1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-26 11:47:31 +00:00
freebsd/sys/dev/isp/isp_pci.c
Matt Jacob 75c1e828c0 + A variety of 23XX changes:
disable MWI on 2300

	based on function code, set an 'isp_port' for the 2312- it's a
	separate instance, but the NVRAM is shared, and the second port's
	NVRAM is at offset 256.

+ Enable RIO operation for LVD SCSI cards. This makes a *big* difference
as even under reasonable load we get batched completions of about 30
commands at a time on, say, an ISP1080.

+ Do 'continuation' mailbox commands- this allows us to specify a work
area within the softc and 'continue' repeated mailbox commands. This is
more or less on an ad hoc basis and is currently only used for firmware
loading (which f/w now loads substantially faster becuase the calling
thread is only woken when all the f/w words are loaded- not for each
one of the 40000 f/w words that gets loaded).

+ If we're about to return from isp_intr with a 'bogus interrupt' indication,
and we're not a 23XX card, check to see whether the semaphore register is
currently *2* (not *1* as it should be) and whether there's an async completion
sitting in outgoing mailbox0. This seems to capture cases of lost fast posting
and RIO interrupts that the 12160 && 1080 have been known to pump out under
extreme load (extreme, as in > 250 active commands).

+ FC_SCRATCH_ACQUIRE/FC_SCRATCH_RELEASE macros.

+ Endian correct swizzle/unswizzle of an ATIO2 that has a WWPN in it.

MFC after:	1 week
2002-02-04 21:04:25 +00:00

2044 lines
53 KiB
C

/* $FreeBSD$ */
/*
* PCI specific probe and attach routines for Qlogic ISP SCSI adapters.
* FreeBSD Version.
*
* Copyright (c) 1997, 1998, 1999, 2000, 2001 by Matthew Jacob
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#include <machine/bus_memio.h>
#include <machine/bus_pio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <sys/malloc.h>
#include <dev/isp/isp_freebsd.h>
static u_int16_t isp_pci_rd_reg(struct ispsoftc *, int);
static void isp_pci_wr_reg(struct ispsoftc *, int, u_int16_t);
static u_int16_t isp_pci_rd_reg_1080(struct ispsoftc *, int);
static void isp_pci_wr_reg_1080(struct ispsoftc *, int, u_int16_t);
static int
isp_pci_rd_isr(struct ispsoftc *, u_int16_t *, u_int16_t *, u_int16_t *);
static int
isp_pci_rd_isr_2300(struct ispsoftc *, u_int16_t *, u_int16_t *, u_int16_t *);
static int isp_pci_mbxdma(struct ispsoftc *);
static int
isp_pci_dmasetup(struct ispsoftc *, XS_T *, ispreq_t *, u_int16_t *, u_int16_t);
static void
isp_pci_dmateardown(struct ispsoftc *, XS_T *, u_int16_t);
static void isp_pci_reset1(struct ispsoftc *);
static void isp_pci_dumpregs(struct ispsoftc *, const char *);
#ifndef ISP_CODE_ORG
#define ISP_CODE_ORG 0x1000
#endif
static struct ispmdvec mdvec = {
isp_pci_rd_isr,
isp_pci_rd_reg,
isp_pci_wr_reg,
isp_pci_mbxdma,
isp_pci_dmasetup,
isp_pci_dmateardown,
NULL,
isp_pci_reset1,
isp_pci_dumpregs,
NULL,
BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
};
static struct ispmdvec mdvec_1080 = {
isp_pci_rd_isr,
isp_pci_rd_reg_1080,
isp_pci_wr_reg_1080,
isp_pci_mbxdma,
isp_pci_dmasetup,
isp_pci_dmateardown,
NULL,
isp_pci_reset1,
isp_pci_dumpregs,
NULL,
BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
};
static struct ispmdvec mdvec_12160 = {
isp_pci_rd_isr,
isp_pci_rd_reg_1080,
isp_pci_wr_reg_1080,
isp_pci_mbxdma,
isp_pci_dmasetup,
isp_pci_dmateardown,
NULL,
isp_pci_reset1,
isp_pci_dumpregs,
NULL,
BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
};
static struct ispmdvec mdvec_2100 = {
isp_pci_rd_isr,
isp_pci_rd_reg,
isp_pci_wr_reg,
isp_pci_mbxdma,
isp_pci_dmasetup,
isp_pci_dmateardown,
NULL,
isp_pci_reset1,
isp_pci_dumpregs
};
static struct ispmdvec mdvec_2200 = {
isp_pci_rd_isr,
isp_pci_rd_reg,
isp_pci_wr_reg,
isp_pci_mbxdma,
isp_pci_dmasetup,
isp_pci_dmateardown,
NULL,
isp_pci_reset1,
isp_pci_dumpregs
};
static struct ispmdvec mdvec_2300 = {
isp_pci_rd_isr_2300,
isp_pci_rd_reg,
isp_pci_wr_reg,
isp_pci_mbxdma,
isp_pci_dmasetup,
isp_pci_dmateardown,
NULL,
isp_pci_reset1,
isp_pci_dumpregs
};
#ifndef PCIM_CMD_INVEN
#define PCIM_CMD_INVEN 0x10
#endif
#ifndef PCIM_CMD_BUSMASTEREN
#define PCIM_CMD_BUSMASTEREN 0x0004
#endif
#ifndef PCIM_CMD_PERRESPEN
#define PCIM_CMD_PERRESPEN 0x0040
#endif
#ifndef PCIM_CMD_SEREN
#define PCIM_CMD_SEREN 0x0100
#endif
#ifndef PCIR_COMMAND
#define PCIR_COMMAND 0x04
#endif
#ifndef PCIR_CACHELNSZ
#define PCIR_CACHELNSZ 0x0c
#endif
#ifndef PCIR_LATTIMER
#define PCIR_LATTIMER 0x0d
#endif
#ifndef PCIR_ROMADDR
#define PCIR_ROMADDR 0x30
#endif
#ifndef PCI_VENDOR_QLOGIC
#define PCI_VENDOR_QLOGIC 0x1077
#endif
#ifndef PCI_PRODUCT_QLOGIC_ISP1020
#define PCI_PRODUCT_QLOGIC_ISP1020 0x1020
#endif
#ifndef PCI_PRODUCT_QLOGIC_ISP1080
#define PCI_PRODUCT_QLOGIC_ISP1080 0x1080
#endif
#ifndef PCI_PRODUCT_QLOGIC_ISP12160
#define PCI_PRODUCT_QLOGIC_ISP12160 0x1216
#endif
#ifndef PCI_PRODUCT_QLOGIC_ISP1240
#define PCI_PRODUCT_QLOGIC_ISP1240 0x1240
#endif
#ifndef PCI_PRODUCT_QLOGIC_ISP1280
#define PCI_PRODUCT_QLOGIC_ISP1280 0x1280
#endif
#ifndef PCI_PRODUCT_QLOGIC_ISP2100
#define PCI_PRODUCT_QLOGIC_ISP2100 0x2100
#endif
#ifndef PCI_PRODUCT_QLOGIC_ISP2200
#define PCI_PRODUCT_QLOGIC_ISP2200 0x2200
#endif
#ifndef PCI_PRODUCT_QLOGIC_ISP2300
#define PCI_PRODUCT_QLOGIC_ISP2300 0x2300
#endif
#ifndef PCI_PRODUCT_QLOGIC_ISP2312
#define PCI_PRODUCT_QLOGIC_ISP2312 0x2312
#endif
#define PCI_QLOGIC_ISP1020 \
((PCI_PRODUCT_QLOGIC_ISP1020 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP1080 \
((PCI_PRODUCT_QLOGIC_ISP1080 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP12160 \
((PCI_PRODUCT_QLOGIC_ISP12160 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP1240 \
((PCI_PRODUCT_QLOGIC_ISP1240 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP1280 \
((PCI_PRODUCT_QLOGIC_ISP1280 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP2100 \
((PCI_PRODUCT_QLOGIC_ISP2100 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP2200 \
((PCI_PRODUCT_QLOGIC_ISP2200 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP2300 \
((PCI_PRODUCT_QLOGIC_ISP2300 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP2312 \
((PCI_PRODUCT_QLOGIC_ISP2312 << 16) | PCI_VENDOR_QLOGIC)
/*
* Odd case for some AMI raid cards... We need to *not* attach to this.
*/
#define AMI_RAID_SUBVENDOR_ID 0x101e
#define IO_MAP_REG 0x10
#define MEM_MAP_REG 0x14
#define PCI_DFLT_LTNCY 0x40
#define PCI_DFLT_LNSZ 0x10
static int isp_pci_probe (device_t);
static int isp_pci_attach (device_t);
struct isp_pcisoftc {
struct ispsoftc pci_isp;
device_t pci_dev;
struct resource * pci_reg;
bus_space_tag_t pci_st;
bus_space_handle_t pci_sh;
void * ih;
int16_t pci_poff[_NREG_BLKS];
bus_dma_tag_t parent_dmat;
bus_dma_tag_t cntrol_dmat;
bus_dmamap_t cntrol_dmap;
bus_dmamap_t *dmaps;
};
ispfwfunc *isp_get_firmware_p = NULL;
static device_method_t isp_pci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, isp_pci_probe),
DEVMETHOD(device_attach, isp_pci_attach),
{ 0, 0 }
};
static void isp_pci_intr(void *);
static driver_t isp_pci_driver = {
"isp", isp_pci_methods, sizeof (struct isp_pcisoftc)
};
static devclass_t isp_devclass;
DRIVER_MODULE(isp, pci, isp_pci_driver, isp_devclass, 0, 0);
MODULE_VERSION(isp, 1);
static int
isp_pci_probe(device_t dev)
{
switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) {
case PCI_QLOGIC_ISP1020:
device_set_desc(dev, "Qlogic ISP 1020/1040 PCI SCSI Adapter");
break;
case PCI_QLOGIC_ISP1080:
device_set_desc(dev, "Qlogic ISP 1080 PCI SCSI Adapter");
break;
case PCI_QLOGIC_ISP1240:
device_set_desc(dev, "Qlogic ISP 1240 PCI SCSI Adapter");
break;
case PCI_QLOGIC_ISP1280:
device_set_desc(dev, "Qlogic ISP 1280 PCI SCSI Adapter");
break;
case PCI_QLOGIC_ISP12160:
if (pci_get_subvendor(dev) == AMI_RAID_SUBVENDOR_ID) {
return (ENXIO);
}
device_set_desc(dev, "Qlogic ISP 12160 PCI SCSI Adapter");
break;
case PCI_QLOGIC_ISP2100:
device_set_desc(dev, "Qlogic ISP 2100 PCI FC-AL Adapter");
break;
case PCI_QLOGIC_ISP2200:
device_set_desc(dev, "Qlogic ISP 2200 PCI FC-AL Adapter");
break;
case PCI_QLOGIC_ISP2300:
device_set_desc(dev, "Qlogic ISP 2300 PCI FC-AL Adapter");
break;
case PCI_QLOGIC_ISP2312:
device_set_desc(dev, "Qlogic ISP 2312 PCI FC-AL Adapter");
break;
default:
return (ENXIO);
}
if (device_get_unit(dev) == 0 && bootverbose) {
printf("Qlogic ISP Driver, FreeBSD Version %d.%d, "
"Core Version %d.%d\n",
ISP_PLATFORM_VERSION_MAJOR, ISP_PLATFORM_VERSION_MINOR,
ISP_CORE_VERSION_MAJOR, ISP_CORE_VERSION_MINOR);
}
/*
* XXXX: Here is where we might load the f/w module
* XXXX: (or increase a reference count to it).
*/
return (0);
}
static int
isp_pci_attach(device_t dev)
{
struct resource *regs, *irq;
int tval, rtp, rgd, iqd, m1, m2, isp_debug, role;
u_int32_t data, cmd, linesz, psize, basetype;
struct isp_pcisoftc *pcs;
struct ispsoftc *isp = NULL;
struct ispmdvec *mdvp;
bus_size_t lim;
const char *sptr;
int locksetup = 0;
/*
* Figure out if we're supposed to skip this one.
* If we are, we actually go to ISP_ROLE_NONE.
*/
tval = 0;
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
"disable", &tval) == 0 && tval) {
device_printf(dev, "device is disabled\n");
/* but return 0 so the !$)$)*!$*) unit isn't reused */
return (0);
}
role = 0;
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
"role", &role) == 0 &&
((role & ~(ISP_ROLE_INITIATOR|ISP_ROLE_TARGET)) == 0)) {
device_printf(dev, "setting role to 0x%x\n", role);
} else {
#ifdef ISP_TARGET_MODE
role = ISP_ROLE_INITIATOR|ISP_ROLE_TARGET;
#else
role = ISP_DEFAULT_ROLES;
#endif
}
pcs = malloc(sizeof (struct isp_pcisoftc), M_DEVBUF, M_NOWAIT | M_ZERO);
if (pcs == NULL) {
device_printf(dev, "cannot allocate softc\n");
return (ENOMEM);
}
/*
* Figure out which we should try first - memory mapping or i/o mapping?
*/
#ifdef __alpha__
m1 = PCIM_CMD_MEMEN;
m2 = PCIM_CMD_PORTEN;
#else
m1 = PCIM_CMD_PORTEN;
m2 = PCIM_CMD_MEMEN;
#endif
tval = 0;
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
"prefer_iomap", &tval) == 0 && tval != 0) {
m1 = PCIM_CMD_PORTEN;
m2 = PCIM_CMD_MEMEN;
}
tval = 0;
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
"prefer_memmap", &tval) == 0 && tval != 0) {
m1 = PCIM_CMD_MEMEN;
m2 = PCIM_CMD_PORTEN;
}
linesz = PCI_DFLT_LNSZ;
irq = regs = NULL;
rgd = rtp = iqd = 0;
cmd = pci_read_config(dev, PCIR_COMMAND, 1);
if (cmd & m1) {
rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
rgd = (m1 == PCIM_CMD_MEMEN)? MEM_MAP_REG : IO_MAP_REG;
regs = bus_alloc_resource(dev, rtp, &rgd, 0, ~0, 1, RF_ACTIVE);
}
if (regs == NULL && (cmd & m2)) {
rtp = (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
rgd = (m2 == PCIM_CMD_MEMEN)? MEM_MAP_REG : IO_MAP_REG;
regs = bus_alloc_resource(dev, rtp, &rgd, 0, ~0, 1, RF_ACTIVE);
}
if (regs == NULL) {
device_printf(dev, "unable to map any ports\n");
goto bad;
}
if (bootverbose)
device_printf(dev, "using %s space register mapping\n",
(rgd == IO_MAP_REG)? "I/O" : "Memory");
pcs->pci_dev = dev;
pcs->pci_reg = regs;
pcs->pci_st = rman_get_bustag(regs);
pcs->pci_sh = rman_get_bushandle(regs);
pcs->pci_poff[BIU_BLOCK >> _BLK_REG_SHFT] = BIU_REGS_OFF;
pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS_OFF;
pcs->pci_poff[SXP_BLOCK >> _BLK_REG_SHFT] = PCI_SXP_REGS_OFF;
pcs->pci_poff[RISC_BLOCK >> _BLK_REG_SHFT] = PCI_RISC_REGS_OFF;
pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = DMA_REGS_OFF;
mdvp = &mdvec;
basetype = ISP_HA_SCSI_UNKNOWN;
psize = sizeof (sdparam);
lim = BUS_SPACE_MAXSIZE_32BIT;
if (pci_get_devid(dev) == PCI_QLOGIC_ISP1020) {
mdvp = &mdvec;
basetype = ISP_HA_SCSI_UNKNOWN;
psize = sizeof (sdparam);
lim = BUS_SPACE_MAXSIZE_24BIT;
}
if (pci_get_devid(dev) == PCI_QLOGIC_ISP1080) {
mdvp = &mdvec_1080;
basetype = ISP_HA_SCSI_1080;
psize = sizeof (sdparam);
pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
ISP1080_DMA_REGS_OFF;
}
if (pci_get_devid(dev) == PCI_QLOGIC_ISP1240) {
mdvp = &mdvec_1080;
basetype = ISP_HA_SCSI_1240;
psize = 2 * sizeof (sdparam);
pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
ISP1080_DMA_REGS_OFF;
}
if (pci_get_devid(dev) == PCI_QLOGIC_ISP1280) {
mdvp = &mdvec_1080;
basetype = ISP_HA_SCSI_1280;
psize = 2 * sizeof (sdparam);
pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
ISP1080_DMA_REGS_OFF;
}
if (pci_get_devid(dev) == PCI_QLOGIC_ISP12160) {
mdvp = &mdvec_12160;
basetype = ISP_HA_SCSI_12160;
psize = 2 * sizeof (sdparam);
pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
ISP1080_DMA_REGS_OFF;
}
if (pci_get_devid(dev) == PCI_QLOGIC_ISP2100) {
mdvp = &mdvec_2100;
basetype = ISP_HA_FC_2100;
psize = sizeof (fcparam);
pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
PCI_MBOX_REGS2100_OFF;
if (pci_get_revid(dev) < 3) {
/*
* XXX: Need to get the actual revision
* XXX: number of the 2100 FB. At any rate,
* XXX: lower cache line size for early revision
* XXX; boards.
*/
linesz = 1;
}
}
if (pci_get_devid(dev) == PCI_QLOGIC_ISP2200) {
mdvp = &mdvec_2200;
basetype = ISP_HA_FC_2200;
psize = sizeof (fcparam);
pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
PCI_MBOX_REGS2100_OFF;
}
if (pci_get_devid(dev) == PCI_QLOGIC_ISP2300) {
mdvp = &mdvec_2300;
basetype = ISP_HA_FC_2300;
psize = sizeof (fcparam);
pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
PCI_MBOX_REGS2300_OFF;
}
if (pci_get_devid(dev) == PCI_QLOGIC_ISP2312) {
mdvp = &mdvec_2300;
basetype = ISP_HA_FC_2312;
psize = sizeof (fcparam);
pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
PCI_MBOX_REGS2300_OFF;
}
isp = &pcs->pci_isp;
isp->isp_param = malloc(psize, M_DEVBUF, M_NOWAIT | M_ZERO);
if (isp->isp_param == NULL) {
device_printf(dev, "cannot allocate parameter data\n");
goto bad;
}
isp->isp_mdvec = mdvp;
isp->isp_type = basetype;
isp->isp_revision = pci_get_revid(dev);
isp->isp_role = role;
isp->isp_dev = dev;
/*
* Try and find firmware for this device.
*/
if (isp_get_firmware_p) {
int device = (int) pci_get_device(dev);
#ifdef ISP_TARGET_MODE
(*isp_get_firmware_p)(0, 1, device, &mdvp->dv_ispfw);
#else
(*isp_get_firmware_p)(0, 0, device, &mdvp->dv_ispfw);
#endif
}
/*
* Make sure that SERR, PERR, WRITE INVALIDATE and BUSMASTER
* are set.
*/
cmd |= PCIM_CMD_SEREN | PCIM_CMD_PERRESPEN |
PCIM_CMD_BUSMASTEREN | PCIM_CMD_INVEN;
if (IS_2300(isp)) { /* per QLogic errata */
cmd &= ~PCIM_CMD_INVEN;
}
pci_write_config(dev, PCIR_COMMAND, cmd, 1);
/*
* Make sure the Cache Line Size register is set sensibly.
*/
data = pci_read_config(dev, PCIR_CACHELNSZ, 1);
if (data != linesz) {
data = PCI_DFLT_LNSZ;
isp_prt(isp, ISP_LOGCONFIG, "set PCI line size to %d", data);
pci_write_config(dev, PCIR_CACHELNSZ, data, 1);
}
/*
* Make sure the Latency Timer is sane.
*/
data = pci_read_config(dev, PCIR_LATTIMER, 1);
if (data < PCI_DFLT_LTNCY) {
data = PCI_DFLT_LTNCY;
isp_prt(isp, ISP_LOGCONFIG, "set PCI latency to %d", data);
pci_write_config(dev, PCIR_LATTIMER, data, 1);
}
/*
* Make sure we've disabled the ROM.
*/
data = pci_read_config(dev, PCIR_ROMADDR, 4);
data &= ~1;
pci_write_config(dev, PCIR_ROMADDR, data, 4);
if (bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, lim + 1,
255, lim, 0, &pcs->parent_dmat) != 0) {
device_printf(dev, "could not create master dma tag\n");
free(isp->isp_param, M_DEVBUF);
free(pcs, M_DEVBUF);
return (ENXIO);
}
iqd = 0;
irq = bus_alloc_resource(dev, SYS_RES_IRQ, &iqd, 0, ~0,
1, RF_ACTIVE | RF_SHAREABLE);
if (irq == NULL) {
device_printf(dev, "could not allocate interrupt\n");
goto bad;
}
tval = 0;
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
"fwload_disable", &tval) == 0 && tval != 0) {
isp->isp_confopts |= ISP_CFG_NORELOAD;
}
tval = 0;
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
"ignore_nvram", &tval) == 0 && tval != 0) {
isp->isp_confopts |= ISP_CFG_NONVRAM;
}
tval = 0;
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
"fullduplex", &tval) == 0 && tval != 0) {
isp->isp_confopts |= ISP_CFG_FULL_DUPLEX;
}
sptr = 0;
if (resource_string_value(device_get_name(dev), device_get_unit(dev),
"topology", (const char **) &sptr) == 0 && sptr != 0) {
if (strcmp(sptr, "lport") == 0) {
isp->isp_confopts |= ISP_CFG_LPORT;
} else if (strcmp(sptr, "nport") == 0) {
isp->isp_confopts |= ISP_CFG_NPORT;
} else if (strcmp(sptr, "lport-only") == 0) {
isp->isp_confopts |= ISP_CFG_LPORT_ONLY;
} else if (strcmp(sptr, "nport-only") == 0) {
isp->isp_confopts |= ISP_CFG_NPORT_ONLY;
}
}
/*
* Because the resource_*_value functions can neither return
* 64 bit integer values, nor can they be directly coerced
* to interpret the right hand side of the assignment as
* you want them to interpret it, we have to force WWN
* hint replacement to specify WWN strings with a leading
* 'w' (e..g w50000000aaaa0001). Sigh.
*/
sptr = 0;
tval = resource_string_value(device_get_name(dev), device_get_unit(dev),
"portwwn", (const char **) &sptr);
if (tval == 0 && sptr != 0 && *sptr++ == 'w') {
char *eptr = 0;
isp->isp_osinfo.default_port_wwn = strtouq(sptr, &eptr, 16);
if (eptr < sptr + 16 || isp->isp_osinfo.default_port_wwn == 0) {
device_printf(dev, "mangled portwwn hint '%s'\n", sptr);
isp->isp_osinfo.default_port_wwn = 0;
} else {
isp->isp_confopts |= ISP_CFG_OWNWWN;
}
}
if (isp->isp_osinfo.default_port_wwn == 0) {
isp->isp_osinfo.default_port_wwn = 0x400000007F000009ull;
}
sptr = 0;
tval = resource_string_value(device_get_name(dev), device_get_unit(dev),
"nodewwn", (const char **) &sptr);
if (tval == 0 && sptr != 0 && *sptr++ == 'w') {
char *eptr = 0;
isp->isp_osinfo.default_node_wwn = strtouq(sptr, &eptr, 16);
if (eptr < sptr + 16 || isp->isp_osinfo.default_node_wwn == 0) {
device_printf(dev, "mangled nodewwn hint '%s'\n", sptr);
isp->isp_osinfo.default_node_wwn = 0;
} else {
isp->isp_confopts |= ISP_CFG_OWNWWN;
}
}
if (isp->isp_osinfo.default_node_wwn == 0) {
isp->isp_osinfo.default_node_wwn = 0x400000007F000009ull;
}
isp_debug = 0;
(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
"debug", &isp_debug);
/* Make sure the lock is set up. */
mtx_init(&isp->isp_osinfo.lock, "isp", MTX_DEF);
locksetup++;
#ifdef ISP_SMPLOCK
#define INTR_FLAGS INTR_TYPE_CAM | INTR_MPSAFE | INTR_ENTROPY
#else
#define INTR_FLAGS INTR_TYPE_CAM | INTR_ENTROPY
#endif
if (bus_setup_intr(dev, irq, INTR_FLAGS, isp_pci_intr, isp, &pcs->ih)) {
device_printf(dev, "could not setup interrupt\n");
goto bad;
}
/*
* Set up logging levels.
*/
if (isp_debug) {
isp->isp_dblev = isp_debug;
} else {
isp->isp_dblev = ISP_LOGWARN|ISP_LOGERR;
}
if (bootverbose)
isp->isp_dblev |= ISP_LOGCONFIG|ISP_LOGINFO;
/*
* Last minute checks...
*/
if (IS_2312(isp)) {
isp->isp_port = pci_get_function(dev);
}
/*
* Make sure we're in reset state.
*/
ISP_LOCK(isp);
isp_reset(isp);
if (isp->isp_state != ISP_RESETSTATE) {
ISP_UNLOCK(isp);
goto bad;
}
isp_init(isp);
if (isp->isp_role != ISP_ROLE_NONE && isp->isp_state != ISP_INITSTATE) {
isp_uninit(isp);
ISP_UNLOCK(isp);
goto bad;
}
isp_attach(isp);
if (isp->isp_role != ISP_ROLE_NONE && isp->isp_state != ISP_RUNSTATE) {
isp_uninit(isp);
ISP_UNLOCK(isp);
goto bad;
}
/*
* XXXX: Here is where we might unload the f/w module
* XXXX: (or decrease the reference count to it).
*/
ISP_UNLOCK(isp);
return (0);
bad:
if (pcs && pcs->ih) {
(void) bus_teardown_intr(dev, irq, pcs->ih);
}
if (locksetup && isp) {
mtx_destroy(&isp->isp_osinfo.lock);
}
if (irq) {
(void) bus_release_resource(dev, SYS_RES_IRQ, iqd, irq);
}
if (regs) {
(void) bus_release_resource(dev, rtp, rgd, regs);
}
if (pcs) {
if (pcs->pci_isp.isp_param)
free(pcs->pci_isp.isp_param, M_DEVBUF);
free(pcs, M_DEVBUF);
}
/*
* XXXX: Here is where we might unload the f/w module
* XXXX: (or decrease the reference count to it).
*/
return (ENXIO);
}
static void
isp_pci_intr(void *arg)
{
struct ispsoftc *isp = arg;
u_int16_t isr, sema, mbox;
ISP_LOCK(isp);
isp->isp_intcnt++;
if (ISP_READ_ISR(isp, &isr, &sema, &mbox) == 0) {
isp->isp_intbogus++;
} else {
int iok = isp->isp_osinfo.intsok;
isp->isp_osinfo.intsok = 0;
isp_intr(isp, isr, sema, mbox);
isp->isp_osinfo.intsok = iok;
}
ISP_UNLOCK(isp);
}
#define IspVirt2Off(a, x) \
(((struct isp_pcisoftc *)a)->pci_poff[((x) & _BLK_REG_MASK) >> \
_BLK_REG_SHFT] + ((x) & 0xff))
#define BXR2(pcs, off) \
bus_space_read_2(pcs->pci_st, pcs->pci_sh, off)
#define BXW2(pcs, off, v) \
bus_space_write_2(pcs->pci_st, pcs->pci_sh, off, v)
static INLINE int
isp_pci_rd_debounced(struct ispsoftc *isp, int off, u_int16_t *rp)
{
struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
u_int16_t val0, val1;
int i = 0;
do {
val0 = BXR2(pcs, IspVirt2Off(isp, off));
val1 = BXR2(pcs, IspVirt2Off(isp, off));
} while (val0 != val1 && ++i < 1000);
if (val0 != val1) {
return (1);
}
*rp = val0;
return (0);
}
static int
isp_pci_rd_isr(struct ispsoftc *isp, u_int16_t *isrp,
u_int16_t *semap, u_int16_t *mbp)
{
struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
u_int16_t isr, sema;
if (IS_2100(isp)) {
if (isp_pci_rd_debounced(isp, BIU_ISR, &isr)) {
return (0);
}
if (isp_pci_rd_debounced(isp, BIU_SEMA, &sema)) {
return (0);
}
} else {
isr = BXR2(pcs, IspVirt2Off(isp, BIU_ISR));
sema = BXR2(pcs, IspVirt2Off(isp, BIU_SEMA));
}
isp_prt(isp, ISP_LOGDEBUG3, "ISR 0x%x SEMA 0x%x", isr, sema);
isr &= INT_PENDING_MASK(isp);
sema &= BIU_SEMA_LOCK;
if (isr == 0 && sema == 0) {
return (0);
}
*isrp = isr;
if ((*semap = sema) != 0) {
if (IS_2100(isp)) {
if (isp_pci_rd_debounced(isp, OUTMAILBOX0, mbp)) {
return (0);
}
} else {
*mbp = BXR2(pcs, IspVirt2Off(isp, OUTMAILBOX0));
}
}
return (1);
}
static int
isp_pci_rd_isr_2300(struct ispsoftc *isp, u_int16_t *isrp,
u_int16_t *semap, u_int16_t *mbox0p)
{
struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
u_int32_t r2hisr;
if (!(BXR2(pcs, IspVirt2Off(isp, BIU_ISR) & BIU2100_ISR_RISC_INT))) {
*isrp = 0;
return (0);
}
r2hisr = bus_space_read_4(pcs->pci_st, pcs->pci_sh,
IspVirt2Off(pcs, BIU_R2HSTSLO));
isp_prt(isp, ISP_LOGDEBUG3, "RISC2HOST ISR 0x%x", r2hisr);
if ((r2hisr & BIU_R2HST_INTR) == 0) {
*isrp = 0;
return (0);
}
switch (r2hisr & BIU_R2HST_ISTAT_MASK) {
case ISPR2HST_ROM_MBX_OK:
case ISPR2HST_ROM_MBX_FAIL:
case ISPR2HST_MBX_OK:
case ISPR2HST_MBX_FAIL:
case ISPR2HST_ASYNC_EVENT:
case ISPR2HST_RIO_16:
case ISPR2HST_FPOST:
case ISPR2HST_FPOST_CTIO:
*isrp = r2hisr & 0xffff;
*mbox0p = (r2hisr >> 16);
*semap = 1;
return (1);
case ISPR2HST_RSPQ_UPDATE:
*isrp = r2hisr & 0xffff;
*mbox0p = 0;
*semap = 0;
return (1);
default:
return (0);
}
}
static u_int16_t
isp_pci_rd_reg(struct ispsoftc *isp, int regoff)
{
u_int16_t rv;
struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
int oldconf = 0;
if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
/*
* We will assume that someone has paused the RISC processor.
*/
oldconf = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
oldconf | BIU_PCI_CONF1_SXP);
}
rv = BXR2(pcs, IspVirt2Off(isp, regoff));
if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf);
}
return (rv);
}
static void
isp_pci_wr_reg(struct ispsoftc *isp, int regoff, u_int16_t val)
{
struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
int oldconf = 0;
if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
/*
* We will assume that someone has paused the RISC processor.
*/
oldconf = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
oldconf | BIU_PCI_CONF1_SXP);
}
BXW2(pcs, IspVirt2Off(isp, regoff), val);
if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf);
}
}
static u_int16_t
isp_pci_rd_reg_1080(struct ispsoftc *isp, int regoff)
{
u_int16_t rv, oc = 0;
struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
if ((regoff & _BLK_REG_MASK) == SXP_BLOCK ||
(regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) {
u_int16_t tc;
/*
* We will assume that someone has paused the RISC processor.
*/
oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
tc = oc & ~BIU_PCI1080_CONF1_DMA;
if (regoff & SXP_BANK1_SELECT)
tc |= BIU_PCI1080_CONF1_SXP1;
else
tc |= BIU_PCI1080_CONF1_SXP0;
BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), tc);
} else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) {
oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
oc | BIU_PCI1080_CONF1_DMA);
}
rv = BXR2(pcs, IspVirt2Off(isp, regoff));
if (oc) {
BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc);
}
return (rv);
}
static void
isp_pci_wr_reg_1080(struct ispsoftc *isp, int regoff, u_int16_t val)
{
struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
int oc = 0;
if ((regoff & _BLK_REG_MASK) == SXP_BLOCK ||
(regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) {
u_int16_t tc;
/*
* We will assume that someone has paused the RISC processor.
*/
oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
tc = oc & ~BIU_PCI1080_CONF1_DMA;
if (regoff & SXP_BANK1_SELECT)
tc |= BIU_PCI1080_CONF1_SXP1;
else
tc |= BIU_PCI1080_CONF1_SXP0;
BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), tc);
} else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) {
oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
oc | BIU_PCI1080_CONF1_DMA);
}
BXW2(pcs, IspVirt2Off(isp, regoff), val);
if (oc) {
BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc);
}
}
static void isp_map_rquest(void *, bus_dma_segment_t *, int, int);
static void isp_map_result(void *, bus_dma_segment_t *, int, int);
static void isp_map_fcscrt(void *, bus_dma_segment_t *, int, int);
struct imush {
struct ispsoftc *isp;
int error;
};
static void
isp_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct imush *imushp = (struct imush *) arg;
if (error) {
imushp->error = error;
} else {
imushp->isp->isp_rquest_dma = segs->ds_addr;
}
}
static void
isp_map_result(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct imush *imushp = (struct imush *) arg;
if (error) {
imushp->error = error;
} else {
imushp->isp->isp_result_dma = segs->ds_addr;
}
}
static void
isp_map_fcscrt(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct imush *imushp = (struct imush *) arg;
if (error) {
imushp->error = error;
} else {
fcparam *fcp = imushp->isp->isp_param;
fcp->isp_scdma = segs->ds_addr;
}
}
static int
isp_pci_mbxdma(struct ispsoftc *isp)
{
struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp;
caddr_t base;
u_int32_t len;
int i, error;
bus_size_t lim;
struct imush im;
/*
* Already been here? If so, leave...
*/
if (isp->isp_rquest) {
return (0);
}
len = sizeof (XS_T **) * isp->isp_maxcmds;
isp->isp_xflist = (XS_T **) malloc(len, M_DEVBUF, M_WAITOK | M_ZERO);
if (isp->isp_xflist == NULL) {
isp_prt(isp, ISP_LOGERR, "cannot alloc xflist array");
return (1);
}
len = sizeof (bus_dmamap_t) * isp->isp_maxcmds;
pci->dmaps = (bus_dmamap_t *) malloc(len, M_DEVBUF, M_WAITOK);
if (pci->dmaps == NULL) {
isp_prt(isp, ISP_LOGERR, "can't alloc dma maps");
free(isp->isp_xflist, M_DEVBUF);
return (1);
}
if (IS_FC(isp) || IS_ULTRA2(isp))
lim = BUS_SPACE_MAXADDR + 1;
else
lim = BUS_SPACE_MAXADDR_24BIT + 1;
/*
* Allocate and map the request, result queues, plus FC scratch area.
*/
len = ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
len += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
if (IS_FC(isp)) {
len += ISP2100_SCRLEN;
}
if (bus_dma_tag_create(pci->parent_dmat, PAGE_SIZE, lim,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, len, 1,
BUS_SPACE_MAXSIZE_32BIT, 0, &pci->cntrol_dmat) != 0) {
isp_prt(isp, ISP_LOGERR,
"cannot create a dma tag for control spaces");
free(isp->isp_xflist, M_DEVBUF);
free(pci->dmaps, M_DEVBUF);
return (1);
}
if (bus_dmamem_alloc(pci->cntrol_dmat, (void **)&base,
BUS_DMA_NOWAIT, &pci->cntrol_dmap) != 0) {
isp_prt(isp, ISP_LOGERR,
"cannot allocate %d bytes of CCB memory", len);
free(isp->isp_xflist, M_DEVBUF);
free(pci->dmaps, M_DEVBUF);
return (1);
}
isp->isp_rquest = base;
im.isp = isp;
im.error = 0;
bus_dmamap_load(pci->cntrol_dmat, pci->cntrol_dmap, isp->isp_rquest,
ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp)), isp_map_rquest, &im, 0);
if (im.error) {
isp_prt(isp, ISP_LOGERR,
"error %d loading dma map for DMA request queue", im.error);
free(isp->isp_xflist, M_DEVBUF);
free(pci->dmaps, M_DEVBUF);
isp->isp_rquest = NULL;
return (1);
}
isp->isp_result = base + ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
im.error = 0;
bus_dmamap_load(pci->cntrol_dmat, pci->cntrol_dmap, isp->isp_result,
ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp)), isp_map_result, &im, 0);
if (im.error) {
isp_prt(isp, ISP_LOGERR,
"error %d loading dma map for DMA result queue", im.error);
free(isp->isp_xflist, M_DEVBUF);
free(pci->dmaps, M_DEVBUF);
isp->isp_rquest = NULL;
return (1);
}
for (i = 0; i < isp->isp_maxcmds; i++) {
error = bus_dmamap_create(pci->parent_dmat, 0, &pci->dmaps[i]);
if (error) {
isp_prt(isp, ISP_LOGERR,
"error %d creating per-cmd DMA maps", error);
free(isp->isp_xflist, M_DEVBUF);
free(pci->dmaps, M_DEVBUF);
isp->isp_rquest = NULL;
return (1);
}
}
if (IS_FC(isp)) {
fcparam *fcp = (fcparam *) isp->isp_param;
fcp->isp_scratch = base +
ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp)) +
ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
im.error = 0;
bus_dmamap_load(pci->cntrol_dmat, pci->cntrol_dmap,
fcp->isp_scratch, ISP2100_SCRLEN, isp_map_fcscrt, &im, 0);
if (im.error) {
isp_prt(isp, ISP_LOGERR,
"error %d loading FC scratch area", im.error);
free(isp->isp_xflist, M_DEVBUF);
free(pci->dmaps, M_DEVBUF);
isp->isp_rquest = NULL;
return (1);
}
}
return (0);
}
typedef struct {
struct ispsoftc *isp;
void *cmd_token;
void *rq;
u_int16_t *nxtip;
u_int16_t optr;
u_int error;
} mush_t;
#define MUSHERR_NOQENTRIES -2
#ifdef ISP_TARGET_MODE
/*
* We need to handle DMA for target mode differently from initiator mode.
*
* DMA mapping and construction and submission of CTIO Request Entries
* and rendevous for completion are very tightly coupled because we start
* out by knowing (per platform) how much data we have to move, but we
* don't know, up front, how many DMA mapping segments will have to be used
* cover that data, so we don't know how many CTIO Request Entries we
* will end up using. Further, for performance reasons we may want to
* (on the last CTIO for Fibre Channel), send status too (if all went well).
*
* The standard vector still goes through isp_pci_dmasetup, but the callback
* for the DMA mapping routines comes here instead with the whole transfer
* mapped and a pointer to a partially filled in already allocated request
* queue entry. We finish the job.
*/
static void tdma_mk(void *, bus_dma_segment_t *, int, int);
static void tdma_mkfc(void *, bus_dma_segment_t *, int, int);
#define STATUS_WITH_DATA 1
static void
tdma_mk(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{
mush_t *mp;
struct ccb_scsiio *csio;
struct ispsoftc *isp;
struct isp_pcisoftc *pci;
bus_dmamap_t *dp;
ct_entry_t *cto, *qe;
u_int8_t scsi_status;
u_int16_t curi, nxti, handle;
u_int32_t sflags;
int32_t resid;
int nth_ctio, nctios, send_status;
mp = (mush_t *) arg;
if (error) {
mp->error = error;
return;
}
isp = mp->isp;
csio = mp->cmd_token;
cto = mp->rq;
curi = isp->isp_reqidx;
qe = (ct_entry_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, curi);
cto->ct_xfrlen = 0;
cto->ct_seg_count = 0;
cto->ct_header.rqs_entry_count = 1;
MEMZERO(cto->ct_dataseg, sizeof(cto->ct_dataseg));
if (nseg == 0) {
cto->ct_header.rqs_seqno = 1;
isp_prt(isp, ISP_LOGTDEBUG1,
"CTIO[%x] lun%d iid%d tag %x flgs %x sts %x ssts %x res %d",
cto->ct_fwhandle, csio->ccb_h.target_lun, cto->ct_iid,
cto->ct_tag_val, cto->ct_flags, cto->ct_status,
cto->ct_scsi_status, cto->ct_resid);
ISP_TDQE(isp, "tdma_mk[no data]", curi, cto);
isp_put_ctio(isp, cto, qe);
return;
}
nctios = nseg / ISP_RQDSEG;
if (nseg % ISP_RQDSEG) {
nctios++;
}
/*
* Save syshandle, and potentially any SCSI status, which we'll
* reinsert on the last CTIO we're going to send.
*/
handle = cto->ct_syshandle;
cto->ct_syshandle = 0;
cto->ct_header.rqs_seqno = 0;
send_status = (cto->ct_flags & CT_SENDSTATUS) != 0;
if (send_status) {
sflags = cto->ct_flags & (CT_SENDSTATUS | CT_CCINCR);
cto->ct_flags &= ~(CT_SENDSTATUS | CT_CCINCR);
/*
* Preserve residual.
*/
resid = cto->ct_resid;
/*
* Save actual SCSI status.
*/
scsi_status = cto->ct_scsi_status;
#ifndef STATUS_WITH_DATA
sflags |= CT_NO_DATA;
/*
* We can't do a status at the same time as a data CTIO, so
* we need to synthesize an extra CTIO at this level.
*/
nctios++;
#endif
} else {
sflags = scsi_status = resid = 0;
}
cto->ct_resid = 0;
cto->ct_scsi_status = 0;
pci = (struct isp_pcisoftc *)isp;
dp = &pci->dmaps[isp_handle_index(handle)];
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD);
} else {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE);
}
nxti = *mp->nxtip;
for (nth_ctio = 0; nth_ctio < nctios; nth_ctio++) {
int seglim;
seglim = nseg;
if (seglim) {
int seg;
if (seglim > ISP_RQDSEG)
seglim = ISP_RQDSEG;
for (seg = 0; seg < seglim; seg++, nseg--) {
/*
* Unlike normal initiator commands, we don't
* do any swizzling here.
*/
cto->ct_dataseg[seg].ds_count = dm_segs->ds_len;
cto->ct_dataseg[seg].ds_base = dm_segs->ds_addr;
cto->ct_xfrlen += dm_segs->ds_len;
dm_segs++;
}
cto->ct_seg_count = seg;
} else {
/*
* This case should only happen when we're sending an
* extra CTIO with final status.
*/
if (send_status == 0) {
isp_prt(isp, ISP_LOGWARN,
"tdma_mk ran out of segments");
mp->error = EINVAL;
return;
}
}
/*
* At this point, the fields ct_lun, ct_iid, ct_tagval,
* ct_tagtype, and ct_timeout have been carried over
* unchanged from what our caller had set.
*
* The dataseg fields and the seg_count fields we just got
* through setting. The data direction we've preserved all
* along and only clear it if we're now sending status.
*/
if (nth_ctio == nctios - 1) {
/*
* We're the last in a sequence of CTIOs, so mark
* this CTIO and save the handle to the CCB such that
* when this CTIO completes we can free dma resources
* and do whatever else we need to do to finish the
* rest of the command. We *don't* give this to the
* firmware to work on- the caller will do that.
*/
cto->ct_syshandle = handle;
cto->ct_header.rqs_seqno = 1;
if (send_status) {
cto->ct_scsi_status = scsi_status;
cto->ct_flags |= sflags;
cto->ct_resid = resid;
}
if (send_status) {
isp_prt(isp, ISP_LOGTDEBUG1,
"CTIO[%x] lun%d iid %d tag %x ct_flags %x "
"scsi status %x resid %d",
cto->ct_fwhandle, csio->ccb_h.target_lun,
cto->ct_iid, cto->ct_tag_val, cto->ct_flags,
cto->ct_scsi_status, cto->ct_resid);
} else {
isp_prt(isp, ISP_LOGTDEBUG1,
"CTIO[%x] lun%d iid%d tag %x ct_flags 0x%x",
cto->ct_fwhandle, csio->ccb_h.target_lun,
cto->ct_iid, cto->ct_tag_val,
cto->ct_flags);
}
isp_put_ctio(isp, cto, qe);
ISP_TDQE(isp, "last tdma_mk", curi, cto);
if (nctios > 1) {
MEMORYBARRIER(isp, SYNC_REQUEST,
curi, QENTRY_LEN);
}
} else {
ct_entry_t *oqe = qe;
/*
* Make sure syshandle fields are clean
*/
cto->ct_syshandle = 0;
cto->ct_header.rqs_seqno = 0;
isp_prt(isp, ISP_LOGTDEBUG1,
"CTIO[%x] lun%d for ID%d ct_flags 0x%x",
cto->ct_fwhandle, csio->ccb_h.target_lun,
cto->ct_iid, cto->ct_flags);
/*
* Get a new CTIO
*/
qe = (ct_entry_t *)
ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
nxti = ISP_NXT_QENTRY(nxti, RQUEST_QUEUE_LEN(isp));
if (nxti == mp->optr) {
isp_prt(isp, ISP_LOGTDEBUG0,
"Queue Overflow in tdma_mk");
mp->error = MUSHERR_NOQENTRIES;
return;
}
/*
* Now that we're done with the old CTIO,
* flush it out to the request queue.
*/
ISP_TDQE(isp, "dma_tgt_fc", curi, cto);
isp_put_ctio(isp, cto, oqe);
if (nth_ctio != 0) {
MEMORYBARRIER(isp, SYNC_REQUEST, curi,
QENTRY_LEN);
}
curi = ISP_NXT_QENTRY(curi, RQUEST_QUEUE_LEN(isp));
/*
* Reset some fields in the CTIO so we can reuse
* for the next one we'll flush to the request
* queue.
*/
cto->ct_header.rqs_entry_type = RQSTYPE_CTIO;
cto->ct_header.rqs_entry_count = 1;
cto->ct_header.rqs_flags = 0;
cto->ct_status = 0;
cto->ct_scsi_status = 0;
cto->ct_xfrlen = 0;
cto->ct_resid = 0;
cto->ct_seg_count = 0;
MEMZERO(cto->ct_dataseg, sizeof(cto->ct_dataseg));
}
}
*mp->nxtip = nxti;
}
static void
tdma_mkfc(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{
mush_t *mp;
u_int8_t sense[QLTM_SENSELEN];
struct ccb_scsiio *csio;
struct ispsoftc *isp;
struct isp_pcisoftc *pci;
bus_dmamap_t *dp;
ct2_entry_t *cto, *qe;
u_int16_t scsi_status, send_status, send_sense, handle;
u_int16_t curi, nxti;
int32_t resid;
int nth_ctio, nctios;
mp = (mush_t *) arg;
if (error) {
mp->error = error;
return;
}
isp = mp->isp;
csio = mp->cmd_token;
cto = mp->rq;
curi = isp->isp_reqidx;
qe = (ct2_entry_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, curi);
if (nseg == 0) {
if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE1) {
isp_prt(isp, ISP_LOGWARN,
"dma2_tgt_fc, a status CTIO2 without MODE1 "
"set (0x%x)", cto->ct_flags);
mp->error = EINVAL;
return;
}
cto->ct_header.rqs_entry_count = 1;
cto->ct_header.rqs_seqno = 1;
/* ct_syshandle contains the handle set by caller */
/*
* We preserve ct_lun, ct_iid, ct_rxid. We set the data
* flags to NO DATA and clear relative offset flags.
* We preserve the ct_resid and the response area.
*/
cto->ct_flags |= CT2_NO_DATA;
if (cto->ct_resid > 0)
cto->rsp.m1.ct_scsi_status |= CT2_DATA_UNDER;
else if (cto->ct_resid < 0)
cto->rsp.m1.ct_scsi_status |= CT2_DATA_OVER;
cto->ct_seg_count = 0;
cto->ct_reloff = 0;
isp_prt(isp, ISP_LOGTDEBUG1,
"CTIO2[%x] lun %d->iid%d flgs 0x%x sts 0x%x ssts "
"0x%x res %d", cto->ct_rxid, csio->ccb_h.target_lun,
cto->ct_iid, cto->ct_flags, cto->ct_status,
cto->rsp.m1.ct_scsi_status, cto->ct_resid);
isp_put_ctio2(isp, cto, qe);
ISP_TDQE(isp, "dma2_tgt_fc[no data]", curi, qe);
return;
}
if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE0) {
isp_prt(isp, ISP_LOGWARN,
"dma2_tgt_fc, a data CTIO2 without MODE0 set "
"(0x%x)", cto->ct_flags);
mp->error = EINVAL;
return;
}
nctios = nseg / ISP_RQDSEG_T2;
if (nseg % ISP_RQDSEG_T2) {
nctios++;
}
/*
* Save the handle, status, reloff, and residual. We'll reinsert the
* handle into the last CTIO2 we're going to send, and reinsert status
* and residual (and possibly sense data) if that's to be sent as well.
*
* We preserve ct_reloff and adjust it for each data CTIO2 we send past
* the first one. This is needed so that the FCP DATA IUs being sent
* out have the correct offset (they can arrive at the other end out
* of order).
*/
handle = cto->ct_syshandle;
cto->ct_syshandle = 0;
send_status = (cto->ct_flags & CT2_SENDSTATUS) != 0;
if (send_status) {
cto->ct_flags &= ~(CT2_SENDSTATUS|CT2_CCINCR);
/*
* Preserve residual.
*/
resid = cto->ct_resid;
/*
* Save actual SCSI status. We'll reinsert the
* CT2_SNSLEN_VALID later if appropriate.
*/
scsi_status = cto->rsp.m0.ct_scsi_status & 0xff;
send_sense = cto->rsp.m0.ct_scsi_status & CT2_SNSLEN_VALID;
/*
* If we're sending status and have a CHECK CONDTION and
* have sense data, we send one more CTIO2 with just the
* status and sense data. The upper layers have stashed
* the sense data in the dataseg structure for us.
*/
if ((scsi_status & 0xf) == SCSI_STATUS_CHECK_COND &&
send_sense) {
bcopy(cto->rsp.m0.ct_dataseg, sense, QLTM_SENSELEN);
nctios++;
}
} else {
scsi_status = send_sense = resid = 0;
}
cto->ct_resid = 0;
cto->rsp.m0.ct_scsi_status = 0;
MEMZERO(&cto->rsp, sizeof (cto->rsp));
pci = (struct isp_pcisoftc *)isp;
dp = &pci->dmaps[isp_handle_index(handle)];
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD);
} else {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE);
}
nxti = *mp->nxtip;
for (nth_ctio = 0; nth_ctio < nctios; nth_ctio++) {
u_int32_t oxfrlen;
int seglim;
seglim = nseg;
if (seglim) {
int seg;
if (seglim > ISP_RQDSEG_T2)
seglim = ISP_RQDSEG_T2;
for (seg = 0; seg < seglim; seg++) {
cto->rsp.m0.ct_dataseg[seg].ds_base =
dm_segs->ds_addr;
cto->rsp.m0.ct_dataseg[seg].ds_count =
dm_segs->ds_len;
cto->rsp.m0.ct_xfrlen += dm_segs->ds_len;
dm_segs++;
}
cto->ct_seg_count = seg;
oxfrlen = cto->rsp.m0.ct_xfrlen;
} else {
/*
* This case should only happen when we're sending a
* synthesized MODE1 final status with sense data.
*/
if (send_sense == 0) {
isp_prt(isp, ISP_LOGWARN,
"dma2_tgt_fc ran out of segments, "
"no SENSE DATA");
mp->error = EINVAL;
return;
}
oxfrlen = 0;
}
/*
* At this point, the fields ct_lun, ct_iid, ct_rxid,
* ct_timeout have been carried over unchanged from what
* our caller had set.
*
* The field ct_reloff is either what the caller set, or
* what we've added to below.
*
* The dataseg fields and the seg_count fields we just got
* through setting. The data direction we've preserved all
* along and only clear it if we're sending a MODE1 status
* as the last CTIO.
*
*/
if (nth_ctio == nctios - 1) {
/*
* We're the last in a sequence of CTIO2s, so mark this
* CTIO2 and save the handle to the CCB such that when
* this CTIO2 completes we can free dma resources and
* do whatever else we need to do to finish the rest
* of the command.
*/
cto->ct_syshandle = handle;
cto->ct_header.rqs_seqno = 1;
if (send_status) {
/*
* Get 'real' residual and set flags based
* on it.
*/
cto->ct_resid = resid;
if (send_sense) {
MEMCPY(cto->rsp.m1.ct_resp, sense,
QLTM_SENSELEN);
cto->rsp.m1.ct_senselen =
QLTM_SENSELEN;
scsi_status |= CT2_SNSLEN_VALID;
cto->rsp.m1.ct_scsi_status =
scsi_status;
cto->ct_flags &= CT2_FLAG_MMASK;
cto->ct_flags |= CT2_FLAG_MODE1 |
CT2_NO_DATA | CT2_SENDSTATUS |
CT2_CCINCR;
if (cto->ct_resid > 0)
cto->rsp.m1.ct_scsi_status |=
CT2_DATA_UNDER;
else if (cto->ct_resid < 0)
cto->rsp.m1.ct_scsi_status |=
CT2_DATA_OVER;
} else {
cto->rsp.m0.ct_scsi_status =
scsi_status;
cto->ct_flags |=
CT2_SENDSTATUS | CT2_CCINCR;
if (cto->ct_resid > 0)
cto->rsp.m0.ct_scsi_status |=
CT2_DATA_UNDER;
else if (cto->ct_resid < 0)
cto->rsp.m0.ct_scsi_status |=
CT2_DATA_OVER;
}
}
isp_prt(isp, ISP_LOGTDEBUG1,
"CTIO2[%x] lun %d->iid%d flgs 0x%x sts 0x%x"
" ssts 0x%x res %d", cto->ct_rxid,
csio->ccb_h.target_lun, (int) cto->ct_iid,
cto->ct_flags, cto->ct_status,
cto->rsp.m1.ct_scsi_status, cto->ct_resid);
isp_put_ctio2(isp, cto, qe);
ISP_TDQE(isp, "last dma2_tgt_fc", curi, qe);
if (nctios > 1) {
MEMORYBARRIER(isp, SYNC_REQUEST,
curi, QENTRY_LEN);
}
} else {
ct2_entry_t *oqe = qe;
/*
* Make sure handle fields are clean
*/
cto->ct_syshandle = 0;
cto->ct_header.rqs_seqno = 0;
isp_prt(isp, ISP_LOGTDEBUG1,
"CTIO2[%x] lun %d->iid%d flgs 0x%x",
cto->ct_rxid, csio->ccb_h.target_lun,
(int) cto->ct_iid, cto->ct_flags);
/*
* Get a new CTIO2 entry from the request queue.
*/
qe = (ct2_entry_t *)
ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
nxti = ISP_NXT_QENTRY(nxti, RQUEST_QUEUE_LEN(isp));
if (nxti == mp->optr) {
isp_prt(isp, ISP_LOGWARN,
"Queue Overflow in dma2_tgt_fc");
mp->error = MUSHERR_NOQENTRIES;
return;
}
/*
* Now that we're done with the old CTIO2,
* flush it out to the request queue.
*/
ISP_TDQE(isp, "tdma_mkfc", curi, cto);
isp_put_ctio2(isp, cto, oqe);
if (nth_ctio != 0) {
MEMORYBARRIER(isp, SYNC_REQUEST, curi,
QENTRY_LEN);
}
curi = ISP_NXT_QENTRY(curi, RQUEST_QUEUE_LEN(isp));
/*
* Reset some fields in the CTIO2 so we can reuse
* for the next one we'll flush to the request
* queue.
*/
cto->ct_header.rqs_entry_type = RQSTYPE_CTIO2;
cto->ct_header.rqs_entry_count = 1;
cto->ct_header.rqs_flags = 0;
cto->ct_status = 0;
cto->ct_resid = 0;
cto->ct_seg_count = 0;
/*
* Adjust the new relative offset by the amount which
* is recorded in the data segment of the old CTIO2 we
* just finished filling out.
*/
cto->ct_reloff += oxfrlen;
MEMZERO(&cto->rsp, sizeof (cto->rsp));
}
}
*mp->nxtip = nxti;
}
#endif
static void dma2(void *, bus_dma_segment_t *, int, int);
static void
dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{
mush_t *mp;
struct ispsoftc *isp;
struct ccb_scsiio *csio;
struct isp_pcisoftc *pci;
bus_dmamap_t *dp;
bus_dma_segment_t *eseg;
ispreq_t *rq;
int seglim, datalen;
u_int16_t nxti;
mp = (mush_t *) arg;
if (error) {
mp->error = error;
return;
}
if (nseg < 1) {
isp_prt(mp->isp, ISP_LOGERR, "bad segment count (%d)", nseg);
mp->error = EFAULT;
return;
}
csio = mp->cmd_token;
isp = mp->isp;
rq = mp->rq;
pci = (struct isp_pcisoftc *)mp->isp;
dp = &pci->dmaps[isp_handle_index(rq->req_handle)];
nxti = *mp->nxtip;
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD);
} else {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE);
}
datalen = XS_XFRLEN(csio);
/*
* We're passed an initial partially filled in entry that
* has most fields filled in except for data transfer
* related values.
*
* Our job is to fill in the initial request queue entry and
* then to start allocating and filling in continuation entries
* until we've covered the entire transfer.
*/
if (IS_FC(isp)) {
seglim = ISP_RQDSEG_T2;
((ispreqt2_t *)rq)->req_totalcnt = datalen;
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_IN;
} else {
((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_OUT;
}
} else {
if (csio->cdb_len > 12) {
seglim = 0;
} else {
seglim = ISP_RQDSEG;
}
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
rq->req_flags |= REQFLAG_DATA_IN;
} else {
rq->req_flags |= REQFLAG_DATA_OUT;
}
}
eseg = dm_segs + nseg;
while (datalen != 0 && rq->req_seg_count < seglim && dm_segs != eseg) {
if (IS_FC(isp)) {
ispreqt2_t *rq2 = (ispreqt2_t *)rq;
rq2->req_dataseg[rq2->req_seg_count].ds_base =
dm_segs->ds_addr;
rq2->req_dataseg[rq2->req_seg_count].ds_count =
dm_segs->ds_len;
} else {
rq->req_dataseg[rq->req_seg_count].ds_base =
dm_segs->ds_addr;
rq->req_dataseg[rq->req_seg_count].ds_count =
dm_segs->ds_len;
}
datalen -= dm_segs->ds_len;
rq->req_seg_count++;
dm_segs++;
}
while (datalen > 0 && dm_segs != eseg) {
u_int16_t onxti;
ispcontreq_t local, *crq = &local, *cqe;
cqe = (ispcontreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
onxti = nxti;
nxti = ISP_NXT_QENTRY(onxti, RQUEST_QUEUE_LEN(isp));
if (nxti == mp->optr) {
isp_prt(isp, ISP_LOGDEBUG0, "Request Queue Overflow++");
mp->error = MUSHERR_NOQENTRIES;
return;
}
rq->req_header.rqs_entry_count++;
MEMZERO((void *)crq, sizeof (*crq));
crq->req_header.rqs_entry_count = 1;
crq->req_header.rqs_entry_type = RQSTYPE_DATASEG;
seglim = 0;
while (datalen > 0 && seglim < ISP_CDSEG && dm_segs != eseg) {
crq->req_dataseg[seglim].ds_base =
dm_segs->ds_addr;
crq->req_dataseg[seglim].ds_count =
dm_segs->ds_len;
rq->req_seg_count++;
dm_segs++;
seglim++;
datalen -= dm_segs->ds_len;
}
isp_put_cont_req(isp, crq, cqe);
MEMORYBARRIER(isp, SYNC_REQUEST, onxti, QENTRY_LEN);
}
*mp->nxtip = nxti;
}
static int
isp_pci_dmasetup(struct ispsoftc *isp, struct ccb_scsiio *csio, ispreq_t *rq,
u_int16_t *nxtip, u_int16_t optr)
{
struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp;
ispreq_t *qep;
bus_dmamap_t *dp = NULL;
mush_t mush, *mp;
void (*eptr)(void *, bus_dma_segment_t *, int, int);
qep = (ispreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, isp->isp_reqidx);
#ifdef ISP_TARGET_MODE
if (csio->ccb_h.func_code == XPT_CONT_TARGET_IO) {
if (IS_FC(isp)) {
eptr = tdma_mkfc;
} else {
eptr = tdma_mk;
}
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE ||
(csio->dxfer_len == 0)) {
mp = &mush;
mp->isp = isp;
mp->cmd_token = csio;
mp->rq = rq; /* really a ct_entry_t or ct2_entry_t */
mp->nxtip = nxtip;
mp->optr = optr;
mp->error = 0;
(*eptr)(mp, NULL, 0, 0);
goto mbxsync;
}
} else
#endif
eptr = dma2;
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE ||
(csio->dxfer_len == 0)) {
rq->req_seg_count = 1;
goto mbxsync;
}
/*
* Do a virtual grapevine step to collect info for
* the callback dma allocation that we have to use...
*/
mp = &mush;
mp->isp = isp;
mp->cmd_token = csio;
mp->rq = rq;
mp->nxtip = nxtip;
mp->optr = optr;
mp->error = 0;
if ((csio->ccb_h.flags & CAM_SCATTER_VALID) == 0) {
if ((csio->ccb_h.flags & CAM_DATA_PHYS) == 0) {
int error, s;
dp = &pci->dmaps[isp_handle_index(rq->req_handle)];
s = splsoftvm();
error = bus_dmamap_load(pci->parent_dmat, *dp,
csio->data_ptr, csio->dxfer_len, eptr, mp, 0);
if (error == EINPROGRESS) {
bus_dmamap_unload(pci->parent_dmat, *dp);
mp->error = EINVAL;
isp_prt(isp, ISP_LOGERR,
"deferred dma allocation not supported");
} else if (error && mp->error == 0) {
#ifdef DIAGNOSTIC
isp_prt(isp, ISP_LOGERR,
"error %d in dma mapping code", error);
#endif
mp->error = error;
}
splx(s);
} else {
/* Pointer to physical buffer */
struct bus_dma_segment seg;
seg.ds_addr = (bus_addr_t)csio->data_ptr;
seg.ds_len = csio->dxfer_len;
(*eptr)(mp, &seg, 1, 0);
}
} else {
struct bus_dma_segment *segs;
if ((csio->ccb_h.flags & CAM_DATA_PHYS) != 0) {
isp_prt(isp, ISP_LOGERR,
"Physical segment pointers unsupported");
mp->error = EINVAL;
} else if ((csio->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) {
isp_prt(isp, ISP_LOGERR,
"Virtual segment addresses unsupported");
mp->error = EINVAL;
} else {
/* Just use the segments provided */
segs = (struct bus_dma_segment *) csio->data_ptr;
(*eptr)(mp, segs, csio->sglist_cnt, 0);
}
}
if (mp->error) {
int retval = CMD_COMPLETE;
if (mp->error == MUSHERR_NOQENTRIES) {
retval = CMD_EAGAIN;
} else if (mp->error == EFBIG) {
XS_SETERR(csio, CAM_REQ_TOO_BIG);
} else if (mp->error == EINVAL) {
XS_SETERR(csio, CAM_REQ_INVALID);
} else {
XS_SETERR(csio, CAM_UNREC_HBA_ERROR);
}
return (retval);
}
mbxsync:
switch (rq->req_header.rqs_entry_type) {
case RQSTYPE_REQUEST:
isp_put_request(isp, rq, qep);
break;
case RQSTYPE_CMDONLY:
isp_put_extended_request(isp, (ispextreq_t *)rq,
(ispextreq_t *)qep);
break;
case RQSTYPE_T2RQS:
isp_put_request_t2(isp, (ispreqt2_t *) rq, (ispreqt2_t *) qep);
break;
}
return (CMD_QUEUED);
}
static void
isp_pci_dmateardown(struct ispsoftc *isp, XS_T *xs, u_int16_t handle)
{
struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp;
bus_dmamap_t *dp = &pci->dmaps[isp_handle_index(handle)];
if ((xs->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_POSTREAD);
} else {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_POSTWRITE);
}
bus_dmamap_unload(pci->parent_dmat, *dp);
}
static void
isp_pci_reset1(struct ispsoftc *isp)
{
/* Make sure the BIOS is disabled */
isp_pci_wr_reg(isp, HCCR, PCI_HCCR_CMD_BIOS);
/* and enable interrupts */
ENABLE_INTS(isp);
}
static void
isp_pci_dumpregs(struct ispsoftc *isp, const char *msg)
{
struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp;
if (msg)
printf("%s: %s\n", device_get_nameunit(isp->isp_dev), msg);
else
printf("%s:\n", device_get_nameunit(isp->isp_dev));
if (IS_SCSI(isp))
printf(" biu_conf1=%x", ISP_READ(isp, BIU_CONF1));
else
printf(" biu_csr=%x", ISP_READ(isp, BIU2100_CSR));
printf(" biu_icr=%x biu_isr=%x biu_sema=%x ", ISP_READ(isp, BIU_ICR),
ISP_READ(isp, BIU_ISR), ISP_READ(isp, BIU_SEMA));
printf("risc_hccr=%x\n", ISP_READ(isp, HCCR));
if (IS_SCSI(isp)) {
ISP_WRITE(isp, HCCR, HCCR_CMD_PAUSE);
printf(" cdma_conf=%x cdma_sts=%x cdma_fifostat=%x\n",
ISP_READ(isp, CDMA_CONF), ISP_READ(isp, CDMA_STATUS),
ISP_READ(isp, CDMA_FIFO_STS));
printf(" ddma_conf=%x ddma_sts=%x ddma_fifostat=%x\n",
ISP_READ(isp, DDMA_CONF), ISP_READ(isp, DDMA_STATUS),
ISP_READ(isp, DDMA_FIFO_STS));
printf(" sxp_int=%x sxp_gross=%x sxp(scsi_ctrl)=%x\n",
ISP_READ(isp, SXP_INTERRUPT),
ISP_READ(isp, SXP_GROSS_ERR),
ISP_READ(isp, SXP_PINS_CTRL));
ISP_WRITE(isp, HCCR, HCCR_CMD_RELEASE);
}
printf(" mbox regs: %x %x %x %x %x\n",
ISP_READ(isp, OUTMAILBOX0), ISP_READ(isp, OUTMAILBOX1),
ISP_READ(isp, OUTMAILBOX2), ISP_READ(isp, OUTMAILBOX3),
ISP_READ(isp, OUTMAILBOX4));
printf(" PCI Status Command/Status=%x\n",
pci_read_config(pci->pci_dev, PCIR_COMMAND, 1));
}