1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-01 12:19:28 +00:00
freebsd/sys/kern/kern_ktrace.c
Hans Petter Selasky 3da1cf1e88 Extend the meaning of the CTLFLAG_TUN flag to automatically check if
there is an environment variable which shall initialize the SYSCTL
during early boot. This works for all SYSCTL types both statically and
dynamically created ones, except for the SYSCTL NODE type and SYSCTLs
which belong to VNETs. A new flag, CTLFLAG_NOFETCH, has been added to
be used in the case a tunable sysctl has a custom initialisation
function allowing the sysctl to still be marked as a tunable. The
kernel SYSCTL API is mostly the same, with a few exceptions for some
special operations like iterating childrens of a static/extern SYSCTL
node. This operation should probably be made into a factored out
common macro, hence some device drivers use this. The reason for
changing the SYSCTL API was the need for a SYSCTL parent OID pointer
and not only the SYSCTL parent OID list pointer in order to quickly
generate the sysctl path. The motivation behind this patch is to avoid
parameter loading cludges inside the OFED driver subsystem. Instead of
adding special code to the OFED driver subsystem to post-load tunables
into dynamically created sysctls, we generalize this in the kernel.

Other changes:
- Corrected a possibly incorrect sysctl name from "hw.cbb.intr_mask"
to "hw.pcic.intr_mask".
- Removed redundant TUNABLE statements throughout the kernel.
- Some minor code rewrites in connection to removing not needed
TUNABLE statements.
- Added a missing SYSCTL_DECL().
- Wrapped two very long lines.
- Avoid malloc()/free() inside sysctl string handling, in case it is
called to initialize a sysctl from a tunable, hence malloc()/free() is
not ready when sysctls from the sysctl dataset are registered.
- Bumped FreeBSD version to indicate SYSCTL API change.

MFC after:	2 weeks
Sponsored by:	Mellanox Technologies
2014-06-27 16:33:43 +00:00

1275 lines
30 KiB
C

/*-
* Copyright (c) 1989, 1993
* The Regents of the University of California.
* Copyright (c) 2005 Robert N. M. Watson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_ktrace.c 8.2 (Berkeley) 9/23/93
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ktrace.h"
#include <sys/param.h>
#include <sys/capsicum.h>
#include <sys/systm.h>
#include <sys/fcntl.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/namei.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/unistd.h>
#include <sys/vnode.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/ktrace.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/sysent.h>
#include <sys/syslog.h>
#include <sys/sysproto.h>
#include <security/mac/mac_framework.h>
/*
* The ktrace facility allows the tracing of certain key events in user space
* processes, such as system calls, signal delivery, context switches, and
* user generated events using utrace(2). It works by streaming event
* records and data to a vnode associated with the process using the
* ktrace(2) system call. In general, records can be written directly from
* the context that generates the event. One important exception to this is
* during a context switch, where sleeping is not permitted. To handle this
* case, trace events are generated using in-kernel ktr_request records, and
* then delivered to disk at a convenient moment -- either immediately, the
* next traceable event, at system call return, or at process exit.
*
* When dealing with multiple threads or processes writing to the same event
* log, ordering guarantees are weak: specifically, if an event has multiple
* records (i.e., system call enter and return), they may be interlaced with
* records from another event. Process and thread ID information is provided
* in the record, and user applications can de-interlace events if required.
*/
static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
#ifdef KTRACE
FEATURE(ktrace, "Kernel support for system-call tracing");
#ifndef KTRACE_REQUEST_POOL
#define KTRACE_REQUEST_POOL 100
#endif
struct ktr_request {
struct ktr_header ktr_header;
void *ktr_buffer;
union {
struct ktr_proc_ctor ktr_proc_ctor;
struct ktr_cap_fail ktr_cap_fail;
struct ktr_syscall ktr_syscall;
struct ktr_sysret ktr_sysret;
struct ktr_genio ktr_genio;
struct ktr_psig ktr_psig;
struct ktr_csw ktr_csw;
struct ktr_fault ktr_fault;
struct ktr_faultend ktr_faultend;
} ktr_data;
STAILQ_ENTRY(ktr_request) ktr_list;
};
static int data_lengths[] = {
[KTR_SYSCALL] = offsetof(struct ktr_syscall, ktr_args),
[KTR_SYSRET] = sizeof(struct ktr_sysret),
[KTR_NAMEI] = 0,
[KTR_GENIO] = sizeof(struct ktr_genio),
[KTR_PSIG] = sizeof(struct ktr_psig),
[KTR_CSW] = sizeof(struct ktr_csw),
[KTR_USER] = 0,
[KTR_STRUCT] = 0,
[KTR_SYSCTL] = 0,
[KTR_PROCCTOR] = sizeof(struct ktr_proc_ctor),
[KTR_PROCDTOR] = 0,
[KTR_CAPFAIL] = sizeof(struct ktr_cap_fail),
[KTR_FAULT] = sizeof(struct ktr_fault),
[KTR_FAULTEND] = sizeof(struct ktr_faultend),
};
static STAILQ_HEAD(, ktr_request) ktr_free;
static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD, 0, "KTRACE options");
static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
static u_int ktr_geniosize = PAGE_SIZE;
SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RWTUN, &ktr_geniosize,
0, "Maximum size of genio event payload");
static int print_message = 1;
static struct mtx ktrace_mtx;
static struct sx ktrace_sx;
static void ktrace_init(void *dummy);
static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
static u_int ktrace_resize_pool(u_int oldsize, u_int newsize);
static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type);
static struct ktr_request *ktr_getrequest(int type);
static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
static void ktr_freeproc(struct proc *p, struct ucred **uc,
struct vnode **vp);
static void ktr_freerequest(struct ktr_request *req);
static void ktr_freerequest_locked(struct ktr_request *req);
static void ktr_writerequest(struct thread *td, struct ktr_request *req);
static int ktrcanset(struct thread *,struct proc *);
static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *);
static int ktrops(struct thread *,struct proc *,int,int,struct vnode *);
static void ktrprocctor_entered(struct thread *, struct proc *);
/*
* ktrace itself generates events, such as context switches, which we do not
* wish to trace. Maintain a flag, TDP_INKTRACE, on each thread to determine
* whether or not it is in a region where tracing of events should be
* suppressed.
*/
static void
ktrace_enter(struct thread *td)
{
KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
td->td_pflags |= TDP_INKTRACE;
}
static void
ktrace_exit(struct thread *td)
{
KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
td->td_pflags &= ~TDP_INKTRACE;
}
static void
ktrace_assert(struct thread *td)
{
KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
}
static void
ktrace_init(void *dummy)
{
struct ktr_request *req;
int i;
mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
sx_init(&ktrace_sx, "ktrace_sx");
STAILQ_INIT(&ktr_free);
for (i = 0; i < ktr_requestpool; i++) {
req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK);
STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
}
}
SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
static int
sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
{
struct thread *td;
u_int newsize, oldsize, wantsize;
int error;
/* Handle easy read-only case first to avoid warnings from GCC. */
if (!req->newptr) {
oldsize = ktr_requestpool;
return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
}
error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
if (error)
return (error);
td = curthread;
ktrace_enter(td);
oldsize = ktr_requestpool;
newsize = ktrace_resize_pool(oldsize, wantsize);
ktrace_exit(td);
error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
if (error)
return (error);
if (wantsize > oldsize && newsize < wantsize)
return (ENOSPC);
return (0);
}
SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT|CTLFLAG_RW,
&ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU",
"Pool buffer size for ktrace(1)");
static u_int
ktrace_resize_pool(u_int oldsize, u_int newsize)
{
STAILQ_HEAD(, ktr_request) ktr_new;
struct ktr_request *req;
int bound;
print_message = 1;
bound = newsize - oldsize;
if (bound == 0)
return (ktr_requestpool);
if (bound < 0) {
mtx_lock(&ktrace_mtx);
/* Shrink pool down to newsize if possible. */
while (bound++ < 0) {
req = STAILQ_FIRST(&ktr_free);
if (req == NULL)
break;
STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
ktr_requestpool--;
free(req, M_KTRACE);
}
} else {
/* Grow pool up to newsize. */
STAILQ_INIT(&ktr_new);
while (bound-- > 0) {
req = malloc(sizeof(struct ktr_request), M_KTRACE,
M_WAITOK);
STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list);
}
mtx_lock(&ktrace_mtx);
STAILQ_CONCAT(&ktr_free, &ktr_new);
ktr_requestpool += (newsize - oldsize);
}
mtx_unlock(&ktrace_mtx);
return (ktr_requestpool);
}
/* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */
CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) ==
(sizeof((struct thread *)NULL)->td_name));
static struct ktr_request *
ktr_getrequest_entered(struct thread *td, int type)
{
struct ktr_request *req;
struct proc *p = td->td_proc;
int pm;
mtx_lock(&ktrace_mtx);
if (!KTRCHECK(td, type)) {
mtx_unlock(&ktrace_mtx);
return (NULL);
}
req = STAILQ_FIRST(&ktr_free);
if (req != NULL) {
STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
req->ktr_header.ktr_type = type;
if (p->p_traceflag & KTRFAC_DROP) {
req->ktr_header.ktr_type |= KTR_DROP;
p->p_traceflag &= ~KTRFAC_DROP;
}
mtx_unlock(&ktrace_mtx);
microtime(&req->ktr_header.ktr_time);
req->ktr_header.ktr_pid = p->p_pid;
req->ktr_header.ktr_tid = td->td_tid;
bcopy(td->td_name, req->ktr_header.ktr_comm,
sizeof(req->ktr_header.ktr_comm));
req->ktr_buffer = NULL;
req->ktr_header.ktr_len = 0;
} else {
p->p_traceflag |= KTRFAC_DROP;
pm = print_message;
print_message = 0;
mtx_unlock(&ktrace_mtx);
if (pm)
printf("Out of ktrace request objects.\n");
}
return (req);
}
static struct ktr_request *
ktr_getrequest(int type)
{
struct thread *td = curthread;
struct ktr_request *req;
ktrace_enter(td);
req = ktr_getrequest_entered(td, type);
if (req == NULL)
ktrace_exit(td);
return (req);
}
/*
* Some trace generation environments don't permit direct access to VFS,
* such as during a context switch where sleeping is not allowed. Under these
* circumstances, queue a request to the thread to be written asynchronously
* later.
*/
static void
ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
{
mtx_lock(&ktrace_mtx);
STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
mtx_unlock(&ktrace_mtx);
}
/*
* Drain any pending ktrace records from the per-thread queue to disk. This
* is used both internally before committing other records, and also on
* system call return. We drain all the ones we can find at the time when
* drain is requested, but don't keep draining after that as those events
* may be approximately "after" the current event.
*/
static void
ktr_drain(struct thread *td)
{
struct ktr_request *queued_req;
STAILQ_HEAD(, ktr_request) local_queue;
ktrace_assert(td);
sx_assert(&ktrace_sx, SX_XLOCKED);
STAILQ_INIT(&local_queue);
if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
mtx_lock(&ktrace_mtx);
STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
mtx_unlock(&ktrace_mtx);
while ((queued_req = STAILQ_FIRST(&local_queue))) {
STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
ktr_writerequest(td, queued_req);
ktr_freerequest(queued_req);
}
}
}
/*
* Submit a trace record for immediate commit to disk -- to be used only
* where entering VFS is OK. First drain any pending records that may have
* been cached in the thread.
*/
static void
ktr_submitrequest(struct thread *td, struct ktr_request *req)
{
ktrace_assert(td);
sx_xlock(&ktrace_sx);
ktr_drain(td);
ktr_writerequest(td, req);
ktr_freerequest(req);
sx_xunlock(&ktrace_sx);
ktrace_exit(td);
}
static void
ktr_freerequest(struct ktr_request *req)
{
mtx_lock(&ktrace_mtx);
ktr_freerequest_locked(req);
mtx_unlock(&ktrace_mtx);
}
static void
ktr_freerequest_locked(struct ktr_request *req)
{
mtx_assert(&ktrace_mtx, MA_OWNED);
if (req->ktr_buffer != NULL)
free(req->ktr_buffer, M_KTRACE);
STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
}
/*
* Disable tracing for a process and release all associated resources.
* The caller is responsible for releasing a reference on the returned
* vnode and credentials.
*/
static void
ktr_freeproc(struct proc *p, struct ucred **uc, struct vnode **vp)
{
struct ktr_request *req;
PROC_LOCK_ASSERT(p, MA_OWNED);
mtx_assert(&ktrace_mtx, MA_OWNED);
*uc = p->p_tracecred;
p->p_tracecred = NULL;
if (vp != NULL)
*vp = p->p_tracevp;
p->p_tracevp = NULL;
p->p_traceflag = 0;
while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) {
STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list);
ktr_freerequest_locked(req);
}
}
void
ktrsyscall(code, narg, args)
int code, narg;
register_t args[];
{
struct ktr_request *req;
struct ktr_syscall *ktp;
size_t buflen;
char *buf = NULL;
buflen = sizeof(register_t) * narg;
if (buflen > 0) {
buf = malloc(buflen, M_KTRACE, M_WAITOK);
bcopy(args, buf, buflen);
}
req = ktr_getrequest(KTR_SYSCALL);
if (req == NULL) {
if (buf != NULL)
free(buf, M_KTRACE);
return;
}
ktp = &req->ktr_data.ktr_syscall;
ktp->ktr_code = code;
ktp->ktr_narg = narg;
if (buflen > 0) {
req->ktr_header.ktr_len = buflen;
req->ktr_buffer = buf;
}
ktr_submitrequest(curthread, req);
}
void
ktrsysret(code, error, retval)
int code, error;
register_t retval;
{
struct ktr_request *req;
struct ktr_sysret *ktp;
req = ktr_getrequest(KTR_SYSRET);
if (req == NULL)
return;
ktp = &req->ktr_data.ktr_sysret;
ktp->ktr_code = code;
ktp->ktr_error = error;
ktp->ktr_retval = ((error == 0) ? retval: 0); /* what about val2 ? */
ktr_submitrequest(curthread, req);
}
/*
* When a setuid process execs, disable tracing.
*
* XXX: We toss any pending asynchronous records.
*/
void
ktrprocexec(struct proc *p, struct ucred **uc, struct vnode **vp)
{
PROC_LOCK_ASSERT(p, MA_OWNED);
mtx_lock(&ktrace_mtx);
ktr_freeproc(p, uc, vp);
mtx_unlock(&ktrace_mtx);
}
/*
* When a process exits, drain per-process asynchronous trace records
* and disable tracing.
*/
void
ktrprocexit(struct thread *td)
{
struct ktr_request *req;
struct proc *p;
struct ucred *cred;
struct vnode *vp;
p = td->td_proc;
if (p->p_traceflag == 0)
return;
ktrace_enter(td);
req = ktr_getrequest_entered(td, KTR_PROCDTOR);
if (req != NULL)
ktr_enqueuerequest(td, req);
sx_xlock(&ktrace_sx);
ktr_drain(td);
sx_xunlock(&ktrace_sx);
PROC_LOCK(p);
mtx_lock(&ktrace_mtx);
ktr_freeproc(p, &cred, &vp);
mtx_unlock(&ktrace_mtx);
PROC_UNLOCK(p);
if (vp != NULL)
vrele(vp);
if (cred != NULL)
crfree(cred);
ktrace_exit(td);
}
static void
ktrprocctor_entered(struct thread *td, struct proc *p)
{
struct ktr_proc_ctor *ktp;
struct ktr_request *req;
struct thread *td2;
ktrace_assert(td);
td2 = FIRST_THREAD_IN_PROC(p);
req = ktr_getrequest_entered(td2, KTR_PROCCTOR);
if (req == NULL)
return;
ktp = &req->ktr_data.ktr_proc_ctor;
ktp->sv_flags = p->p_sysent->sv_flags;
ktr_enqueuerequest(td2, req);
}
void
ktrprocctor(struct proc *p)
{
struct thread *td = curthread;
if ((p->p_traceflag & KTRFAC_MASK) == 0)
return;
ktrace_enter(td);
ktrprocctor_entered(td, p);
ktrace_exit(td);
}
/*
* When a process forks, enable tracing in the new process if needed.
*/
void
ktrprocfork(struct proc *p1, struct proc *p2)
{
PROC_LOCK(p1);
mtx_lock(&ktrace_mtx);
KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
if (p1->p_traceflag & KTRFAC_INHERIT) {
p2->p_traceflag = p1->p_traceflag;
if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
VREF(p2->p_tracevp);
KASSERT(p1->p_tracecred != NULL,
("ktrace vnode with no cred"));
p2->p_tracecred = crhold(p1->p_tracecred);
}
}
mtx_unlock(&ktrace_mtx);
PROC_UNLOCK(p1);
ktrprocctor(p2);
}
/*
* When a thread returns, drain any asynchronous records generated by the
* system call.
*/
void
ktruserret(struct thread *td)
{
ktrace_enter(td);
sx_xlock(&ktrace_sx);
ktr_drain(td);
sx_xunlock(&ktrace_sx);
ktrace_exit(td);
}
void
ktrnamei(path)
char *path;
{
struct ktr_request *req;
int namelen;
char *buf = NULL;
namelen = strlen(path);
if (namelen > 0) {
buf = malloc(namelen, M_KTRACE, M_WAITOK);
bcopy(path, buf, namelen);
}
req = ktr_getrequest(KTR_NAMEI);
if (req == NULL) {
if (buf != NULL)
free(buf, M_KTRACE);
return;
}
if (namelen > 0) {
req->ktr_header.ktr_len = namelen;
req->ktr_buffer = buf;
}
ktr_submitrequest(curthread, req);
}
void
ktrsysctl(name, namelen)
int *name;
u_int namelen;
{
struct ktr_request *req;
u_int mib[CTL_MAXNAME + 2];
char *mibname;
size_t mibnamelen;
int error;
/* Lookup name of mib. */
KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long"));
mib[0] = 0;
mib[1] = 1;
bcopy(name, mib + 2, namelen * sizeof(*name));
mibnamelen = 128;
mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK);
error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen,
NULL, 0, &mibnamelen, 0);
if (error) {
free(mibname, M_KTRACE);
return;
}
req = ktr_getrequest(KTR_SYSCTL);
if (req == NULL) {
free(mibname, M_KTRACE);
return;
}
req->ktr_header.ktr_len = mibnamelen;
req->ktr_buffer = mibname;
ktr_submitrequest(curthread, req);
}
void
ktrgenio(fd, rw, uio, error)
int fd;
enum uio_rw rw;
struct uio *uio;
int error;
{
struct ktr_request *req;
struct ktr_genio *ktg;
int datalen;
char *buf;
if (error) {
free(uio, M_IOV);
return;
}
uio->uio_offset = 0;
uio->uio_rw = UIO_WRITE;
datalen = MIN(uio->uio_resid, ktr_geniosize);
buf = malloc(datalen, M_KTRACE, M_WAITOK);
error = uiomove(buf, datalen, uio);
free(uio, M_IOV);
if (error) {
free(buf, M_KTRACE);
return;
}
req = ktr_getrequest(KTR_GENIO);
if (req == NULL) {
free(buf, M_KTRACE);
return;
}
ktg = &req->ktr_data.ktr_genio;
ktg->ktr_fd = fd;
ktg->ktr_rw = rw;
req->ktr_header.ktr_len = datalen;
req->ktr_buffer = buf;
ktr_submitrequest(curthread, req);
}
void
ktrpsig(sig, action, mask, code)
int sig;
sig_t action;
sigset_t *mask;
int code;
{
struct thread *td = curthread;
struct ktr_request *req;
struct ktr_psig *kp;
req = ktr_getrequest(KTR_PSIG);
if (req == NULL)
return;
kp = &req->ktr_data.ktr_psig;
kp->signo = (char)sig;
kp->action = action;
kp->mask = *mask;
kp->code = code;
ktr_enqueuerequest(td, req);
ktrace_exit(td);
}
void
ktrcsw(out, user, wmesg)
int out, user;
const char *wmesg;
{
struct thread *td = curthread;
struct ktr_request *req;
struct ktr_csw *kc;
req = ktr_getrequest(KTR_CSW);
if (req == NULL)
return;
kc = &req->ktr_data.ktr_csw;
kc->out = out;
kc->user = user;
if (wmesg != NULL)
strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg));
else
bzero(kc->wmesg, sizeof(kc->wmesg));
ktr_enqueuerequest(td, req);
ktrace_exit(td);
}
void
ktrstruct(name, data, datalen)
const char *name;
void *data;
size_t datalen;
{
struct ktr_request *req;
char *buf = NULL;
size_t buflen;
if (!data)
datalen = 0;
buflen = strlen(name) + 1 + datalen;
buf = malloc(buflen, M_KTRACE, M_WAITOK);
strcpy(buf, name);
bcopy(data, buf + strlen(name) + 1, datalen);
if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) {
free(buf, M_KTRACE);
return;
}
req->ktr_buffer = buf;
req->ktr_header.ktr_len = buflen;
ktr_submitrequest(curthread, req);
}
void
ktrcapfail(type, needed, held)
enum ktr_cap_fail_type type;
const cap_rights_t *needed;
const cap_rights_t *held;
{
struct thread *td = curthread;
struct ktr_request *req;
struct ktr_cap_fail *kcf;
req = ktr_getrequest(KTR_CAPFAIL);
if (req == NULL)
return;
kcf = &req->ktr_data.ktr_cap_fail;
kcf->cap_type = type;
if (needed != NULL)
kcf->cap_needed = *needed;
else
cap_rights_init(&kcf->cap_needed);
if (held != NULL)
kcf->cap_held = *held;
else
cap_rights_init(&kcf->cap_held);
ktr_enqueuerequest(td, req);
ktrace_exit(td);
}
void
ktrfault(vaddr, type)
vm_offset_t vaddr;
int type;
{
struct thread *td = curthread;
struct ktr_request *req;
struct ktr_fault *kf;
req = ktr_getrequest(KTR_FAULT);
if (req == NULL)
return;
kf = &req->ktr_data.ktr_fault;
kf->vaddr = vaddr;
kf->type = type;
ktr_enqueuerequest(td, req);
ktrace_exit(td);
}
void
ktrfaultend(result)
int result;
{
struct thread *td = curthread;
struct ktr_request *req;
struct ktr_faultend *kf;
req = ktr_getrequest(KTR_FAULTEND);
if (req == NULL)
return;
kf = &req->ktr_data.ktr_faultend;
kf->result = result;
ktr_enqueuerequest(td, req);
ktrace_exit(td);
}
#endif /* KTRACE */
/* Interface and common routines */
#ifndef _SYS_SYSPROTO_H_
struct ktrace_args {
char *fname;
int ops;
int facs;
int pid;
};
#endif
/* ARGSUSED */
int
sys_ktrace(td, uap)
struct thread *td;
register struct ktrace_args *uap;
{
#ifdef KTRACE
register struct vnode *vp = NULL;
register struct proc *p;
struct pgrp *pg;
int facs = uap->facs & ~KTRFAC_ROOT;
int ops = KTROP(uap->ops);
int descend = uap->ops & KTRFLAG_DESCEND;
int nfound, ret = 0;
int flags, error = 0;
struct nameidata nd;
struct ucred *cred;
/*
* Need something to (un)trace.
*/
if (ops != KTROP_CLEARFILE && facs == 0)
return (EINVAL);
ktrace_enter(td);
if (ops != KTROP_CLEAR) {
/*
* an operation which requires a file argument.
*/
NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname, td);
flags = FREAD | FWRITE | O_NOFOLLOW;
error = vn_open(&nd, &flags, 0, NULL);
if (error) {
ktrace_exit(td);
return (error);
}
NDFREE(&nd, NDF_ONLY_PNBUF);
vp = nd.ni_vp;
VOP_UNLOCK(vp, 0);
if (vp->v_type != VREG) {
(void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
ktrace_exit(td);
return (EACCES);
}
}
/*
* Clear all uses of the tracefile.
*/
if (ops == KTROP_CLEARFILE) {
int vrele_count;
vrele_count = 0;
sx_slock(&allproc_lock);
FOREACH_PROC_IN_SYSTEM(p) {
PROC_LOCK(p);
if (p->p_tracevp == vp) {
if (ktrcanset(td, p)) {
mtx_lock(&ktrace_mtx);
ktr_freeproc(p, &cred, NULL);
mtx_unlock(&ktrace_mtx);
vrele_count++;
crfree(cred);
} else
error = EPERM;
}
PROC_UNLOCK(p);
}
sx_sunlock(&allproc_lock);
if (vrele_count > 0) {
while (vrele_count-- > 0)
vrele(vp);
}
goto done;
}
/*
* do it
*/
sx_slock(&proctree_lock);
if (uap->pid < 0) {
/*
* by process group
*/
pg = pgfind(-uap->pid);
if (pg == NULL) {
sx_sunlock(&proctree_lock);
error = ESRCH;
goto done;
}
/*
* ktrops() may call vrele(). Lock pg_members
* by the proctree_lock rather than pg_mtx.
*/
PGRP_UNLOCK(pg);
nfound = 0;
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
PROC_LOCK(p);
if (p->p_state == PRS_NEW ||
p_cansee(td, p) != 0) {
PROC_UNLOCK(p);
continue;
}
nfound++;
if (descend)
ret |= ktrsetchildren(td, p, ops, facs, vp);
else
ret |= ktrops(td, p, ops, facs, vp);
}
if (nfound == 0) {
sx_sunlock(&proctree_lock);
error = ESRCH;
goto done;
}
} else {
/*
* by pid
*/
p = pfind(uap->pid);
if (p == NULL)
error = ESRCH;
else
error = p_cansee(td, p);
if (error) {
if (p != NULL)
PROC_UNLOCK(p);
sx_sunlock(&proctree_lock);
goto done;
}
if (descend)
ret |= ktrsetchildren(td, p, ops, facs, vp);
else
ret |= ktrops(td, p, ops, facs, vp);
}
sx_sunlock(&proctree_lock);
if (!ret)
error = EPERM;
done:
if (vp != NULL)
(void) vn_close(vp, FWRITE, td->td_ucred, td);
ktrace_exit(td);
return (error);
#else /* !KTRACE */
return (ENOSYS);
#endif /* KTRACE */
}
/* ARGSUSED */
int
sys_utrace(td, uap)
struct thread *td;
register struct utrace_args *uap;
{
#ifdef KTRACE
struct ktr_request *req;
void *cp;
int error;
if (!KTRPOINT(td, KTR_USER))
return (0);
if (uap->len > KTR_USER_MAXLEN)
return (EINVAL);
cp = malloc(uap->len, M_KTRACE, M_WAITOK);
error = copyin(uap->addr, cp, uap->len);
if (error) {
free(cp, M_KTRACE);
return (error);
}
req = ktr_getrequest(KTR_USER);
if (req == NULL) {
free(cp, M_KTRACE);
return (ENOMEM);
}
req->ktr_buffer = cp;
req->ktr_header.ktr_len = uap->len;
ktr_submitrequest(td, req);
return (0);
#else /* !KTRACE */
return (ENOSYS);
#endif /* KTRACE */
}
#ifdef KTRACE
static int
ktrops(td, p, ops, facs, vp)
struct thread *td;
struct proc *p;
int ops, facs;
struct vnode *vp;
{
struct vnode *tracevp = NULL;
struct ucred *tracecred = NULL;
PROC_LOCK_ASSERT(p, MA_OWNED);
if (!ktrcanset(td, p)) {
PROC_UNLOCK(p);
return (0);
}
if (p->p_flag & P_WEXIT) {
/* If the process is exiting, just ignore it. */
PROC_UNLOCK(p);
return (1);
}
mtx_lock(&ktrace_mtx);
if (ops == KTROP_SET) {
if (p->p_tracevp != vp) {
/*
* if trace file already in use, relinquish below
*/
tracevp = p->p_tracevp;
VREF(vp);
p->p_tracevp = vp;
}
if (p->p_tracecred != td->td_ucred) {
tracecred = p->p_tracecred;
p->p_tracecred = crhold(td->td_ucred);
}
p->p_traceflag |= facs;
if (priv_check(td, PRIV_KTRACE) == 0)
p->p_traceflag |= KTRFAC_ROOT;
} else {
/* KTROP_CLEAR */
if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0)
/* no more tracing */
ktr_freeproc(p, &tracecred, &tracevp);
}
mtx_unlock(&ktrace_mtx);
if ((p->p_traceflag & KTRFAC_MASK) != 0)
ktrprocctor_entered(td, p);
PROC_UNLOCK(p);
if (tracevp != NULL)
vrele(tracevp);
if (tracecred != NULL)
crfree(tracecred);
return (1);
}
static int
ktrsetchildren(td, top, ops, facs, vp)
struct thread *td;
struct proc *top;
int ops, facs;
struct vnode *vp;
{
register struct proc *p;
register int ret = 0;
p = top;
PROC_LOCK_ASSERT(p, MA_OWNED);
sx_assert(&proctree_lock, SX_LOCKED);
for (;;) {
ret |= ktrops(td, p, ops, facs, vp);
/*
* If this process has children, descend to them next,
* otherwise do any siblings, and if done with this level,
* follow back up the tree (but not past top).
*/
if (!LIST_EMPTY(&p->p_children))
p = LIST_FIRST(&p->p_children);
else for (;;) {
if (p == top)
return (ret);
if (LIST_NEXT(p, p_sibling)) {
p = LIST_NEXT(p, p_sibling);
break;
}
p = p->p_pptr;
}
PROC_LOCK(p);
}
/*NOTREACHED*/
}
static void
ktr_writerequest(struct thread *td, struct ktr_request *req)
{
struct ktr_header *kth;
struct vnode *vp;
struct proc *p;
struct ucred *cred;
struct uio auio;
struct iovec aiov[3];
struct mount *mp;
int datalen, buflen, vrele_count;
int error;
/*
* We hold the vnode and credential for use in I/O in case ktrace is
* disabled on the process as we write out the request.
*
* XXXRW: This is not ideal: we could end up performing a write after
* the vnode has been closed.
*/
mtx_lock(&ktrace_mtx);
vp = td->td_proc->p_tracevp;
cred = td->td_proc->p_tracecred;
/*
* If vp is NULL, the vp has been cleared out from under this
* request, so just drop it. Make sure the credential and vnode are
* in sync: we should have both or neither.
*/
if (vp == NULL) {
KASSERT(cred == NULL, ("ktr_writerequest: cred != NULL"));
mtx_unlock(&ktrace_mtx);
return;
}
VREF(vp);
KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
crhold(cred);
mtx_unlock(&ktrace_mtx);
kth = &req->ktr_header;
KASSERT(((u_short)kth->ktr_type & ~KTR_DROP) <
sizeof(data_lengths) / sizeof(data_lengths[0]),
("data_lengths array overflow"));
datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP];
buflen = kth->ktr_len;
auio.uio_iov = &aiov[0];
auio.uio_offset = 0;
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_rw = UIO_WRITE;
aiov[0].iov_base = (caddr_t)kth;
aiov[0].iov_len = sizeof(struct ktr_header);
auio.uio_resid = sizeof(struct ktr_header);
auio.uio_iovcnt = 1;
auio.uio_td = td;
if (datalen != 0) {
aiov[1].iov_base = (caddr_t)&req->ktr_data;
aiov[1].iov_len = datalen;
auio.uio_resid += datalen;
auio.uio_iovcnt++;
kth->ktr_len += datalen;
}
if (buflen != 0) {
KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
aiov[auio.uio_iovcnt].iov_len = buflen;
auio.uio_resid += buflen;
auio.uio_iovcnt++;
}
vn_start_write(vp, &mp, V_WAIT);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
#ifdef MAC
error = mac_vnode_check_write(cred, NOCRED, vp);
if (error == 0)
#endif
error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
VOP_UNLOCK(vp, 0);
vn_finished_write(mp);
crfree(cred);
if (!error) {
vrele(vp);
return;
}
/*
* If error encountered, give up tracing on this vnode. We defer
* all the vrele()'s on the vnode until after we are finished walking
* the various lists to avoid needlessly holding locks.
* NB: at this point we still hold the vnode reference that must
* not go away as we need the valid vnode to compare with. Thus let
* vrele_count start at 1 and the reference will be freed
* by the loop at the end after our last use of vp.
*/
log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n",
error);
vrele_count = 1;
/*
* First, clear this vnode from being used by any processes in the
* system.
* XXX - If one process gets an EPERM writing to the vnode, should
* we really do this? Other processes might have suitable
* credentials for the operation.
*/
cred = NULL;
sx_slock(&allproc_lock);
FOREACH_PROC_IN_SYSTEM(p) {
PROC_LOCK(p);
if (p->p_tracevp == vp) {
mtx_lock(&ktrace_mtx);
ktr_freeproc(p, &cred, NULL);
mtx_unlock(&ktrace_mtx);
vrele_count++;
}
PROC_UNLOCK(p);
if (cred != NULL) {
crfree(cred);
cred = NULL;
}
}
sx_sunlock(&allproc_lock);
while (vrele_count-- > 0)
vrele(vp);
}
/*
* Return true if caller has permission to set the ktracing state
* of target. Essentially, the target can't possess any
* more permissions than the caller. KTRFAC_ROOT signifies that
* root previously set the tracing status on the target process, and
* so, only root may further change it.
*/
static int
ktrcanset(td, targetp)
struct thread *td;
struct proc *targetp;
{
PROC_LOCK_ASSERT(targetp, MA_OWNED);
if (targetp->p_traceflag & KTRFAC_ROOT &&
priv_check(td, PRIV_KTRACE))
return (0);
if (p_candebug(td, targetp) != 0)
return (0);
return (1);
}
#endif /* KTRACE */