1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-04 09:09:56 +00:00
freebsd/sys/isa/pnp.c
2000-10-15 14:19:01 +00:00

826 lines
20 KiB
C

/*
* Copyright (c) 1996, Sujal M. Patel
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
* from: pnp.c,v 1.11 1999/05/06 22:11:19 peter Exp
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/malloc.h>
#include <isa/isavar.h>
#include <isa/pnpreg.h>
#include <isa/pnpvar.h>
#include <machine/bus.h>
typedef struct _pnp_id {
u_int32_t vendor_id;
u_int32_t serial;
u_char checksum;
} pnp_id;
struct pnp_set_config_arg {
int csn; /* Card number to configure */
int ldn; /* Logical device on card */
};
struct pnp_quirk {
u_int32_t vendor_id; /* Vendor of the card */
u_int32_t logical_id; /* ID of the device with quirk */
int type;
#define PNP_QUIRK_WRITE_REG 1 /* Need to write a pnp register */
#define PNP_QUIRK_EXTRA_IO 2 /* Has extra io ports */
int arg1;
int arg2;
};
struct pnp_quirk pnp_quirks[] = {
/*
* The Gravis UltraSound needs register 0xf2 to be set to 0xff
* to enable power.
* XXX need to know the logical device id.
*/
{ 0x0100561e /* GRV0001 */, 0,
PNP_QUIRK_WRITE_REG, 0xf2, 0xff },
/*
* An emu8000 does not give us other than the first
* port.
*/
{ 0x26008c0e /* SB16 */, 0x21008c0e,
PNP_QUIRK_EXTRA_IO, 0x400, 0x800 },
{ 0x42008c0e /* SB32(CTL0042) */, 0x21008c0e,
PNP_QUIRK_EXTRA_IO, 0x400, 0x800 },
{ 0x44008c0e /* SB32(CTL0044) */, 0x21008c0e,
PNP_QUIRK_EXTRA_IO, 0x400, 0x800 },
{ 0x49008c0e /* SB32(CTL0049) */, 0x21008c0e,
PNP_QUIRK_EXTRA_IO, 0x400, 0x800 },
{ 0xf1008c0e /* SB32(CTL00f1) */, 0x21008c0e,
PNP_QUIRK_EXTRA_IO, 0x400, 0x800 },
{ 0xc1008c0e /* SB64(CTL00c1) */, 0x22008c0e,
PNP_QUIRK_EXTRA_IO, 0x400, 0x800 },
{ 0xe4008c0e /* SB64(CTL00e4) */, 0x22008c0e,
PNP_QUIRK_EXTRA_IO, 0x400, 0x800 },
{ 0 }
};
#if 0
/*
* these entries are initialized using the autoconfig menu
* The struct is invalid (and must be initialized) if the first
* CSN is zero. The init code fills invalid entries with CSN 255
* which is not a supported value.
*/
struct pnp_cinfo pnp_ldn_overrides[MAX_PNP_LDN] = {
{ 0 }
};
#endif
/* The READ_DATA port that we are using currently */
static int pnp_rd_port;
static void pnp_send_initiation_key(void);
static int pnp_get_serial(pnp_id *p);
static int pnp_isolation_protocol(device_t parent);
char *
pnp_eisaformat(u_int32_t id)
{
u_int8_t *data = (u_int8_t *) &id;
static char idbuf[8];
const char hextoascii[] = "0123456789abcdef";
idbuf[0] = '@' + ((data[0] & 0x7c) >> 2);
idbuf[1] = '@' + (((data[0] & 0x3) << 3) + ((data[1] & 0xe0) >> 5));
idbuf[2] = '@' + (data[1] & 0x1f);
idbuf[3] = hextoascii[(data[2] >> 4)];
idbuf[4] = hextoascii[(data[2] & 0xf)];
idbuf[5] = hextoascii[(data[3] >> 4)];
idbuf[6] = hextoascii[(data[3] & 0xf)];
idbuf[7] = 0;
return(idbuf);
}
static void
pnp_write(int d, u_char r)
{
outb (_PNP_ADDRESS, d);
outb (_PNP_WRITE_DATA, r);
}
#if 0
static u_char
pnp_read(int d)
{
outb (_PNP_ADDRESS, d);
return (inb(3 | (pnp_rd_port <<2)));
}
#endif
/*
* Send Initiation LFSR as described in "Plug and Play ISA Specification",
* Intel May 94.
*/
static void
pnp_send_initiation_key()
{
int cur, i;
/* Reset the LSFR */
outb(_PNP_ADDRESS, 0);
outb(_PNP_ADDRESS, 0); /* yes, we do need it twice! */
cur = 0x6a;
outb(_PNP_ADDRESS, cur);
for (i = 1; i < 32; i++) {
cur = (cur >> 1) | (((cur ^ (cur >> 1)) << 7) & 0xff);
outb(_PNP_ADDRESS, cur);
}
}
/*
* Get the device's serial number. Returns 1 if the serial is valid.
*/
static int
pnp_get_serial(pnp_id *p)
{
int i, bit, valid = 0, sum = 0x6a;
u_char *data = (u_char *)p;
bzero(data, sizeof(char) * 9);
outb(_PNP_ADDRESS, PNP_SERIAL_ISOLATION);
for (i = 0; i < 72; i++) {
bit = inb((pnp_rd_port << 2) | 0x3) == 0x55;
DELAY(250); /* Delay 250 usec */
/* Can't Short Circuit the next evaluation, so 'and' is last */
bit = (inb((pnp_rd_port << 2) | 0x3) == 0xaa) && bit;
DELAY(250); /* Delay 250 usec */
valid = valid || bit;
if (i < 64)
sum = (sum >> 1) |
(((sum ^ (sum >> 1) ^ bit) << 7) & 0xff);
data[i / 8] = (data[i / 8] >> 1) | (bit ? 0x80 : 0);
}
valid = valid && (data[8] == sum);
return valid;
}
/*
* Fill's the buffer with resource info from the device.
* Returns the number of characters read.
*/
static int
pnp_get_resource_info(u_char *buffer, int len)
{
int i, j, count;
u_char temp;
count = 0;
for (i = 0; i < len; i++) {
outb(_PNP_ADDRESS, PNP_STATUS);
for (j = 0; j < 100; j++) {
if ((inb((pnp_rd_port << 2) | 0x3)) & 0x1)
break;
DELAY(1);
}
if (j == 100) {
printf("PnP device failed to report resource data\n");
return count;
}
outb(_PNP_ADDRESS, PNP_RESOURCE_DATA);
temp = inb((pnp_rd_port << 2) | 0x3);
if (buffer != NULL)
buffer[i] = temp;
count++;
}
return count;
}
#if 0
/*
* write_pnp_parms initializes a logical device with the parms
* in d, and then activates the board if the last parameter is 1.
*/
static int
write_pnp_parms(struct pnp_cinfo *d, pnp_id *p, int ldn)
{
int i, empty = -1 ;
pnp_write (SET_LDN, ldn );
i = pnp_read(SET_LDN) ;
if (i != ldn) {
printf("Warning: LDN %d does not exist\n", ldn);
}
for (i = 0; i < 8; i++) {
pnp_write(IO_CONFIG_BASE + i * 2, d->ic_port[i] >> 8 );
pnp_write(IO_CONFIG_BASE + i * 2 + 1, d->ic_port[i] & 0xff );
}
for (i = 0; i < 4; i++) {
pnp_write(MEM_CONFIG + i*8, (d->ic_mem[i].base >> 16) & 0xff );
pnp_write(MEM_CONFIG + i*8+1, (d->ic_mem[i].base >> 8) & 0xff );
pnp_write(MEM_CONFIG + i*8+2, d->ic_mem[i].control & 0xff );
pnp_write(MEM_CONFIG + i*8+3, (d->ic_mem[i].range >> 16) & 0xff );
pnp_write(MEM_CONFIG + i*8+4, (d->ic_mem[i].range >> 8) & 0xff );
}
for (i = 0; i < 2; i++) {
pnp_write(IRQ_CONFIG + i*2 , d->irq[i] );
pnp_write(IRQ_CONFIG + i*2 + 1, d->irq_type[i] );
pnp_write(DRQ_CONFIG + i, d->drq[i] );
}
/*
* store parameters read into the current kernel
* so manual editing next time is easier
*/
for (i = 0 ; i < MAX_PNP_LDN; i++) {
if (pnp_ldn_overrides[i].csn == d->csn &&
pnp_ldn_overrides[i].ldn == ldn) {
d->flags = pnp_ldn_overrides[i].flags ;
pnp_ldn_overrides[i] = *d ;
break ;
} else if (pnp_ldn_overrides[i].csn < 1 ||
pnp_ldn_overrides[i].csn == 255)
empty = i ;
}
if (i== MAX_PNP_LDN && empty != -1)
pnp_ldn_overrides[empty] = *d;
/*
* Here should really perform the range check, and
* return a failure if not successful.
*/
pnp_write (IO_RANGE_CHECK, 0);
DELAY(1000); /* XXX is it really necessary ? */
pnp_write (ACTIVATE, d->enable ? 1 : 0);
DELAY(1000); /* XXX is it really necessary ? */
return 1 ;
}
#endif
/*
* This function is called after the bus has assigned resource
* locations for a logical device.
*/
static void
pnp_set_config(void *arg, struct isa_config *config, int enable)
{
int csn = ((struct pnp_set_config_arg *) arg)->csn;
int ldn = ((struct pnp_set_config_arg *) arg)->ldn;
int i;
/*
* First put all cards into Sleep state with the initiation
* key, then put our card into Config state.
*/
pnp_send_initiation_key();
pnp_write(PNP_WAKE, csn);
/*
* Select our logical device so that we can program it.
*/
pnp_write(PNP_SET_LDN, ldn);
/*
* Constrain the number of resources we will try to program
*/
if (config->ic_nmem > ISA_PNP_NMEM) {
printf("too many ISA memory ranges (%d > %d)\n", config->ic_nmem, ISA_PNP_NMEM);
config->ic_nmem = ISA_PNP_NMEM;
}
if (config->ic_nport > ISA_PNP_NPORT) {
printf("too many ISA I/O ranges (%d > %d)\n", config->ic_nport, ISA_PNP_NPORT);
config->ic_nport = ISA_PNP_NPORT;
}
if (config->ic_nirq > ISA_PNP_NIRQ) {
printf("too many ISA IRQs (%d > %d)\n", config->ic_nirq, ISA_PNP_NIRQ);
config->ic_nirq = ISA_PNP_NIRQ;
}
if (config->ic_ndrq > ISA_PNP_NDRQ) {
printf("too many ISA DRQs (%d > %d)\n", config->ic_ndrq, ISA_PNP_NDRQ);
config->ic_ndrq = ISA_PNP_NDRQ;
}
/*
* Now program the resources.
*/
for (i = 0; i < config->ic_nmem; i++) {
u_int32_t start = config->ic_mem[i].ir_start;
u_int32_t size = config->ic_mem[i].ir_size;
if (start & 0xff)
panic("pnp_set_config: bogus memory assignment");
pnp_write(PNP_MEM_BASE_HIGH(i), (start >> 16) & 0xff);
pnp_write(PNP_MEM_BASE_LOW(i), (start >> 8) & 0xff);
pnp_write(PNP_MEM_RANGE_HIGH(i), (size >> 16) & 0xff);
pnp_write(PNP_MEM_RANGE_LOW(i), (size >> 8) & 0xff);
}
for (; i < ISA_PNP_NMEM; i++) {
pnp_write(PNP_MEM_BASE_HIGH(i), 0);
pnp_write(PNP_MEM_BASE_LOW(i), 0);
pnp_write(PNP_MEM_RANGE_HIGH(i), 0);
pnp_write(PNP_MEM_RANGE_LOW(i), 0);
}
for (i = 0; i < config->ic_nport; i++) {
u_int32_t start = config->ic_port[i].ir_start;
pnp_write(PNP_IO_BASE_HIGH(i), (start >> 8) & 0xff);
pnp_write(PNP_IO_BASE_LOW(i), (start >> 0) & 0xff);
}
for (; i < ISA_PNP_NPORT; i++) {
pnp_write(PNP_IO_BASE_HIGH(i), 0);
pnp_write(PNP_IO_BASE_LOW(i), 0);
}
for (i = 0; i < config->ic_nirq; i++) {
int irq = ffs(config->ic_irqmask[i]) - 1;
pnp_write(PNP_IRQ_LEVEL(i), irq);
pnp_write(PNP_IRQ_TYPE(i), 2); /* XXX */
}
for (; i < ISA_PNP_NIRQ; i++) {
/*
* IRQ 0 is not a valid interrupt selection and
* represents no interrupt selection.
*/
pnp_write(PNP_IRQ_LEVEL(i), 0);
}
for (i = 0; i < config->ic_ndrq; i++) {
int drq = ffs(config->ic_drqmask[i]) - 1;
pnp_write(PNP_DMA_CHANNEL(i), drq);
}
for (; i < ISA_PNP_NDRQ; i++) {
/*
* DMA channel 4, the cascade channel is used to
* indicate no DMA channel is active.
*/
pnp_write(PNP_DMA_CHANNEL(i), 4);
}
pnp_write(PNP_ACTIVATE, enable ? 1 : 0);
/*
* Wake everyone up again, we are finished.
*/
pnp_write(PNP_CONFIG_CONTROL, PNP_CONFIG_CONTROL_WAIT_FOR_KEY);
}
/*
* Process quirks for a logical device.. The card must be in Config state.
*/
void
pnp_check_quirks(u_int32_t vendor_id, u_int32_t logical_id, int ldn, struct isa_config *config)
{
struct pnp_quirk *qp;
for (qp = &pnp_quirks[0]; qp->vendor_id; qp++) {
if (qp->vendor_id == vendor_id
&& (qp->logical_id == 0
|| qp->logical_id == logical_id)) {
switch (qp->type) {
case PNP_QUIRK_WRITE_REG:
pnp_write(PNP_SET_LDN, ldn);
pnp_write(qp->arg1, qp->arg2);
break;
case PNP_QUIRK_EXTRA_IO:
if (config == NULL)
break;
if (qp->arg1 != 0) {
config->ic_nport++;
config->ic_port[config->ic_nport - 1] = config->ic_port[0];
config->ic_port[config->ic_nport - 1].ir_start += qp->arg1;
config->ic_port[config->ic_nport - 1].ir_end += qp->arg1;
}
if (qp->arg2 != 0) {
config->ic_nport++;
config->ic_port[config->ic_nport - 1] = config->ic_port[0];
config->ic_port[config->ic_nport - 1].ir_start += qp->arg2;
config->ic_port[config->ic_nport - 1].ir_end += qp->arg2;
}
break;
}
}
}
}
/*
* Scan Resource Data for Logical Devices.
*
* This function exits as soon as it gets an error reading *ANY*
* Resource Data or it reaches the end of Resource Data. In the first
* case the return value will be TRUE, FALSE otherwise.
*/
static int
pnp_create_devices(device_t parent, pnp_id *p, int csn,
u_char *resources, int len)
{
u_char tag, *resp, *resinfo, *startres = 0;
int large_len, scanning = len, retval = FALSE;
u_int32_t logical_id;
u_int32_t compat_id;
device_t dev = 0;
int ldn = 0;
struct pnp_set_config_arg *csnldn;
char buf[100];
char *desc = 0;
resp = resources;
while (scanning > 0) {
tag = *resp++;
scanning--;
if (PNP_RES_TYPE(tag) != 0) {
/* Large resource */
if (scanning < 2) {
scanning = 0;
continue;
}
large_len = resp[0] + (resp[1] << 8);
resp += 2;
if (scanning < large_len) {
scanning = 0;
continue;
}
resinfo = resp;
resp += large_len;
scanning -= large_len;
if (PNP_LRES_NUM(tag) == PNP_TAG_ID_ANSI) {
if (large_len > sizeof(buf) - 1)
large_len = sizeof(buf) - 1;
bcopy(resinfo, buf, large_len);
/*
* Trim trailing spaces.
*/
while (buf[large_len-1] == ' ')
large_len--;
buf[large_len] = '\0';
desc = buf;
if (dev)
device_set_desc_copy(dev, desc);
continue;
}
continue;
}
/* Small resource */
if (scanning < PNP_SRES_LEN(tag)) {
scanning = 0;
continue;
}
resinfo = resp;
resp += PNP_SRES_LEN(tag);
scanning -= PNP_SRES_LEN(tag);;
switch (PNP_SRES_NUM(tag)) {
case PNP_TAG_LOGICAL_DEVICE:
/*
* Parse the resources for the previous
* logical device (if any).
*/
if (startres) {
pnp_parse_resources(dev, startres,
resinfo - startres - 1,
p->vendor_id, logical_id, ldn);
dev = 0;
startres = 0;
}
/*
* A new logical device. Scan for end of
* resources.
*/
bcopy(resinfo, &logical_id, 4);
pnp_check_quirks(p->vendor_id, logical_id, ldn, NULL);
compat_id = 0;
dev = BUS_ADD_CHILD(parent, ISA_ORDER_PNP, NULL, -1);
if (desc)
device_set_desc_copy(dev, desc);
isa_set_vendorid(dev, p->vendor_id);
isa_set_serial(dev, p->serial);
isa_set_logicalid(dev, logical_id);
csnldn = malloc(sizeof *csnldn, M_DEVBUF, M_NOWAIT);
if (!csnldn) {
device_printf(parent,
"out of memory\n");
scanning = 0;
break;
}
csnldn->csn = csn;
csnldn->ldn = ldn;
ISA_SET_CONFIG_CALLBACK(parent, dev,
pnp_set_config, csnldn);
ldn++;
startres = resp;
break;
case PNP_TAG_END:
if (!startres) {
device_printf(parent,
"malformed resources\n");
scanning = 0;
break;
}
pnp_parse_resources(dev, startres,
resinfo - startres - 1,
p->vendor_id, logical_id, ldn);
dev = 0;
startres = 0;
scanning = 0;
break;
default:
/* Skip this resource */
break;
}
}
return retval;
}
/*
* Read 'amount' bytes of resources from the card, allocating memory
* as needed. If a buffer is already available, it should be passed in
* '*resourcesp' and its length in '*spacep'. The number of resource
* bytes already in the buffer should be passed in '*lenp'. The memory
* allocated will be returned in '*resourcesp' with its size and the
* number of bytes of resources in '*spacep' and '*lenp' respectively.
*/
static int
pnp_read_bytes(int amount, u_char **resourcesp, int *spacep, int *lenp)
{
u_char *resources = *resourcesp;
u_char *newres;
int space = *spacep;
int len = *lenp;
if (space == 0) {
space = 1024;
resources = malloc(space, M_TEMP, M_NOWAIT);
if (!resources)
return ENOMEM;
}
if (len + amount > space) {
int extra = 1024;
while (len + amount > space + extra)
extra += 1024;
newres = malloc(space + extra, M_TEMP, M_NOWAIT);
if (!newres)
return ENOMEM;
bcopy(resources, newres, len);
free(resources, M_TEMP);
resources = newres;
space += extra;
}
if (pnp_get_resource_info(resources + len, amount) != amount)
return EINVAL;
len += amount;
*resourcesp = resources;
*spacep = space;
*lenp = len;
return 0;
}
/*
* Read all resources from the card, allocating memory as needed. If a
* buffer is already available, it should be passed in '*resourcesp'
* and its length in '*spacep'. The memory allocated will be returned
* in '*resourcesp' with its size and the number of bytes of resources
* in '*spacep' and '*lenp' respectively.
*/
static int
pnp_read_resources(u_char **resourcesp, int *spacep, int *lenp)
{
u_char *resources = *resourcesp;
int space = *spacep;
int len = 0;
int error, done;
u_char tag;
error = 0;
done = 0;
while (!done) {
error = pnp_read_bytes(1, &resources, &space, &len);
if (error)
goto out;
tag = resources[len-1];
if (PNP_RES_TYPE(tag) == 0) {
/*
* Small resource, read contents.
*/
error = pnp_read_bytes(PNP_SRES_LEN(tag),
&resources, &space, &len);
if (error)
goto out;
if (PNP_SRES_NUM(tag) == PNP_TAG_END)
done = 1;
} else {
/*
* Large resource, read length and contents.
*/
error = pnp_read_bytes(2, &resources, &space, &len);
if (error)
goto out;
error = pnp_read_bytes(resources[len-2]
+ (resources[len-1] << 8),
&resources, &space, &len);
if (error)
goto out;
}
}
out:
*resourcesp = resources;
*spacep = space;
*lenp = len;
return error;
}
/*
* Run the isolation protocol. Use pnp_rd_port as the READ_DATA port
* value (caller should try multiple READ_DATA locations before giving
* up). Upon exiting, all cards are aware that they should use
* pnp_rd_port as the READ_DATA port.
*
* In the first pass, a csn is assigned to each board and pnp_id's
* are saved to an array, pnp_devices. In the second pass, each
* card is woken up and the device configuration is called.
*/
static int
pnp_isolation_protocol(device_t parent)
{
int csn;
pnp_id id;
int found = 0, len;
u_char *resources = 0;
int space = 0;
int error;
/*
* Put all cards into the Sleep state so that we can clear
* their CSNs.
*/
pnp_send_initiation_key();
/*
* Clear the CSN for all cards.
*/
pnp_write(PNP_CONFIG_CONTROL, PNP_CONFIG_CONTROL_RESET_CSN);
/*
* Move all cards to the Isolation state.
*/
pnp_write(PNP_WAKE, 0);
/*
* Tell them where the read point is going to be this time.
*/
pnp_write(PNP_SET_RD_DATA, pnp_rd_port);
for (csn = 1; csn < PNP_MAX_CARDS; csn++) {
/*
* Start the serial isolation protocol.
*/
outb(_PNP_ADDRESS, PNP_SERIAL_ISOLATION);
DELAY(1000); /* Delay 1 msec */
if (pnp_get_serial(&id)) {
/*
* We have read the id from a card
* successfully. The card which won the
* isolation protocol will be in Isolation
* mode and all others will be in Sleep.
* Program the CSN of the isolated card
* (taking it to Config state) and read its
* resources, creating devices as we find
* logical devices on the card.
*/
pnp_write(PNP_SET_CSN, csn);
error = pnp_read_resources(&resources,
&space,
&len);
if (error)
break;
pnp_create_devices(parent, &id, csn,
resources, len);
found++;
} else
break;
/*
* Put this card back to the Sleep state and
* simultaneously move all cards which don't have a
* CSN yet to Isolation state.
*/
pnp_write(PNP_WAKE, 0);
}
/*
* Unless we have chosen the wrong read port, all cards will
* be in Sleep state. Put them back into WaitForKey for
* now. Their resources will be programmed later.
*/
pnp_write(PNP_CONFIG_CONTROL, PNP_CONFIG_CONTROL_WAIT_FOR_KEY);
/*
* Cleanup.
*/
if (resources)
free(resources, M_TEMP);
return found;
}
/*
* pnp_identify()
*
* autoconfiguration of pnp devices. This routine just runs the
* isolation protocol over several ports, until one is successful.
*
* may be called more than once ?
*
*/
static void
pnp_identify(driver_t *driver, device_t parent)
{
int num_pnp_devs;
#if 0
if (pnp_ldn_overrides[0].csn == 0) {
if (bootverbose)
printf("Initializing PnP override table\n");
bzero (pnp_ldn_overrides, sizeof(pnp_ldn_overrides));
pnp_ldn_overrides[0].csn = 255 ;
}
#endif
/* Try various READ_DATA ports from 0x203-0x3ff */
for (pnp_rd_port = 0x80; (pnp_rd_port < 0xff); pnp_rd_port += 0x10) {
if (bootverbose)
printf("Trying Read_Port at %x\n", (pnp_rd_port << 2) | 0x3);
num_pnp_devs = pnp_isolation_protocol(parent);
if (num_pnp_devs)
break;
}
}
static device_method_t pnp_methods[] = {
/* Device interface */
DEVMETHOD(device_identify, pnp_identify),
{ 0, 0 }
};
static driver_t pnp_driver = {
"pnp",
pnp_methods,
1, /* no softc */
};
static devclass_t pnp_devclass;
DRIVER_MODULE(pnp, isa, pnp_driver, pnp_devclass, 0, 0);