1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-29 12:03:03 +00:00
freebsd/sys/kern/uipc_sockbuf.c
2002-03-20 04:39:32 +00:00

1021 lines
26 KiB
C

/*
* Copyright (c) 1982, 1986, 1988, 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
* $FreeBSD$
*/
#include "opt_param.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/domain.h>
#include <sys/file.h> /* for maxfiles */
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/resourcevar.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/signalvar.h>
#include <sys/sysctl.h>
#include <sys/aio.h> /* for aio_swake proto */
#include <sys/event.h>
int maxsockets;
void (*aio_swake)(struct socket *, struct sockbuf *);
/*
* Primitive routines for operating on sockets and socket buffers
*/
u_long sb_max = SB_MAX; /* XXX should be static */
static u_long sb_efficiency = 8; /* parameter for sbreserve() */
/*
* Procedures to manipulate state flags of socket
* and do appropriate wakeups. Normal sequence from the
* active (originating) side is that soisconnecting() is
* called during processing of connect() call,
* resulting in an eventual call to soisconnected() if/when the
* connection is established. When the connection is torn down
* soisdisconnecting() is called during processing of disconnect() call,
* and soisdisconnected() is called when the connection to the peer
* is totally severed. The semantics of these routines are such that
* connectionless protocols can call soisconnected() and soisdisconnected()
* only, bypassing the in-progress calls when setting up a ``connection''
* takes no time.
*
* From the passive side, a socket is created with
* two queues of sockets: so_incomp for connections in progress
* and so_comp for connections already made and awaiting user acceptance.
* As a protocol is preparing incoming connections, it creates a socket
* structure queued on so_incomp by calling sonewconn(). When the connection
* is established, soisconnected() is called, and transfers the
* socket structure to so_comp, making it available to accept().
*
* If a socket is closed with sockets on either
* so_incomp or so_comp, these sockets are dropped.
*
* If higher level protocols are implemented in
* the kernel, the wakeups done here will sometimes
* cause software-interrupt process scheduling.
*/
void
soisconnecting(so)
register struct socket *so;
{
so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
so->so_state |= SS_ISCONNECTING;
}
void
soisconnected(so)
struct socket *so;
{
struct socket *head = so->so_head;
so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
so->so_state |= SS_ISCONNECTED;
if (head && (so->so_state & SS_INCOMP)) {
if ((so->so_options & SO_ACCEPTFILTER) != 0) {
so->so_upcall = head->so_accf->so_accept_filter->accf_callback;
so->so_upcallarg = head->so_accf->so_accept_filter_arg;
so->so_rcv.sb_flags |= SB_UPCALL;
so->so_options &= ~SO_ACCEPTFILTER;
so->so_upcall(so, so->so_upcallarg, 0);
return;
}
TAILQ_REMOVE(&head->so_incomp, so, so_list);
head->so_incqlen--;
so->so_state &= ~SS_INCOMP;
TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
so->so_state |= SS_COMP;
sorwakeup(head);
wakeup_one(&head->so_timeo);
} else {
wakeup(&so->so_timeo);
sorwakeup(so);
sowwakeup(so);
}
}
void
soisdisconnecting(so)
register struct socket *so;
{
so->so_state &= ~SS_ISCONNECTING;
so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
wakeup((caddr_t)&so->so_timeo);
sowwakeup(so);
sorwakeup(so);
}
void
soisdisconnected(so)
register struct socket *so;
{
so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
wakeup((caddr_t)&so->so_timeo);
sowwakeup(so);
sorwakeup(so);
}
/*
* Return a random connection that hasn't been serviced yet and
* is eligible for discard. There is a one in qlen chance that
* we will return a null, saying that there are no dropable
* requests. In this case, the protocol specific code should drop
* the new request. This insures fairness.
*
* This may be used in conjunction with protocol specific queue
* congestion routines.
*/
struct socket *
sodropablereq(head)
register struct socket *head;
{
register struct socket *so;
unsigned int i, j, qlen;
static int rnd;
static struct timeval old_runtime;
static unsigned int cur_cnt, old_cnt;
struct timeval tv;
getmicrouptime(&tv);
if ((i = (tv.tv_sec - old_runtime.tv_sec)) != 0) {
old_runtime = tv;
old_cnt = cur_cnt / i;
cur_cnt = 0;
}
so = TAILQ_FIRST(&head->so_incomp);
if (!so)
return (so);
qlen = head->so_incqlen;
if (++cur_cnt > qlen || old_cnt > qlen) {
rnd = (314159 * rnd + 66329) & 0xffff;
j = ((qlen + 1) * rnd) >> 16;
while (j-- && so)
so = TAILQ_NEXT(so, so_list);
}
return (so);
}
/*
* When an attempt at a new connection is noted on a socket
* which accepts connections, sonewconn is called. If the
* connection is possible (subject to space constraints, etc.)
* then we allocate a new structure, propoerly linked into the
* data structure of the original socket, and return this.
* Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
*
* note: the ref count on the socket is 0 on return
*/
struct socket *
sonewconn(head, connstatus)
register struct socket *head;
int connstatus;
{
register struct socket *so;
if (head->so_qlen > 3 * head->so_qlimit / 2)
return ((struct socket *)0);
so = soalloc(0);
if (so == NULL)
return ((struct socket *)0);
if ((head->so_options & SO_ACCEPTFILTER) != 0)
connstatus = 0;
so->so_head = head;
so->so_type = head->so_type;
so->so_options = head->so_options &~ SO_ACCEPTCONN;
so->so_linger = head->so_linger;
so->so_state = head->so_state | SS_NOFDREF;
so->so_proto = head->so_proto;
so->so_timeo = head->so_timeo;
so->so_cred = crhold(head->so_cred);
if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
(*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
sotryfree(so);
return ((struct socket *)0);
}
if (connstatus) {
TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
so->so_state |= SS_COMP;
} else {
TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
so->so_state |= SS_INCOMP;
head->so_incqlen++;
}
head->so_qlen++;
if (connstatus) {
sorwakeup(head);
wakeup((caddr_t)&head->so_timeo);
so->so_state |= connstatus;
}
return (so);
}
/*
* Socantsendmore indicates that no more data will be sent on the
* socket; it would normally be applied to a socket when the user
* informs the system that no more data is to be sent, by the protocol
* code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
* will be received, and will normally be applied to the socket by a
* protocol when it detects that the peer will send no more data.
* Data queued for reading in the socket may yet be read.
*/
void
socantsendmore(so)
struct socket *so;
{
so->so_state |= SS_CANTSENDMORE;
sowwakeup(so);
}
void
socantrcvmore(so)
struct socket *so;
{
so->so_state |= SS_CANTRCVMORE;
sorwakeup(so);
}
/*
* Wait for data to arrive at/drain from a socket buffer.
*/
int
sbwait(sb)
struct sockbuf *sb;
{
sb->sb_flags |= SB_WAIT;
return (tsleep((caddr_t)&sb->sb_cc,
(sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
sb->sb_timeo));
}
/*
* Lock a sockbuf already known to be locked;
* return any error returned from sleep (EINTR).
*/
int
sb_lock(sb)
register struct sockbuf *sb;
{
int error;
while (sb->sb_flags & SB_LOCK) {
sb->sb_flags |= SB_WANT;
error = tsleep((caddr_t)&sb->sb_flags,
(sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
"sblock", 0);
if (error)
return (error);
}
sb->sb_flags |= SB_LOCK;
return (0);
}
/*
* Wakeup processes waiting on a socket buffer.
* Do asynchronous notification via SIGIO
* if the socket has the SS_ASYNC flag set.
*/
void
sowakeup(so, sb)
register struct socket *so;
register struct sockbuf *sb;
{
selwakeup(&sb->sb_sel);
sb->sb_flags &= ~SB_SEL;
if (sb->sb_flags & SB_WAIT) {
sb->sb_flags &= ~SB_WAIT;
wakeup((caddr_t)&sb->sb_cc);
}
if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
pgsigio(so->so_sigio, SIGIO, 0);
if (sb->sb_flags & SB_UPCALL)
(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
if (sb->sb_flags & SB_AIO)
aio_swake(so, sb);
KNOTE(&sb->sb_sel.si_note, 0);
}
/*
* Socket buffer (struct sockbuf) utility routines.
*
* Each socket contains two socket buffers: one for sending data and
* one for receiving data. Each buffer contains a queue of mbufs,
* information about the number of mbufs and amount of data in the
* queue, and other fields allowing select() statements and notification
* on data availability to be implemented.
*
* Data stored in a socket buffer is maintained as a list of records.
* Each record is a list of mbufs chained together with the m_next
* field. Records are chained together with the m_nextpkt field. The upper
* level routine soreceive() expects the following conventions to be
* observed when placing information in the receive buffer:
*
* 1. If the protocol requires each message be preceded by the sender's
* name, then a record containing that name must be present before
* any associated data (mbuf's must be of type MT_SONAME).
* 2. If the protocol supports the exchange of ``access rights'' (really
* just additional data associated with the message), and there are
* ``rights'' to be received, then a record containing this data
* should be present (mbuf's must be of type MT_RIGHTS).
* 3. If a name or rights record exists, then it must be followed by
* a data record, perhaps of zero length.
*
* Before using a new socket structure it is first necessary to reserve
* buffer space to the socket, by calling sbreserve(). This should commit
* some of the available buffer space in the system buffer pool for the
* socket (currently, it does nothing but enforce limits). The space
* should be released by calling sbrelease() when the socket is destroyed.
*/
int
soreserve(so, sndcc, rcvcc)
register struct socket *so;
u_long sndcc, rcvcc;
{
struct thread *td = curthread;
if (sbreserve(&so->so_snd, sndcc, so, td) == 0)
goto bad;
if (sbreserve(&so->so_rcv, rcvcc, so, td) == 0)
goto bad2;
if (so->so_rcv.sb_lowat == 0)
so->so_rcv.sb_lowat = 1;
if (so->so_snd.sb_lowat == 0)
so->so_snd.sb_lowat = MCLBYTES;
if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
return (0);
bad2:
sbrelease(&so->so_snd, so);
bad:
return (ENOBUFS);
}
/*
* Allot mbufs to a sockbuf.
* Attempt to scale mbmax so that mbcnt doesn't become limiting
* if buffering efficiency is near the normal case.
*/
int
sbreserve(sb, cc, so, td)
struct sockbuf *sb;
u_long cc;
struct socket *so;
struct thread *td;
{
/*
* td will only be NULL when we're in an interrupt
* (e.g. in tcp_input())
*/
if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES))
return (0);
if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
td ? td->td_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur : RLIM_INFINITY)) {
return (0);
}
sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
if (sb->sb_lowat > sb->sb_hiwat)
sb->sb_lowat = sb->sb_hiwat;
return (1);
}
/*
* Free mbufs held by a socket, and reserved mbuf space.
*/
void
sbrelease(sb, so)
struct sockbuf *sb;
struct socket *so;
{
sbflush(sb);
(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
RLIM_INFINITY);
sb->sb_mbmax = 0;
}
/*
* Routines to add and remove
* data from an mbuf queue.
*
* The routines sbappend() or sbappendrecord() are normally called to
* append new mbufs to a socket buffer, after checking that adequate
* space is available, comparing the function sbspace() with the amount
* of data to be added. sbappendrecord() differs from sbappend() in
* that data supplied is treated as the beginning of a new record.
* To place a sender's address, optional access rights, and data in a
* socket receive buffer, sbappendaddr() should be used. To place
* access rights and data in a socket receive buffer, sbappendrights()
* should be used. In either case, the new data begins a new record.
* Note that unlike sbappend() and sbappendrecord(), these routines check
* for the caller that there will be enough space to store the data.
* Each fails if there is not enough space, or if it cannot find mbufs
* to store additional information in.
*
* Reliable protocols may use the socket send buffer to hold data
* awaiting acknowledgement. Data is normally copied from a socket
* send buffer in a protocol with m_copy for output to a peer,
* and then removing the data from the socket buffer with sbdrop()
* or sbdroprecord() when the data is acknowledged by the peer.
*/
/*
* Append mbuf chain m to the last record in the
* socket buffer sb. The additional space associated
* the mbuf chain is recorded in sb. Empty mbufs are
* discarded and mbufs are compacted where possible.
*/
void
sbappend(sb, m)
struct sockbuf *sb;
struct mbuf *m;
{
register struct mbuf *n;
if (m == 0)
return;
n = sb->sb_mb;
if (n) {
while (n->m_nextpkt)
n = n->m_nextpkt;
do {
if (n->m_flags & M_EOR) {
sbappendrecord(sb, m); /* XXXXXX!!!! */
return;
}
} while (n->m_next && (n = n->m_next));
}
sbcompress(sb, m, n);
}
#ifdef SOCKBUF_DEBUG
void
sbcheck(sb)
register struct sockbuf *sb;
{
register struct mbuf *m;
register struct mbuf *n = 0;
register u_long len = 0, mbcnt = 0;
for (m = sb->sb_mb; m; m = n) {
n = m->m_nextpkt;
for (; m; m = m->m_next) {
len += m->m_len;
mbcnt += MSIZE;
if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
mbcnt += m->m_ext.ext_size;
}
}
if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
mbcnt, sb->sb_mbcnt);
panic("sbcheck");
}
}
#endif
/*
* As above, except the mbuf chain
* begins a new record.
*/
void
sbappendrecord(sb, m0)
register struct sockbuf *sb;
register struct mbuf *m0;
{
register struct mbuf *m;
if (m0 == 0)
return;
m = sb->sb_mb;
if (m)
while (m->m_nextpkt)
m = m->m_nextpkt;
/*
* Put the first mbuf on the queue.
* Note this permits zero length records.
*/
sballoc(sb, m0);
if (m)
m->m_nextpkt = m0;
else
sb->sb_mb = m0;
m = m0->m_next;
m0->m_next = 0;
if (m && (m0->m_flags & M_EOR)) {
m0->m_flags &= ~M_EOR;
m->m_flags |= M_EOR;
}
sbcompress(sb, m, m0);
}
/*
* As above except that OOB data
* is inserted at the beginning of the sockbuf,
* but after any other OOB data.
*/
void
sbinsertoob(sb, m0)
register struct sockbuf *sb;
register struct mbuf *m0;
{
register struct mbuf *m;
register struct mbuf **mp;
if (m0 == 0)
return;
for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
m = *mp;
again:
switch (m->m_type) {
case MT_OOBDATA:
continue; /* WANT next train */
case MT_CONTROL:
m = m->m_next;
if (m)
goto again; /* inspect THIS train further */
}
break;
}
/*
* Put the first mbuf on the queue.
* Note this permits zero length records.
*/
sballoc(sb, m0);
m0->m_nextpkt = *mp;
*mp = m0;
m = m0->m_next;
m0->m_next = 0;
if (m && (m0->m_flags & M_EOR)) {
m0->m_flags &= ~M_EOR;
m->m_flags |= M_EOR;
}
sbcompress(sb, m, m0);
}
/*
* Append address and data, and optionally, control (ancillary) data
* to the receive queue of a socket. If present,
* m0 must include a packet header with total length.
* Returns 0 if no space in sockbuf or insufficient mbufs.
*/
int
sbappendaddr(sb, asa, m0, control)
register struct sockbuf *sb;
struct sockaddr *asa;
struct mbuf *m0, *control;
{
register struct mbuf *m, *n;
int space = asa->sa_len;
if (m0 && (m0->m_flags & M_PKTHDR) == 0)
panic("sbappendaddr");
if (m0)
space += m0->m_pkthdr.len;
for (n = control; n; n = n->m_next) {
space += n->m_len;
if (n->m_next == 0) /* keep pointer to last control buf */
break;
}
if (space > sbspace(sb))
return (0);
if (asa->sa_len > MLEN)
return (0);
MGET(m, M_DONTWAIT, MT_SONAME);
if (m == 0)
return (0);
m->m_len = asa->sa_len;
bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
if (n)
n->m_next = m0; /* concatenate data to control */
else
control = m0;
m->m_next = control;
for (n = m; n; n = n->m_next)
sballoc(sb, n);
n = sb->sb_mb;
if (n) {
while (n->m_nextpkt)
n = n->m_nextpkt;
n->m_nextpkt = m;
} else
sb->sb_mb = m;
return (1);
}
int
sbappendcontrol(sb, m0, control)
struct sockbuf *sb;
struct mbuf *control, *m0;
{
register struct mbuf *m, *n;
int space = 0;
if (control == 0)
panic("sbappendcontrol");
for (m = control; ; m = m->m_next) {
space += m->m_len;
if (m->m_next == 0)
break;
}
n = m; /* save pointer to last control buffer */
for (m = m0; m; m = m->m_next)
space += m->m_len;
if (space > sbspace(sb))
return (0);
n->m_next = m0; /* concatenate data to control */
for (m = control; m; m = m->m_next)
sballoc(sb, m);
n = sb->sb_mb;
if (n) {
while (n->m_nextpkt)
n = n->m_nextpkt;
n->m_nextpkt = control;
} else
sb->sb_mb = control;
return (1);
}
/*
* Compress mbuf chain m into the socket
* buffer sb following mbuf n. If n
* is null, the buffer is presumed empty.
*/
void
sbcompress(sb, m, n)
register struct sockbuf *sb;
register struct mbuf *m, *n;
{
register int eor = 0;
register struct mbuf *o;
while (m) {
eor |= m->m_flags & M_EOR;
if (m->m_len == 0 &&
(eor == 0 ||
(((o = m->m_next) || (o = n)) &&
o->m_type == m->m_type))) {
m = m_free(m);
continue;
}
if (n && (n->m_flags & M_EOR) == 0 &&
M_WRITABLE(n) &&
m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
m->m_len <= M_TRAILINGSPACE(n) &&
n->m_type == m->m_type) {
bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
(unsigned)m->m_len);
n->m_len += m->m_len;
sb->sb_cc += m->m_len;
m = m_free(m);
continue;
}
if (n)
n->m_next = m;
else
sb->sb_mb = m;
sballoc(sb, m);
n = m;
m->m_flags &= ~M_EOR;
m = m->m_next;
n->m_next = 0;
}
if (eor) {
if (n)
n->m_flags |= eor;
else
printf("semi-panic: sbcompress\n");
}
}
/*
* Free all mbufs in a sockbuf.
* Check that all resources are reclaimed.
*/
void
sbflush(sb)
register struct sockbuf *sb;
{
if (sb->sb_flags & SB_LOCK)
panic("sbflush: locked");
while (sb->sb_mbcnt) {
/*
* Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
* we would loop forever. Panic instead.
*/
if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
break;
sbdrop(sb, (int)sb->sb_cc);
}
if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
panic("sbflush: cc %ld || mb %p || mbcnt %ld", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
}
/*
* Drop data from (the front of) a sockbuf.
*/
void
sbdrop(sb, len)
register struct sockbuf *sb;
register int len;
{
register struct mbuf *m;
struct mbuf *next;
next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
while (len > 0) {
if (m == 0) {
if (next == 0)
panic("sbdrop");
m = next;
next = m->m_nextpkt;
continue;
}
if (m->m_len > len) {
m->m_len -= len;
m->m_data += len;
sb->sb_cc -= len;
break;
}
len -= m->m_len;
sbfree(sb, m);
m = m_free(m);
}
while (m && m->m_len == 0) {
sbfree(sb, m);
m = m_free(m);
}
if (m) {
sb->sb_mb = m;
m->m_nextpkt = next;
} else
sb->sb_mb = next;
}
/*
* Drop a record off the front of a sockbuf
* and move the next record to the front.
*/
void
sbdroprecord(sb)
register struct sockbuf *sb;
{
register struct mbuf *m;
m = sb->sb_mb;
if (m) {
sb->sb_mb = m->m_nextpkt;
do {
sbfree(sb, m);
m = m_free(m);
} while (m);
}
}
/*
* Create a "control" mbuf containing the specified data
* with the specified type for presentation on a socket buffer.
*/
struct mbuf *
sbcreatecontrol(p, size, type, level)
caddr_t p;
register int size;
int type, level;
{
register struct cmsghdr *cp;
struct mbuf *m;
if (CMSG_SPACE((u_int)size) > MCLBYTES)
return ((struct mbuf *) NULL);
if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
return ((struct mbuf *) NULL);
if (CMSG_SPACE((u_int)size) > MLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_free(m);
return ((struct mbuf *) NULL);
}
}
cp = mtod(m, struct cmsghdr *);
m->m_len = 0;
KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
("sbcreatecontrol: short mbuf"));
if (p != NULL)
(void)memcpy(CMSG_DATA(cp), p, size);
m->m_len = CMSG_SPACE(size);
cp->cmsg_len = CMSG_LEN(size);
cp->cmsg_level = level;
cp->cmsg_type = type;
return (m);
}
/*
* Some routines that return EOPNOTSUPP for entry points that are not
* supported by a protocol. Fill in as needed.
*/
int
pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
{
return EOPNOTSUPP;
}
int
pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
{
return EOPNOTSUPP;
}
int
pru_connect2_notsupp(struct socket *so1, struct socket *so2)
{
return EOPNOTSUPP;
}
int
pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
struct ifnet *ifp, struct thread *td)
{
return EOPNOTSUPP;
}
int
pru_listen_notsupp(struct socket *so, struct thread *td)
{
return EOPNOTSUPP;
}
int
pru_rcvd_notsupp(struct socket *so, int flags)
{
return EOPNOTSUPP;
}
int
pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
{
return EOPNOTSUPP;
}
/*
* This isn't really a ``null'' operation, but it's the default one
* and doesn't do anything destructive.
*/
int
pru_sense_null(struct socket *so, struct stat *sb)
{
sb->st_blksize = so->so_snd.sb_hiwat;
return 0;
}
/*
* Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
*/
struct sockaddr *
dup_sockaddr(sa, canwait)
struct sockaddr *sa;
int canwait;
{
struct sockaddr *sa2;
MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
canwait ? M_WAITOK : M_NOWAIT);
if (sa2)
bcopy(sa, sa2, sa->sa_len);
return sa2;
}
/*
* Create an external-format (``xsocket'') structure using the information
* in the kernel-format socket structure pointed to by so. This is done
* to reduce the spew of irrelevant information over this interface,
* to isolate user code from changes in the kernel structure, and
* potentially to provide information-hiding if we decide that
* some of this information should be hidden from users.
*/
void
sotoxsocket(struct socket *so, struct xsocket *xso)
{
xso->xso_len = sizeof *xso;
xso->xso_so = so;
xso->so_type = so->so_type;
xso->so_options = so->so_options;
xso->so_linger = so->so_linger;
xso->so_state = so->so_state;
xso->so_pcb = so->so_pcb;
xso->xso_protocol = so->so_proto->pr_protocol;
xso->xso_family = so->so_proto->pr_domain->dom_family;
xso->so_qlen = so->so_qlen;
xso->so_incqlen = so->so_incqlen;
xso->so_qlimit = so->so_qlimit;
xso->so_timeo = so->so_timeo;
xso->so_error = so->so_error;
xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
xso->so_oobmark = so->so_oobmark;
sbtoxsockbuf(&so->so_snd, &xso->so_snd);
sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
xso->so_uid = so->so_cred->cr_uid;
}
/*
* This does the same for sockbufs. Note that the xsockbuf structure,
* since it is always embedded in a socket, does not include a self
* pointer nor a length. We make this entry point public in case
* some other mechanism needs it.
*/
void
sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
{
xsb->sb_cc = sb->sb_cc;
xsb->sb_hiwat = sb->sb_hiwat;
xsb->sb_mbcnt = sb->sb_mbcnt;
xsb->sb_mbmax = sb->sb_mbmax;
xsb->sb_lowat = sb->sb_lowat;
xsb->sb_flags = sb->sb_flags;
xsb->sb_timeo = sb->sb_timeo;
}
/*
* Here is the definition of some of the basic objects in the kern.ipc
* branch of the MIB.
*/
SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
/* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
static int dummy;
SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
SYSCTL_INT(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW,
&sb_max, 0, "Maximum socket buffer size");
SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD,
&maxsockets, 0, "Maximum number of sockets avaliable");
SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
&sb_efficiency, 0, "");
/*
* Initialise maxsockets
*/
static void init_maxsockets(void *ignored)
{
TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
}
SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);