1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-23 11:18:54 +00:00
freebsd/sys/netinet6/in6_pcbgroup.c
Adrian Chadd b2bdc62a95 Refactor / restructure the RSS code into generic, IPv4 and IPv6 specific
bits.

The motivation here is to eventually teach netisr and potentially
other networking subsystems a bit more about how RSS work queues / buckets
are configured so things have a hope of auto-configuring in the future.

* net/rss_config.[ch] takes care of the generic bits for doing
  configuration, hash function selection, etc;
* topelitz.[ch] is now in net/ rather than netinet/;
* (and would be in libkern if it didn't directly include RSS_KEYSIZE;
  that's a later thing to fix up.)
* netinet/in_rss.[ch] now just contains the IPv4 specific methods;
* and netinet/in6_rss.[ch] now just contains the IPv6 specific methods.

This should have no functional impact on anyone currently using
the RSS support.

Differential Revision:	D1383
Reviewed by:	gnn, jfv (intel driver bits)
2015-01-18 18:06:40 +00:00

151 lines
4.4 KiB
C

/*-
* Copyright (c) 2010-2011 Juniper Networks, Inc.
* All rights reserved.
*
* This software was developed by Robert N. M. Watson under contract
* to Juniper Networks, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet6.h"
#include "opt_rss.h"
#include <sys/param.h>
#include <sys/mbuf.h>
#include <net/rss_config.h>
#include <netinet/in.h>
#include <netinet/in_pcb.h>
#ifdef INET6
#include <netinet6/in6_pcb.h>
#include <netinet6/in6_rss.h>
#endif /* INET6 */
/*
* Given a hash of whatever the covered tuple might be, return a pcbgroup
* index. Where RSS is supported, try to align bucket selection with RSS CPU
* affinity strategy.
*/
static __inline u_int
in6_pcbgroup_getbucket(struct inpcbinfo *pcbinfo, uint32_t hash)
{
#ifdef RSS
return (rss_getbucket(hash));
#else
return (hash % pcbinfo->ipi_npcbgroups);
#endif
}
/*
* Map a (hashtype, hash) tuple into a connection group, or NULL if the hash
* information is insufficient to identify the pcbgroup. This might occur if
* a TCP packet turnsup with a 2-tuple hash, or if an RSS hash is present but
* RSS is not compiled into the kernel.
*/
struct inpcbgroup *
in6_pcbgroup_byhash(struct inpcbinfo *pcbinfo, u_int hashtype, uint32_t hash)
{
#ifdef RSS
if ((pcbinfo->ipi_hashfields == IPI_HASHFIELDS_4TUPLE &&
hashtype == M_HASHTYPE_RSS_TCP_IPV6) ||
(pcbinfo->ipi_hashfields == IPI_HASHFIELDS_4TUPLE &&
hashtype == M_HASHTYPE_RSS_UDP_IPV6) ||
(pcbinfo->ipi_hashfields == IPI_HASHFIELDS_2TUPLE &&
hashtype == M_HASHTYPE_RSS_IPV6))
return (&pcbinfo->ipi_pcbgroups[
in6_pcbgroup_getbucket(pcbinfo, hash)]);
#endif
return (NULL);
}
struct inpcbgroup *
in6_pcbgroup_bymbuf(struct inpcbinfo *pcbinfo, struct mbuf *m)
{
return (in6_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
m->m_pkthdr.flowid));
}
struct inpcbgroup *
in6_pcbgroup_bytuple(struct inpcbinfo *pcbinfo, const struct in6_addr *laddrp,
u_short lport, const struct in6_addr *faddrp, u_short fport)
{
uint32_t hash;
/*
* RSS note: we pass foreign addr/port as source, and local addr/port
* as destination, as we want to align with what the hardware is
* doing.
*/
switch (pcbinfo->ipi_hashfields) {
case IPI_HASHFIELDS_4TUPLE:
#ifdef RSS
hash = rss_hash_ip6_4tuple(faddrp, fport, laddrp, lport);
#else
hash = faddrp->s6_addr32[3] ^ fport;
#endif
break;
case IPI_HASHFIELDS_2TUPLE:
#ifdef RSS
hash = rss_hash_ip6_2tuple(faddrp, laddrp);
#else
hash = faddrp->s6_addr32[3] ^ laddrp->s6_addr32[3];
#endif
break;
default:
hash = 0;
}
return (&pcbinfo->ipi_pcbgroups[in6_pcbgroup_getbucket(pcbinfo,
hash)]);
}
struct inpcbgroup *
in6_pcbgroup_byinpcb(struct inpcb *inp)
{
#ifdef RSS
/*
* Listen sockets with INP_RSS_BUCKET_SET set have a pre-determined
* RSS bucket and thus we should use this pcbgroup, rather than
* using a tuple or hash.
*
* XXX should verify that there's actually pcbgroups and inp_rss_listen_bucket
* fits in that!
*/
if (inp->inp_flags2 & INP_RSS_BUCKET_SET)
return (&inp->inp_pcbinfo->ipi_pcbgroups[inp->inp_rss_listen_bucket]);
#endif
return (in6_pcbgroup_bytuple(inp->inp_pcbinfo, &inp->in6p_laddr,
inp->inp_lport, &inp->in6p_faddr, inp->inp_fport));
}