mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-19 10:53:58 +00:00
1319 lines
36 KiB
C
1319 lines
36 KiB
C
/* Miscellaneous SSA utility functions.
|
||
Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
|
||
Boston, MA 02110-1301, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "tree.h"
|
||
#include "flags.h"
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "ggc.h"
|
||
#include "langhooks.h"
|
||
#include "hard-reg-set.h"
|
||
#include "basic-block.h"
|
||
#include "output.h"
|
||
#include "expr.h"
|
||
#include "function.h"
|
||
#include "diagnostic.h"
|
||
#include "bitmap.h"
|
||
#include "pointer-set.h"
|
||
#include "tree-flow.h"
|
||
#include "tree-gimple.h"
|
||
#include "tree-inline.h"
|
||
#include "varray.h"
|
||
#include "timevar.h"
|
||
#include "hashtab.h"
|
||
#include "tree-dump.h"
|
||
#include "tree-pass.h"
|
||
#include "toplev.h"
|
||
|
||
/* Remove the corresponding arguments from the PHI nodes in E's
|
||
destination block and redirect it to DEST. Return redirected edge.
|
||
The list of removed arguments is stored in PENDING_STMT (e). */
|
||
|
||
edge
|
||
ssa_redirect_edge (edge e, basic_block dest)
|
||
{
|
||
tree phi;
|
||
tree list = NULL, *last = &list;
|
||
tree src, dst, node;
|
||
|
||
/* Remove the appropriate PHI arguments in E's destination block. */
|
||
for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
|
||
{
|
||
if (PHI_ARG_DEF (phi, e->dest_idx) == NULL_TREE)
|
||
continue;
|
||
|
||
src = PHI_ARG_DEF (phi, e->dest_idx);
|
||
dst = PHI_RESULT (phi);
|
||
node = build_tree_list (dst, src);
|
||
*last = node;
|
||
last = &TREE_CHAIN (node);
|
||
}
|
||
|
||
e = redirect_edge_succ_nodup (e, dest);
|
||
PENDING_STMT (e) = list;
|
||
|
||
return e;
|
||
}
|
||
|
||
/* Add PHI arguments queued in PENDINT_STMT list on edge E to edge
|
||
E->dest. */
|
||
|
||
void
|
||
flush_pending_stmts (edge e)
|
||
{
|
||
tree phi, arg;
|
||
|
||
if (!PENDING_STMT (e))
|
||
return;
|
||
|
||
for (phi = phi_nodes (e->dest), arg = PENDING_STMT (e);
|
||
phi;
|
||
phi = PHI_CHAIN (phi), arg = TREE_CHAIN (arg))
|
||
{
|
||
tree def = TREE_VALUE (arg);
|
||
add_phi_arg (phi, def, e);
|
||
}
|
||
|
||
PENDING_STMT (e) = NULL;
|
||
}
|
||
|
||
/* Return true if SSA_NAME is malformed and mark it visited.
|
||
|
||
IS_VIRTUAL is true if this SSA_NAME was found inside a virtual
|
||
operand. */
|
||
|
||
static bool
|
||
verify_ssa_name (tree ssa_name, bool is_virtual)
|
||
{
|
||
if (TREE_CODE (ssa_name) != SSA_NAME)
|
||
{
|
||
error ("expected an SSA_NAME object");
|
||
return true;
|
||
}
|
||
|
||
if (TREE_TYPE (ssa_name) != TREE_TYPE (SSA_NAME_VAR (ssa_name)))
|
||
{
|
||
error ("type mismatch between an SSA_NAME and its symbol");
|
||
return true;
|
||
}
|
||
|
||
if (SSA_NAME_IN_FREE_LIST (ssa_name))
|
||
{
|
||
error ("found an SSA_NAME that had been released into the free pool");
|
||
return true;
|
||
}
|
||
|
||
if (is_virtual && is_gimple_reg (ssa_name))
|
||
{
|
||
error ("found a virtual definition for a GIMPLE register");
|
||
return true;
|
||
}
|
||
|
||
if (!is_virtual && !is_gimple_reg (ssa_name))
|
||
{
|
||
error ("found a real definition for a non-register");
|
||
return true;
|
||
}
|
||
|
||
if (is_virtual && var_ann (SSA_NAME_VAR (ssa_name))
|
||
&& get_subvars_for_var (SSA_NAME_VAR (ssa_name)) != NULL)
|
||
{
|
||
error ("found real variable when subvariables should have appeared");
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Return true if the definition of SSA_NAME at block BB is malformed.
|
||
|
||
STMT is the statement where SSA_NAME is created.
|
||
|
||
DEFINITION_BLOCK is an array of basic blocks indexed by SSA_NAME
|
||
version numbers. If DEFINITION_BLOCK[SSA_NAME_VERSION] is set,
|
||
it means that the block in that array slot contains the
|
||
definition of SSA_NAME.
|
||
|
||
IS_VIRTUAL is true if SSA_NAME is created by a V_MAY_DEF or a
|
||
V_MUST_DEF. */
|
||
|
||
static bool
|
||
verify_def (basic_block bb, basic_block *definition_block, tree ssa_name,
|
||
tree stmt, bool is_virtual)
|
||
{
|
||
if (verify_ssa_name (ssa_name, is_virtual))
|
||
goto err;
|
||
|
||
if (definition_block[SSA_NAME_VERSION (ssa_name)])
|
||
{
|
||
error ("SSA_NAME created in two different blocks %i and %i",
|
||
definition_block[SSA_NAME_VERSION (ssa_name)]->index, bb->index);
|
||
goto err;
|
||
}
|
||
|
||
definition_block[SSA_NAME_VERSION (ssa_name)] = bb;
|
||
|
||
if (SSA_NAME_DEF_STMT (ssa_name) != stmt)
|
||
{
|
||
error ("SSA_NAME_DEF_STMT is wrong");
|
||
fprintf (stderr, "Expected definition statement:\n");
|
||
print_generic_stmt (stderr, SSA_NAME_DEF_STMT (ssa_name), TDF_VOPS);
|
||
fprintf (stderr, "\nActual definition statement:\n");
|
||
print_generic_stmt (stderr, stmt, TDF_VOPS);
|
||
goto err;
|
||
}
|
||
|
||
return false;
|
||
|
||
err:
|
||
fprintf (stderr, "while verifying SSA_NAME ");
|
||
print_generic_expr (stderr, ssa_name, 0);
|
||
fprintf (stderr, " in statement\n");
|
||
print_generic_stmt (stderr, stmt, TDF_VOPS);
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Return true if the use of SSA_NAME at statement STMT in block BB is
|
||
malformed.
|
||
|
||
DEF_BB is the block where SSA_NAME was found to be created.
|
||
|
||
IDOM contains immediate dominator information for the flowgraph.
|
||
|
||
CHECK_ABNORMAL is true if the caller wants to check whether this use
|
||
is flowing through an abnormal edge (only used when checking PHI
|
||
arguments).
|
||
|
||
IS_VIRTUAL is true if SSA_NAME is created by a V_MAY_DEF or a
|
||
V_MUST_DEF.
|
||
|
||
If NAMES_DEFINED_IN_BB is not NULL, it contains a bitmap of ssa names
|
||
that are defined before STMT in basic block BB. */
|
||
|
||
static bool
|
||
verify_use (basic_block bb, basic_block def_bb, use_operand_p use_p,
|
||
tree stmt, bool check_abnormal, bool is_virtual,
|
||
bitmap names_defined_in_bb)
|
||
{
|
||
bool err = false;
|
||
tree ssa_name = USE_FROM_PTR (use_p);
|
||
|
||
err = verify_ssa_name (ssa_name, is_virtual);
|
||
|
||
if (!TREE_VISITED (ssa_name))
|
||
if (verify_imm_links (stderr, ssa_name))
|
||
err = true;
|
||
|
||
TREE_VISITED (ssa_name) = 1;
|
||
|
||
if (IS_EMPTY_STMT (SSA_NAME_DEF_STMT (ssa_name))
|
||
&& default_def (SSA_NAME_VAR (ssa_name)) == ssa_name)
|
||
; /* Default definitions have empty statements. Nothing to do. */
|
||
else if (!def_bb)
|
||
{
|
||
error ("missing definition");
|
||
err = true;
|
||
}
|
||
else if (bb != def_bb
|
||
&& !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
|
||
{
|
||
error ("definition in block %i does not dominate use in block %i",
|
||
def_bb->index, bb->index);
|
||
err = true;
|
||
}
|
||
else if (bb == def_bb
|
||
&& names_defined_in_bb != NULL
|
||
&& !bitmap_bit_p (names_defined_in_bb, SSA_NAME_VERSION (ssa_name)))
|
||
{
|
||
error ("definition in block %i follows the use", def_bb->index);
|
||
err = true;
|
||
}
|
||
|
||
if (check_abnormal
|
||
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
|
||
{
|
||
error ("SSA_NAME_OCCURS_IN_ABNORMAL_PHI should be set");
|
||
err = true;
|
||
}
|
||
|
||
/* Make sure the use is in an appropriate list by checking the previous
|
||
element to make sure it's the same. */
|
||
if (use_p->prev == NULL)
|
||
{
|
||
error ("no immediate_use list");
|
||
err = true;
|
||
}
|
||
else
|
||
{
|
||
tree listvar ;
|
||
if (use_p->prev->use == NULL)
|
||
listvar = use_p->prev->stmt;
|
||
else
|
||
listvar = USE_FROM_PTR (use_p->prev);
|
||
if (listvar != ssa_name)
|
||
{
|
||
error ("wrong immediate use list");
|
||
err = true;
|
||
}
|
||
}
|
||
|
||
if (err)
|
||
{
|
||
fprintf (stderr, "for SSA_NAME: ");
|
||
print_generic_expr (stderr, ssa_name, TDF_VOPS);
|
||
fprintf (stderr, " in statement:\n");
|
||
print_generic_stmt (stderr, stmt, TDF_VOPS);
|
||
}
|
||
|
||
return err;
|
||
}
|
||
|
||
|
||
/* Return true if any of the arguments for PHI node PHI at block BB is
|
||
malformed.
|
||
|
||
DEFINITION_BLOCK is an array of basic blocks indexed by SSA_NAME version
|
||
numbers. If DEFINITION_BLOCK[SSA_NAME_VERSION] is set, it means that the
|
||
block in that array slot contains the definition of SSA_NAME. */
|
||
|
||
static bool
|
||
verify_phi_args (tree phi, basic_block bb, basic_block *definition_block)
|
||
{
|
||
edge e;
|
||
bool err = false;
|
||
unsigned i, phi_num_args = PHI_NUM_ARGS (phi);
|
||
|
||
if (EDGE_COUNT (bb->preds) != phi_num_args)
|
||
{
|
||
error ("incoming edge count does not match number of PHI arguments");
|
||
err = true;
|
||
goto error;
|
||
}
|
||
|
||
for (i = 0; i < phi_num_args; i++)
|
||
{
|
||
use_operand_p op_p = PHI_ARG_DEF_PTR (phi, i);
|
||
tree op = USE_FROM_PTR (op_p);
|
||
|
||
|
||
e = EDGE_PRED (bb, i);
|
||
|
||
if (op == NULL_TREE)
|
||
{
|
||
error ("PHI argument is missing for edge %d->%d",
|
||
e->src->index,
|
||
e->dest->index);
|
||
err = true;
|
||
goto error;
|
||
}
|
||
|
||
if (TREE_CODE (op) != SSA_NAME && !is_gimple_min_invariant (op))
|
||
{
|
||
error ("PHI argument is not SSA_NAME, or invariant");
|
||
err = true;
|
||
}
|
||
|
||
if (TREE_CODE (op) == SSA_NAME)
|
||
err = verify_use (e->src, definition_block[SSA_NAME_VERSION (op)], op_p,
|
||
phi, e->flags & EDGE_ABNORMAL,
|
||
!is_gimple_reg (PHI_RESULT (phi)),
|
||
NULL);
|
||
|
||
if (e->dest != bb)
|
||
{
|
||
error ("wrong edge %d->%d for PHI argument",
|
||
e->src->index, e->dest->index);
|
||
err = true;
|
||
}
|
||
|
||
if (err)
|
||
{
|
||
fprintf (stderr, "PHI argument\n");
|
||
print_generic_stmt (stderr, op, TDF_VOPS);
|
||
goto error;
|
||
}
|
||
}
|
||
|
||
error:
|
||
if (err)
|
||
{
|
||
fprintf (stderr, "for PHI node\n");
|
||
print_generic_stmt (stderr, phi, TDF_VOPS);
|
||
}
|
||
|
||
|
||
return err;
|
||
}
|
||
|
||
|
||
static void
|
||
verify_flow_insensitive_alias_info (void)
|
||
{
|
||
tree var;
|
||
bitmap visited = BITMAP_ALLOC (NULL);
|
||
referenced_var_iterator rvi;
|
||
|
||
FOR_EACH_REFERENCED_VAR (var, rvi)
|
||
{
|
||
size_t j;
|
||
var_ann_t ann;
|
||
VEC(tree,gc) *may_aliases;
|
||
tree alias;
|
||
|
||
ann = var_ann (var);
|
||
may_aliases = ann->may_aliases;
|
||
|
||
for (j = 0; VEC_iterate (tree, may_aliases, j, alias); j++)
|
||
{
|
||
bitmap_set_bit (visited, DECL_UID (alias));
|
||
|
||
if (!may_be_aliased (alias))
|
||
{
|
||
error ("non-addressable variable inside an alias set");
|
||
debug_variable (alias);
|
||
goto err;
|
||
}
|
||
}
|
||
}
|
||
|
||
FOR_EACH_REFERENCED_VAR (var, rvi)
|
||
{
|
||
var_ann_t ann;
|
||
ann = var_ann (var);
|
||
|
||
if (!MTAG_P (var)
|
||
&& ann->is_aliased
|
||
&& !bitmap_bit_p (visited, DECL_UID (var)))
|
||
{
|
||
error ("addressable variable that is aliased but is not in any alias set");
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
BITMAP_FREE (visited);
|
||
return;
|
||
|
||
err:
|
||
debug_variable (var);
|
||
internal_error ("verify_flow_insensitive_alias_info failed");
|
||
}
|
||
|
||
|
||
static void
|
||
verify_flow_sensitive_alias_info (void)
|
||
{
|
||
size_t i;
|
||
tree ptr;
|
||
|
||
for (i = 1; i < num_ssa_names; i++)
|
||
{
|
||
tree var;
|
||
var_ann_t ann;
|
||
struct ptr_info_def *pi;
|
||
|
||
|
||
ptr = ssa_name (i);
|
||
if (!ptr)
|
||
continue;
|
||
|
||
/* We only care for pointers that are actually referenced in the
|
||
program. */
|
||
if (!POINTER_TYPE_P (TREE_TYPE (ptr)) || !TREE_VISITED (ptr))
|
||
continue;
|
||
|
||
/* RESULT_DECL is special. If it's a GIMPLE register, then it
|
||
is only written-to only once in the return statement.
|
||
Otherwise, aggregate RESULT_DECLs may be written-to more than
|
||
once in virtual operands. */
|
||
var = SSA_NAME_VAR (ptr);
|
||
if (TREE_CODE (var) == RESULT_DECL
|
||
&& is_gimple_reg (ptr))
|
||
continue;
|
||
|
||
pi = SSA_NAME_PTR_INFO (ptr);
|
||
if (pi == NULL)
|
||
continue;
|
||
|
||
ann = var_ann (var);
|
||
if (pi->is_dereferenced && !pi->name_mem_tag && !ann->symbol_mem_tag)
|
||
{
|
||
error ("dereferenced pointers should have a name or a symbol tag");
|
||
goto err;
|
||
}
|
||
|
||
if (pi->name_mem_tag
|
||
&& (pi->pt_vars == NULL || bitmap_empty_p (pi->pt_vars)))
|
||
{
|
||
error ("pointers with a memory tag, should have points-to sets");
|
||
goto err;
|
||
}
|
||
|
||
if (pi->value_escapes_p
|
||
&& pi->name_mem_tag
|
||
&& !is_call_clobbered (pi->name_mem_tag))
|
||
{
|
||
error ("pointer escapes but its name tag is not call-clobbered");
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
return;
|
||
|
||
err:
|
||
debug_variable (ptr);
|
||
internal_error ("verify_flow_sensitive_alias_info failed");
|
||
}
|
||
|
||
DEF_VEC_P (bitmap);
|
||
DEF_VEC_ALLOC_P (bitmap,heap);
|
||
|
||
/* Verify that all name tags have different points to sets.
|
||
This algorithm takes advantage of the fact that every variable with the
|
||
same name tag must have the same points-to set.
|
||
So we check a single variable for each name tag, and verify that its
|
||
points-to set is different from every other points-to set for other name
|
||
tags.
|
||
|
||
Additionally, given a pointer P_i with name tag NMT and symbol tag
|
||
SMT, this function verified the alias set of SMT is a superset of
|
||
the alias set of NMT. */
|
||
|
||
static void
|
||
verify_name_tags (void)
|
||
{
|
||
size_t i;
|
||
size_t j;
|
||
bitmap first, second;
|
||
VEC(tree,heap) *name_tag_reps = NULL;
|
||
VEC(bitmap,heap) *pt_vars_for_reps = NULL;
|
||
bitmap type_aliases = BITMAP_ALLOC (NULL);
|
||
|
||
/* First we compute the name tag representatives and their points-to sets. */
|
||
for (i = 0; i < num_ssa_names; i++)
|
||
{
|
||
struct ptr_info_def *pi;
|
||
tree smt, ptr = ssa_name (i);
|
||
|
||
if (ptr == NULL_TREE)
|
||
continue;
|
||
|
||
pi = SSA_NAME_PTR_INFO (ptr);
|
||
|
||
if (!TREE_VISITED (ptr)
|
||
|| !POINTER_TYPE_P (TREE_TYPE (ptr))
|
||
|| !pi
|
||
|| !pi->name_mem_tag
|
||
|| TREE_VISITED (pi->name_mem_tag))
|
||
continue;
|
||
|
||
TREE_VISITED (pi->name_mem_tag) = 1;
|
||
|
||
if (pi->pt_vars == NULL)
|
||
continue;
|
||
|
||
VEC_safe_push (tree, heap, name_tag_reps, ptr);
|
||
VEC_safe_push (bitmap, heap, pt_vars_for_reps, pi->pt_vars);
|
||
|
||
/* Verify that alias set of PTR's symbol tag is a superset of the
|
||
alias set of PTR's name tag. */
|
||
smt = var_ann (SSA_NAME_VAR (ptr))->symbol_mem_tag;
|
||
if (smt)
|
||
{
|
||
size_t i;
|
||
VEC(tree,gc) *aliases = var_ann (smt)->may_aliases;
|
||
tree alias;
|
||
|
||
bitmap_clear (type_aliases);
|
||
for (i = 0; VEC_iterate (tree, aliases, i, alias); i++)
|
||
bitmap_set_bit (type_aliases, DECL_UID (alias));
|
||
|
||
/* When grouping, we may have added PTR's symbol tag into the
|
||
alias set of PTR's name tag. To prevent a false
|
||
positive, pretend that SMT is in its own alias set. */
|
||
bitmap_set_bit (type_aliases, DECL_UID (smt));
|
||
|
||
if (bitmap_equal_p (type_aliases, pi->pt_vars))
|
||
continue;
|
||
|
||
if (!bitmap_intersect_compl_p (type_aliases, pi->pt_vars))
|
||
{
|
||
error ("alias set of a pointer's symbol tag should be a superset of the corresponding name tag");
|
||
debug_variable (smt);
|
||
debug_variable (pi->name_mem_tag);
|
||
goto err;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now compare all the representative bitmaps with all other representative
|
||
bitmaps, to verify that they are all different. */
|
||
for (i = 0; VEC_iterate (bitmap, pt_vars_for_reps, i, first); i++)
|
||
{
|
||
for (j = i + 1; VEC_iterate (bitmap, pt_vars_for_reps, j, second); j++)
|
||
{
|
||
if (bitmap_equal_p (first, second))
|
||
{
|
||
error ("two different pointers with identical points-to sets but different name tags");
|
||
debug_variable (VEC_index (tree, name_tag_reps, j));
|
||
goto err;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Lastly, clear out the visited flags. */
|
||
for (i = 0; i < num_ssa_names; i++)
|
||
{
|
||
if (ssa_name (i))
|
||
{
|
||
tree ptr = ssa_name (i);
|
||
struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
|
||
if (!TREE_VISITED (ptr)
|
||
|| !POINTER_TYPE_P (TREE_TYPE (ptr))
|
||
|| !pi
|
||
|| !pi->name_mem_tag)
|
||
continue;
|
||
TREE_VISITED (pi->name_mem_tag) = 0;
|
||
}
|
||
}
|
||
|
||
/* We do not have to free the bitmaps or trees in the vectors, as
|
||
they are not owned by us. */
|
||
VEC_free (bitmap, heap, pt_vars_for_reps);
|
||
VEC_free (tree, heap, name_tag_reps);
|
||
BITMAP_FREE (type_aliases);
|
||
return;
|
||
|
||
err:
|
||
debug_variable (VEC_index (tree, name_tag_reps, i));
|
||
internal_error ("verify_name_tags failed");
|
||
}
|
||
|
||
|
||
/* Verify the consistency of call clobbering information. */
|
||
static void
|
||
verify_call_clobbering (void)
|
||
{
|
||
unsigned int i;
|
||
bitmap_iterator bi;
|
||
tree var;
|
||
referenced_var_iterator rvi;
|
||
|
||
/* At all times, the result of the DECL_CALL_CLOBBERED flag should
|
||
match the result of the call_clobbered_vars bitmap. Verify both
|
||
that everything in call_clobbered_vars is marked
|
||
DECL_CALL_CLOBBERED, and that everything marked
|
||
DECL_CALL_CLOBBERED is in call_clobbered_vars. */
|
||
EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
|
||
{
|
||
var = referenced_var (i);
|
||
if (!MTAG_P (var) && !DECL_CALL_CLOBBERED (var))
|
||
{
|
||
error ("variable in call_clobbered_vars but not marked DECL_CALL_CLOBBERED");
|
||
debug_variable (var);
|
||
goto err;
|
||
}
|
||
}
|
||
FOR_EACH_REFERENCED_VAR (var, rvi)
|
||
{
|
||
if (!MTAG_P (var) && DECL_CALL_CLOBBERED (var)
|
||
&& !bitmap_bit_p (call_clobbered_vars, DECL_UID (var)))
|
||
{
|
||
error ("variable marked DECL_CALL_CLOBBERED but not in call_clobbered_vars bitmap.");
|
||
debug_variable (var);
|
||
goto err;
|
||
}
|
||
}
|
||
return;
|
||
|
||
err:
|
||
internal_error ("verify_call_clobbering failed");
|
||
}
|
||
|
||
/* Verify the consistency of aliasing information. */
|
||
|
||
static void
|
||
verify_alias_info (void)
|
||
{
|
||
verify_flow_sensitive_alias_info ();
|
||
verify_name_tags ();
|
||
verify_call_clobbering ();
|
||
verify_flow_insensitive_alias_info ();
|
||
}
|
||
|
||
|
||
/* Verify common invariants in the SSA web.
|
||
TODO: verify the variable annotations. */
|
||
|
||
void
|
||
verify_ssa (bool check_modified_stmt)
|
||
{
|
||
size_t i;
|
||
basic_block bb;
|
||
basic_block *definition_block = XCNEWVEC (basic_block, num_ssa_names);
|
||
ssa_op_iter iter;
|
||
tree op;
|
||
enum dom_state orig_dom_state = dom_computed[CDI_DOMINATORS];
|
||
bitmap names_defined_in_bb = BITMAP_ALLOC (NULL);
|
||
|
||
gcc_assert (!need_ssa_update_p ());
|
||
|
||
verify_stmts ();
|
||
|
||
timevar_push (TV_TREE_SSA_VERIFY);
|
||
|
||
/* Keep track of SSA names present in the IL. */
|
||
for (i = 1; i < num_ssa_names; i++)
|
||
{
|
||
tree name = ssa_name (i);
|
||
if (name)
|
||
{
|
||
tree stmt;
|
||
TREE_VISITED (name) = 0;
|
||
|
||
stmt = SSA_NAME_DEF_STMT (name);
|
||
if (!IS_EMPTY_STMT (stmt))
|
||
{
|
||
basic_block bb = bb_for_stmt (stmt);
|
||
verify_def (bb, definition_block,
|
||
name, stmt, !is_gimple_reg (name));
|
||
|
||
}
|
||
}
|
||
}
|
||
|
||
calculate_dominance_info (CDI_DOMINATORS);
|
||
|
||
/* Now verify all the uses and make sure they agree with the definitions
|
||
found in the previous pass. */
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
edge e;
|
||
tree phi;
|
||
edge_iterator ei;
|
||
block_stmt_iterator bsi;
|
||
|
||
/* Make sure that all edges have a clear 'aux' field. */
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
{
|
||
if (e->aux)
|
||
{
|
||
error ("AUX pointer initialized for edge %d->%d", e->src->index,
|
||
e->dest->index);
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
/* Verify the arguments for every PHI node in the block. */
|
||
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
|
||
{
|
||
if (verify_phi_args (phi, bb, definition_block))
|
||
goto err;
|
||
bitmap_set_bit (names_defined_in_bb,
|
||
SSA_NAME_VERSION (PHI_RESULT (phi)));
|
||
}
|
||
|
||
/* Now verify all the uses and vuses in every statement of the block. */
|
||
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
||
{
|
||
tree stmt = bsi_stmt (bsi);
|
||
use_operand_p use_p;
|
||
|
||
if (check_modified_stmt && stmt_modified_p (stmt))
|
||
{
|
||
error ("stmt (%p) marked modified after optimization pass : ",
|
||
(void *)stmt);
|
||
print_generic_stmt (stderr, stmt, TDF_VOPS);
|
||
goto err;
|
||
}
|
||
|
||
if (TREE_CODE (stmt) == MODIFY_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
|
||
{
|
||
tree lhs, base_address;
|
||
|
||
lhs = TREE_OPERAND (stmt, 0);
|
||
base_address = get_base_address (lhs);
|
||
|
||
if (base_address
|
||
&& SSA_VAR_P (base_address)
|
||
&& ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VMUSTDEF))
|
||
{
|
||
error ("statement makes a memory store, but has no "
|
||
"V_MAY_DEFS nor V_MUST_DEFS");
|
||
print_generic_stmt (stderr, stmt, TDF_VOPS);
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
|
||
SSA_OP_ALL_USES | SSA_OP_ALL_KILLS)
|
||
{
|
||
op = USE_FROM_PTR (use_p);
|
||
if (verify_use (bb, definition_block[SSA_NAME_VERSION (op)],
|
||
use_p, stmt, false, !is_gimple_reg (op),
|
||
names_defined_in_bb))
|
||
goto err;
|
||
}
|
||
|
||
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_ALL_DEFS)
|
||
bitmap_set_bit (names_defined_in_bb, SSA_NAME_VERSION (op));
|
||
}
|
||
|
||
bitmap_clear (names_defined_in_bb);
|
||
}
|
||
|
||
/* Finally, verify alias information. */
|
||
verify_alias_info ();
|
||
|
||
free (definition_block);
|
||
|
||
/* Restore the dominance information to its prior known state, so
|
||
that we do not perturb the compiler's subsequent behavior. */
|
||
if (orig_dom_state == DOM_NONE)
|
||
free_dominance_info (CDI_DOMINATORS);
|
||
else
|
||
dom_computed[CDI_DOMINATORS] = orig_dom_state;
|
||
|
||
BITMAP_FREE (names_defined_in_bb);
|
||
timevar_pop (TV_TREE_SSA_VERIFY);
|
||
return;
|
||
|
||
err:
|
||
internal_error ("verify_ssa failed");
|
||
}
|
||
|
||
/* Return true if the uid in both int tree maps are equal. */
|
||
|
||
int
|
||
int_tree_map_eq (const void *va, const void *vb)
|
||
{
|
||
const struct int_tree_map *a = (const struct int_tree_map *) va;
|
||
const struct int_tree_map *b = (const struct int_tree_map *) vb;
|
||
return (a->uid == b->uid);
|
||
}
|
||
|
||
/* Hash a UID in a int_tree_map. */
|
||
|
||
unsigned int
|
||
int_tree_map_hash (const void *item)
|
||
{
|
||
return ((const struct int_tree_map *)item)->uid;
|
||
}
|
||
|
||
|
||
/* Initialize global DFA and SSA structures. */
|
||
|
||
void
|
||
init_tree_ssa (void)
|
||
{
|
||
referenced_vars = htab_create_ggc (20, int_tree_map_hash,
|
||
int_tree_map_eq, NULL);
|
||
default_defs = htab_create_ggc (20, int_tree_map_hash, int_tree_map_eq, NULL);
|
||
call_clobbered_vars = BITMAP_ALLOC (NULL);
|
||
addressable_vars = BITMAP_ALLOC (NULL);
|
||
init_alias_heapvars ();
|
||
init_ssanames ();
|
||
init_phinodes ();
|
||
global_var = NULL_TREE;
|
||
aliases_computed_p = false;
|
||
}
|
||
|
||
|
||
/* Deallocate memory associated with SSA data structures for FNDECL. */
|
||
|
||
void
|
||
delete_tree_ssa (void)
|
||
{
|
||
size_t i;
|
||
basic_block bb;
|
||
block_stmt_iterator bsi;
|
||
referenced_var_iterator rvi;
|
||
tree var;
|
||
|
||
/* Release any ssa_names still in use. */
|
||
for (i = 0; i < num_ssa_names; i++)
|
||
{
|
||
tree var = ssa_name (i);
|
||
if (var && TREE_CODE (var) == SSA_NAME)
|
||
{
|
||
SSA_NAME_IMM_USE_NODE (var).prev = &(SSA_NAME_IMM_USE_NODE (var));
|
||
SSA_NAME_IMM_USE_NODE (var).next = &(SSA_NAME_IMM_USE_NODE (var));
|
||
}
|
||
release_ssa_name (var);
|
||
}
|
||
|
||
/* Remove annotations from every tree in the function. */
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
||
{
|
||
tree stmt = bsi_stmt (bsi);
|
||
stmt_ann_t ann = get_stmt_ann (stmt);
|
||
|
||
free_ssa_operands (&ann->operands);
|
||
ann->addresses_taken = 0;
|
||
mark_stmt_modified (stmt);
|
||
}
|
||
set_phi_nodes (bb, NULL);
|
||
}
|
||
|
||
/* Remove annotations from every referenced variable. */
|
||
FOR_EACH_REFERENCED_VAR (var, rvi)
|
||
{
|
||
ggc_free (var->common.ann);
|
||
var->common.ann = NULL;
|
||
}
|
||
htab_delete (referenced_vars);
|
||
referenced_vars = NULL;
|
||
|
||
fini_ssanames ();
|
||
fini_phinodes ();
|
||
|
||
global_var = NULL_TREE;
|
||
|
||
htab_delete (default_defs);
|
||
BITMAP_FREE (call_clobbered_vars);
|
||
call_clobbered_vars = NULL;
|
||
BITMAP_FREE (addressable_vars);
|
||
addressable_vars = NULL;
|
||
modified_noreturn_calls = NULL;
|
||
aliases_computed_p = false;
|
||
delete_alias_heapvars ();
|
||
gcc_assert (!need_ssa_update_p ());
|
||
}
|
||
|
||
|
||
/* Return true if the conversion from INNER_TYPE to OUTER_TYPE is a
|
||
useless type conversion, otherwise return false. */
|
||
|
||
bool
|
||
tree_ssa_useless_type_conversion_1 (tree outer_type, tree inner_type)
|
||
{
|
||
if (inner_type == outer_type)
|
||
return true;
|
||
|
||
/* Changes in machine mode are never useless conversions. */
|
||
if (TYPE_MODE (inner_type) != TYPE_MODE (outer_type))
|
||
return false;
|
||
|
||
/* If the inner and outer types are effectively the same, then
|
||
strip the type conversion and enter the equivalence into
|
||
the table. */
|
||
if (lang_hooks.types_compatible_p (inner_type, outer_type))
|
||
return true;
|
||
|
||
/* If both types are pointers and the outer type is a (void *), then
|
||
the conversion is not necessary. The opposite is not true since
|
||
that conversion would result in a loss of information if the
|
||
equivalence was used. Consider an indirect function call where
|
||
we need to know the exact type of the function to correctly
|
||
implement the ABI. */
|
||
else if (POINTER_TYPE_P (inner_type)
|
||
&& POINTER_TYPE_P (outer_type)
|
||
&& TYPE_REF_CAN_ALIAS_ALL (inner_type)
|
||
== TYPE_REF_CAN_ALIAS_ALL (outer_type)
|
||
&& TREE_CODE (TREE_TYPE (outer_type)) == VOID_TYPE)
|
||
return true;
|
||
|
||
/* Don't lose casts between pointers to volatile and non-volatile
|
||
qualified types. Doing so would result in changing the semantics
|
||
of later accesses. */
|
||
else if (POINTER_TYPE_P (inner_type)
|
||
&& POINTER_TYPE_P (outer_type)
|
||
&& TYPE_VOLATILE (TREE_TYPE (outer_type))
|
||
!= TYPE_VOLATILE (TREE_TYPE (inner_type)))
|
||
return false;
|
||
|
||
/* Pointers/references are equivalent if their pointed to types
|
||
are effectively the same. This allows to strip conversions between
|
||
pointer types with different type qualifiers. */
|
||
else if (POINTER_TYPE_P (inner_type)
|
||
&& POINTER_TYPE_P (outer_type)
|
||
&& TYPE_REF_CAN_ALIAS_ALL (inner_type)
|
||
== TYPE_REF_CAN_ALIAS_ALL (outer_type)
|
||
&& lang_hooks.types_compatible_p (TREE_TYPE (inner_type),
|
||
TREE_TYPE (outer_type)))
|
||
return true;
|
||
|
||
/* If both the inner and outer types are integral types, then the
|
||
conversion is not necessary if they have the same mode and
|
||
signedness and precision, and both or neither are boolean. Some
|
||
code assumes an invariant that boolean types stay boolean and do
|
||
not become 1-bit bit-field types. Note that types with precision
|
||
not using all bits of the mode (such as bit-field types in C)
|
||
mean that testing of precision is necessary. */
|
||
else if (INTEGRAL_TYPE_P (inner_type)
|
||
&& INTEGRAL_TYPE_P (outer_type)
|
||
&& TYPE_UNSIGNED (inner_type) == TYPE_UNSIGNED (outer_type)
|
||
&& TYPE_PRECISION (inner_type) == TYPE_PRECISION (outer_type)
|
||
&& simple_cst_equal (TYPE_MAX_VALUE (inner_type), TYPE_MAX_VALUE (outer_type))
|
||
&& simple_cst_equal (TYPE_MIN_VALUE (inner_type), TYPE_MIN_VALUE (outer_type)))
|
||
{
|
||
bool first_boolean = (TREE_CODE (inner_type) == BOOLEAN_TYPE);
|
||
bool second_boolean = (TREE_CODE (outer_type) == BOOLEAN_TYPE);
|
||
if (first_boolean == second_boolean)
|
||
return true;
|
||
}
|
||
|
||
/* Recurse for complex types. */
|
||
else if (TREE_CODE (inner_type) == COMPLEX_TYPE
|
||
&& TREE_CODE (outer_type) == COMPLEX_TYPE
|
||
&& tree_ssa_useless_type_conversion_1 (TREE_TYPE (outer_type),
|
||
TREE_TYPE (inner_type)))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Return true if EXPR is a useless type conversion, otherwise return
|
||
false. */
|
||
|
||
bool
|
||
tree_ssa_useless_type_conversion (tree expr)
|
||
{
|
||
/* If we have an assignment that merely uses a NOP_EXPR to change
|
||
the top of the RHS to the type of the LHS and the type conversion
|
||
is "safe", then strip away the type conversion so that we can
|
||
enter LHS = RHS into the const_and_copies table. */
|
||
if (TREE_CODE (expr) == NOP_EXPR || TREE_CODE (expr) == CONVERT_EXPR
|
||
|| TREE_CODE (expr) == VIEW_CONVERT_EXPR
|
||
|| TREE_CODE (expr) == NON_LVALUE_EXPR)
|
||
return tree_ssa_useless_type_conversion_1 (TREE_TYPE (expr),
|
||
TREE_TYPE (TREE_OPERAND (expr,
|
||
0)));
|
||
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Returns true if statement STMT may read memory. */
|
||
|
||
bool
|
||
stmt_references_memory_p (tree stmt)
|
||
{
|
||
stmt_ann_t ann = stmt_ann (stmt);
|
||
|
||
if (ann->has_volatile_ops)
|
||
return true;
|
||
|
||
return (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS));
|
||
}
|
||
|
||
/* Internal helper for walk_use_def_chains. VAR, FN and DATA are as
|
||
described in walk_use_def_chains.
|
||
|
||
VISITED is a pointer set used to mark visited SSA_NAMEs to avoid
|
||
infinite loops. We used to have a bitmap for this to just mark
|
||
SSA versions we had visited. But non-sparse bitmaps are way too
|
||
expensive, while sparse bitmaps may cause quadratic behavior.
|
||
|
||
IS_DFS is true if the caller wants to perform a depth-first search
|
||
when visiting PHI nodes. A DFS will visit each PHI argument and
|
||
call FN after each one. Otherwise, all the arguments are
|
||
visited first and then FN is called with each of the visited
|
||
arguments in a separate pass. */
|
||
|
||
static bool
|
||
walk_use_def_chains_1 (tree var, walk_use_def_chains_fn fn, void *data,
|
||
struct pointer_set_t *visited, bool is_dfs)
|
||
{
|
||
tree def_stmt;
|
||
|
||
if (pointer_set_insert (visited, var))
|
||
return false;
|
||
|
||
def_stmt = SSA_NAME_DEF_STMT (var);
|
||
|
||
if (TREE_CODE (def_stmt) != PHI_NODE)
|
||
{
|
||
/* If we reached the end of the use-def chain, call FN. */
|
||
return fn (var, def_stmt, data);
|
||
}
|
||
else
|
||
{
|
||
int i;
|
||
|
||
/* When doing a breadth-first search, call FN before following the
|
||
use-def links for each argument. */
|
||
if (!is_dfs)
|
||
for (i = 0; i < PHI_NUM_ARGS (def_stmt); i++)
|
||
if (fn (PHI_ARG_DEF (def_stmt, i), def_stmt, data))
|
||
return true;
|
||
|
||
/* Follow use-def links out of each PHI argument. */
|
||
for (i = 0; i < PHI_NUM_ARGS (def_stmt); i++)
|
||
{
|
||
tree arg = PHI_ARG_DEF (def_stmt, i);
|
||
if (TREE_CODE (arg) == SSA_NAME
|
||
&& walk_use_def_chains_1 (arg, fn, data, visited, is_dfs))
|
||
return true;
|
||
}
|
||
|
||
/* When doing a depth-first search, call FN after following the
|
||
use-def links for each argument. */
|
||
if (is_dfs)
|
||
for (i = 0; i < PHI_NUM_ARGS (def_stmt); i++)
|
||
if (fn (PHI_ARG_DEF (def_stmt, i), def_stmt, data))
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
|
||
/* Walk use-def chains starting at the SSA variable VAR. Call
|
||
function FN at each reaching definition found. FN takes three
|
||
arguments: VAR, its defining statement (DEF_STMT) and a generic
|
||
pointer to whatever state information that FN may want to maintain
|
||
(DATA). FN is able to stop the walk by returning true, otherwise
|
||
in order to continue the walk, FN should return false.
|
||
|
||
Note, that if DEF_STMT is a PHI node, the semantics are slightly
|
||
different. The first argument to FN is no longer the original
|
||
variable VAR, but the PHI argument currently being examined. If FN
|
||
wants to get at VAR, it should call PHI_RESULT (PHI).
|
||
|
||
If IS_DFS is true, this function will:
|
||
|
||
1- walk the use-def chains for all the PHI arguments, and,
|
||
2- call (*FN) (ARG, PHI, DATA) on all the PHI arguments.
|
||
|
||
If IS_DFS is false, the two steps above are done in reverse order
|
||
(i.e., a breadth-first search). */
|
||
|
||
|
||
void
|
||
walk_use_def_chains (tree var, walk_use_def_chains_fn fn, void *data,
|
||
bool is_dfs)
|
||
{
|
||
tree def_stmt;
|
||
|
||
gcc_assert (TREE_CODE (var) == SSA_NAME);
|
||
|
||
def_stmt = SSA_NAME_DEF_STMT (var);
|
||
|
||
/* We only need to recurse if the reaching definition comes from a PHI
|
||
node. */
|
||
if (TREE_CODE (def_stmt) != PHI_NODE)
|
||
(*fn) (var, def_stmt, data);
|
||
else
|
||
{
|
||
struct pointer_set_t *visited = pointer_set_create ();
|
||
walk_use_def_chains_1 (var, fn, data, visited, is_dfs);
|
||
pointer_set_destroy (visited);
|
||
}
|
||
}
|
||
|
||
|
||
/* Emit warnings for uninitialized variables. This is done in two passes.
|
||
|
||
The first pass notices real uses of SSA names with default definitions.
|
||
Such uses are unconditionally uninitialized, and we can be certain that
|
||
such a use is a mistake. This pass is run before most optimizations,
|
||
so that we catch as many as we can.
|
||
|
||
The second pass follows PHI nodes to find uses that are potentially
|
||
uninitialized. In this case we can't necessarily prove that the use
|
||
is really uninitialized. This pass is run after most optimizations,
|
||
so that we thread as many jumps and possible, and delete as much dead
|
||
code as possible, in order to reduce false positives. We also look
|
||
again for plain uninitialized variables, since optimization may have
|
||
changed conditionally uninitialized to unconditionally uninitialized. */
|
||
|
||
/* Emit a warning for T, an SSA_NAME, being uninitialized. The exact
|
||
warning text is in MSGID and LOCUS may contain a location or be null. */
|
||
|
||
static void
|
||
warn_uninit (tree t, const char *gmsgid, void *data)
|
||
{
|
||
tree var = SSA_NAME_VAR (t);
|
||
tree def = SSA_NAME_DEF_STMT (t);
|
||
tree context = (tree) data;
|
||
location_t *locus, *fun_locus;
|
||
|
||
/* Default uses (indicated by an empty definition statement),
|
||
are uninitialized. */
|
||
if (!IS_EMPTY_STMT (def))
|
||
return;
|
||
|
||
/* Except for PARMs of course, which are always initialized. */
|
||
if (TREE_CODE (var) == PARM_DECL)
|
||
return;
|
||
|
||
/* Hard register variables get their initial value from the ether. */
|
||
if (TREE_CODE (var) == VAR_DECL && DECL_HARD_REGISTER (var))
|
||
return;
|
||
|
||
/* TREE_NO_WARNING either means we already warned, or the front end
|
||
wishes to suppress the warning. */
|
||
if (TREE_NO_WARNING (var))
|
||
return;
|
||
|
||
locus = (context != NULL && EXPR_HAS_LOCATION (context)
|
||
? EXPR_LOCUS (context)
|
||
: &DECL_SOURCE_LOCATION (var));
|
||
warning (0, gmsgid, locus, var);
|
||
fun_locus = &DECL_SOURCE_LOCATION (cfun->decl);
|
||
if (locus->file != fun_locus->file
|
||
|| locus->line < fun_locus->line
|
||
|| locus->line > cfun->function_end_locus.line)
|
||
inform ("%J%qD was declared here", var, var);
|
||
|
||
TREE_NO_WARNING (var) = 1;
|
||
}
|
||
|
||
/* Called via walk_tree, look for SSA_NAMEs that have empty definitions
|
||
and warn about them. */
|
||
|
||
static tree
|
||
warn_uninitialized_var (tree *tp, int *walk_subtrees, void *data)
|
||
{
|
||
tree t = *tp;
|
||
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case SSA_NAME:
|
||
/* We only do data flow with SSA_NAMEs, so that's all we
|
||
can warn about. */
|
||
warn_uninit (t, "%H%qD is used uninitialized in this function", data);
|
||
*walk_subtrees = 0;
|
||
break;
|
||
|
||
case REALPART_EXPR:
|
||
case IMAGPART_EXPR:
|
||
/* The total store transformation performed during gimplification
|
||
creates uninitialized variable uses. If all is well, these will
|
||
be optimized away, so don't warn now. */
|
||
if (TREE_CODE (TREE_OPERAND (t, 0)) == SSA_NAME)
|
||
*walk_subtrees = 0;
|
||
break;
|
||
|
||
default:
|
||
if (IS_TYPE_OR_DECL_P (t))
|
||
*walk_subtrees = 0;
|
||
break;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
|
||
and warn about them. */
|
||
|
||
static void
|
||
warn_uninitialized_phi (tree phi)
|
||
{
|
||
int i, n = PHI_NUM_ARGS (phi);
|
||
|
||
/* Don't look at memory tags. */
|
||
if (!is_gimple_reg (PHI_RESULT (phi)))
|
||
return;
|
||
|
||
for (i = 0; i < n; ++i)
|
||
{
|
||
tree op = PHI_ARG_DEF (phi, i);
|
||
if (TREE_CODE (op) == SSA_NAME)
|
||
warn_uninit (op, "%H%qD may be used uninitialized in this function",
|
||
NULL);
|
||
}
|
||
}
|
||
|
||
static unsigned int
|
||
execute_early_warn_uninitialized (void)
|
||
{
|
||
block_stmt_iterator bsi;
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB (bb)
|
||
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
||
{
|
||
tree context = bsi_stmt (bsi);
|
||
walk_tree (bsi_stmt_ptr (bsi), warn_uninitialized_var,
|
||
context, NULL);
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
static unsigned int
|
||
execute_late_warn_uninitialized (void)
|
||
{
|
||
basic_block bb;
|
||
tree phi;
|
||
|
||
/* Re-do the plain uninitialized variable check, as optimization may have
|
||
straightened control flow. Do this first so that we don't accidentally
|
||
get a "may be" warning when we'd have seen an "is" warning later. */
|
||
execute_early_warn_uninitialized ();
|
||
|
||
FOR_EACH_BB (bb)
|
||
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
|
||
warn_uninitialized_phi (phi);
|
||
return 0;
|
||
}
|
||
|
||
static bool
|
||
gate_warn_uninitialized (void)
|
||
{
|
||
return warn_uninitialized != 0;
|
||
}
|
||
|
||
struct tree_opt_pass pass_early_warn_uninitialized =
|
||
{
|
||
NULL, /* name */
|
||
gate_warn_uninitialized, /* gate */
|
||
execute_early_warn_uninitialized, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
0, /* tv_id */
|
||
PROP_ssa, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
0 /* letter */
|
||
};
|
||
|
||
struct tree_opt_pass pass_late_warn_uninitialized =
|
||
{
|
||
NULL, /* name */
|
||
gate_warn_uninitialized, /* gate */
|
||
execute_late_warn_uninitialized, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
0, /* tv_id */
|
||
PROP_ssa, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
0 /* letter */
|
||
};
|
||
|