1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-21 11:13:30 +00:00
freebsd/lib/libc/rpc/rpc_generic.c
Ian Dowse 1a154a146c Extract the path from an AF_LOCAL sockaddr_un in a way that correctly
terminates the string in all cases, based on code from netstat(1).
The path in a sockaddr_un is terminated either by a '\0', or by
the end of the sockaddr as defined by sun_len.

Previously, the code could write the "safety" '\0' beyond the end
of the sockaddr (sockaddr_un's need only be large enough to store
sun_len bytes), and writing into the the supplied sockaddr is bad
anyway.
2001-05-12 20:05:26 +00:00

823 lines
17 KiB
C

/* $NetBSD: rpc_generic.c,v 1.4 2000/09/28 09:07:04 kleink Exp $ */
/* $FreeBSD$ */
/*
* Sun RPC is a product of Sun Microsystems, Inc. and is provided for
* unrestricted use provided that this legend is included on all tape
* media and as a part of the software program in whole or part. Users
* may copy or modify Sun RPC without charge, but are not authorized
* to license or distribute it to anyone else except as part of a product or
* program developed by the user.
*
* SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
* WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun RPC is provided with no support and without any obligation on the
* part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
/*
* Copyright (c) 1986-1991 by Sun Microsystems Inc.
*/
/* #pragma ident "@(#)rpc_generic.c 1.17 94/04/24 SMI" */
/*
* rpc_generic.c, Miscl routines for RPC.
*
*/
#include "namespace.h"
#include "reentrant.h"
#include <sys/types.h>
#include <sys/param.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/un.h>
#include <sys/resource.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <rpc/rpc.h>
#include <ctype.h>
#include <stddef.h>
#include <stdio.h>
#include <netdb.h>
#include <netconfig.h>
#include <stdlib.h>
#include <string.h>
#include <syslog.h>
#include <rpc/nettype.h>
#include "un-namespace.h"
#include "rpc_com.h"
struct handle {
NCONF_HANDLE *nhandle;
int nflag; /* Whether NETPATH or NETCONFIG */
int nettype;
};
static const struct _rpcnettype {
const char *name;
const int type;
} _rpctypelist[] = {
{ "netpath", _RPC_NETPATH },
{ "visible", _RPC_VISIBLE },
{ "circuit_v", _RPC_CIRCUIT_V },
{ "datagram_v", _RPC_DATAGRAM_V },
{ "circuit_n", _RPC_CIRCUIT_N },
{ "datagram_n", _RPC_DATAGRAM_N },
{ "tcp", _RPC_TCP },
{ "udp", _RPC_UDP },
{ 0, _RPC_NONE }
};
struct netid_af {
const char *netid;
int af;
int protocol;
};
static const struct netid_af na_cvt[] = {
{ "udp", AF_INET, IPPROTO_UDP },
{ "tcp", AF_INET, IPPROTO_TCP },
#ifdef INET6
{ "udp6", AF_INET6, IPPROTO_UDP },
{ "tcp6", AF_INET6, IPPROTO_TCP },
#endif
{ "unix", AF_LOCAL, 0 }
};
#if 0
static char *strlocase __P((char *));
#endif
static int getnettype __P((const char *));
/*
* Cache the result of getrlimit(), so we don't have to do an
* expensive call every time.
*/
int
__rpc_dtbsize()
{
static int tbsize;
struct rlimit rl;
if (tbsize) {
return (tbsize);
}
if (getrlimit(RLIMIT_NOFILE, &rl) == 0) {
return (tbsize = (int)rl.rlim_max);
}
/*
* Something wrong. I'll try to save face by returning a
* pessimistic number.
*/
return (32);
}
/*
* Find the appropriate buffer size
*/
u_int
/*ARGSUSED*/
__rpc_get_t_size(af, proto, size)
int af, proto;
int size; /* Size requested */
{
int maxsize, defsize;
maxsize = 256 * 1024; /* XXX */
switch (proto) {
case IPPROTO_TCP:
defsize = 64 * 1024; /* XXX */
break;
case IPPROTO_UDP:
defsize = UDPMSGSIZE;
break;
default:
defsize = RPC_MAXDATASIZE;
break;
}
if (size == 0)
return defsize;
/* Check whether the value is within the upper max limit */
return (size > maxsize ? (u_int)maxsize : (u_int)size);
}
/*
* Find the appropriate address buffer size
*/
u_int
__rpc_get_a_size(af)
int af;
{
switch (af) {
case AF_INET:
return sizeof (struct sockaddr_in);
#ifdef INET6
case AF_INET6:
return sizeof (struct sockaddr_in6);
#endif
case AF_LOCAL:
return sizeof (struct sockaddr_un);
default:
break;
}
return ((u_int)RPC_MAXADDRSIZE);
}
#if 0
static char *
strlocase(p)
char *p;
{
char *t = p;
for (; *p; p++)
if (isupper(*p))
*p = tolower(*p);
return (t);
}
#endif
/*
* Returns the type of the network as defined in <rpc/nettype.h>
* If nettype is NULL, it defaults to NETPATH.
*/
static int
getnettype(nettype)
const char *nettype;
{
int i;
if ((nettype == NULL) || (nettype[0] == NULL)) {
return (_RPC_NETPATH); /* Default */
}
#if 0
nettype = strlocase(nettype);
#endif
for (i = 0; _rpctypelist[i].name; i++)
if (strcasecmp(nettype, _rpctypelist[i].name) == 0) {
return (_rpctypelist[i].type);
}
return (_rpctypelist[i].type);
}
/*
* For the given nettype (tcp or udp only), return the first structure found.
* This should be freed by calling freenetconfigent()
*/
struct netconfig *
__rpc_getconfip(nettype)
const char *nettype;
{
char *netid;
char *netid_tcp = (char *) NULL;
char *netid_udp = (char *) NULL;
static char *netid_tcp_main;
static char *netid_udp_main;
struct netconfig *dummy;
int main_thread;
static thread_key_t tcp_key, udp_key;
extern mutex_t tsd_lock;
if ((main_thread = thr_main())) {
netid_udp = netid_udp_main;
netid_tcp = netid_tcp_main;
} else {
if (tcp_key == 0) {
mutex_lock(&tsd_lock);
if (tcp_key == 0)
thr_keycreate(&tcp_key, free);
mutex_unlock(&tsd_lock);
}
netid_tcp = (char *)thr_getspecific(tcp_key);
if (udp_key == 0) {
mutex_lock(&tsd_lock);
if (udp_key == 0)
thr_keycreate(&udp_key, free);
mutex_unlock(&tsd_lock);
}
netid_udp = (char *)thr_getspecific(udp_key);
}
if (!netid_udp && !netid_tcp) {
struct netconfig *nconf;
void *confighandle;
if (!(confighandle = setnetconfig())) {
syslog (LOG_ERR, "rpc: failed to open " NETCONFIG);
return (NULL);
}
while ((nconf = getnetconfig(confighandle)) != NULL) {
if (strcmp(nconf->nc_protofmly, NC_INET) == 0) {
if (strcmp(nconf->nc_proto, NC_TCP) == 0) {
netid_tcp = strdup(nconf->nc_netid);
if (main_thread)
netid_tcp_main = netid_tcp;
else
thr_setspecific(tcp_key,
(void *) netid_tcp);
} else
if (strcmp(nconf->nc_proto, NC_UDP) == 0) {
netid_udp = strdup(nconf->nc_netid);
if (main_thread)
netid_udp_main = netid_udp;
else
thr_setspecific(udp_key,
(void *) netid_udp);
}
}
}
endnetconfig(confighandle);
}
if (strcmp(nettype, "udp") == 0)
netid = netid_udp;
else if (strcmp(nettype, "tcp") == 0)
netid = netid_tcp;
else {
return (NULL);
}
if ((netid == NULL) || (netid[0] == NULL)) {
return (NULL);
}
dummy = getnetconfigent(netid);
return (dummy);
}
/*
* Returns the type of the nettype, which should then be used with
* __rpc_getconf().
*/
void *
__rpc_setconf(nettype)
const char *nettype;
{
struct handle *handle;
handle = (struct handle *) malloc(sizeof (struct handle));
if (handle == NULL) {
return (NULL);
}
switch (handle->nettype = getnettype(nettype)) {
case _RPC_NETPATH:
case _RPC_CIRCUIT_N:
case _RPC_DATAGRAM_N:
if (!(handle->nhandle = setnetpath())) {
free(handle);
return (NULL);
}
handle->nflag = TRUE;
break;
case _RPC_VISIBLE:
case _RPC_CIRCUIT_V:
case _RPC_DATAGRAM_V:
case _RPC_TCP:
case _RPC_UDP:
if (!(handle->nhandle = setnetconfig())) {
syslog (LOG_ERR, "rpc: failed to open " NETCONFIG);
free(handle);
return (NULL);
}
handle->nflag = FALSE;
break;
default:
return (NULL);
}
return (handle);
}
/*
* Returns the next netconfig struct for the given "net" type.
* __rpc_setconf() should have been called previously.
*/
struct netconfig *
__rpc_getconf(vhandle)
void *vhandle;
{
struct handle *handle;
struct netconfig *nconf;
handle = (struct handle *)vhandle;
if (handle == NULL) {
return (NULL);
}
for (;;) {
if (handle->nflag)
nconf = getnetpath(handle->nhandle);
else
nconf = getnetconfig(handle->nhandle);
if (nconf == NULL)
break;
if ((nconf->nc_semantics != NC_TPI_CLTS) &&
(nconf->nc_semantics != NC_TPI_COTS) &&
(nconf->nc_semantics != NC_TPI_COTS_ORD))
continue;
switch (handle->nettype) {
case _RPC_VISIBLE:
if (!(nconf->nc_flag & NC_VISIBLE))
continue;
/* FALLTHROUGH */
case _RPC_NETPATH: /* Be happy */
break;
case _RPC_CIRCUIT_V:
if (!(nconf->nc_flag & NC_VISIBLE))
continue;
/* FALLTHROUGH */
case _RPC_CIRCUIT_N:
if ((nconf->nc_semantics != NC_TPI_COTS) &&
(nconf->nc_semantics != NC_TPI_COTS_ORD))
continue;
break;
case _RPC_DATAGRAM_V:
if (!(nconf->nc_flag & NC_VISIBLE))
continue;
/* FALLTHROUGH */
case _RPC_DATAGRAM_N:
if (nconf->nc_semantics != NC_TPI_CLTS)
continue;
break;
case _RPC_TCP:
if (((nconf->nc_semantics != NC_TPI_COTS) &&
(nconf->nc_semantics != NC_TPI_COTS_ORD)) ||
(strcmp(nconf->nc_protofmly, NC_INET)
#ifdef INET6
&& strcmp(nconf->nc_protofmly, NC_INET6))
#else
)
#endif
||
strcmp(nconf->nc_proto, NC_TCP))
continue;
break;
case _RPC_UDP:
if ((nconf->nc_semantics != NC_TPI_CLTS) ||
(strcmp(nconf->nc_protofmly, NC_INET)
#ifdef INET6
&& strcmp(nconf->nc_protofmly, NC_INET6))
#else
)
#endif
||
strcmp(nconf->nc_proto, NC_UDP))
continue;
break;
}
break;
}
return (nconf);
}
void
__rpc_endconf(vhandle)
void * vhandle;
{
struct handle *handle;
handle = (struct handle *) vhandle;
if (handle == NULL) {
return;
}
if (handle->nflag) {
endnetpath(handle->nhandle);
} else {
endnetconfig(handle->nhandle);
}
free(handle);
}
/*
* Used to ping the NULL procedure for clnt handle.
* Returns NULL if fails, else a non-NULL pointer.
*/
void *
rpc_nullproc(clnt)
CLIENT *clnt;
{
struct timeval TIMEOUT = {25, 0};
if (clnt_call(clnt, NULLPROC, (xdrproc_t) xdr_void, NULL,
(xdrproc_t) xdr_void, NULL, TIMEOUT) != RPC_SUCCESS) {
return (NULL);
}
return ((void *) clnt);
}
/*
* Try all possible transports until
* one succeeds in finding the netconf for the given fd.
*/
struct netconfig *
__rpcgettp(fd)
int fd;
{
const char *netid;
struct __rpc_sockinfo si;
if (!__rpc_fd2sockinfo(fd, &si))
return NULL;
if (!__rpc_sockinfo2netid(&si, &netid))
return NULL;
/*LINTED const castaway*/
return getnetconfigent((char *)netid);
}
int
__rpc_fd2sockinfo(int fd, struct __rpc_sockinfo *sip)
{
socklen_t len;
int type, proto;
struct sockaddr_storage ss;
len = sizeof ss;
if (_getsockname(fd, (struct sockaddr *)(void *)&ss, &len) < 0)
return 0;
sip->si_alen = len;
len = sizeof type;
if (_getsockopt(fd, SOL_SOCKET, SO_TYPE, &type, &len) < 0)
return 0;
/* XXX */
if (ss.ss_family != AF_LOCAL) {
if (type == SOCK_STREAM)
proto = IPPROTO_TCP;
else if (type == SOCK_DGRAM)
proto = IPPROTO_UDP;
else
return 0;
} else
proto = 0;
sip->si_af = ss.ss_family;
sip->si_proto = proto;
sip->si_socktype = type;
return 1;
}
/*
* Linear search, but the number of entries is small.
*/
int
__rpc_nconf2sockinfo(const struct netconfig *nconf, struct __rpc_sockinfo *sip)
{
int i;
for (i = 0; i < (sizeof na_cvt) / (sizeof (struct netid_af)); i++)
if (!strcmp(na_cvt[i].netid, nconf->nc_netid)) {
sip->si_af = na_cvt[i].af;
sip->si_proto = na_cvt[i].protocol;
sip->si_socktype =
__rpc_seman2socktype((int)nconf->nc_semantics);
if (sip->si_socktype == -1)
return 0;
sip->si_alen = __rpc_get_a_size(sip->si_af);
return 1;
}
return 0;
}
int
__rpc_nconf2fd(const struct netconfig *nconf)
{
struct __rpc_sockinfo si;
if (!__rpc_nconf2sockinfo(nconf, &si))
return 0;
return _socket(si.si_af, si.si_socktype, si.si_proto);
}
int
__rpc_sockinfo2netid(struct __rpc_sockinfo *sip, const char **netid)
{
int i;
for (i = 0; i < (sizeof na_cvt) / (sizeof (struct netid_af)); i++)
if (na_cvt[i].af == sip->si_af &&
na_cvt[i].protocol == sip->si_proto) {
if (netid)
*netid = na_cvt[i].netid;
return 1;
}
return 0;
}
char *
taddr2uaddr(const struct netconfig *nconf, const struct netbuf *nbuf)
{
struct __rpc_sockinfo si;
if (!__rpc_nconf2sockinfo(nconf, &si))
return NULL;
return __rpc_taddr2uaddr_af(si.si_af, nbuf);
}
struct netbuf *
uaddr2taddr(const struct netconfig *nconf, const char *uaddr)
{
struct __rpc_sockinfo si;
if (!__rpc_nconf2sockinfo(nconf, &si))
return NULL;
return __rpc_uaddr2taddr_af(si.si_af, uaddr);
}
char *
__rpc_taddr2uaddr_af(int af, const struct netbuf *nbuf)
{
char *ret;
struct sockaddr_in *sin;
struct sockaddr_un *sun;
char namebuf[INET_ADDRSTRLEN];
#ifdef INET6
struct sockaddr_in6 *sin6;
char namebuf6[INET6_ADDRSTRLEN];
#endif
u_int16_t port;
switch (af) {
case AF_INET:
sin = nbuf->buf;
if (inet_ntop(af, &sin->sin_addr, namebuf, sizeof namebuf)
== NULL)
return NULL;
port = ntohs(sin->sin_port);
if (asprintf(&ret, "%s.%u.%u", namebuf, ((u_int32_t)port) >> 8,
port & 0xff) < 0)
return NULL;
break;
#ifdef INET6
case AF_INET6:
sin6 = nbuf->buf;
if (inet_ntop(af, &sin6->sin6_addr, namebuf6, sizeof namebuf6)
== NULL)
return NULL;
port = ntohs(sin6->sin6_port);
if (asprintf(&ret, "%s.%u.%u", namebuf6, ((u_int32_t)port) >> 8,
port & 0xff) < 0)
return NULL;
break;
#endif
case AF_LOCAL:
sun = nbuf->buf;
if (asprintf(&ret, "%.*s", (int)(sun->sun_len -
offsetof(struct sockaddr_un, sun_path)),
sun->sun_path) < 0)
return (NULL);
break;
default:
return NULL;
}
return ret;
}
struct netbuf *
__rpc_uaddr2taddr_af(int af, const char *uaddr)
{
struct netbuf *ret = NULL;
char *addrstr, *p;
unsigned port, portlo, porthi;
struct sockaddr_in *sin;
#ifdef INET6
struct sockaddr_in6 *sin6;
#endif
struct sockaddr_un *sun;
addrstr = strdup(uaddr);
if (addrstr == NULL)
return NULL;
/*
* AF_LOCAL addresses are expected to be absolute
* pathnames, anything else will be AF_INET or AF_INET6.
*/
if (*addrstr != '/') {
p = strrchr(addrstr, '.');
if (p == NULL)
goto out;
portlo = (unsigned)atoi(p + 1);
*p = '\0';
p = strrchr(addrstr, '.');
if (p == NULL)
goto out;
porthi = (unsigned)atoi(p + 1);
*p = '\0';
port = (porthi << 8) | portlo;
}
ret = (struct netbuf *)malloc(sizeof *ret);
switch (af) {
case AF_INET:
sin = (struct sockaddr_in *)malloc(sizeof *sin);
if (sin == NULL)
goto out;
memset(sin, 0, sizeof *sin);
sin->sin_family = AF_INET;
sin->sin_port = htons(port);
if (inet_pton(AF_INET, addrstr, &sin->sin_addr) <= 0) {
free(sin);
free(ret);
ret = NULL;
goto out;
}
sin->sin_len = ret->maxlen = ret->len = sizeof *sin;
ret->buf = sin;
break;
#ifdef INET6
case AF_INET6:
sin6 = (struct sockaddr_in6 *)malloc(sizeof *sin6);
if (sin6 == NULL)
goto out;
memset(sin6, 0, sizeof *sin6);
sin6->sin6_family = AF_INET6;
sin6->sin6_port = htons(port);
if (inet_pton(AF_INET6, addrstr, &sin6->sin6_addr) <= 0) {
free(sin);
free(ret);
ret = NULL;
goto out;
}
sin6->sin6_len = ret->maxlen = ret->len = sizeof *sin6;
ret->buf = sin6;
break;
#endif
case AF_LOCAL:
sun = (struct sockaddr_un *)malloc(sizeof *sun);
if (sun == NULL)
goto out;
memset(sun, 0, sizeof *sun);
sun->sun_family = AF_LOCAL;
strncpy(sun->sun_path, addrstr, sizeof(sun->sun_path) - 1);
ret->len = ret->maxlen = sun->sun_len = SUN_LEN(sun);
ret->buf = sun;
break;
default:
break;
}
out:
free(addrstr);
return ret;
}
int
__rpc_seman2socktype(int semantics)
{
switch (semantics) {
case NC_TPI_CLTS:
return SOCK_DGRAM;
case NC_TPI_COTS_ORD:
return SOCK_STREAM;
case NC_TPI_RAW:
return SOCK_RAW;
default:
break;
}
return -1;
}
int
__rpc_socktype2seman(int socktype)
{
switch (socktype) {
case SOCK_DGRAM:
return NC_TPI_CLTS;
case SOCK_STREAM:
return NC_TPI_COTS_ORD;
case SOCK_RAW:
return NC_TPI_RAW;
default:
break;
}
return -1;
}
/*
* XXXX - IPv6 scope IDs can't be handled in universal addresses.
* Here, we compare the original server address to that of the RPC
* service we just received back from a call to rpcbind on the remote
* machine. If they are both "link local" or "site local", copy
* the scope id of the server address over to the service address.
*/
int
__rpc_fixup_addr(struct netbuf *new, const struct netbuf *svc)
{
#ifdef INET6
struct sockaddr *sa_new, *sa_svc;
struct sockaddr_in6 *sin6_new, *sin6_svc;
sa_svc = (struct sockaddr *)svc->buf;
sa_new = (struct sockaddr *)new->buf;
if (sa_new->sa_family == sa_svc->sa_family &&
sa_new->sa_family == AF_INET6) {
sin6_new = (struct sockaddr_in6 *)new->buf;
sin6_svc = (struct sockaddr_in6 *)svc->buf;
if ((IN6_IS_ADDR_LINKLOCAL(&sin6_new->sin6_addr) &&
IN6_IS_ADDR_LINKLOCAL(&sin6_svc->sin6_addr)) ||
(IN6_IS_ADDR_SITELOCAL(&sin6_new->sin6_addr) &&
IN6_IS_ADDR_SITELOCAL(&sin6_svc->sin6_addr))) {
sin6_new->sin6_scope_id = sin6_svc->sin6_scope_id;
}
}
#endif
return 1;
}
int
__rpc_sockisbound(int fd)
{
struct sockaddr_storage ss;
socklen_t slen;
slen = sizeof (struct sockaddr_storage);
if (_getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0)
return 0;
switch (ss.ss_family) {
case AF_INET:
return (((struct sockaddr_in *)
(void *)&ss)->sin_port != 0);
#ifdef INET6
case AF_INET6:
return (((struct sockaddr_in6 *)
(void *)&ss)->sin6_port != 0);
#endif
case AF_LOCAL:
/* XXX check this */
return (((struct sockaddr_un *)
(void *)&ss)->sun_path[0] != '\0');
default:
break;
}
return 0;
}