mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-04 12:52:15 +00:00
812 lines
19 KiB
C
812 lines
19 KiB
C
/*
|
|
* ntp_peer.c - management of data maintained for peer associations
|
|
*/
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
#include <sys/types.h>
|
|
|
|
#include "ntpd.h"
|
|
#include "ntp_stdlib.h"
|
|
#ifdef AUTOKEY
|
|
#include "ntp_crypto.h"
|
|
#endif /* AUTOKEY */
|
|
|
|
/*
|
|
* Table of valid association combinations
|
|
* ---------------------------------------
|
|
*
|
|
* packet->mode
|
|
* peer->mode | UNSPEC ACTIVE PASSIVE CLIENT SERVER BCAST
|
|
* ---------- | ---------------------------------------------
|
|
* NO_PEER | e 1 e 1 1 1
|
|
* ACTIVE | e 1 1 0 0 0
|
|
* PASSIVE | e 1 e 0 0 0
|
|
* CLIENT | e 0 0 0 1 1
|
|
* SERVER | e 0 0 0 0 0
|
|
* BCAST | e 0 0 0 0 0
|
|
* CONTROL | e 0 0 0 0 0
|
|
* PRIVATE | e 0 0 0 0 0
|
|
* BCLIENT | e 0 0 0 e 1
|
|
*
|
|
* One point to note here: a packet in BCAST mode can potentially match
|
|
* a peer in CLIENT mode, but we that is a special case and we check for
|
|
* that early in the decision process. This avoids having to keep track
|
|
* of what kind of associations are possible etc... We actually
|
|
* circumvent that problem by requiring that the first b(m)roadcast
|
|
* received after the change back to BCLIENT mode sets the clock.
|
|
*/
|
|
|
|
int AM[AM_MODES][AM_MODES] = {
|
|
/* { UNSPEC, ACTIVE, PASSIVE, CLIENT, SERVER, BCAST } */
|
|
|
|
/*NONE*/{ AM_ERR, AM_NEWPASS, AM_ERR, AM_FXMIT, AM_MANYCAST, AM_NEWBCL},
|
|
|
|
/*A*/ { AM_ERR, AM_PROCPKT, AM_PROCPKT, AM_NOMATCH, AM_NOMATCH, AM_NOMATCH},
|
|
|
|
/*P*/ { AM_ERR, AM_PROCPKT, AM_ERR, AM_NOMATCH, AM_NOMATCH, AM_NOMATCH},
|
|
|
|
/*C*/ { AM_ERR, AM_NOMATCH, AM_NOMATCH, AM_NOMATCH, AM_PROCPKT, AM_POSSBCL},
|
|
|
|
/*S*/ { AM_ERR, AM_NOMATCH, AM_NOMATCH, AM_NOMATCH, AM_NOMATCH, AM_NOMATCH},
|
|
|
|
/*BCST*/{ AM_ERR, AM_NOMATCH, AM_NOMATCH, AM_NOMATCH, AM_NOMATCH, AM_NOMATCH},
|
|
|
|
/*CNTL*/{ AM_ERR, AM_NOMATCH, AM_NOMATCH, AM_NOMATCH, AM_NOMATCH, AM_NOMATCH},
|
|
|
|
/*PRIV*/{ AM_ERR, AM_NOMATCH, AM_NOMATCH, AM_NOMATCH, AM_NOMATCH, AM_NOMATCH},
|
|
|
|
/*BCL*/ { AM_ERR, AM_NOMATCH, AM_NOMATCH, AM_NOMATCH, AM_ERR, AM_PROCPKT},
|
|
};
|
|
|
|
#define MATCH_ASSOC(x,y) AM[(x)][(y)]
|
|
|
|
/*
|
|
* These routines manage the allocation of memory to peer structures
|
|
* and the maintenance of the peer hash table. The two main entry
|
|
* points are findpeer(), which looks for matching peer sturctures in
|
|
* the peer list, newpeer(), which allocates a new peer structure and
|
|
* adds it to the list, and unpeer(), which demobilizes the association
|
|
* and deallocates the structure.
|
|
*/
|
|
/*
|
|
* Peer hash tables
|
|
*/
|
|
struct peer *peer_hash[HASH_SIZE]; /* peer hash table */
|
|
int peer_hash_count[HASH_SIZE]; /* peers in each bucket */
|
|
struct peer *assoc_hash[HASH_SIZE]; /* association ID hash table */
|
|
int assoc_hash_count[HASH_SIZE]; /* peers in each bucket */
|
|
static struct peer *peer_free; /* peer structures free list */
|
|
int peer_free_count; /* count of free structures */
|
|
|
|
/*
|
|
* Association ID. We initialize this value randomly, then assign a new
|
|
* value every time the peer structure is incremented.
|
|
*/
|
|
static associd_t current_association_ID; /* association ID */
|
|
|
|
/*
|
|
* Memory allocation watermarks.
|
|
*/
|
|
#define INIT_PEER_ALLOC 15 /* initialize for 15 peers */
|
|
#define INC_PEER_ALLOC 5 /* when run out, add 5 more */
|
|
|
|
/*
|
|
* Miscellaneous statistic counters which may be queried.
|
|
*/
|
|
u_long peer_timereset; /* time stat counters zeroed */
|
|
u_long findpeer_calls; /* calls to findpeer */
|
|
u_long assocpeer_calls; /* calls to findpeerbyassoc */
|
|
u_long peer_allocations; /* allocations from free list */
|
|
u_long peer_demobilizations; /* structs freed to free list */
|
|
int total_peer_structs; /* peer structs */
|
|
int peer_associations; /* active associations */
|
|
static struct peer init_peer_alloc[INIT_PEER_ALLOC]; /* init alloc */
|
|
|
|
static void getmorepeermem P((void));
|
|
|
|
/*
|
|
* init_peer - initialize peer data structures and counters
|
|
*
|
|
* N.B. We use the random number routine in here. It had better be
|
|
* initialized prior to getting here.
|
|
*/
|
|
void
|
|
init_peer(void)
|
|
{
|
|
register int i;
|
|
|
|
/*
|
|
* Clear hash table and counters.
|
|
*/
|
|
for (i = 0; i < HASH_SIZE; i++) {
|
|
peer_hash[i] = 0;
|
|
peer_hash_count[i] = 0;
|
|
assoc_hash[i] = 0;
|
|
assoc_hash_count[i] = 0;
|
|
}
|
|
|
|
/*
|
|
* Clear stat counters
|
|
*/
|
|
findpeer_calls = peer_allocations = 0;
|
|
assocpeer_calls = peer_demobilizations = 0;
|
|
|
|
/*
|
|
* Initialize peer memory.
|
|
*/
|
|
peer_free = 0;
|
|
for (i = 0; i < INIT_PEER_ALLOC; i++) {
|
|
init_peer_alloc[i].next = peer_free;
|
|
peer_free = &init_peer_alloc[i];
|
|
}
|
|
total_peer_structs = INIT_PEER_ALLOC;
|
|
peer_free_count = INIT_PEER_ALLOC;
|
|
|
|
/*
|
|
* Initialize our first association ID
|
|
*/
|
|
current_association_ID = (associd_t)ranp2(16);
|
|
if (current_association_ID == 0)
|
|
current_association_ID = 1;
|
|
}
|
|
|
|
|
|
/*
|
|
* getmorepeermem - add more peer structures to the free list
|
|
*/
|
|
static void
|
|
getmorepeermem(void)
|
|
{
|
|
register int i;
|
|
register struct peer *peer;
|
|
|
|
peer = (struct peer *)emalloc(INC_PEER_ALLOC *
|
|
sizeof(struct peer));
|
|
for (i = 0; i < INC_PEER_ALLOC; i++) {
|
|
peer->next = peer_free;
|
|
peer_free = peer;
|
|
peer++;
|
|
}
|
|
|
|
total_peer_structs += INC_PEER_ALLOC;
|
|
peer_free_count += INC_PEER_ALLOC;
|
|
}
|
|
|
|
|
|
/*
|
|
* findexistingpeer - return a pointer to a peer in the hash table
|
|
*/
|
|
struct peer *
|
|
findexistingpeer(
|
|
struct sockaddr_in *addr,
|
|
struct peer *start_peer,
|
|
int mode
|
|
)
|
|
{
|
|
register struct peer *peer;
|
|
|
|
/*
|
|
* start_peer is included so we can locate instances of the
|
|
* same peer through different interfaces in the hash table.
|
|
*/
|
|
if (start_peer == 0)
|
|
peer = peer_hash[HASH_ADDR(addr)];
|
|
else
|
|
peer = start_peer->next;
|
|
|
|
while (peer != 0) {
|
|
if (NSRCADR(addr) == NSRCADR(&peer->srcadr)
|
|
&& NSRCPORT(addr) == NSRCPORT(&peer->srcadr)) {
|
|
if (mode == -1)
|
|
return (peer);
|
|
else if (peer->hmode == mode)
|
|
break;
|
|
}
|
|
peer = peer->next;
|
|
}
|
|
return (peer);
|
|
}
|
|
|
|
|
|
/*
|
|
* findpeer - find and return a peer in the hash table.
|
|
*/
|
|
struct peer *
|
|
findpeer(
|
|
struct sockaddr_in *srcadr,
|
|
struct interface *dstadr,
|
|
int fd,
|
|
int pkt_mode,
|
|
int *action
|
|
)
|
|
{
|
|
register struct peer *peer;
|
|
int hash;
|
|
|
|
findpeer_calls++;
|
|
hash = HASH_ADDR(srcadr);
|
|
for (peer = peer_hash[hash]; peer != 0; peer = peer->next) {
|
|
if (NSRCADR(srcadr) == NSRCADR(&peer->srcadr)
|
|
&& NSRCPORT(srcadr) == NSRCPORT(&peer->srcadr)) {
|
|
|
|
/*
|
|
* if the association matching rules determine
|
|
* that this is not a valid combination, then
|
|
* look for the next valid peer association.
|
|
*/
|
|
*action = MATCH_ASSOC(peer->hmode, pkt_mode);
|
|
|
|
/*
|
|
* Sigh! Check if BCLIENT peer in client
|
|
* server mode, else return error.
|
|
*/
|
|
if ((*action == AM_POSSBCL) && !(peer->flags &
|
|
FLAG_MCAST))
|
|
*action = AM_ERR;
|
|
|
|
/*
|
|
* if an error was returned, exit back right
|
|
* here.
|
|
*/
|
|
if (*action == AM_ERR)
|
|
return ((struct peer *)0);
|
|
|
|
/*
|
|
* if a match is found, we stop our search.
|
|
*/
|
|
if (*action != AM_NOMATCH)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If no matching association is found
|
|
*/
|
|
if (peer == 0) {
|
|
*action = MATCH_ASSOC(NO_PEER, pkt_mode);
|
|
return ((struct peer *)0);
|
|
}
|
|
peer->dstadr = dstadr;
|
|
return (peer);
|
|
}
|
|
|
|
/*
|
|
* findpeerbyassocid - find and return a peer using his association ID
|
|
*/
|
|
struct peer *
|
|
findpeerbyassoc(
|
|
u_int assoc
|
|
)
|
|
{
|
|
register struct peer *peer;
|
|
int hash;
|
|
|
|
assocpeer_calls++;
|
|
|
|
hash = assoc & HASH_MASK;
|
|
for (peer = assoc_hash[hash]; peer != 0; peer =
|
|
peer->ass_next) {
|
|
if (assoc == peer->associd)
|
|
return (peer);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
|
|
/*
|
|
* clear_all - flush all time values for all associations
|
|
*/
|
|
void
|
|
clear_all(void)
|
|
{
|
|
struct peer *peer, *next_peer;
|
|
int n;
|
|
|
|
/*
|
|
* This routine is called when the clock is stepped, and so all
|
|
* previously saved time values are untrusted.
|
|
*/
|
|
for (n = 0; n < HASH_SIZE; n++) {
|
|
for (peer = peer_hash[n]; peer != 0; peer = next_peer) {
|
|
next_peer = peer->next;
|
|
peer_clear(peer);
|
|
}
|
|
}
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("clear_all: at %lu\n", current_time);
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
* unpeer - remove peer structure from hash table and free structure
|
|
*/
|
|
void
|
|
unpeer(
|
|
struct peer *peer_to_remove
|
|
)
|
|
{
|
|
int hash;
|
|
|
|
peer_associations--;
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("demobilize %u %d\n", peer_to_remove->associd,
|
|
peer_associations);
|
|
#endif
|
|
peer_clear(peer_to_remove);
|
|
hash = HASH_ADDR(&peer_to_remove->srcadr);
|
|
peer_hash_count[hash]--;
|
|
peer_demobilizations++;
|
|
#ifdef REFCLOCK
|
|
/*
|
|
* If this peer is actually a clock, shut it down first
|
|
*/
|
|
if (peer_to_remove->flags & FLAG_REFCLOCK)
|
|
refclock_unpeer(peer_to_remove);
|
|
#endif
|
|
peer_to_remove->action = 0; /* disable timeout actions */
|
|
if (peer_hash[hash] == peer_to_remove)
|
|
peer_hash[hash] = peer_to_remove->next;
|
|
else {
|
|
register struct peer *peer;
|
|
|
|
peer = peer_hash[hash];
|
|
while (peer != 0 && peer->next != peer_to_remove)
|
|
peer = peer->next;
|
|
|
|
if (peer == 0) {
|
|
peer_hash_count[hash]++;
|
|
msyslog(LOG_ERR, "peer struct for %s not in table!",
|
|
ntoa(&peer->srcadr));
|
|
} else {
|
|
peer->next = peer_to_remove->next;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove him from the association hash as well.
|
|
*/
|
|
hash = peer_to_remove->associd & HASH_MASK;
|
|
assoc_hash_count[hash]--;
|
|
if (assoc_hash[hash] == peer_to_remove)
|
|
assoc_hash[hash] = peer_to_remove->ass_next;
|
|
else {
|
|
register struct peer *peer;
|
|
|
|
peer = assoc_hash[hash];
|
|
while (peer != 0 && peer->ass_next != peer_to_remove)
|
|
peer = peer->ass_next;
|
|
|
|
if (peer == 0) {
|
|
assoc_hash_count[hash]++;
|
|
msyslog(LOG_ERR,
|
|
"peer struct for %s not in association table!",
|
|
ntoa(&peer->srcadr));
|
|
} else {
|
|
peer->ass_next = peer_to_remove->ass_next;
|
|
}
|
|
}
|
|
peer_to_remove->next = peer_free;
|
|
peer_free = peer_to_remove;
|
|
peer_free_count++;
|
|
}
|
|
|
|
|
|
/*
|
|
* peer_config - configure a new association
|
|
*/
|
|
struct peer *
|
|
peer_config(
|
|
struct sockaddr_in *srcadr,
|
|
struct interface *dstadr,
|
|
int hmode,
|
|
int version,
|
|
int minpoll,
|
|
int maxpoll,
|
|
u_int flags,
|
|
int ttl,
|
|
keyid_t key,
|
|
u_char *keystr
|
|
)
|
|
{
|
|
register struct peer *peer;
|
|
u_int cast_flags;
|
|
|
|
/*
|
|
* First search from the beginning for an association with given
|
|
* remote address and mode. If an interface is given, search
|
|
* from there to find the association which matches that
|
|
* destination.
|
|
*/
|
|
peer = findexistingpeer(srcadr, (struct peer *)0, hmode);
|
|
if (dstadr != 0) {
|
|
while (peer != 0) {
|
|
if (peer->dstadr == dstadr)
|
|
break;
|
|
peer = findexistingpeer(srcadr, peer, hmode);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We do a dirty little jig to figure the cast flags. This is
|
|
* probably not the best place to do this, at least until the
|
|
* configure code is rebuilt. Note only one flag can be set.
|
|
*/
|
|
switch (hmode) {
|
|
|
|
case MODE_BROADCAST:
|
|
if (IN_CLASSD(ntohl(srcadr->sin_addr.s_addr)))
|
|
cast_flags = MDF_MCAST;
|
|
else
|
|
cast_flags = MDF_BCAST;
|
|
break;
|
|
|
|
case MODE_CLIENT:
|
|
if (IN_CLASSD(ntohl(srcadr->sin_addr.s_addr)))
|
|
cast_flags = MDF_ACAST;
|
|
else
|
|
cast_flags = MDF_UCAST;
|
|
break;
|
|
|
|
default:
|
|
cast_flags = MDF_UCAST;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If the peer is already configured, some dope has a duplicate
|
|
* configureation entry or another dope is wiggling from afar.
|
|
*/
|
|
if (peer != 0) {
|
|
peer->hmode = (u_char)hmode;
|
|
peer->version = (u_char)version;
|
|
peer->minpoll = (u_char)minpoll;
|
|
peer->maxpoll = (u_char)maxpoll;
|
|
peer->hpoll = peer->kpoll = peer->minpoll;
|
|
peer->ppoll = peer->maxpoll;
|
|
peer->flags = flags | FLAG_CONFIG |
|
|
(peer->flags & FLAG_REFCLOCK);
|
|
peer->cast_flags = cast_flags;
|
|
peer->ttlmax = ttl;
|
|
peer->keyid = key;
|
|
return (peer);
|
|
}
|
|
|
|
/*
|
|
* Here no match has been found, so presumably this is a new
|
|
* persistent association. Mobilize the thing and initialize its
|
|
* variables.
|
|
*/
|
|
peer = newpeer(srcadr, dstadr, hmode, version, minpoll, maxpoll,
|
|
flags | FLAG_CONFIG, cast_flags, ttl, key);
|
|
return (peer);
|
|
}
|
|
|
|
|
|
/*
|
|
* newpeer - initialize a new peer association
|
|
*/
|
|
struct peer *
|
|
newpeer(
|
|
struct sockaddr_in *srcadr,
|
|
struct interface *dstadr,
|
|
int hmode,
|
|
int version,
|
|
int minpoll,
|
|
int maxpoll,
|
|
u_int flags,
|
|
u_int cast_flags,
|
|
int ttl,
|
|
keyid_t key
|
|
)
|
|
{
|
|
register struct peer *peer;
|
|
register int i;
|
|
|
|
/*
|
|
* Allocate a new peer structure. Some dirt here, since some of
|
|
* the initialization requires knowlege of our system state.
|
|
*/
|
|
if (peer_free_count == 0)
|
|
getmorepeermem();
|
|
peer = peer_free;
|
|
peer_free = peer->next;
|
|
peer_free_count--;
|
|
peer_associations++;
|
|
memset((char *)peer, 0, sizeof(struct peer));
|
|
|
|
/*
|
|
* Initialize the peer structure and dance the interface jig.
|
|
* Reference clocks step the loopback waltz, the others
|
|
* squaredance around the interface list looking for a buddy. If
|
|
* the dance peters out, there is always the wildcard interface.
|
|
* This might happen in some systems and would preclude proper
|
|
* operation with public key cryptography.
|
|
*/
|
|
if (ISREFCLOCKADR(srcadr))
|
|
peer->dstadr = loopback_interface;
|
|
else if (cast_flags & MDF_BCLNT)
|
|
peer->dstadr = findbcastinter(srcadr);
|
|
else if (dstadr != any_interface)
|
|
peer->dstadr = dstadr;
|
|
else
|
|
peer->dstadr = findinterface(srcadr);
|
|
peer->srcadr = *srcadr;
|
|
peer->hmode = (u_char)hmode;
|
|
peer->version = (u_char)version;
|
|
peer->minpoll = (u_char)max(NTP_MINPOLL, minpoll);
|
|
peer->maxpoll = (u_char)min(NTP_MAXPOLL, maxpoll);
|
|
peer->flags = flags | (key > NTP_MAXKEY ? FLAG_SKEY : 0);
|
|
peer->cast_flags = cast_flags;
|
|
peer->ttlmax = ttl;
|
|
peer->keyid = key;
|
|
peer->precision = sys_precision;
|
|
peer_clear(peer);
|
|
if (mode_ntpdate)
|
|
peer_ntpdate++;
|
|
|
|
/*
|
|
* Assign an association ID and increment the system variable.
|
|
*/
|
|
peer->associd = current_association_ID;
|
|
if (++current_association_ID == 0)
|
|
++current_association_ID;
|
|
|
|
/*
|
|
* Note time on statistics timers.
|
|
*/
|
|
peer->timereset = current_time;
|
|
peer->timereachable = current_time;
|
|
peer->timereceived = current_time;
|
|
#ifdef REFCLOCK
|
|
if (ISREFCLOCKADR(&peer->srcadr)) {
|
|
/*
|
|
* We let the reference clock support do clock
|
|
* dependent initialization. This includes setting
|
|
* the peer timer, since the clock may have requirements
|
|
* for this.
|
|
*/
|
|
if (!refclock_newpeer(peer)) {
|
|
/*
|
|
* Dump it, something screwed up
|
|
*/
|
|
peer->next = peer_free;
|
|
peer_free = peer;
|
|
peer_free_count++;
|
|
return (NULL);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Put the new peer in the hash tables.
|
|
*/
|
|
i = HASH_ADDR(&peer->srcadr);
|
|
peer->next = peer_hash[i];
|
|
peer_hash[i] = peer;
|
|
peer_hash_count[i]++;
|
|
i = peer->associd & HASH_MASK;
|
|
peer->ass_next = assoc_hash[i];
|
|
assoc_hash[i] = peer;
|
|
assoc_hash_count[i]++;
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf(
|
|
"newpeer: %s->%s mode %d vers %d poll %d %d flags %x %x ttl %d key %08x\n",
|
|
ntoa(&peer->dstadr->sin), ntoa(&peer->srcadr),
|
|
peer->hmode, peer->version, peer->minpoll,
|
|
peer->maxpoll, peer->flags, peer->cast_flags,
|
|
peer->ttlmax, peer->keyid);
|
|
#endif
|
|
return (peer);
|
|
}
|
|
|
|
|
|
/*
|
|
* peer_unconfig - remove the configuration bit from a peer
|
|
*/
|
|
int
|
|
peer_unconfig(
|
|
struct sockaddr_in *srcadr,
|
|
struct interface *dstadr,
|
|
int mode
|
|
)
|
|
{
|
|
register struct peer *peer;
|
|
int num_found;
|
|
|
|
num_found = 0;
|
|
peer = findexistingpeer(srcadr, (struct peer *)0, mode);
|
|
while (peer != 0) {
|
|
if (peer->flags & FLAG_CONFIG
|
|
&& (dstadr == 0 || peer->dstadr == dstadr)) {
|
|
num_found++;
|
|
|
|
/*
|
|
* Tricky stuff here. If the peer is polling us
|
|
* in active mode, turn off the configuration
|
|
* bit and make the mode passive. This allows us
|
|
* to avoid dumping a lot of history for peers
|
|
* we might choose to keep track of in passive
|
|
* mode. The protocol will eventually terminate
|
|
* undesirables on its own.
|
|
*/
|
|
if (peer->hmode == MODE_ACTIVE
|
|
&& peer->pmode == MODE_ACTIVE) {
|
|
peer->hmode = MODE_PASSIVE;
|
|
peer->flags &= ~FLAG_CONFIG;
|
|
} else {
|
|
unpeer(peer);
|
|
peer = 0;
|
|
}
|
|
}
|
|
peer = findexistingpeer(srcadr, peer, mode);
|
|
}
|
|
return (num_found);
|
|
}
|
|
|
|
/*
|
|
* peer_clr_stats - clear peer module stat counters
|
|
*/
|
|
void
|
|
peer_clr_stats(void)
|
|
{
|
|
findpeer_calls = 0;
|
|
assocpeer_calls = 0;
|
|
peer_allocations = 0;
|
|
peer_demobilizations = 0;
|
|
peer_timereset = current_time;
|
|
}
|
|
|
|
/*
|
|
* peer_reset - reset stat counters in a peer structure
|
|
*/
|
|
void
|
|
peer_reset(
|
|
struct peer *peer
|
|
)
|
|
{
|
|
if (peer == 0)
|
|
return;
|
|
peer->sent = 0;
|
|
peer->received = 0;
|
|
peer->processed = 0;
|
|
peer->badauth = 0;
|
|
peer->bogusorg = 0;
|
|
peer->oldpkt = 0;
|
|
peer->seldisptoolarge = 0;
|
|
peer->selbroken = 0;
|
|
peer->timereset = current_time;
|
|
}
|
|
|
|
|
|
/*
|
|
* peer_all_reset - reset all peer stat counters
|
|
*/
|
|
void
|
|
peer_all_reset(void)
|
|
{
|
|
struct peer *peer;
|
|
int hash;
|
|
|
|
for (hash = 0; hash < HASH_SIZE; hash++)
|
|
for (peer = peer_hash[hash]; peer != 0; peer = peer->next)
|
|
peer_reset(peer);
|
|
}
|
|
|
|
|
|
#ifdef AUTOKEY
|
|
/*
|
|
* expire_all - flush all crypto data and update timestamps.
|
|
*/
|
|
void
|
|
expire_all(void)
|
|
{
|
|
struct peer *peer, *next_peer;
|
|
int n;
|
|
|
|
/*
|
|
* This routine is called about once per day from the timer
|
|
* routine and when the client is first synchronized. Search the
|
|
* peer list for all associations and flush only the key list
|
|
* and cookie. If a manycast client association, flush
|
|
* everything. Then, recompute and sign the agreement public
|
|
* value, if present.
|
|
*/
|
|
for (n = 0; n < HASH_SIZE; n++) {
|
|
for (peer = peer_hash[n]; peer != 0; peer = next_peer) {
|
|
next_peer = peer->next;
|
|
if (peer->cast_flags & MDF_ACAST) {
|
|
peer_clear(peer);
|
|
#ifdef AUTOKEY
|
|
} else {
|
|
key_expire(peer);
|
|
peer->pcookie.tstamp = 0;
|
|
#endif /* AUTOKEY */
|
|
}
|
|
|
|
}
|
|
}
|
|
sys_private = (u_int32)RANDOM & 0xffffffff;
|
|
#ifdef PUBKEY
|
|
crypto_agree();
|
|
#endif /* PUBKEY */
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("expire_all: at %lu\n", current_time);
|
|
#endif
|
|
}
|
|
#endif /* AUTOKEY */
|
|
|
|
|
|
/*
|
|
* findmanycastpeer - find and return a manycast peer
|
|
*/
|
|
struct peer *
|
|
findmanycastpeer(
|
|
struct recvbuf *rbufp
|
|
)
|
|
{
|
|
register struct peer *peer;
|
|
struct pkt *pkt;
|
|
l_fp p_org;
|
|
int i;
|
|
|
|
/*
|
|
* This routine is called upon arrival of a client-mode message
|
|
* from a manycast server. Search the peer list for a manycast
|
|
* client association where the last transmit timestamp matches
|
|
* the originate timestamp. This assumes the transmit timestamps
|
|
* for possibly more than one manycast association are unique.
|
|
*/
|
|
pkt = &rbufp->recv_pkt;
|
|
for (i = 0; i < HASH_SIZE; i++) {
|
|
if (peer_hash_count[i] == 0)
|
|
continue;
|
|
|
|
for (peer = peer_hash[i]; peer != 0; peer =
|
|
peer->next) {
|
|
if (peer->cast_flags & MDF_ACAST) {
|
|
NTOHL_FP(&pkt->org, &p_org);
|
|
if (L_ISEQU(&peer->xmt, &p_org))
|
|
return (peer);
|
|
}
|
|
}
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
|
|
/*
|
|
* resetmanycast - reset all manycast clients
|
|
*/
|
|
void
|
|
resetmanycast(void)
|
|
{
|
|
register struct peer *peer;
|
|
int i;
|
|
|
|
/*
|
|
* This routine is called when the number of client associations
|
|
* falls below the minimum. Search the peer list for manycast
|
|
* client associations and reset the ttl and poll interval.
|
|
*/
|
|
for (i = 0; i < HASH_SIZE; i++) {
|
|
if (peer_hash_count[i] == 0)
|
|
continue;
|
|
|
|
for (peer = peer_hash[i]; peer != 0; peer =
|
|
peer->next) {
|
|
if (peer->cast_flags & MDF_ACAST) {
|
|
peer->ttl = 0;
|
|
poll_update(peer, peer->hpoll);
|
|
}
|
|
}
|
|
}
|
|
}
|