1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-19 15:33:56 +00:00
freebsd/sys/vm/vm_zone.c
2001-01-23 03:40:27 +00:00

449 lines
11 KiB
C

/*
* Copyright (c) 1997, 1998 John S. Dyson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.
* 2. Absolutely no warranty of function or purpose is made by the author
* John S. Dyson.
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/queue.h>
#include <sys/sysctl.h>
#include <sys/vmmeter.h>
#include <vm/vm.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_kern.h>
#include <vm/vm_extern.h>
#include <vm/vm_zone.h>
static MALLOC_DEFINE(M_ZONE, "ZONE", "Zone header");
#define ZENTRY_FREE (void*)0x12342378
#define ZONE_ROUNDING 32
/*
* This file comprises a very simple zone allocator. This is used
* in lieu of the malloc allocator, where needed or more optimal.
*
* Note that the initial implementation of this had coloring, and
* absolutely no improvement (actually perf degradation) occurred.
*
* Note also that the zones are type stable. The only restriction is
* that the first two longwords of a data structure can be changed
* between allocations. Any data that must be stable between allocations
* must reside in areas after the first two longwords.
*
* zinitna, zinit, zbootinit are the initialization routines.
* zalloc, zfree, are the allocation/free routines.
*/
/*
* Subsystem lock. Never grab it while holding a zone lock.
*/
static struct mtx zone_mtx;
/*
* Singly-linked list of zones, for book-keeping purposes
*/
static SLIST_HEAD(vm_zone_list, vm_zone) zlist;
/*
* Statistics
*/
static int zone_kmem_pages; /* Number of interrupt-safe pages allocated */
static int zone_kern_pages; /* Number of KVA pages allocated */
static int zone_kmem_kvaspace; /* Number of non-intsafe pages allocated */
/*
* Subsystem initialization, called from vm_mem_init()
*/
void
vm_zone_init(void)
{
mtx_init(&zone_mtx, "zone subsystem", MTX_DEF);
SLIST_INIT(&zlist);
}
void
vm_zone_init2(void)
{
/*
* LATER: traverse zlist looking for partially initialized
* LATER: zones and finish initializing them.
*/
}
/*
* Create a zone, but don't allocate the zone structure. If the
* zone had been previously created by the zone boot code, initialize
* various parts of the zone code.
*
* If waits are not allowed during allocation (e.g. during interrupt
* code), a-priori allocate the kernel virtual space, and allocate
* only pages when needed.
*
* Arguments:
* z pointer to zone structure.
* obj pointer to VM object (opt).
* name name of zone.
* size size of zone entries.
* nentries number of zone entries allocated (only ZONE_INTERRUPT.)
* flags ZONE_INTERRUPT -- items can be allocated at interrupt time.
* zalloc number of pages allocated when memory is needed.
*
* Note that when using ZONE_INTERRUPT, the size of the zone is limited
* by the nentries argument. The size of the memory allocatable is
* unlimited if ZONE_INTERRUPT is not set.
*
*/
int
zinitna(vm_zone_t z, vm_object_t obj, char *name, int size,
int nentries, int flags, int zalloc)
{
int totsize, oldzflags;
oldzflags = z->zflags;
if ((z->zflags & ZONE_BOOT) == 0) {
z->zsize = (size + ZONE_ROUNDING - 1) & ~(ZONE_ROUNDING - 1);
z->zfreecnt = 0;
z->ztotal = 0;
z->zmax = 0;
z->zname = name;
z->znalloc = 0;
z->zitems = NULL;
}
z->zflags |= flags;
/*
* If we cannot wait, allocate KVA space up front, and we will fill
* in pages as needed.
*/
if (z->zflags & ZONE_INTERRUPT) {
totsize = round_page(z->zsize * nentries);
atomic_add_int(&zone_kmem_kvaspace, totsize);
z->zkva = kmem_alloc_pageable(kernel_map, totsize);
if (z->zkva == 0)
return 0;
z->zpagemax = totsize / PAGE_SIZE;
if (obj == NULL) {
z->zobj = vm_object_allocate(OBJT_DEFAULT, z->zpagemax);
} else {
z->zobj = obj;
_vm_object_allocate(OBJT_DEFAULT, z->zpagemax, obj);
}
z->zallocflag = VM_ALLOC_INTERRUPT;
z->zmax += nentries;
} else {
z->zallocflag = VM_ALLOC_SYSTEM;
z->zmax = 0;
}
if (z->zsize > PAGE_SIZE)
z->zfreemin = 1;
else
z->zfreemin = PAGE_SIZE / z->zsize;
z->zpagecount = 0;
if (zalloc)
z->zalloc = zalloc;
else
z->zalloc = 1;
/* our zone is good and ready, add it to the list */
if ((z->zflags & ZONE_BOOT) == 0) {
mtx_init(&(z)->zmtx, "zone", MTX_DEF);
mtx_enter(&zone_mtx, MTX_DEF);
SLIST_INSERT_HEAD(&zlist, z, zent);
mtx_exit(&zone_mtx, MTX_DEF);
}
return 1;
}
/*
* Subroutine same as zinitna, except zone data structure is allocated
* automatically by malloc. This routine should normally be used, except
* in certain tricky startup conditions in the VM system -- then
* zbootinit and zinitna can be used. Zinit is the standard zone
* initialization call.
*/
vm_zone_t
zinit(char *name, int size, int nentries, int flags, int zalloc)
{
vm_zone_t z;
z = (vm_zone_t) malloc(sizeof (struct vm_zone), M_ZONE, M_NOWAIT | M_ZERO);
if (z == NULL)
return NULL;
if (zinitna(z, NULL, name, size, nentries, flags, zalloc) == 0) {
free(z, M_ZONE);
return NULL;
}
return z;
}
/*
* Initialize a zone before the system is fully up.
*
* We can't rely on being able to allocate items dynamically, so we
* kickstart the zone with a number of static items provided by the
* caller.
*
* This routine should only be called before full VM startup.
*/
void
zbootinit(vm_zone_t z, char *name, int size, void *item, int nitems)
{
int i;
z->zname = name;
z->zsize = size;
z->zpagemax = 0;
z->zobj = NULL;
z->zflags = ZONE_BOOT;
z->zfreemin = 0;
z->zallocflag = 0;
z->zpagecount = 0;
z->zalloc = 0;
z->znalloc = 0;
mtx_init(&(z)->zmtx, "zone", MTX_DEF);
bzero(item, nitems * z->zsize);
z->zitems = NULL;
for (i = 0; i < nitems; i++) {
((void **) item)[0] = z->zitems;
#ifdef INVARIANTS
((void **) item)[1] = ZENTRY_FREE;
#endif
z->zitems = item;
(char *) item += z->zsize;
}
z->zfreecnt = nitems;
z->zmax = nitems;
z->ztotal = nitems;
mtx_enter(&zone_mtx, MTX_DEF);
SLIST_INSERT_HEAD(&zlist, z, zent);
mtx_exit(&zone_mtx, MTX_DEF);
}
/*
* Grow the specified zone to accomodate more items.
*/
static void *
_zget(vm_zone_t z)
{
int i;
vm_page_t m;
int nitems, nbytes;
void *item;
KASSERT(z != NULL, ("invalid zone"));
mtx_assert(&z->zmtx, MA_OWNED);
if (z->zflags & ZONE_INTERRUPT) {
item = (char *) z->zkva + z->zpagecount * PAGE_SIZE;
for (i = 0; ((i < z->zalloc) && (z->zpagecount < z->zpagemax));
i++) {
vm_offset_t zkva;
m = vm_page_alloc(z->zobj, z->zpagecount,
z->zallocflag);
if (m == NULL)
break;
zkva = z->zkva + z->zpagecount * PAGE_SIZE;
pmap_kenter(zkva, VM_PAGE_TO_PHYS(m));
bzero((caddr_t) zkva, PAGE_SIZE);
z->zpagecount++;
atomic_add_int(&zone_kmem_pages, 1);
cnt.v_wire_count++;
}
nitems = (i * PAGE_SIZE) / z->zsize;
} else {
nbytes = z->zalloc * PAGE_SIZE;
/*
* Check to see if the kernel map is already locked. We could allow
* for recursive locks, but that eliminates a valuable debugging
* mechanism, and opens up the kernel map for potential corruption
* by inconsistent data structure manipulation. We could also use
* the interrupt allocation mechanism, but that has size limitations.
* Luckily, we have kmem_map that is a submap of kernel map available
* for memory allocation, and manipulation of that map doesn't affect
* the kernel map structures themselves.
*
* We can wait, so just do normal map allocation in the appropriate
* map.
*/
if (lockstatus(&kernel_map->lock, NULL)) {
mtx_exit(&z->zmtx, MTX_DEF);
item = (void *) kmem_malloc(kmem_map, nbytes, M_WAITOK);
mtx_enter(&z->zmtx, MTX_DEF);
if (item != NULL)
atomic_add_int(&zone_kmem_pages, z->zalloc);
} else {
mtx_exit(&z->zmtx, MTX_DEF);
item = (void *) kmem_alloc(kernel_map, nbytes);
mtx_enter(&z->zmtx, MTX_DEF);
if (item != NULL)
atomic_add_int(&zone_kern_pages, z->zalloc);
}
if (item != NULL) {
bzero(item, nbytes);
} else {
nbytes = 0;
}
nitems = nbytes / z->zsize;
}
z->ztotal += nitems;
/*
* Save one for immediate allocation
*/
if (nitems != 0) {
nitems -= 1;
for (i = 0; i < nitems; i++) {
((void **) item)[0] = z->zitems;
#ifdef INVARIANTS
((void **) item)[1] = ZENTRY_FREE;
#endif
z->zitems = item;
(char *) item += z->zsize;
}
z->zfreecnt += nitems;
z->znalloc++;
} else if (z->zfreecnt > 0) {
item = z->zitems;
z->zitems = ((void **) item)[0];
#ifdef INVARIANTS
KASSERT(((void **) item)[1] == ZENTRY_FREE,
("item is not free"));
((void **) item)[1] = 0;
#endif
z->zfreecnt--;
z->znalloc++;
} else {
item = NULL;
}
mtx_assert(&z->zmtx, MA_OWNED);
return item;
}
/*
* Allocates an item from the specified zone.
*/
void *
zalloc(vm_zone_t z)
{
void *item;
KASSERT(z != NULL, ("invalid zone"));
mtx_enter(&z->zmtx, MTX_DEF);
if (z->zfreecnt <= z->zfreemin) {
item = _zget(z);
mtx_exit(&z->zmtx, MTX_DEF);
return item;
}
item = z->zitems;
z->zitems = ((void **) item)[0];
#ifdef INVARIANTS
KASSERT(((void **) item)[1] == ZENTRY_FREE,
("item is not free"));
((void **) item)[1] = 0;
#endif
z->zfreecnt--;
z->znalloc++;
mtx_exit(&z->zmtx, MTX_DEF);
return item;
}
/*
* Frees an item back to the specified zone.
*/
void
zfree(vm_zone_t z, void *item)
{
KASSERT(z != NULL, ("invalid zone"));
KASSERT(item != NULL, ("invalid item"));
mtx_enter(&z->zmtx, MTX_DEF);
((void **) item)[0] = z->zitems;
#ifdef INVARIANTS
KASSERT(((void **) item)[1] != ZENTRY_FREE,
("item is already free"));
((void **) item)[1] = (void *) ZENTRY_FREE;
#endif
z->zitems = item;
z->zfreecnt++;
mtx_exit(&z->zmtx, MTX_DEF);
}
/*
* Sysctl handler for vm.zone
*/
static int
sysctl_vm_zone(SYSCTL_HANDLER_ARGS)
{
int error, len;
char tmpbuf[128];
vm_zone_t z;
mtx_enter(&zone_mtx, MTX_DEF);
len = snprintf(tmpbuf, sizeof(tmpbuf),
"\nITEM SIZE LIMIT USED FREE REQUESTS\n\n");
error = SYSCTL_OUT(req, tmpbuf, SLIST_EMPTY(&zlist) ? len-1 : len);
SLIST_FOREACH(z, &zlist, zent) {
mtx_enter(&z->zmtx, MTX_DEF);
len = snprintf(tmpbuf, sizeof(tmpbuf),
"%-14.14s %6.6u, %8.8u, %6.6u, %6.6u, %8.8u\n",
z->zname, z->zsize, z->zmax, (z->ztotal - z->zfreecnt),
z->zfreecnt, z->znalloc);
mtx_exit(&z->zmtx, MTX_DEF);
if (SLIST_NEXT(z, zent) == NULL)
tmpbuf[len - 1] = 0;
error = SYSCTL_OUT(req, tmpbuf, len);
}
mtx_exit(&zone_mtx, MTX_DEF);
return (error);
}
SYSCTL_OID(_vm, OID_AUTO, zone, CTLTYPE_STRING|CTLFLAG_RD,
NULL, 0, sysctl_vm_zone, "A", "Zone Info");
SYSCTL_INT(_vm, OID_AUTO, zone_kmem_pages, CTLFLAG_RD, &zone_kmem_pages, 0,
"Number of interrupt safe pages allocated by zone");
SYSCTL_INT(_vm, OID_AUTO, zone_kmem_kvaspace, CTLFLAG_RD, &zone_kmem_kvaspace, 0,
"KVA space allocated by zone");
SYSCTL_INT(_vm, OID_AUTO, zone_kern_pages, CTLFLAG_RD, &zone_kern_pages, 0,
"Number of non-interrupt safe pages allocated by zone");