_sched *ts)
|
|
{
|
|
int class;
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
class = PRI_BASE(ts->ts_thread->td_pri_class);
|
|
tdq->tdq_load++;
|
|
CTR2(KTR_SCHED, "cpu %jd load: %d", TDQ_ID(tdq), tdq->tdq_load);
|
|
if (class != PRI_ITHD &&
|
|
(ts->ts_thread->td_proc->p_flag & P_NOLOAD) == 0)
|
|
#ifdef SMP
|
|
tdq->tdq_group->tdg_load++;
|
|
#else
|
|
tdq->tdq_sysload++;
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
tdq_load_rem(struct tdq *tdq, struct td_sched *ts)
|
|
{
|
|
int class;
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
class = PRI_BASE(ts->ts_thread->td_pri_class);
|
|
if (class != PRI_ITHD &&
|
|
(ts->ts_thread->td_proc->p_flag & P_NOLOAD) == 0)
|
|
#ifdef SMP
|
|
tdq->tdq_group->tdg_load--;
|
|
#else
|
|
tdq->tdq_sysload--;
|
|
#endif
|
|
tdq->tdq_load--;
|
|
CTR1(KTR_SCHED, "load: %d", tdq->tdq_load);
|
|
ts->ts_runq = NULL;
|
|
}
|
|
|
|
#ifdef SMP
|
|
static void
|
|
sched_smp_tick(struct thread *td)
|
|
{
|
|
struct tdq *tdq;
|
|
|
|
tdq = TDQ_SELF();
|
|
if (rebalance) {
|
|
if (ticks >= bal_tick)
|
|
sched_balance();
|
|
if (ticks >= gbal_tick && balance_groups)
|
|
sched_balance_groups();
|
|
}
|
|
td->td_sched->ts_rltick = ticks;
|
|
}
|
|
|
|
/*
|
|
* sched_balance is a simple CPU load balancing algorithm. It operates by
|
|
* finding the least loaded and most loaded cpu and equalizing their load
|
|
* by migrating some processes.
|
|
*
|
|
* Dealing only with two CPUs at a time has two advantages. Firstly, most
|
|
* installations will only have 2 cpus. Secondly, load balancing too much at
|
|
* once can have an unpleasant effect on the system. The scheduler rarely has
|
|
* enough information to make perfect decisions. So this algorithm chooses
|
|
* algorithm simplicity and more gradual effects on load in larger systems.
|
|
*
|
|
* It could be improved by considering the priorities and slices assigned to
|
|
* each task prior to balancing them. There are many pathological cases with
|
|
* any approach and so the semi random algorithm below may work as well as any.
|
|
*
|
|
*/
|
|
static void
|
|
sched_balance(void)
|
|
{
|
|
struct tdq_group *high;
|
|
struct tdq_group *low;
|
|
struct tdq_group *tdg;
|
|
int cnt;
|
|
int i;
|
|
|
|
bal_tick = ticks + (random() % (hz * 2));
|
|
if (smp_started == 0)
|
|
return;
|
|
low = high = NULL;
|
|
i = random() % (tdg_maxid + 1);
|
|
for (cnt = 0; cnt <= tdg_maxid; cnt++) {
|
|
tdg = TDQ_GROUP(i);
|
|
/*
|
|
* Find the CPU with the highest load that has some
|
|
* threads to transfer.
|
|
*/
|
|
if ((high == NULL || tdg->tdg_load > high->tdg_load)
|
|
&& tdg->tdg_transferable)
|
|
high = tdg;
|
|
if (low == NULL || tdg->tdg_load < low->tdg_load)
|
|
low = tdg;
|
|
if (++i > tdg_maxid)
|
|
i = 0;
|
|
}
|
|
if (low != NULL && high != NULL && high != low)
|
|
sched_balance_pair(LIST_FIRST(&high->tdg_members),
|
|
LIST_FIRST(&low->tdg_members));
|
|
}
|
|
|
|
static void
|
|
sched_balance_groups(void)
|
|
{
|
|
int i;
|
|
|
|
gbal_tick = ticks + (random() % (hz * 2));
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
if (smp_started)
|
|
for (i = 0; i <= tdg_maxid; i++)
|
|
sched_balance_group(TDQ_GROUP(i));
|
|
}
|
|
|
|
static void
|
|
sched_balance_group(struct tdq_group *tdg)
|
|
{
|
|
struct tdq *tdq;
|
|
struct tdq *high;
|
|
struct tdq *low;
|
|
int load;
|
|
|
|
if (tdg->tdg_transferable == 0)
|
|
return;
|
|
low = NULL;
|
|
high = NULL;
|
|
LIST_FOREACH(tdq, &tdg->tdg_members, tdq_siblings) {
|
|
load = tdq->tdq_load;
|
|
if (high == NULL || load > high->tdq_load)
|
|
high = tdq;
|
|
if (low == NULL || load < low->tdq_load)
|
|
low = tdq;
|
|
}
|
|
if (high != NULL && low != NULL && high != low)
|
|
sched_balance_pair(high, low);
|
|
}
|
|
|
|
static void
|
|
sched_balance_pair(struct tdq *high, struct tdq *low)
|
|
{
|
|
int transferable;
|
|
int high_load;
|
|
int low_load;
|
|
int move;
|
|
int diff;
|
|
int i;
|
|
|
|
/*
|
|
* If we're transfering within a group we have to use this specific
|
|
* tdq's transferable count, otherwise we can steal from other members
|
|
* of the group.
|
|
*/
|
|
if (high->tdq_group == low->tdq_group) {
|
|
transferable = high->tdq_transferable;
|
|
high_load = high->tdq_load;
|
|
low_load = low->tdq_load;
|
|
} else {
|
|
transferable = high->tdq_group->tdg_transferable;
|
|
high_load = high->tdq_group->tdg_load;
|
|
low_load = low->tdq_group->tdg_load;
|
|
}
|
|
if (transferable == 0)
|
|
return;
|
|
/*
|
|
* Determine what the imbalance is and then adjust that to how many
|
|
* threads we actually have to give up (transferable).
|
|
*/
|
|
diff = high_load - low_load;
|
|
move = diff / 2;
|
|
if (diff & 0x1)
|
|
move++;
|
|
move = min(move, transferable);
|
|
for (i = 0; i < move; i++)
|
|
tdq_move(high, TDQ_ID(low));
|
|
return;
|
|
}
|
|
|
|
static void
|
|
tdq_move(struct tdq *from, int cpu)
|
|
{
|
|
struct tdq *tdq;
|
|
struct tdq *to;
|
|
struct td_sched *ts;
|
|
|
|
tdq = from;
|
|
to = TDQ_CPU(cpu);
|
|
ts = tdq_steal(tdq, 1);
|
|
if (ts == NULL) {
|
|
struct tdq_group *tdg;
|
|
|
|
tdg = tdq->tdq_group;
|
|
LIST_FOREACH(tdq, &tdg->tdg_members, tdq_siblings) {
|
|
if (tdq == from || tdq->tdq_transferable == 0)
|
|
continue;
|
|
ts = tdq_steal(tdq, 1);
|
|
break;
|
|
}
|
|
if (ts == NULL)
|
|
panic("tdq_move: No threads available with a "
|
|
"transferable count of %d\n",
|
|
tdg->tdg_transferable);
|
|
}
|
|
if (tdq == to)
|
|
return;
|
|
sched_rem(ts->ts_thread);
|
|
ts->ts_cpu = cpu;
|
|
sched_pin_td(ts->ts_thread);
|
|
sched_add(ts->ts_thread, SRQ_YIELDING);
|
|
sched_unpin_td(ts->ts_thread);
|
|
}
|
|
|
|
static int
|
|
tdq_idled(struct tdq *tdq)
|
|
{
|
|
struct tdq_group *tdg;
|
|
struct tdq *steal;
|
|
struct td_sched *ts;
|
|
|
|
tdg = tdq->tdq_group;
|
|
/*
|
|
* If we're in a cpu group, try and steal threads from another cpu in
|
|
* the group before idling.
|
|
*/
|
|
if (steal_htt && tdg->tdg_cpus > 1 && tdg->tdg_transferable) {
|
|
LIST_FOREACH(steal, &tdg->tdg_members, tdq_siblings) {
|
|
if (steal == tdq || steal->tdq_transferable == 0)
|
|
continue;
|
|
ts = tdq_steal(steal, 0);
|
|
if (ts)
|
|
goto steal;
|
|
}
|
|
}
|
|
if (steal_busy) {
|
|
while (tdq_busy) {
|
|
int cpu;
|
|
|
|
cpu = ffs(tdq_busy);
|
|
if (cpu == 0)
|
|
break;
|
|
cpu--;
|
|
steal = TDQ_CPU(cpu);
|
|
if (steal->tdq_transferable == 0)
|
|
continue;
|
|
ts = tdq_steal(steal, 1);
|
|
if (ts == NULL)
|
|
continue;
|
|
CTR5(KTR_ULE,
|
|
"tdq_idled: stealing td %p(%s) pri %d from %d busy 0x%X",
|
|
ts->ts_thread, ts->ts_thread->td_proc->p_comm,
|
|
ts->ts_thread->td_priority, cpu, tdq_busy);
|
|
goto steal;
|
|
}
|
|
}
|
|
/*
|
|
* We only set the idled bit when all of the cpus in the group are
|
|
* idle. Otherwise we could get into a situation where a thread bounces
|
|
* back and forth between two idle cores on seperate physical CPUs.
|
|
*/
|
|
tdg->tdg_idlemask |= PCPU_GET(cpumask);
|
|
if (tdg->tdg_idlemask == tdg->tdg_cpumask)
|
|
atomic_set_int(&tdq_idle, tdg->tdg_mask);
|
|
return (1);
|
|
steal:
|
|
sched_rem(ts->ts_thread);
|
|
ts->ts_cpu = PCPU_GET(cpuid);
|
|
sched_pin_td(ts->ts_thread);
|
|
sched_add(ts->ts_thread, SRQ_YIELDING);
|
|
sched_unpin_td(ts->ts_thread);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
tdq_notify(struct td_sched *ts)
|
|
{
|
|
struct thread *ctd;
|
|
struct pcpu *pcpu;
|
|
int cpri;
|
|
int pri;
|
|
int cpu;
|
|
|
|
cpu = ts->ts_cpu;
|
|
pri = ts->ts_thread->td_priority;
|
|
pcpu = pcpu_find(cpu);
|
|
ctd = pcpu->pc_curthread;
|
|
cpri = ctd->td_priority;
|
|
|
|
/*
|
|
* If our priority is not better than the current priority there is
|
|
* nothing to do.
|
|
*/
|
|
if (pri > cpri)
|
|
return;
|
|
/*
|
|
* Always IPI idle.
|
|
*/
|
|
if (cpri > PRI_MIN_IDLE)
|
|
goto sendipi;
|
|
/*
|
|
* If we're realtime or better and there is timeshare or worse running
|
|
* send an IPI.
|
|
*/
|
|
if (pri < PRI_MAX_REALTIME && cpri > PRI_MAX_REALTIME)
|
|
goto sendipi;
|
|
/*
|
|
* Otherwise only IPI if we exceed the threshold.
|
|
*/
|
|
if (pri > ipi_thresh)
|
|
return;
|
|
sendipi:
|
|
ctd->td_flags |= TDF_NEEDRESCHED;
|
|
if (cpri < PRI_MIN_IDLE) {
|
|
if (ipi_ast)
|
|
ipi_selected(1 << cpu, IPI_AST);
|
|
else if (ipi_preempt)
|
|
ipi_selected(1 << cpu, IPI_PREEMPT);
|
|
} else
|
|
ipi_selected(1 << cpu, IPI_PREEMPT);
|
|
}
|
|
|
|
static struct td_sched *
|
|
runq_steal(struct runq *rq)
|
|
{
|
|
struct rqhead *rqh;
|
|
struct rqbits *rqb;
|
|
struct td_sched *ts;
|
|
int word;
|
|
int bit;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
rqb = &rq->rq_status;
|
|
for (word = 0; word < RQB_LEN; word++) {
|
|
if (rqb->rqb_bits[word] == 0)
|
|
continue;
|
|
for (bit = 0; bit < RQB_BPW; bit++) {
|
|
if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
|
|
continue;
|
|
rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
|
|
TAILQ_FOREACH(ts, rqh, ts_procq) {
|
|
if (THREAD_CAN_MIGRATE(ts->ts_thread))
|
|
return (ts);
|
|
}
|
|
}
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
static struct td_sched *
|
|
tdq_steal(struct tdq *tdq, int stealidle)
|
|
{
|
|
struct td_sched *ts;
|
|
|
|
/*
|
|
* Steal from next first to try to get a non-interactive task that
|
|
* may not have run for a while.
|
|
* XXX Need to effect steal order for timeshare threads.
|
|
*/
|
|
if ((ts = runq_steal(&tdq->tdq_realtime)) != NULL)
|
|
return (ts);
|
|
if ((ts = runq_steal(&tdq->tdq_timeshare)) != NULL)
|
|
return (ts);
|
|
if (stealidle)
|
|
return (runq_steal(&tdq->tdq_idle));
|
|
return (NULL);
|
|
}
|
|
|
|
int
|
|
tdq_pickidle(struct tdq *tdq, struct td_sched *ts)
|
|
{
|
|
struct tdq_group *tdg;
|
|
int self;
|
|
int cpu;
|
|
|
|
self = PCPU_GET(cpuid);
|
|
if (smp_started == 0)
|
|
return (self);
|
|
/*
|
|
* If the current CPU has idled, just run it here.
|
|
*/
|
|
if ((tdq->tdq_group->tdg_idlemask & PCPU_GET(cpumask)) != 0)
|
|
return (self);
|
|
/*
|
|
* Try the last group we ran on.
|
|
*/
|
|
tdg = TDQ_CPU(ts->ts_cpu)->tdq_group;
|
|
cpu = ffs(tdg->tdg_idlemask);
|
|
if (cpu)
|
|
return (cpu - 1);
|
|
/*
|
|
* Search for an idle group.
|
|
*/
|
|
cpu = ffs(tdq_idle);
|
|
if (cpu)
|
|
return (cpu - 1);
|
|
/*
|
|
* XXX If there are no idle groups, check for an idle core.
|
|
*/
|
|
/*
|
|
* No idle CPUs?
|
|
*/
|
|
return (self);
|
|
}
|
|
|
|
static int
|
|
tdq_pickpri(struct tdq *tdq, struct td_sched *ts, int flags)
|
|
{
|
|
struct pcpu *pcpu;
|
|
int lowpri;
|
|
int lowcpu;
|
|
int lowload;
|
|
int load;
|
|
int self;
|
|
int pri;
|
|
int cpu;
|
|
|
|
self = PCPU_GET(cpuid);
|
|
if (smp_started == 0)
|
|
return (self);
|
|
|
|
pri = ts->ts_thread->td_priority;
|
|
/*
|
|
* Regardless of affinity, if the last cpu is idle send it there.
|
|
*/
|
|
pcpu = pcpu_find(ts->ts_cpu);
|
|
if (pcpu->pc_curthread->td_priority > PRI_MIN_IDLE) {
|
|
CTR5(KTR_ULE,
|
|
"ts_cpu %d idle, ltick %d ticks %d pri %d curthread %d",
|
|
ts->ts_cpu, ts->ts_rltick, ticks, pri,
|
|
pcpu->pc_curthread->td_priority);
|
|
return (ts->ts_cpu);
|
|
}
|
|
/*
|
|
* If we have affinity, try to place it on the cpu we last ran on.
|
|
*/
|
|
if (SCHED_AFFINITY(ts) && pcpu->pc_curthread->td_priority > pri) {
|
|
CTR5(KTR_ULE,
|
|
"affinity for %d, ltick %d ticks %d pri %d curthread %d",
|
|
ts->ts_cpu, ts->ts_rltick, ticks, pri,
|
|
pcpu->pc_curthread->td_priority);
|
|
return (ts->ts_cpu);
|
|
}
|
|
/*
|
|
* Try ourself first; If we're running something lower priority this
|
|
* may have some locality with the waking thread and execute faster
|
|
* here.
|
|
*/
|
|
if (tryself) {
|
|
/*
|
|
* If we're being awoken by an interrupt thread or the waker
|
|
* is going right to sleep run here as well.
|
|
*/
|
|
if ((TDQ_SELF()->tdq_load == 1) && (flags & SRQ_YIELDING ||
|
|
curthread->td_pri_class == PRI_ITHD)) {
|
|
CTR2(KTR_ULE, "tryself load %d flags %d",
|
|
TDQ_SELF()->tdq_load, flags);
|
|
return (self);
|
|
}
|
|
}
|
|
/*
|
|
* Look for an idle group.
|
|
*/
|
|
CTR1(KTR_ULE, "tdq_idle %X", tdq_idle);
|
|
cpu = ffs(tdq_idle);
|
|
if (cpu)
|
|
return (cpu - 1);
|
|
if (tryselfidle && pri < curthread->td_priority) {
|
|
CTR1(KTR_ULE, "tryself %d",
|
|
curthread->td_priority);
|
|
return (self);
|
|
}
|
|
/*
|
|
* Now search for the cpu running the lowest priority thread with
|
|
* the least load.
|
|
*/
|
|
lowload = 0;
|
|
lowpri = lowcpu = 0;
|
|
for (cpu = 0; cpu <= mp_maxid; cpu++) {
|
|
if (CPU_ABSENT(cpu))
|
|
continue;
|
|
pcpu = pcpu_find(cpu);
|
|
pri = pcpu->pc_curthread->td_priority;
|
|
CTR4(KTR_ULE,
|
|
"cpu %d pri %d lowcpu %d lowpri %d",
|
|
cpu, pri, lowcpu, lowpri);
|
|
if (pri < lowpri)
|
|
continue;
|
|
load = TDQ_CPU(cpu)->tdq_load;
|
|
if (lowpri && lowpri == pri && load > lowload)
|
|
continue;
|
|
lowpri = pri;
|
|
lowcpu = cpu;
|
|
lowload = load;
|
|
}
|
|
|
|
return (lowcpu);
|
|
}
|
|
|
|
#endif /* SMP */
|
|
|
|
/*
|
|
* Pick the highest priority task we have and return it.
|
|
*/
|
|
|
|
static struct td_sched *
|
|
tdq_choose(struct tdq *tdq)
|
|
{
|
|
struct td_sched *ts;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
|
|
ts = runq_choose(&tdq->tdq_realtime);
|
|
if (ts != NULL) {
|
|
KASSERT(ts->ts_thread->td_priority <= PRI_MAX_REALTIME,
|
|
("tdq_choose: Invalid priority on realtime queue %d",
|
|
ts->ts_thread->td_priority));
|
|
return (ts);
|
|
}
|
|
ts = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
|
|
if (ts != NULL) {
|
|
KASSERT(ts->ts_thread->td_priority <= PRI_MAX_TIMESHARE &&
|
|
ts->ts_thread->td_priority >= PRI_MIN_TIMESHARE,
|
|
("tdq_choose: Invalid priority on timeshare queue %d",
|
|
ts->ts_thread->td_priority));
|
|
return (ts);
|
|
}
|
|
|
|
ts = runq_choose(&tdq->tdq_idle);
|
|
if (ts != NULL) {
|
|
KASSERT(ts->ts_thread->td_priority >= PRI_MIN_IDLE,
|
|
("tdq_choose: Invalid priority on idle queue %d",
|
|
ts->ts_thread->td_priority));
|
|
return (ts);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static void
|
|
tdq_setup(struct tdq *tdq)
|
|
{
|
|
runq_init(&tdq->tdq_realtime);
|
|
runq_init(&tdq->tdq_timeshare);
|
|
runq_init(&tdq->tdq_idle);
|
|
tdq->tdq_load = 0;
|
|
}
|
|
|
|
static void
|
|
sched_setup(void *dummy)
|
|
{
|
|
#ifdef SMP
|
|
int i;
|
|
#endif
|
|
|
|
/*
|
|
* To avoid divide-by-zero, we set realstathz a dummy value
|
|
* in case which sched_clock() called before sched_initticks().
|
|
*/
|
|
realstathz = hz;
|
|
sched_slice = (realstathz/10); /* ~100ms */
|
|
tickincr = 1 << SCHED_TICK_SHIFT;
|
|
|
|
#ifdef SMP
|
|
balance_groups = 0;
|
|
/*
|
|
* Initialize the tdqs.
|
|
*/
|
|
for (i = 0; i < MAXCPU; i++) {
|
|
struct tdq *tdq;
|
|
|
|
tdq = &tdq_cpu[i];
|
|
tdq_setup(&tdq_cpu[i]);
|
|
}
|
|
if (smp_topology == NULL) {
|
|
struct tdq_group *tdg;
|
|
struct tdq *tdq;
|
|
int cpus;
|
|
|
|
for (cpus = 0, i = 0; i < MAXCPU; i++) {
|
|
if (CPU_ABSENT(i))
|
|
continue;
|
|
tdq = &tdq_cpu[i];
|
|
tdg = &tdq_groups[cpus];
|
|
/*
|
|
* Setup a tdq group with one member.
|
|
*/
|
|
tdq->tdq_transferable = 0;
|
|
tdq->tdq_group = tdg;
|
|
tdg->tdg_cpus = 1;
|
|
tdg->tdg_idlemask = 0;
|
|
tdg->tdg_cpumask = tdg->tdg_mask = 1 << i;
|
|
tdg->tdg_load = 0;
|
|
tdg->tdg_transferable = 0;
|
|
LIST_INIT(&tdg->tdg_members);
|
|
LIST_INSERT_HEAD(&tdg->tdg_members, tdq, tdq_siblings);
|
|
cpus++;
|
|
}
|
|
tdg_maxid = cpus - 1;
|
|
} else {
|
|
struct tdq_group *tdg;
|
|
struct cpu_group *cg;
|
|
int j;
|
|
|
|
topology = 1;
|
|
for (i = 0; i < smp_topology->ct_count; i++) {
|
|
cg = &smp_topology->ct_group[i];
|
|
tdg = &tdq_groups[i];
|
|
/*
|
|
* Initialize the group.
|
|
*/
|
|
tdg->tdg_idlemask = 0;
|
|
tdg->tdg_load = 0;
|
|
tdg->tdg_transferable = 0;
|
|
tdg->tdg_cpus = cg->cg_count;
|
|
tdg->tdg_cpumask = cg->cg_mask;
|
|
LIST_INIT(&tdg->tdg_members);
|
|
/*
|
|
* Find all of the group members and add them.
|
|
*/
|
|
for (j = 0; j < MAXCPU; j++) {
|
|
if ((cg->cg_mask & (1 << j)) != 0) {
|
|
if (tdg->tdg_mask == 0)
|
|
tdg->tdg_mask = 1 << j;
|
|
tdq_cpu[j].tdq_transferable = 0;
|
|
tdq_cpu[j].tdq_group = tdg;
|
|
LIST_INSERT_HEAD(&tdg->tdg_members,
|
|
&tdq_cpu[j], tdq_siblings);
|
|
}
|
|
}
|
|
if (tdg->tdg_cpus > 1)
|
|
balance_groups = 1;
|
|
}
|
|
tdg_maxid = smp_topology->ct_count - 1;
|
|
}
|
|
/*
|
|
* Stagger the group and global load balancer so they do not
|
|
* interfere with each other.
|
|
*/
|
|
bal_tick = ticks + hz;
|
|
if (balance_groups)
|
|
gbal_tick = ticks + (hz / 2);
|
|
#else
|
|
tdq_setup(TDQ_SELF());
|
|
#endif
|
|
mtx_lock_spin(&sched_lock);
|
|
tdq_load_add(TDQ_SELF(), &td_sched0);
|
|
mtx_unlock_spin(&sched_lock);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
sched_initticks(void *dummy)
|
|
{
|
|
mtx_lock_spin(&sched_lock);
|
|
realstathz = stathz ? stathz : hz;
|
|
sched_slice = (realstathz/10); /* ~100ms */
|
|
|
|
/*
|
|
* tickincr is shifted out by 10 to avoid rounding errors due to
|
|
* hz not being evenly divisible by stathz on all platforms.
|
|
*/
|
|
tickincr = (hz << SCHED_TICK_SHIFT) / realstathz;
|
|
/*
|
|
* This does not work for values of stathz that are more than
|
|
* 1 << SCHED_TICK_SHIFT * hz. In practice this does not happen.
|
|
*/
|
|
if (tickincr == 0)
|
|
tickincr = 1;
|
|
#ifdef SMP
|
|
affinity = SCHED_AFFINITY_DEFAULT;
|
|
#endif
|
|
mtx_unlock_spin(&sched_lock);
|
|
}
|
|
|
|
|
|
/*
|
|
* Scale the scheduling priority according to the "interactivity" of this
|
|
* process.
|
|
*/
|
|
static void
|
|
sched_priority(struct thread *td)
|
|
{
|
|
int score;
|
|
int pri;
|
|
|
|
if (td->td_pri_class != PRI_TIMESHARE)
|
|
return;
|
|
/*
|
|
* If the score is interactive we place the thread in the realtime
|
|
* queue with a priority that is less than kernel and interrupt
|
|
* priorities. These threads are not subject to nice restrictions.
|
|
*
|
|
* Scores greater than this are placed on the normal realtime queue
|
|
* where the priority is partially decided by the most recent cpu
|
|
* utilization and the rest is decided by nice value.
|
|
*/
|
|
score = sched_interact_score(td);
|
|
if (score < sched_interact) {
|
|
pri = PRI_MIN_REALTIME;
|
|
pri += ((PRI_MAX_REALTIME - PRI_MIN_REALTIME) / sched_interact)
|
|
* score;
|
|
KASSERT(pri >= PRI_MIN_REALTIME && pri <= PRI_MAX_REALTIME,
|
|
("sched_priority: invalid interactive priority %d score %d",
|
|
pri, score));
|
|
} else {
|
|
pri = SCHED_PRI_MIN;
|
|
if (td->td_sched->ts_ticks)
|
|
pri += SCHED_PRI_TICKS(td->td_sched);
|
|
pri += SCHED_PRI_NICE(td->td_proc->p_nice);
|
|
if (!(pri >= PRI_MIN_TIMESHARE && pri <= PRI_MAX_TIMESHARE)) {
|
|
static int once = 1;
|
|
if (once) {
|
|
printf("sched_priority: invalid priority %d",
|
|
pri);
|
|
printf("nice %d, ticks %d ftick %d ltick %d tick pri %d\n",
|
|
td->td_proc->p_nice,
|
|
td->td_sched->ts_ticks,
|
|
td->td_sched->ts_ftick,
|
|
td->td_sched->ts_ltick,
|
|
SCHED_PRI_TICKS(td->td_sched));
|
|
once = 0;
|
|
}
|
|
pri = min(max(pri, PRI_MIN_TIMESHARE),
|
|
PRI_MAX_TIMESHARE);
|
|
}
|
|
}
|
|
sched_user_prio(td, pri);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This routine enforces a maximum limit on the amount of scheduling history
|
|
* kept. It is called after either the slptime or runtime is adjusted.
|
|
*/
|
|
static void
|
|
sched_interact_update(struct thread *td)
|
|
{
|
|
struct td_sched *ts;
|
|
u_int sum;
|
|
|
|
ts = td->td_sched;
|
|
sum = ts->skg_runtime + ts->skg_slptime;
|
|
if (sum < SCHED_SLP_RUN_MAX)
|
|
return;
|
|
/*
|
|
* This only happens from two places:
|
|
* 1) We have added an unusual amount of run time from fork_exit.
|
|
* 2) We have added an unusual amount of sleep time from sched_sleep().
|
|
*/
|
|
if (sum > SCHED_SLP_RUN_MAX * 2) {
|
|
if (ts->skg_runtime > ts->skg_slptime) {
|
|
ts->skg_runtime = SCHED_SLP_RUN_MAX;
|
|
ts->skg_slptime = 1;
|
|
} else {
|
|
ts->skg_slptime = SCHED_SLP_RUN_MAX;
|
|
ts->skg_runtime = 1;
|
|
}
|
|
return;
|
|
}
|
|
/*
|
|
* If we have exceeded by more than 1/5th then the algorithm below
|
|
* will not bring us back into range. Dividing by two here forces
|
|
* us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
|
|
*/
|
|
if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
|
|
ts->skg_runtime /= 2;
|
|
ts->skg_slptime /= 2;
|
|
return;
|
|
}
|
|
ts->skg_runtime = (ts->skg_runtime / 5) * 4;
|
|
ts->skg_slptime = (ts->skg_slptime / 5) * 4;
|
|
}
|
|
|
|
static void
|
|
sched_interact_fork(struct thread *td)
|
|
{
|
|
int ratio;
|
|
int sum;
|
|
|
|
sum = td->td_sched->skg_runtime + td->td_sched->skg_slptime;
|
|
if (sum > SCHED_SLP_RUN_FORK) {
|
|
ratio = sum / SCHED_SLP_RUN_FORK;
|
|
td->td_sched->skg_runtime /= ratio;
|
|
td->td_sched->skg_slptime /= ratio;
|
|
}
|
|
}
|
|
|
|
static int
|
|
sched_interact_score(struct thread *td)
|
|
{
|
|
int div;
|
|
|
|
if (td->td_sched->skg_runtime > td->td_sched->skg_slptime) {
|
|
div = max(1, td->td_sched->skg_runtime / SCHED_INTERACT_HALF);
|
|
return (SCHED_INTERACT_HALF +
|
|
(SCHED_INTERACT_HALF - (td->td_sched->skg_slptime / div)));
|
|
}
|
|
if (td->td_sched->skg_slptime > td->td_sched->skg_runtime) {
|
|
div = max(1, td->td_sched->skg_slptime / SCHED_INTERACT_HALF);
|
|
return (td->td_sched->skg_runtime / div);
|
|
}
|
|
/* runtime == slptime */
|
|
if (td->td_sched->skg_runtime)
|
|
return (SCHED_INTERACT_HALF);
|
|
|
|
/*
|
|
* This can happen if slptime and runtime are 0.
|
|
*/
|
|
return (0);
|
|
|
|
}
|
|
|
|
/*
|
|
* Called from proc0_init() to bootstrap the scheduler.
|
|
*/
|
|
void
|
|
schedinit(void)
|
|
{
|
|
|
|
/*
|
|
* Set up the scheduler specific parts of proc0.
|
|
*/
|
|
proc0.p_sched = NULL; /* XXX */
|
|
thread0.td_sched = &td_sched0;
|
|
thread0.td_lock = &sched_lock;
|
|
td_sched0.ts_ltick = ticks;
|
|
td_sched0.ts_ftick = ticks;
|
|
td_sched0.ts_thread = &thread0;
|
|
}
|
|
|
|
/*
|
|
* This is only somewhat accurate since given many processes of the same
|
|
* priority they will switch when their slices run out, which will be
|
|
* at most sched_slice stathz ticks.
|
|
*/
|
|
int
|
|
sched_rr_interval(void)
|
|
{
|
|
|
|
/* Convert sched_slice to hz */
|
|
return (hz/(realstathz/sched_slice));
|
|
}
|
|
|
|
static void
|
|
sched_pctcpu_update(struct td_sched *ts)
|
|
{
|
|
|
|
if (ts->ts_ticks == 0)
|
|
return;
|
|
if (ticks - (hz / 10) < ts->ts_ltick &&
|
|
SCHED_TICK_TOTAL(ts) < SCHED_TICK_MAX)
|
|
return;
|
|
/*
|
|
* Adjust counters and watermark for pctcpu calc.
|
|
*/
|
|
if (ts->ts_ltick > ticks - SCHED_TICK_TARG)
|
|
ts->ts_ticks = (ts->ts_ticks / (ticks - ts->ts_ftick)) *
|
|
SCHED_TICK_TARG;
|
|
else
|
|
ts->ts_ticks = 0;
|
|
ts->ts_ltick = ticks;
|
|
ts->ts_ftick = ts->ts_ltick - SCHED_TICK_TARG;
|
|
}
|
|
|
|
static void
|
|
sched_thread_priority(struct thread *td, u_char prio)
|
|
{
|
|
struct td_sched *ts;
|
|
|
|
CTR6(KTR_SCHED, "sched_prio: %p(%s) prio %d newprio %d by %p(%s)",
|
|
td, td->td_proc->p_comm, td->td_priority, prio, curthread,
|
|
curthread->td_proc->p_comm);
|
|
ts = td->td_sched;
|
|
THREAD_LOCK_ASSERT(td, MA_OWNED);
|
|
if (td->td_priority == prio)
|
|
return;
|
|
|
|
if (TD_ON_RUNQ(td) && prio < td->td_priority) {
|
|
/*
|
|
* If the priority has been elevated due to priority
|
|
* propagation, we may have to move ourselves to a new
|
|
* queue. This could be optimized to not re-add in some
|
|
* cases.
|
|
*/
|
|
MPASS(td->td_lock == &sched_lock);
|
|
sched_rem(td);
|
|
td->td_priority = prio;
|
|
sched_add(td, SRQ_BORROWING|SRQ_OURSELF);
|
|
} else
|
|
td->td_priority = prio;
|
|
}
|
|
|
|
/*
|
|
* Update a thread's priority when it is lent another thread's
|
|
* priority.
|
|
*/
|
|
void
|
|
sched_lend_prio(struct thread *td, u_char prio)
|
|
{
|
|
|
|
td->td_flags |= TDF_BORROWING;
|
|
sched_thread_priority(td, prio);
|
|
}
|
|
|
|
/*
|
|
* Restore a thread's priority when priority propagation is
|
|
* over. The prio argument is the minimum priority the thread
|
|
* needs to have to satisfy other possible priority lending
|
|
* requests. If the thread's regular priority is less
|
|
* important than prio, the thread will keep a priority boost
|
|
* of prio.
|
|
*/
|
|
void
|
|
sched_unlend_prio(struct thread *td, u_char prio)
|
|
{
|
|
u_char base_pri;
|
|
|
|
if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
|
|
td->td_base_pri <= PRI_MAX_TIMESHARE)
|
|
base_pri = td->td_user_pri;
|
|
else
|
|
base_pri = td->td_base_pri;
|
|
if (prio >= base_pri) {
|
|
td->td_flags &= ~TDF_BORROWING;
|
|
sched_thread_priority(td, base_pri);
|
|
} else
|
|
sched_lend_prio(td, prio);
|
|
}
|
|
|
|
void
|
|
sched_prio(struct thread *td, u_char prio)
|
|
{
|
|
u_char oldprio;
|
|
|
|
/* First, update the base priority. */
|
|
td->td_base_pri = prio;
|
|
|
|
/*
|
|
* If the thread is borrowing another thread's priority, don't
|
|
* ever lower the priority.
|
|
*/
|
|
if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
|
|
return;
|
|
|
|
/* Change the real priority. */
|
|
oldprio = td->td_priority;
|
|
sched_thread_priority(td, prio);
|
|
|
|
/*
|
|
* If the thread is on a turnstile, then let the turnstile update
|
|
* its state.
|
|
*/
|
|
if (TD_ON_LOCK(td) && oldprio != prio)
|
|
turnstile_adjust(td, oldprio);
|
|
}
|
|
|
|
void
|
|
sched_user_prio(struct thread *td, u_char prio)
|
|
{
|
|
u_char oldprio;
|
|
|
|
td->td_base_user_pri = prio;
|
|
if (td->td_flags & TDF_UBORROWING && td->td_user_pri <= prio)
|
|
return;
|
|
oldprio = td->td_user_pri;
|
|
td->td_user_pri = prio;
|
|
|
|
if (TD_ON_UPILOCK(td) && oldprio != prio)
|
|
umtx_pi_adjust(td, oldprio);
|
|
}
|
|
|
|
void
|
|
sched_lend_user_prio(struct thread *td, u_char prio)
|
|
{
|
|
u_char oldprio;
|
|
|
|
td->td_flags |= TDF_UBORROWING;
|
|
|
|
oldprio = td->td_user_pri;
|
|
td->td_user_pri = prio;
|
|
|
|
if (TD_ON_UPILOCK(td) && oldprio != prio)
|
|
umtx_pi_adjust(td, oldprio);
|
|
}
|
|
|
|
void
|
|
sched_unlend_user_prio(struct thread *td, u_char prio)
|
|
{
|
|
u_char base_pri;
|
|
|
|
base_pri = td->td_base_user_pri;
|
|
if (prio >= base_pri) {
|
|
td->td_flags &= ~TDF_UBORROWING;
|
|
sched_user_prio(td, base_pri);
|
|
} else
|
|
sched_lend_user_prio(td, prio);
|
|
}
|
|
|
|
void
|
|
sched_switch(struct thread *td, struct thread *newtd, int flags)
|
|
{
|
|
struct tdq *tdq;
|
|
struct td_sched *ts;
|
|
int preempt;
|
|
|
|
THREAD_LOCK_ASSERT(td, MA_OWNED);
|
|
|
|
preempt = flags & SW_PREEMPT;
|
|
tdq = TDQ_SELF();
|
|
ts = td->td_sched;
|
|
td->td_lastcpu = td->td_oncpu;
|
|
td->td_oncpu = NOCPU;
|
|
td->td_flags &= ~TDF_NEEDRESCHED;
|
|
td->td_owepreempt = 0;
|
|
/*
|
|
* If the thread has been assigned it may be in the process of switching
|
|
* to the new cpu. This is the case in sched_bind().
|
|
*/
|
|
/*
|
|
* Switch to the sched lock to fix things up and pick
|
|
* a new thread.
|
|
*/
|
|
if (td->td_lock != &sched_lock) {
|
|
mtx_lock_spin(&sched_lock);
|
|
thread_unlock(td);
|
|
}
|
|
if (TD_IS_IDLETHREAD(td)) {
|
|
MPASS(td->td_lock == &sched_lock);
|
|
TD_SET_CAN_RUN(td);
|
|
} else if (TD_IS_RUNNING(td)) {
|
|
/*
|
|
* Don't allow the thread to migrate
|
|
* from a preemption.
|
|
*/
|
|
tdq_load_rem(tdq, ts);
|
|
if (preempt)
|
|
sched_pin_td(td);
|
|
sched_add(td, preempt ?
|
|
SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
|
|
SRQ_OURSELF|SRQ_YIELDING);
|
|
if (preempt)
|
|
sched_unpin_td(td);
|
|
} else
|
|
tdq_load_rem(tdq, ts);
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
if (newtd != NULL) {
|
|
/*
|
|
* If we bring in a thread account for it as if it had been
|
|
* added to the run queue and then chosen.
|
|
*/
|
|
TD_SET_RUNNING(newtd);
|
|
tdq_load_add(TDQ_SELF(), newtd->td_sched);
|
|
} else
|
|
newtd = choosethread();
|
|
if (td != newtd) {
|
|
#ifdef HWPMC_HOOKS
|
|
if (PMC_PROC_IS_USING_PMCS(td->td_proc))
|
|
PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
|
|
#endif
|
|
|
|
cpu_switch(td, newtd, td->td_lock);
|
|
#ifdef HWPMC_HOOKS
|
|
if (PMC_PROC_IS_USING_PMCS(td->td_proc))
|
|
PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
|
|
#endif
|
|
}
|
|
sched_lock.mtx_lock = (uintptr_t)td;
|
|
td->td_oncpu = PCPU_GET(cpuid);
|
|
MPASS(td->td_lock == &sched_lock);
|
|
}
|
|
|
|
void
|
|
sched_nice(struct proc *p, int nice)
|
|
{
|
|
struct thread *td;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
PROC_SLOCK_ASSERT(p, MA_OWNED);
|
|
|
|
p->p_nice = nice;
|
|
FOREACH_THREAD_IN_PROC(p, td) {
|
|
thread_lock(td);
|
|
sched_priority(td);
|
|
sched_prio(td, td->td_base_user_pri);
|
|
thread_unlock(td);
|
|
}
|
|
}
|
|
|
|
void
|
|
sched_sleep(struct thread *td)
|
|
{
|
|
|
|
THREAD_LOCK_ASSERT(td, MA_OWNED);
|
|
|
|
td->td_sched->ts_slptime = ticks;
|
|
}
|
|
|
|
void
|
|
sched_wakeup(struct thread *td)
|
|
{
|
|
struct td_sched *ts;
|
|
int slptime;
|
|
|
|
THREAD_LOCK_ASSERT(td, MA_OWNED);
|
|
ts = td->td_sched;
|
|
/*
|
|
* If we slept for more than a tick update our interactivity and
|
|
* priority.
|
|
*/
|
|
slptime = ts->ts_slptime;
|
|
ts->ts_slptime = 0;
|
|
if (slptime && slptime != ticks) {
|
|
u_int hzticks;
|
|
|
|
hzticks = (ticks - slptime) << SCHED_TICK_SHIFT;
|
|
ts->skg_slptime += hzticks;
|
|
sched_interact_update(td);
|
|
sched_pctcpu_update(ts);
|
|
sched_priority(td);
|
|
}
|
|
/* Reset the slice value after we sleep. */
|
|
ts->ts_slice = sched_slice;
|
|
sched_add(td, SRQ_BORING);
|
|
}
|
|
|
|
/*
|
|
* Penalize the parent for creating a new child and initialize the child's
|
|
* priority.
|
|
*/
|
|
void
|
|
sched_fork(struct thread *td, struct thread *child)
|
|
{
|
|
THREAD_LOCK_ASSERT(td, MA_OWNED);
|
|
sched_fork_thread(td, child);
|
|
/*
|
|
* Penalize the parent and child for forking.
|
|
*/
|
|
sched_interact_fork(child);
|
|
sched_priority(child);
|
|
td->td_sched->skg_runtime += tickincr;
|
|
sched_interact_update(td);
|
|
sched_priority(td);
|
|
}
|
|
|
|
void
|
|
sched_fork_thread(struct thread *td, struct thread *child)
|
|
{
|
|
struct td_sched *ts;
|
|
struct td_sched *ts2;
|
|
|
|
/*
|
|
* Initialize child.
|
|
*/
|
|
THREAD_LOCK_ASSERT(td, MA_OWNED);
|
|
sched_newthread(child);
|
|
child->td_lock = &sched_lock;
|
|
ts = td->td_sched;
|
|
ts2 = child->td_sched;
|
|
ts2->ts_cpu = ts->ts_cpu;
|
|
ts2->ts_runq = NULL;
|
|
/*
|
|
* Grab our parents cpu estimation information and priority.
|
|
*/
|
|
ts2->ts_ticks = ts->ts_ticks;
|
|
ts2->ts_ltick = ts->ts_ltick;
|
|
ts2->ts_ftick = ts->ts_ftick;
|
|
child->td_user_pri = td->td_user_pri;
|
|
child->td_base_user_pri = td->td_base_user_pri;
|
|
/*
|
|
* And update interactivity score.
|
|
*/
|
|
ts2->skg_slptime = ts->skg_slptime;
|
|
ts2->skg_runtime = ts->skg_runtime;
|
|
ts2->ts_slice = 1; /* Attempt to quickly learn interactivity. */
|
|
}
|
|
|
|
void
|
|
sched_class(struct thread *td, int class)
|
|
{
|
|
|
|
THREAD_LOCK_ASSERT(td, MA_OWNED);
|
|
if (td->td_pri_class == class)
|
|
return;
|
|
|
|
#ifdef SMP
|
|
/*
|
|
* On SMP if we're on the RUNQ we must adjust the transferable
|
|
* count because could be changing to or from an interrupt
|
|
* class.
|
|
*/
|
|
if (TD_ON_RUNQ(td)) {
|
|
struct tdq *tdq;
|
|
|
|
tdq = TDQ_CPU(td->td_sched->ts_cpu);
|
|
if (THREAD_CAN_MIGRATE(td)) {
|
|
tdq->tdq_transferable--;
|
|
tdq->tdq_group->tdg_transferable--;
|
|
}
|
|
td->td_pri_class = class;
|
|
if (THREAD_CAN_MIGRATE(td)) {
|
|
tdq->tdq_transferable++;
|
|
tdq->tdq_group->tdg_transferable++;
|
|
}
|
|
}
|
|
#endif
|
|
td->td_pri_class = class;
|
|
}
|
|
|
|
/*
|
|
* Return some of the child's priority and interactivity to the parent.
|
|
*/
|
|
void
|
|
sched_exit(struct proc *p, struct thread *child)
|
|
{
|
|
struct thread *td;
|
|
|
|
CTR3(KTR_SCHED, "sched_exit: %p(%s) prio %d",
|
|
child, child->td_proc->p_comm, child->td_priority);
|
|
|
|
PROC_SLOCK_ASSERT(p, MA_OWNED);
|
|
td = FIRST_THREAD_IN_PROC(p);
|
|
sched_exit_thread(td, child);
|
|
}
|
|
|
|
void
|
|
sched_exit_thread(struct thread *td, struct thread *child)
|
|
{
|
|
|
|
CTR3(KTR_SCHED, "sched_exit_thread: %p(%s) prio %d",
|
|
child, child->td_proc->p_comm, child->td_priority);
|
|
|
|
thread_lock(child);
|
|
tdq_load_rem(TDQ_CPU(child->td_sched->ts_cpu), child->td_sched);
|
|
thread_unlock(child);
|
|
#ifdef KSE
|
|
/*
|
|
* KSE forks and exits so often that this penalty causes short-lived
|
|
* threads to always be non-interactive. This causes mozilla to
|
|
* crawl under load.
|
|
*/
|
|
if ((td->td_pflags & TDP_SA) && td->td_proc == child->td_proc)
|
|
return;
|
|
#endif
|
|
/*
|
|
* Give the child's runtime to the parent without returning the
|
|
* sleep time as a penalty to the parent. This causes shells that
|
|
* launch expensive things to mark their children as expensive.
|
|
*/
|
|
thread_lock(td);
|
|
td->td_sched->skg_runtime += child->td_sched->skg_runtime;
|
|
sched_interact_update(td);
|
|
sched_priority(td);
|
|
thread_unlock(td);
|
|
}
|
|
|
|
void
|
|
sched_userret(struct thread *td)
|
|
{
|
|
/*
|
|
* XXX we cheat slightly on the locking here to avoid locking in
|
|
* the usual case. Setting td_priority here is essentially an
|
|
* incomplete workaround for not setting it properly elsewhere.
|
|
* Now that some interrupt handlers are threads, not setting it
|
|
* properly elsewhere can clobber it in the window between setting
|
|
* it here and returning to user mode, so don't waste time setting
|
|
* it perfectly here.
|
|
*/
|
|
KASSERT((td->td_flags & TDF_BORROWING) == 0,
|
|
("thread with borrowed priority returning to userland"));
|
|
if (td->td_priority != td->td_user_pri) {
|
|
thread_lock(td);
|
|
td->td_priority = td->td_user_pri;
|
|
td->td_base_pri = td->td_user_pri;
|
|
thread_unlock(td);
|
|
}
|
|
}
|
|
|
|
void
|
|
sched_clock(struct thread *td)
|
|
{
|
|
struct tdq *tdq;
|
|
struct td_sched *ts;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
#ifdef SMP
|
|
sched_smp_tick(td);
|
|
#endif
|
|
tdq = TDQ_SELF();
|
|
/*
|
|
* Advance the insert index once for each tick to ensure that all
|
|
* threads get a chance to run.
|
|
*/
|
|
if (tdq->tdq_idx == tdq->tdq_ridx) {
|
|
tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
|
|
if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
|
|
tdq->tdq_ridx = tdq->tdq_idx;
|
|
}
|
|
ts = td->td_sched;
|
|
/*
|
|
* We only do slicing code for TIMESHARE threads.
|
|
*/
|
|
if (td->td_pri_class != PRI_TIMESHARE)
|
|
return;
|
|
/*
|
|
* We used a tick; charge it to the thread so that we can compute our
|
|
* interactivity.
|
|
*/
|
|
td->td_sched->skg_runtime += tickincr;
|
|
sched_interact_update(td);
|
|
/*
|
|
* We used up one time slice.
|
|
*/
|
|
if (--ts->ts_slice > 0)
|
|
return;
|
|
/*
|
|
* We're out of time, recompute priorities and requeue.
|
|
*/
|
|
sched_priority(td);
|
|
td->td_flags |= TDF_NEEDRESCHED;
|
|
}
|
|
|
|
int
|
|
sched_runnable(void)
|
|
{
|
|
struct tdq *tdq;
|
|
int load;
|
|
|
|
load = 1;
|
|
|
|
tdq = TDQ_SELF();
|
|
#ifdef SMP
|
|
if (tdq_busy)
|
|
goto out;
|
|
#endif
|
|
if ((curthread->td_flags & TDF_IDLETD) != 0) {
|
|
if (tdq->tdq_load > 0)
|
|
goto out;
|
|
} else
|
|
if (tdq->tdq_load - 1 > 0)
|
|
goto out;
|
|
load = 0;
|
|
out:
|
|
return (load);
|
|
}
|
|
|
|
struct thread *
|
|
sched_choose(void)
|
|
{
|
|
struct tdq *tdq;
|
|
struct td_sched *ts;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
tdq = TDQ_SELF();
|
|
#ifdef SMP
|
|
restart:
|
|
#endif
|
|
ts = tdq_choose(tdq);
|
|
if (ts) {
|
|
#ifdef SMP
|
|
if (ts->ts_thread->td_priority > PRI_MIN_IDLE)
|
|
if (tdq_idled(tdq) == 0)
|
|
goto restart;
|
|
#endif
|
|
tdq_runq_rem(tdq, ts);
|
|
return (ts->ts_thread);
|
|
}
|
|
#ifdef SMP
|
|
if (tdq_idled(tdq) == 0)
|
|
goto restart;
|
|
#endif
|
|
return (PCPU_GET(idlethread));
|
|
}
|
|
|
|
static int
|
|
sched_preempt(struct thread *td)
|
|
{
|
|
struct thread *ctd;
|
|
int cpri;
|
|
int pri;
|
|
|
|
ctd = curthread;
|
|
pri = td->td_priority;
|
|
cpri = ctd->td_priority;
|
|
if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
|
|
return (0);
|
|
/*
|
|
* Always preempt IDLE threads. Otherwise only if the preempting
|
|
* thread is an ithread.
|
|
*/
|
|
if (pri > PRI_MAX_ITHD && cpri < PRI_MIN_IDLE)
|
|
return (0);
|
|
if (ctd->td_critnest > 1) {
|
|
CTR1(KTR_PROC, "sched_preempt: in critical section %d",
|
|
ctd->td_critnest);
|
|
ctd->td_owepreempt = 1;
|
|
return (0);
|
|
}
|
|
/*
|
|
* Thread is runnable but not yet put on system run queue.
|
|
*/
|
|
MPASS(TD_ON_RUNQ(td));
|
|
TD_SET_RUNNING(td);
|
|
MPASS(ctd->td_lock == &sched_lock);
|
|
MPASS(td->td_lock == &sched_lock);
|
|
CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
|
|
td->td_proc->p_pid, td->td_proc->p_comm);
|
|
/*
|
|
* We enter the switch with two runnable threads that both have
|
|
* the same lock. When we return td may be sleeping so we need
|
|
* to switch locks to make sure he's locked correctly.
|
|
*/
|
|
SCHED_STAT_INC(switch_preempt);
|
|
mi_switch(SW_INVOL|SW_PREEMPT, td);
|
|
spinlock_enter();
|
|
thread_unlock(ctd);
|
|
thread_lock(td);
|
|
spinlock_exit();
|
|
|
|
return (1);
|
|
}
|
|
|
|
void
|
|
sched_add(struct thread *td, int flags)
|
|
{
|
|
struct tdq *tdq;
|
|
struct td_sched *ts;
|
|
int preemptive;
|
|
int class;
|
|
#ifdef SMP
|
|
int cpuid;
|
|
int cpumask;
|
|
#endif
|
|
ts = td->td_sched;
|
|
|
|
THREAD_LOCK_ASSERT(td, MA_OWNED);
|
|
CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
|
|
td, td->td_proc->p_comm, td->td_priority, curthread,
|
|
curthread->td_proc->p_comm);
|
|
KASSERT((td->td_inhibitors == 0),
|
|
("sched_add: trying to run inhibited thread"));
|
|
KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
|
|
("sched_add: bad thread state"));
|
|
KASSERT(td->td_proc->p_sflag & PS_INMEM,
|
|
("sched_add: process swapped out"));
|
|
/*
|
|
* Now that the thread is moving to the run-queue, set the lock
|
|
* to the scheduler's lock.
|
|
*/
|
|
if (td->td_lock != &sched_lock) {
|
|
mtx_lock_spin(&sched_lock);
|
|
thread_lock_set(td, &sched_lock);
|
|
}
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
TD_SET_RUNQ(td);
|
|
tdq = TDQ_SELF();
|
|
class = PRI_BASE(td->td_pri_class);
|
|
preemptive = !(flags & SRQ_YIELDING);
|
|
/*
|
|
* Recalculate the priority before we select the target cpu or
|
|
* run-queue.
|
|
*/
|
|
if (class == PRI_TIMESHARE)
|
|
sched_priority(td);
|
|
if (ts->ts_slice == 0)
|
|
ts->ts_slice = sched_slice;
|
|
#ifdef SMP
|
|
cpuid = PCPU_GET(cpuid);
|
|
/*
|
|
* Pick the destination cpu and if it isn't ours transfer to the
|
|
* target cpu.
|
|
*/
|
|
if (THREAD_CAN_MIGRATE(td)) {
|
|
if (td->td_priority <= PRI_MAX_ITHD) {
|
|
CTR2(KTR_ULE, "ithd %d < %d",
|
|
td->td_priority, PRI_MAX_ITHD);
|
|
ts->ts_cpu = cpuid;
|
|
} else if (pick_pri)
|
|
ts->ts_cpu = tdq_pickpri(tdq, ts, flags);
|
|
else
|
|
ts->ts_cpu = tdq_pickidle(tdq, ts);
|
|
} else
|
|
CTR1(KTR_ULE, "pinned %d", td->td_pinned);
|
|
if (ts->ts_cpu != cpuid)
|
|
preemptive = 0;
|
|
tdq = TDQ_CPU(ts->ts_cpu);
|
|
cpumask = 1 << ts->ts_cpu;
|
|
/*
|
|
* If we had been idle, clear our bit in the group and potentially
|
|
* the global bitmap.
|
|
*/
|
|
if ((class != PRI_IDLE && class != PRI_ITHD) &&
|
|
(tdq->tdq_group->tdg_idlemask & cpumask) != 0) {
|
|
/*
|
|
* Check to see if our group is unidling, and if so, remove it
|
|
* from the global idle mask.
|
|
*/
|
|
if (tdq->tdq_group->tdg_idlemask ==
|
|
tdq->tdq_group->tdg_cpumask)
|
|
atomic_clear_int(&tdq_idle, tdq->tdq_group->tdg_mask);
|
|
/*
|
|
* Now remove ourselves from the group specific idle mask.
|
|
*/
|
|
tdq->tdq_group->tdg_idlemask &= ~cpumask;
|
|
}
|
|
#endif
|
|
/*
|
|
* Pick the run queue based on priority.
|
|
*/
|
|
if (td->td_priority <= PRI_MAX_REALTIME)
|
|
ts->ts_runq = &tdq->tdq_realtime;
|
|
else if (td->td_priority <= PRI_MAX_TIMESHARE)
|
|
ts->ts_runq = &tdq->tdq_timeshare;
|
|
else
|
|
ts->ts_runq = &tdq->tdq_idle;
|
|
if (preemptive && sched_preempt(td))
|
|
return;
|
|
tdq_runq_add(tdq, ts, flags);
|
|
tdq_load_add(tdq, ts);
|
|
#ifdef SMP
|
|
if (ts->ts_cpu != cpuid) {
|
|
tdq_notify(ts);
|
|
return;
|
|
}
|
|
#endif
|
|
if (td->td_priority < curthread->td_priority)
|
|
curthread->td_flags |= TDF_NEEDRESCHED;
|
|
}
|
|
|
|
void
|
|
sched_rem(struct thread *td)
|
|
{
|
|
struct tdq *tdq;
|
|
struct td_sched *ts;
|
|
|
|
CTR5(KTR_SCHED, "sched_rem: %p(%s) prio %d by %p(%s)",
|
|
td, td->td_proc->p_comm, td->td_priority, curthread,
|
|
curthread->td_proc->p_comm);
|
|
THREAD_LOCK_ASSERT(td, MA_OWNED);
|
|
ts = td->td_sched;
|
|
KASSERT(TD_ON_RUNQ(td),
|
|
("sched_rem: thread not on run queue"));
|
|
|
|
tdq = TDQ_CPU(ts->ts_cpu);
|
|
tdq_runq_rem(tdq, ts);
|
|
tdq_load_rem(tdq, ts);
|
|
TD_SET_CAN_RUN(td);
|
|
}
|
|
|
|
fixpt_t
|
|
sched_pctcpu(struct thread *td)
|
|
{
|
|
fixpt_t pctcpu;
|
|
struct td_sched *ts;
|
|
|
|
pctcpu = 0;
|
|
ts = td->td_sched;
|
|
if (ts == NULL)
|
|
return (0);
|
|
|
|
thread_lock(td);
|
|
if (ts->ts_ticks) {
|
|
int rtick;
|
|
|
|
sched_pctcpu_update(ts);
|
|
/* How many rtick per second ? */
|
|
rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
|
|
pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
|
|
}
|
|
td->td_proc->p_swtime = ts->ts_ltick - ts->ts_ftick;
|
|
thread_unlock(td);
|
|
|
|
return (pctcpu);
|
|
}
|
|
|
|
void
|
|
sched_bind(struct thread *td, int cpu)
|
|
{
|
|
struct td_sched *ts;
|
|
|
|
THREAD_LOCK_ASSERT(td, MA_OWNED);
|
|
ts = td->td_sched;
|
|
if (ts->ts_flags & TSF_BOUND)
|
|
sched_unbind(td);
|
|
ts->ts_flags |= TSF_BOUND;
|
|
#ifdef SMP
|
|
sched_pin();
|
|
if (PCPU_GET(cpuid) == cpu)
|
|
return;
|
|
ts->ts_cpu = cpu;
|
|
/* When we return from mi_switch we'll be on the correct cpu. */
|
|
mi_switch(SW_VOL, NULL);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
sched_unbind(struct thread *td)
|
|
{
|
|
struct td_sched *ts;
|
|
|
|
THREAD_LOCK_ASSERT(td, MA_OWNED);
|
|
ts = td->td_sched;
|
|
if ((ts->ts_flags & TSF_BOUND) == 0)
|
|
return;
|
|
ts->ts_flags &= ~TSF_BOUND;
|
|
#ifdef SMP
|
|
sched_unpin();
|
|
#endif
|
|
}
|
|
|
|
int
|
|
sched_is_bound(struct thread *td)
|
|
{
|
|
THREAD_LOCK_ASSERT(td, MA_OWNED);
|
|
return (td->td_sched->ts_flags & TSF_BOUND);
|
|
}
|
|
|
|
void
|
|
sched_relinquish(struct thread *td)
|
|
{
|
|
thread_lock(td);
|
|
if (td->td_pri_class == PRI_TIMESHARE)
|
|
sched_prio(td, PRI_MAX_TIMESHARE);
|
|
SCHED_STAT_INC(switch_relinquish);
|
|
mi_switch(SW_VOL, NULL);
|
|
thread_unlock(td);
|
|
}
|
|
|
|
int
|
|
sched_load(void)
|
|
{
|
|
#ifdef SMP
|
|
int total;
|
|
int i;
|
|
|
|
total = 0;
|
|
for (i = 0; i <= tdg_maxid; i++)
|
|
total += TDQ_GROUP(i)->tdg_load;
|
|
return (total);
|
|
#else
|
|
return (TDQ_SELF()->tdq_sysload);
|
|
#endif
|
|
}
|
|
|
|
int
|
|
sched_sizeof_proc(void)
|
|
{
|
|
return (sizeof(struct proc));
|
|
}
|
|
|
|
int
|
|
sched_sizeof_thread(void)
|
|
{
|
|
return (sizeof(struct thread) + sizeof(struct td_sched));
|
|
}
|
|
|
|
void
|
|
sched_tick(void)
|
|
{
|
|
struct td_sched *ts;
|
|
|
|
ts = curthread->td_sched;
|
|
/* Adjust ticks for pctcpu */
|
|
ts->ts_ticks += 1 << SCHED_TICK_SHIFT;
|
|
ts->ts_ltick = ticks;
|
|
/*
|
|
* Update if we've exceeded our desired tick threshhold by over one
|
|
* second.
|
|
*/
|
|
if (ts->ts_ftick + SCHED_TICK_MAX < ts->ts_ltick)
|
|
sched_pctcpu_update(ts);
|
|
}
|
|
|
|
/*
|
|
* The actual idle process.
|
|
*/
|
|
void
|
|
sched_idletd(void *dummy)
|
|
{
|
|
struct proc *p;
|
|
struct thread *td;
|
|
|
|
td = curthread;
|
|
p = td->td_proc;
|
|
mtx_assert(&Giant, MA_NOTOWNED);
|
|
/* ULE Relies on preemption for idle interruption. */
|
|
for (;;)
|
|
cpu_idle();
|
|
}
|
|
|
|
/*
|
|
* A CPU is entering for the first time or a thread is exiting.
|
|
*/
|
|
void
|
|
sched_throw(struct thread *td)
|
|
{
|
|
/*
|
|
* Correct spinlock nesting. The idle thread context that we are
|
|
* borrowing was created so that it would start out with a single
|
|
* spin lock (sched_lock) held in fork_trampoline(). Since we've
|
|
* explicitly acquired locks in this function, the nesting count
|
|
* is now 2 rather than 1. Since we are nested, calling
|
|
* spinlock_exit() will simply adjust the counts without allowing
|
|
* spin lock using code to interrupt us.
|
|
*/
|
|
if (td == NULL) {
|
|
mtx_lock_spin(&sched_lock);
|
|
spinlock_exit();
|
|
} else {
|
|
MPASS(td->td_lock == &sched_lock);
|
|
}
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
|
|
PCPU_SET(switchtime, cpu_ticks());
|
|
PCPU_SET(switchticks, ticks);
|
|
cpu_throw(td, choosethread()); /* doesn't return */
|
|
}
|
|
|
|
void
|
|
sched_fork_exit(struct thread *ctd)
|
|
{
|
|
struct thread *td;
|
|
|
|
/*
|
|
* Finish setting up thread glue so that it begins execution in a
|
|
* non-nested critical section with sched_lock held but not recursed.
|
|
*/
|
|
ctd->td_oncpu = PCPU_GET(cpuid);
|
|
sched_lock.mtx_lock = (uintptr_t)ctd;
|
|
THREAD_LOCK_ASSERT(ctd, MA_OWNED | MA_NOTRECURSED);
|
|
/*
|
|
* Processes normally resume in mi_switch() after being
|
|
* cpu_switch()'ed to, but when children start up they arrive here
|
|
* instead, so we must do much the same things as mi_switch() would.
|
|
*/
|
|
if ((td = PCPU_GET(deadthread))) {
|
|
PCPU_SET(deadthread, NULL);
|
|
thread_stash(td);
|
|
}
|
|
thread_unlock(ctd);
|
|
}
|
|
|
|
static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
|
|
SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ule", 0,
|
|
"Scheduler name");
|
|
SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0, "");
|
|
SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0, "");
|
|
SYSCTL_INT(_kern_sched, OID_AUTO, tickincr, CTLFLAG_RD, &tickincr, 0, "");
|
|
SYSCTL_INT(_kern_sched, OID_AUTO, realstathz, CTLFLAG_RD, &realstathz, 0, "");
|
|
#ifdef SMP
|
|
SYSCTL_INT(_kern_sched, OID_AUTO, pick_pri, CTLFLAG_RW, &pick_pri, 0, "");
|
|
SYSCTL_INT(_kern_sched, OID_AUTO, pick_pri_affinity, CTLFLAG_RW,
|
|
&affinity, 0, "");
|
|
SYSCTL_INT(_kern_sched, OID_AUTO, pick_pri_tryself, CTLFLAG_RW,
|
|
&tryself, 0, "");
|
|
SYSCTL_INT(_kern_sched, OID_AUTO, pick_pri_tryselfidle, CTLFLAG_RW,
|
|
&tryselfidle, 0, "");
|
|
SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0, "");
|
|
SYSCTL_INT(_kern_sched, OID_AUTO, ipi_preempt, CTLFLAG_RW, &ipi_preempt, 0, "");
|
|
SYSCTL_INT(_kern_sched, OID_AUTO, ipi_ast, CTLFLAG_RW, &ipi_ast, 0, "");
|
|
SYSCTL_INT(_kern_sched, OID_AUTO, ipi_thresh, CTLFLAG_RW, &ipi_thresh, 0, "");
|
|
SYSCTL_INT(_kern_sched, OID_AUTO, steal_htt, CTLFLAG_RW, &steal_htt, 0, "");
|
|
SYSCTL_INT(_kern_sched, OID_AUTO, steal_busy, CTLFLAG_RW, &steal_busy, 0, "");
|
|
SYSCTL_INT(_kern_sched, OID_AUTO, busy_thresh, CTLFLAG_RW, &busy_thresh, 0, "");
|
|
SYSCTL_INT(_kern_sched, OID_AUTO, topology, CTLFLAG_RD, &topology, 0, "");
|
|
#endif
|
|
|
|
/* ps compat */
|
|
static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
|
|
SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
|
|
|
|
|
|
#define KERN_SWITCH_INCLUDE 1
|
|
#include "kern/kern_switch.c"
|