1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-20 15:43:16 +00:00
freebsd/contrib/gcc/cp/cp-objcp-common.c
Pedro F. Giffuni 5bfc7db451 gcc: Add support for Apple's Block extension
Block objects [1] are a C-level syntactic and runtime feature. They
are similar to standard C functions, but in addition to executable
code they may also contain variable bindings to automatic (stack)
or managed (heap) memory. A block can therefore maintain a set of
state (data) that it can use to impact behavior when executed.

This port is based on Apple's GCC 5646 with some bugfixes from
Apple GCC 5666.3. It has some small differences with the support
in clang, which remains the recommended compiler.

Perhaps the most notable difference is that in GCC that __block
is not actually a keyword, but a macro. There will be workaround
for this issue in a near future. Other issues can be consulted in
the clang documentation [2]

For better compatiblity with Apple's GCC and llvm-gcc some related
fixes and features from Apple have been included. Support for the
non-standard nested functions in GCC is now off by default.

No effort was made to update the ObjC support since FreeBSD doesn't
carry ObjC in the base system, but some of the code crept in and
was more difficult to remove than to adjust.

Reference:
[1]
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Blocks/Articles/00_Introduction.html
[2]
http://clang.llvm.org/compatibility.html#block-variable-initialization

Obtained from:	Apple GCC 4.2
MFC after:	3 weeks
2014-01-05 00:43:28 +00:00

296 lines
7.9 KiB
C

/* Some code common to C++ and ObjC++ front ends.
Copyright (C) 2004 Free Software Foundation, Inc.
Contributed by Ziemowit Laski <zlaski@apple.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "cp-tree.h"
#include "c-common.h"
#include "toplev.h"
#include "langhooks.h"
#include "langhooks-def.h"
#include "diagnostic.h"
#include "debug.h"
#include "cxx-pretty-print.h"
#include "cp-objcp-common.h"
/* Special routine to get the alias set for C++. */
HOST_WIDE_INT
cxx_get_alias_set (tree t)
{
if (IS_FAKE_BASE_TYPE (t))
/* The base variant of a type must be in the same alias set as the
complete type. */
return get_alias_set (TYPE_CONTEXT (t));
/* Punt on PMFs until we canonicalize functions properly. */
if (TYPE_PTRMEMFUNC_P (t))
return 0;
return c_common_get_alias_set (t);
}
/* Called from check_global_declarations. */
bool
cxx_warn_unused_global_decl (tree decl)
{
if (TREE_CODE (decl) == FUNCTION_DECL && DECL_DECLARED_INLINE_P (decl))
return false;
if (DECL_IN_SYSTEM_HEADER (decl))
return false;
/* Const variables take the place of #defines in C++. */
if (TREE_CODE (decl) == VAR_DECL && TREE_READONLY (decl))
return false;
return true;
}
/* Langhook for expr_size: Tell the backend that the value of an expression
of non-POD class type does not include any tail padding; a derived class
might have allocated something there. */
tree
cp_expr_size (tree exp)
{
tree type = TREE_TYPE (exp);
if (CLASS_TYPE_P (type))
{
/* The backend should not be interested in the size of an expression
of a type with both of these set; all copies of such types must go
through a constructor or assignment op. */
gcc_assert (!TYPE_HAS_COMPLEX_INIT_REF (type)
|| !TYPE_HAS_COMPLEX_ASSIGN_REF (type)
/* But storing a CONSTRUCTOR isn't a copy. */
|| TREE_CODE (exp) == CONSTRUCTOR
/* And, the gimplifier will sometimes make a copy of
an aggregate. In particular, for a case like:
struct S { S(); };
struct X { int a; S s; };
X x = { 0 };
the gimplifier will create a temporary with
static storage duration, perform static
initialization of the temporary, and then copy
the result. Since the "s" subobject is never
constructed, this is a valid transformation. */
|| CP_AGGREGATE_TYPE_P (type));
/* This would be wrong for a type with virtual bases, but they are
caught by the assert above. */
return (is_empty_class (type)
? size_zero_node
: CLASSTYPE_SIZE_UNIT (type));
}
else
/* Use the default code. */
return lhd_expr_size (exp);
}
/* Langhook for tree_size: determine size of our 'x' and 'c' nodes. */
size_t
cp_tree_size (enum tree_code code)
{
switch (code)
{
case TINST_LEVEL: return sizeof (struct tinst_level_s);
case PTRMEM_CST: return sizeof (struct ptrmem_cst);
case BASELINK: return sizeof (struct tree_baselink);
case TEMPLATE_PARM_INDEX: return sizeof (template_parm_index);
case DEFAULT_ARG: return sizeof (struct tree_default_arg);
case OVERLOAD: return sizeof (struct tree_overload);
default:
gcc_unreachable ();
}
/* NOTREACHED */
}
/* Returns true if T is a variably modified type, in the sense of C99.
FN is as passed to variably_modified_p.
This routine needs only check cases that cannot be handled by the
language-independent logic in tree.c. */
bool
cp_var_mod_type_p (tree type, tree fn)
{
/* If TYPE is a pointer-to-member, it is variably modified if either
the class or the member are variably modified. */
if (TYPE_PTR_TO_MEMBER_P (type))
return (variably_modified_type_p (TYPE_PTRMEM_CLASS_TYPE (type), fn)
|| variably_modified_type_p (TYPE_PTRMEM_POINTED_TO_TYPE (type),
fn));
/* All other types are not variably modified. */
return false;
}
/* Construct a C++-aware pretty-printer for CONTEXT. It is assumed
that CONTEXT->printer is an already constructed basic pretty_printer. */
void
cxx_initialize_diagnostics (diagnostic_context *context)
{
pretty_printer *base = context->printer;
cxx_pretty_printer *pp = XNEW (cxx_pretty_printer);
memcpy (pp_base (pp), base, sizeof (pretty_printer));
pp_cxx_pretty_printer_init (pp);
context->printer = (pretty_printer *) pp;
/* It is safe to free this object because it was previously malloc()'d. */
free (base);
}
/* This compares two types for equivalence ("compatible" in C-based languages).
This routine should only return 1 if it is sure. It should not be used
in contexts where erroneously returning 0 causes problems. */
int
cxx_types_compatible_p (tree x, tree y)
{
if (same_type_ignoring_top_level_qualifiers_p (x, y))
return 1;
/* Once we get to the middle-end, references and pointers are
interchangeable. FIXME should we try to replace all references with
pointers? */
if (POINTER_TYPE_P (x) && POINTER_TYPE_P (y)
&& TYPE_MODE (x) == TYPE_MODE (y)
&& TYPE_REF_CAN_ALIAS_ALL (x) == TYPE_REF_CAN_ALIAS_ALL (y)
&& same_type_p (TREE_TYPE (x), TREE_TYPE (y)))
return 1;
return 0;
}
tree
cxx_staticp (tree arg)
{
switch (TREE_CODE (arg))
{
case BASELINK:
return staticp (BASELINK_FUNCTIONS (arg));
default:
break;
}
return NULL_TREE;
}
/* Stubs to keep c-opts.c happy. */
void
push_file_scope (void)
{
}
void
pop_file_scope (void)
{
}
/* c-pragma.c needs to query whether a decl has extern "C" linkage. */
bool
has_c_linkage (tree decl)
{
return DECL_EXTERN_C_P (decl);
}
static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
htab_t shadowed_var_for_decl;
/* Lookup a shadowed var for FROM, and return it if we find one. */
tree
decl_shadowed_for_var_lookup (tree from)
{
struct tree_map *h, in;
in.from = from;
h = (struct tree_map *) htab_find_with_hash (shadowed_var_for_decl, &in,
htab_hash_pointer (from));
if (h)
return h->to;
return NULL_TREE;
}
/* Insert a mapping FROM->TO in the shadowed var hashtable. */
void
decl_shadowed_for_var_insert (tree from, tree to)
{
struct tree_map *h;
void **loc;
h = GGC_NEW (struct tree_map);
h->hash = htab_hash_pointer (from);
h->from = from;
h->to = to;
loc = htab_find_slot_with_hash (shadowed_var_for_decl, h, h->hash, INSERT);
*(struct tree_map **) loc = h;
}
void
init_shadowed_var_for_decl (void)
{
shadowed_var_for_decl = htab_create_ggc (512, tree_map_hash,
tree_map_eq, 0);
}
/* APPLE LOCAL begin radar 5741070 */
/* Given an IDENTIFIER tree for a class interface, find (if possible) and
return the record type for the class interface. */
tree
c_return_interface_record_type (tree typename)
{
enum tree_code_class class;
enum tree_code code;
tree retval = NULL;
if (typename == NULL)
return retval;
code = TREE_CODE (typename);
class = TREE_CODE_CLASS (code);
if (code != IDENTIFIER_NODE
|| class != tcc_exceptional)
return retval;
if (TREE_TYPE (typename)
&& TREE_CODE (TREE_TYPE (typename)) == RECORD_TYPE)
retval = TREE_TYPE (typename);
if (retval
&& TREE_CODE (retval) != RECORD_TYPE)
retval = NULL;
return retval;
}
/* APPLE LOCAL end radar 5741070 */
#include "gt-cp-cp-objcp-common.h"