mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-01 12:19:28 +00:00
5f63fbd67f
* ld128/k_expl.h: . Split out a computational kernel,__k_expl(x, &hi, &lo, &k) from expl(x). x must be finite and not tiny or huge. The kernel returns hi and lo values for extra precision and an exponent k for a 2**k scale factor. . Define additional kernels k_hexpl() and hexpl() that include a 1/2 scaling and are used by the hyperbolic functions. * ld80/s_expl.c: * ld128/s_expl.c: . Use the __k_expl() kernel. Obtained from: bde
285 lines
8.3 KiB
C
285 lines
8.3 KiB
C
/*-
|
|
* Copyright (c) 2009-2013 Steven G. Kargl
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Optimized by Bruce D. Evans.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/**
|
|
* Compute the exponential of x for Intel 80-bit format. This is based on:
|
|
*
|
|
* PTP Tang, "Table-driven implementation of the exponential function
|
|
* in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 15,
|
|
* 144-157 (1989).
|
|
*
|
|
* where the 32 table entries have been expanded to INTERVALS (see below).
|
|
*/
|
|
|
|
#include <float.h>
|
|
|
|
#ifdef __i386__
|
|
#include <ieeefp.h>
|
|
#endif
|
|
|
|
#include "fpmath.h"
|
|
#include "math.h"
|
|
#include "math_private.h"
|
|
#include "k_expl.h"
|
|
|
|
/* XXX Prevent compilers from erroneously constant folding these: */
|
|
static const volatile long double
|
|
huge = 0x1p10000L,
|
|
tiny = 0x1p-10000L;
|
|
|
|
static const long double
|
|
twom10000 = 0x1p-10000L;
|
|
|
|
static const union IEEEl2bits
|
|
/* log(2**16384 - 0.5) rounded towards zero: */
|
|
/* log(2**16384 - 0.5 + 1) rounded towards zero for expm1l() is the same: */
|
|
o_thresholdu = LD80C(0xb17217f7d1cf79ab, 13, 11356.5234062941439488L),
|
|
#define o_threshold (o_thresholdu.e)
|
|
/* log(2**(-16381-64-1)) rounded towards zero: */
|
|
u_thresholdu = LD80C(0xb21dfe7f09e2baa9, 13, -11399.4985314888605581L);
|
|
#define u_threshold (u_thresholdu.e)
|
|
|
|
long double
|
|
expl(long double x)
|
|
{
|
|
union IEEEl2bits u;
|
|
long double hi, lo, t, twopk;
|
|
int k;
|
|
uint16_t hx, ix;
|
|
|
|
DOPRINT_START(&x);
|
|
|
|
/* Filter out exceptional cases. */
|
|
u.e = x;
|
|
hx = u.xbits.expsign;
|
|
ix = hx & 0x7fff;
|
|
if (ix >= BIAS + 13) { /* |x| >= 8192 or x is NaN */
|
|
if (ix == BIAS + LDBL_MAX_EXP) {
|
|
if (hx & 0x8000) /* x is -Inf, -NaN or unsupported */
|
|
RETURNP(-1 / x);
|
|
RETURNP(x + x); /* x is +Inf, +NaN or unsupported */
|
|
}
|
|
if (x > o_threshold)
|
|
RETURNP(huge * huge);
|
|
if (x < u_threshold)
|
|
RETURNP(tiny * tiny);
|
|
} else if (ix < BIAS - 75) { /* |x| < 0x1p-75 (includes pseudos) */
|
|
RETURN2P(1, x); /* 1 with inexact iff x != 0 */
|
|
}
|
|
|
|
ENTERI();
|
|
|
|
twopk = 1;
|
|
__k_expl(x, &hi, &lo, &k);
|
|
t = SUM2P(hi, lo);
|
|
|
|
/* Scale by 2**k. */
|
|
if (k >= LDBL_MIN_EXP) {
|
|
if (k == LDBL_MAX_EXP)
|
|
RETURNI(t * 2 * 0x1p16383L);
|
|
SET_LDBL_EXPSIGN(twopk, BIAS + k);
|
|
RETURNI(t * twopk);
|
|
} else {
|
|
SET_LDBL_EXPSIGN(twopk, BIAS + k + 10000);
|
|
RETURNI(t * twopk * twom10000);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Compute expm1l(x) for Intel 80-bit format. This is based on:
|
|
*
|
|
* PTP Tang, "Table-driven implementation of the Expm1 function
|
|
* in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 18,
|
|
* 211-222 (1992).
|
|
*/
|
|
|
|
/*
|
|
* Our T1 and T2 are chosen to be approximately the points where method
|
|
* A and method B have the same accuracy. Tang's T1 and T2 are the
|
|
* points where method A's accuracy changes by a full bit. For Tang,
|
|
* this drop in accuracy makes method A immediately less accurate than
|
|
* method B, but our larger INTERVALS makes method A 2 bits more
|
|
* accurate so it remains the most accurate method significantly
|
|
* closer to the origin despite losing the full bit in our extended
|
|
* range for it.
|
|
*/
|
|
static const double
|
|
T1 = -0.1659, /* ~-30.625/128 * log(2) */
|
|
T2 = 0.1659; /* ~30.625/128 * log(2) */
|
|
|
|
/*
|
|
* Domain [-0.1659, 0.1659], range ~[-2.6155e-22, 2.5507e-23]:
|
|
* |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-71.6
|
|
*
|
|
* XXX the coeffs aren't very carefully rounded, and I get 2.8 more bits,
|
|
* but unlike for ld128 we can't drop any terms.
|
|
*/
|
|
static const union IEEEl2bits
|
|
B3 = LD80C(0xaaaaaaaaaaaaaaab, -3, 1.66666666666666666671e-1L),
|
|
B4 = LD80C(0xaaaaaaaaaaaaaaac, -5, 4.16666666666666666712e-2L);
|
|
|
|
static const double
|
|
B5 = 8.3333333333333245e-3, /* 0x1.111111111110cp-7 */
|
|
B6 = 1.3888888888888861e-3, /* 0x1.6c16c16c16c0ap-10 */
|
|
B7 = 1.9841269841532042e-4, /* 0x1.a01a01a0319f9p-13 */
|
|
B8 = 2.4801587302069236e-5, /* 0x1.a01a01a03cbbcp-16 */
|
|
B9 = 2.7557316558468562e-6, /* 0x1.71de37fd33d67p-19 */
|
|
B10 = 2.7557315829785151e-7, /* 0x1.27e4f91418144p-22 */
|
|
B11 = 2.5063168199779829e-8, /* 0x1.ae94fabdc6b27p-26 */
|
|
B12 = 2.0887164654459567e-9; /* 0x1.1f122d6413fe1p-29 */
|
|
|
|
long double
|
|
expm1l(long double x)
|
|
{
|
|
union IEEEl2bits u, v;
|
|
long double fn, hx2_hi, hx2_lo, q, r, r1, r2, t, twomk, twopk, x_hi;
|
|
long double x_lo, x2, z;
|
|
long double x4;
|
|
int k, n, n2;
|
|
uint16_t hx, ix;
|
|
|
|
DOPRINT_START(&x);
|
|
|
|
/* Filter out exceptional cases. */
|
|
u.e = x;
|
|
hx = u.xbits.expsign;
|
|
ix = hx & 0x7fff;
|
|
if (ix >= BIAS + 6) { /* |x| >= 64 or x is NaN */
|
|
if (ix == BIAS + LDBL_MAX_EXP) {
|
|
if (hx & 0x8000) /* x is -Inf, -NaN or unsupported */
|
|
RETURNP(-1 / x - 1);
|
|
RETURNP(x + x); /* x is +Inf, +NaN or unsupported */
|
|
}
|
|
if (x > o_threshold)
|
|
RETURNP(huge * huge);
|
|
/*
|
|
* expm1l() never underflows, but it must avoid
|
|
* unrepresentable large negative exponents. We used a
|
|
* much smaller threshold for large |x| above than in
|
|
* expl() so as to handle not so large negative exponents
|
|
* in the same way as large ones here.
|
|
*/
|
|
if (hx & 0x8000) /* x <= -64 */
|
|
RETURN2P(tiny, -1); /* good for x < -65ln2 - eps */
|
|
}
|
|
|
|
ENTERI();
|
|
|
|
if (T1 < x && x < T2) {
|
|
if (ix < BIAS - 74) { /* |x| < 0x1p-74 (includes pseudos) */
|
|
/* x (rounded) with inexact if x != 0: */
|
|
RETURNPI(x == 0 ? x :
|
|
(0x1p100 * x + fabsl(x)) * 0x1p-100);
|
|
}
|
|
|
|
x2 = x * x;
|
|
x4 = x2 * x2;
|
|
q = x4 * (x2 * (x4 *
|
|
/*
|
|
* XXX the number of terms is no longer good for
|
|
* pairwise grouping of all except B3, and the
|
|
* grouping is no longer from highest down.
|
|
*/
|
|
(x2 * B12 + (x * B11 + B10)) +
|
|
(x2 * (x * B9 + B8) + (x * B7 + B6))) +
|
|
(x * B5 + B4.e)) + x2 * x * B3.e;
|
|
|
|
x_hi = (float)x;
|
|
x_lo = x - x_hi;
|
|
hx2_hi = x_hi * x_hi / 2;
|
|
hx2_lo = x_lo * (x + x_hi) / 2;
|
|
if (ix >= BIAS - 7)
|
|
RETURN2PI(hx2_hi + x_hi, hx2_lo + x_lo + q);
|
|
else
|
|
RETURN2PI(x, hx2_lo + q + hx2_hi);
|
|
}
|
|
|
|
/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
|
|
/* Use a specialized rint() to get fn. Assume round-to-nearest. */
|
|
fn = x * INV_L + 0x1.8p63 - 0x1.8p63;
|
|
#if defined(HAVE_EFFICIENT_IRINTL)
|
|
n = irintl(fn);
|
|
#elif defined(HAVE_EFFICIENT_IRINT)
|
|
n = irint(fn);
|
|
#else
|
|
n = (int)fn;
|
|
#endif
|
|
n2 = (unsigned)n % INTERVALS;
|
|
k = n >> LOG2_INTERVALS;
|
|
r1 = x - fn * L1;
|
|
r2 = fn * -L2;
|
|
r = r1 + r2;
|
|
|
|
/* Prepare scale factor. */
|
|
v.e = 1;
|
|
v.xbits.expsign = BIAS + k;
|
|
twopk = v.e;
|
|
|
|
/*
|
|
* Evaluate lower terms of
|
|
* expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2).
|
|
*/
|
|
z = r * r;
|
|
q = r2 + z * (A2 + r * A3) + z * z * (A4 + r * A5) + z * z * z * A6;
|
|
|
|
t = (long double)tbl[n2].lo + tbl[n2].hi;
|
|
|
|
if (k == 0) {
|
|
t = SUM2P(tbl[n2].hi - 1, tbl[n2].lo * (r1 + 1) + t * q +
|
|
tbl[n2].hi * r1);
|
|
RETURNI(t);
|
|
}
|
|
if (k == -1) {
|
|
t = SUM2P(tbl[n2].hi - 2, tbl[n2].lo * (r1 + 1) + t * q +
|
|
tbl[n2].hi * r1);
|
|
RETURNI(t / 2);
|
|
}
|
|
if (k < -7) {
|
|
t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
|
|
RETURNI(t * twopk - 1);
|
|
}
|
|
if (k > 2 * LDBL_MANT_DIG - 1) {
|
|
t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
|
|
if (k == LDBL_MAX_EXP)
|
|
RETURNI(t * 2 * 0x1p16383L - 1);
|
|
RETURNI(t * twopk - 1);
|
|
}
|
|
|
|
v.xbits.expsign = BIAS - k;
|
|
twomk = v.e;
|
|
|
|
if (k > LDBL_MANT_DIG - 1)
|
|
t = SUM2P(tbl[n2].hi, tbl[n2].lo - twomk + t * (q + r1));
|
|
else
|
|
t = SUM2P(tbl[n2].hi - twomk, tbl[n2].lo + t * (q + r1));
|
|
RETURNI(t * twopk);
|
|
}
|