1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-11-24 07:40:52 +00:00
freebsd/sys/netinet/sctp_ss_functions.c
2023-08-18 15:25:34 +02:00

1029 lines
31 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2010-2012, by Michael Tuexen. All rights reserved.
* Copyright (c) 2010-2012, by Randall Stewart. All rights reserved.
* Copyright (c) 2010-2012, by Robin Seggelmann. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* a) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* b) Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <netinet/sctp_os.h>
#include <netinet/sctp_pcb.h>
/*
* Default simple round-robin algorithm.
* Just iterates the streams in the order they appear.
*/
static void
sctp_ss_default_add(struct sctp_tcb *, struct sctp_association *,
struct sctp_stream_out *,
struct sctp_stream_queue_pending *);
static void
sctp_ss_default_remove(struct sctp_tcb *, struct sctp_association *,
struct sctp_stream_out *,
struct sctp_stream_queue_pending *);
static void
sctp_ss_default_init(struct sctp_tcb *stcb, struct sctp_association *asoc)
{
uint16_t i;
SCTP_TCB_LOCK_ASSERT(stcb);
asoc->ss_data.locked_on_sending = NULL;
asoc->ss_data.last_out_stream = NULL;
TAILQ_INIT(&asoc->ss_data.out.wheel);
/*
* If there is data in the stream queues already, the scheduler of
* an existing association has been changed. We need to add all
* stream queues to the wheel.
*/
for (i = 0; i < asoc->streamoutcnt; i++) {
stcb->asoc.ss_functions.sctp_ss_add_to_stream(stcb, asoc,
&asoc->strmout[i],
NULL);
}
return;
}
static void
sctp_ss_default_clear(struct sctp_tcb *stcb, struct sctp_association *asoc,
bool clear_values SCTP_UNUSED)
{
SCTP_TCB_LOCK_ASSERT(stcb);
while (!TAILQ_EMPTY(&asoc->ss_data.out.wheel)) {
struct sctp_stream_out *strq;
strq = TAILQ_FIRST(&asoc->ss_data.out.wheel);
KASSERT(strq->ss_params.scheduled, ("strq %p not scheduled", (void *)strq));
TAILQ_REMOVE(&asoc->ss_data.out.wheel, strq, ss_params.ss.rr.next_spoke);
strq->ss_params.scheduled = false;
}
asoc->ss_data.last_out_stream = NULL;
return;
}
static void
sctp_ss_default_init_stream(struct sctp_tcb *stcb, struct sctp_stream_out *strq, struct sctp_stream_out *with_strq)
{
SCTP_TCB_LOCK_ASSERT(stcb);
if (with_strq != NULL) {
if (stcb->asoc.ss_data.locked_on_sending == with_strq) {
stcb->asoc.ss_data.locked_on_sending = strq;
}
if (stcb->asoc.ss_data.last_out_stream == with_strq) {
stcb->asoc.ss_data.last_out_stream = strq;
}
}
strq->ss_params.scheduled = false;
return;
}
static void
sctp_ss_default_add(struct sctp_tcb *stcb, struct sctp_association *asoc,
struct sctp_stream_out *strq,
struct sctp_stream_queue_pending *sp SCTP_UNUSED)
{
SCTP_TCB_LOCK_ASSERT(stcb);
/* Add to wheel if not already on it and stream queue not empty */
if (!TAILQ_EMPTY(&strq->outqueue) && !strq->ss_params.scheduled) {
TAILQ_INSERT_TAIL(&asoc->ss_data.out.wheel,
strq, ss_params.ss.rr.next_spoke);
strq->ss_params.scheduled = true;
}
return;
}
static bool
sctp_ss_default_is_empty(struct sctp_tcb *stcb SCTP_UNUSED, struct sctp_association *asoc)
{
SCTP_TCB_LOCK_ASSERT(stcb);
return (TAILQ_EMPTY(&asoc->ss_data.out.wheel));
}
static void
sctp_ss_default_remove(struct sctp_tcb *stcb, struct sctp_association *asoc,
struct sctp_stream_out *strq,
struct sctp_stream_queue_pending *sp SCTP_UNUSED)
{
SCTP_TCB_LOCK_ASSERT(stcb);
/*
* Remove from wheel if stream queue is empty and actually is on the
* wheel
*/
if (TAILQ_EMPTY(&strq->outqueue) && strq->ss_params.scheduled) {
if (asoc->ss_data.last_out_stream == strq) {
asoc->ss_data.last_out_stream = TAILQ_PREV(asoc->ss_data.last_out_stream,
sctpwheel_listhead,
ss_params.ss.rr.next_spoke);
if (asoc->ss_data.last_out_stream == NULL) {
asoc->ss_data.last_out_stream = TAILQ_LAST(&asoc->ss_data.out.wheel,
sctpwheel_listhead);
}
if (asoc->ss_data.last_out_stream == strq) {
asoc->ss_data.last_out_stream = NULL;
}
}
if (asoc->ss_data.locked_on_sending == strq) {
asoc->ss_data.locked_on_sending = NULL;
}
TAILQ_REMOVE(&asoc->ss_data.out.wheel, strq, ss_params.ss.rr.next_spoke);
strq->ss_params.scheduled = false;
}
return;
}
static struct sctp_stream_out *
sctp_ss_default_select(struct sctp_tcb *stcb SCTP_UNUSED, struct sctp_nets *net,
struct sctp_association *asoc)
{
struct sctp_stream_out *strq, *strqt;
SCTP_TCB_LOCK_ASSERT(stcb);
if (asoc->ss_data.locked_on_sending != NULL) {
KASSERT(asoc->ss_data.locked_on_sending->ss_params.scheduled,
("locked_on_sending %p not scheduled",
(void *)asoc->ss_data.locked_on_sending));
return (asoc->ss_data.locked_on_sending);
}
strqt = asoc->ss_data.last_out_stream;
KASSERT(strqt == NULL || strqt->ss_params.scheduled,
("last_out_stream %p not scheduled", (void *)strqt));
default_again:
/* Find the next stream to use */
if (strqt == NULL) {
strq = TAILQ_FIRST(&asoc->ss_data.out.wheel);
} else {
strq = TAILQ_NEXT(strqt, ss_params.ss.rr.next_spoke);
if (strq == NULL) {
strq = TAILQ_FIRST(&asoc->ss_data.out.wheel);
}
}
KASSERT(strq == NULL || strq->ss_params.scheduled,
("strq %p not scheduled", (void *)strq));
/*
* If CMT is off, we must validate that the stream in question has
* the first item pointed towards are network destination requested
* by the caller. Note that if we turn out to be locked to a stream
* (assigning TSN's then we must stop, since we cannot look for
* another stream with data to send to that destination). In CMT's
* case, by skipping this check, we will send one data packet
* towards the requested net.
*/
if (net != NULL && strq != NULL &&
SCTP_BASE_SYSCTL(sctp_cmt_on_off) == 0) {
if (TAILQ_FIRST(&strq->outqueue) &&
TAILQ_FIRST(&strq->outqueue)->net != NULL &&
TAILQ_FIRST(&strq->outqueue)->net != net) {
if (strq == asoc->ss_data.last_out_stream) {
return (NULL);
} else {
strqt = strq;
goto default_again;
}
}
}
return (strq);
}
static void
sctp_ss_default_scheduled(struct sctp_tcb *stcb,
struct sctp_nets *net SCTP_UNUSED,
struct sctp_association *asoc,
struct sctp_stream_out *strq,
int moved_how_much SCTP_UNUSED)
{
struct sctp_stream_queue_pending *sp;
KASSERT(strq != NULL, ("strq is NULL"));
KASSERT(strq->ss_params.scheduled, ("strq %p is not scheduled", (void *)strq));
SCTP_TCB_LOCK_ASSERT(stcb);
asoc->ss_data.last_out_stream = strq;
if (asoc->idata_supported == 0) {
sp = TAILQ_FIRST(&strq->outqueue);
if ((sp != NULL) && (sp->some_taken == 1)) {
asoc->ss_data.locked_on_sending = strq;
} else {
asoc->ss_data.locked_on_sending = NULL;
}
} else {
asoc->ss_data.locked_on_sending = NULL;
}
return;
}
static void
sctp_ss_default_packet_done(struct sctp_tcb *stcb SCTP_UNUSED, struct sctp_nets *net SCTP_UNUSED,
struct sctp_association *asoc SCTP_UNUSED)
{
SCTP_TCB_LOCK_ASSERT(stcb);
/* Nothing to be done here */
return;
}
static int
sctp_ss_default_get_value(struct sctp_tcb *stcb SCTP_UNUSED, struct sctp_association *asoc SCTP_UNUSED,
struct sctp_stream_out *strq SCTP_UNUSED, uint16_t *value SCTP_UNUSED)
{
SCTP_TCB_LOCK_ASSERT(stcb);
/* Nothing to be done here */
return (-1);
}
static int
sctp_ss_default_set_value(struct sctp_tcb *stcb SCTP_UNUSED, struct sctp_association *asoc SCTP_UNUSED,
struct sctp_stream_out *strq SCTP_UNUSED, uint16_t value SCTP_UNUSED)
{
SCTP_TCB_LOCK_ASSERT(stcb);
/* Nothing to be done here */
return (-1);
}
static bool
sctp_ss_default_is_user_msgs_incomplete(struct sctp_tcb *stcb SCTP_UNUSED, struct sctp_association *asoc)
{
struct sctp_stream_out *strq;
struct sctp_stream_queue_pending *sp;
SCTP_TCB_LOCK_ASSERT(stcb);
if (asoc->stream_queue_cnt != 1) {
return (false);
}
strq = asoc->ss_data.locked_on_sending;
if (strq == NULL) {
return (false);
}
sp = TAILQ_FIRST(&strq->outqueue);
if (sp == NULL) {
return (false);
}
return (sp->msg_is_complete == 0);
}
/*
* Real round-robin algorithm.
* Always iterates the streams in ascending order.
*/
static void
sctp_ss_rr_add(struct sctp_tcb *stcb, struct sctp_association *asoc,
struct sctp_stream_out *strq,
struct sctp_stream_queue_pending *sp SCTP_UNUSED)
{
struct sctp_stream_out *strqt;
SCTP_TCB_LOCK_ASSERT(stcb);
if (!TAILQ_EMPTY(&strq->outqueue) && !strq->ss_params.scheduled) {
if (TAILQ_EMPTY(&asoc->ss_data.out.wheel)) {
TAILQ_INSERT_HEAD(&asoc->ss_data.out.wheel, strq, ss_params.ss.rr.next_spoke);
} else {
strqt = TAILQ_FIRST(&asoc->ss_data.out.wheel);
while (strqt != NULL && (strqt->sid < strq->sid)) {
strqt = TAILQ_NEXT(strqt, ss_params.ss.rr.next_spoke);
}
if (strqt != NULL) {
TAILQ_INSERT_BEFORE(strqt, strq, ss_params.ss.rr.next_spoke);
} else {
TAILQ_INSERT_TAIL(&asoc->ss_data.out.wheel, strq, ss_params.ss.rr.next_spoke);
}
}
strq->ss_params.scheduled = true;
}
return;
}
/*
* Real round-robin per packet algorithm.
* Always iterates the streams in ascending order and
* only fills messages of the same stream in a packet.
*/
static struct sctp_stream_out *
sctp_ss_rrp_select(struct sctp_tcb *stcb SCTP_UNUSED, struct sctp_nets *net SCTP_UNUSED,
struct sctp_association *asoc)
{
SCTP_TCB_LOCK_ASSERT(stcb);
return (asoc->ss_data.last_out_stream);
}
static void
sctp_ss_rrp_packet_done(struct sctp_tcb *stcb SCTP_UNUSED, struct sctp_nets *net,
struct sctp_association *asoc)
{
struct sctp_stream_out *strq, *strqt;
SCTP_TCB_LOCK_ASSERT(stcb);
strqt = asoc->ss_data.last_out_stream;
KASSERT(strqt == NULL || strqt->ss_params.scheduled,
("last_out_stream %p not scheduled", (void *)strqt));
rrp_again:
/* Find the next stream to use */
if (strqt == NULL) {
strq = TAILQ_FIRST(&asoc->ss_data.out.wheel);
} else {
strq = TAILQ_NEXT(strqt, ss_params.ss.rr.next_spoke);
if (strq == NULL) {
strq = TAILQ_FIRST(&asoc->ss_data.out.wheel);
}
}
KASSERT(strq == NULL || strq->ss_params.scheduled,
("strq %p not scheduled", (void *)strq));
/*
* If CMT is off, we must validate that the stream in question has
* the first item pointed towards are network destination requested
* by the caller. Note that if we turn out to be locked to a stream
* (assigning TSN's then we must stop, since we cannot look for
* another stream with data to send to that destination). In CMT's
* case, by skipping this check, we will send one data packet
* towards the requested net.
*/
if (net != NULL && strq != NULL &&
SCTP_BASE_SYSCTL(sctp_cmt_on_off) == 0) {
if (TAILQ_FIRST(&strq->outqueue) &&
TAILQ_FIRST(&strq->outqueue)->net != NULL &&
TAILQ_FIRST(&strq->outqueue)->net != net) {
if (strq == asoc->ss_data.last_out_stream) {
strq = NULL;
} else {
strqt = strq;
goto rrp_again;
}
}
}
asoc->ss_data.last_out_stream = strq;
return;
}
/*
* Priority algorithm.
* Always prefers streams based on their priority id.
*/
static void
sctp_ss_prio_clear(struct sctp_tcb *stcb, struct sctp_association *asoc,
bool clear_values)
{
SCTP_TCB_LOCK_ASSERT(stcb);
while (!TAILQ_EMPTY(&asoc->ss_data.out.wheel)) {
struct sctp_stream_out *strq;
strq = TAILQ_FIRST(&asoc->ss_data.out.wheel);
KASSERT(strq->ss_params.scheduled, ("strq %p not scheduled", (void *)strq));
if (clear_values) {
strq->ss_params.ss.prio.priority = 0;
}
TAILQ_REMOVE(&asoc->ss_data.out.wheel, strq, ss_params.ss.prio.next_spoke);
strq->ss_params.scheduled = false;
}
asoc->ss_data.last_out_stream = NULL;
return;
}
static void
sctp_ss_prio_init_stream(struct sctp_tcb *stcb, struct sctp_stream_out *strq, struct sctp_stream_out *with_strq)
{
SCTP_TCB_LOCK_ASSERT(stcb);
if (with_strq != NULL) {
if (stcb->asoc.ss_data.locked_on_sending == with_strq) {
stcb->asoc.ss_data.locked_on_sending = strq;
}
if (stcb->asoc.ss_data.last_out_stream == with_strq) {
stcb->asoc.ss_data.last_out_stream = strq;
}
}
strq->ss_params.scheduled = false;
if (with_strq != NULL) {
strq->ss_params.ss.prio.priority = with_strq->ss_params.ss.prio.priority;
} else {
strq->ss_params.ss.prio.priority = 0;
}
return;
}
static void
sctp_ss_prio_add(struct sctp_tcb *stcb, struct sctp_association *asoc,
struct sctp_stream_out *strq, struct sctp_stream_queue_pending *sp SCTP_UNUSED)
{
struct sctp_stream_out *strqt;
SCTP_TCB_LOCK_ASSERT(stcb);
/* Add to wheel if not already on it and stream queue not empty */
if (!TAILQ_EMPTY(&strq->outqueue) && !strq->ss_params.scheduled) {
if (TAILQ_EMPTY(&asoc->ss_data.out.wheel)) {
TAILQ_INSERT_HEAD(&asoc->ss_data.out.wheel, strq, ss_params.ss.prio.next_spoke);
} else {
strqt = TAILQ_FIRST(&asoc->ss_data.out.wheel);
while (strqt != NULL && strqt->ss_params.ss.prio.priority < strq->ss_params.ss.prio.priority) {
strqt = TAILQ_NEXT(strqt, ss_params.ss.prio.next_spoke);
}
if (strqt != NULL) {
TAILQ_INSERT_BEFORE(strqt, strq, ss_params.ss.prio.next_spoke);
} else {
TAILQ_INSERT_TAIL(&asoc->ss_data.out.wheel, strq, ss_params.ss.prio.next_spoke);
}
}
strq->ss_params.scheduled = true;
}
return;
}
static void
sctp_ss_prio_remove(struct sctp_tcb *stcb, struct sctp_association *asoc,
struct sctp_stream_out *strq, struct sctp_stream_queue_pending *sp SCTP_UNUSED)
{
SCTP_TCB_LOCK_ASSERT(stcb);
/*
* Remove from wheel if stream queue is empty and actually is on the
* wheel
*/
if (TAILQ_EMPTY(&strq->outqueue) && strq->ss_params.scheduled) {
if (asoc->ss_data.last_out_stream == strq) {
asoc->ss_data.last_out_stream = TAILQ_PREV(asoc->ss_data.last_out_stream,
sctpwheel_listhead,
ss_params.ss.prio.next_spoke);
if (asoc->ss_data.last_out_stream == NULL) {
asoc->ss_data.last_out_stream = TAILQ_LAST(&asoc->ss_data.out.wheel,
sctpwheel_listhead);
}
if (asoc->ss_data.last_out_stream == strq) {
asoc->ss_data.last_out_stream = NULL;
}
}
if (asoc->ss_data.locked_on_sending == strq) {
asoc->ss_data.locked_on_sending = NULL;
}
TAILQ_REMOVE(&asoc->ss_data.out.wheel, strq, ss_params.ss.prio.next_spoke);
strq->ss_params.scheduled = false;
}
return;
}
static struct sctp_stream_out *
sctp_ss_prio_select(struct sctp_tcb *stcb SCTP_UNUSED, struct sctp_nets *net,
struct sctp_association *asoc)
{
struct sctp_stream_out *strq, *strqt, *strqn;
SCTP_TCB_LOCK_ASSERT(stcb);
if (asoc->ss_data.locked_on_sending != NULL) {
KASSERT(asoc->ss_data.locked_on_sending->ss_params.scheduled,
("locked_on_sending %p not scheduled",
(void *)asoc->ss_data.locked_on_sending));
return (asoc->ss_data.locked_on_sending);
}
strqt = asoc->ss_data.last_out_stream;
KASSERT(strqt == NULL || strqt->ss_params.scheduled,
("last_out_stream %p not scheduled", (void *)strqt));
prio_again:
/* Find the next stream to use */
if (strqt == NULL) {
strq = TAILQ_FIRST(&asoc->ss_data.out.wheel);
} else {
strqn = TAILQ_NEXT(strqt, ss_params.ss.prio.next_spoke);
if (strqn != NULL &&
strqn->ss_params.ss.prio.priority == strqt->ss_params.ss.prio.priority) {
strq = strqn;
} else {
strq = TAILQ_FIRST(&asoc->ss_data.out.wheel);
}
}
KASSERT(strq == NULL || strq->ss_params.scheduled,
("strq %p not scheduled", (void *)strq));
/*
* If CMT is off, we must validate that the stream in question has
* the first item pointed towards are network destination requested
* by the caller. Note that if we turn out to be locked to a stream
* (assigning TSN's then we must stop, since we cannot look for
* another stream with data to send to that destination). In CMT's
* case, by skipping this check, we will send one data packet
* towards the requested net.
*/
if (net != NULL && strq != NULL &&
SCTP_BASE_SYSCTL(sctp_cmt_on_off) == 0) {
if (TAILQ_FIRST(&strq->outqueue) &&
TAILQ_FIRST(&strq->outqueue)->net != NULL &&
TAILQ_FIRST(&strq->outqueue)->net != net) {
if (strq == asoc->ss_data.last_out_stream) {
return (NULL);
} else {
strqt = strq;
goto prio_again;
}
}
}
return (strq);
}
static int
sctp_ss_prio_get_value(struct sctp_tcb *stcb SCTP_UNUSED, struct sctp_association *asoc SCTP_UNUSED,
struct sctp_stream_out *strq, uint16_t *value)
{
SCTP_TCB_LOCK_ASSERT(stcb);
if (strq == NULL) {
return (-1);
}
*value = strq->ss_params.ss.prio.priority;
return (1);
}
static int
sctp_ss_prio_set_value(struct sctp_tcb *stcb, struct sctp_association *asoc,
struct sctp_stream_out *strq, uint16_t value)
{
SCTP_TCB_LOCK_ASSERT(stcb);
if (strq == NULL) {
return (-1);
}
strq->ss_params.ss.prio.priority = value;
sctp_ss_prio_remove(stcb, asoc, strq, NULL);
sctp_ss_prio_add(stcb, asoc, strq, NULL);
return (1);
}
/*
* Fair bandwidth algorithm.
* Maintains an equal throughput per stream.
*/
static void
sctp_ss_fb_clear(struct sctp_tcb *stcb, struct sctp_association *asoc,
bool clear_values)
{
SCTP_TCB_LOCK_ASSERT(stcb);
while (!TAILQ_EMPTY(&asoc->ss_data.out.wheel)) {
struct sctp_stream_out *strq;
strq = TAILQ_FIRST(&asoc->ss_data.out.wheel);
KASSERT(strq->ss_params.scheduled, ("strq %p not scheduled", (void *)strq));
if (clear_values) {
strq->ss_params.ss.fb.rounds = -1;
}
TAILQ_REMOVE(&asoc->ss_data.out.wheel, strq, ss_params.ss.fb.next_spoke);
strq->ss_params.scheduled = false;
}
asoc->ss_data.last_out_stream = NULL;
return;
}
static void
sctp_ss_fb_init_stream(struct sctp_tcb *stcb, struct sctp_stream_out *strq, struct sctp_stream_out *with_strq)
{
SCTP_TCB_LOCK_ASSERT(stcb);
if (with_strq != NULL) {
if (stcb->asoc.ss_data.locked_on_sending == with_strq) {
stcb->asoc.ss_data.locked_on_sending = strq;
}
if (stcb->asoc.ss_data.last_out_stream == with_strq) {
stcb->asoc.ss_data.last_out_stream = strq;
}
}
strq->ss_params.scheduled = false;
if (with_strq != NULL) {
strq->ss_params.ss.fb.rounds = with_strq->ss_params.ss.fb.rounds;
} else {
strq->ss_params.ss.fb.rounds = -1;
}
return;
}
static void
sctp_ss_fb_add(struct sctp_tcb *stcb, struct sctp_association *asoc,
struct sctp_stream_out *strq, struct sctp_stream_queue_pending *sp SCTP_UNUSED)
{
SCTP_TCB_LOCK_ASSERT(stcb);
if (!TAILQ_EMPTY(&strq->outqueue) && !strq->ss_params.scheduled) {
if (strq->ss_params.ss.fb.rounds < 0)
strq->ss_params.ss.fb.rounds = TAILQ_FIRST(&strq->outqueue)->length;
TAILQ_INSERT_TAIL(&asoc->ss_data.out.wheel, strq, ss_params.ss.fb.next_spoke);
strq->ss_params.scheduled = true;
}
return;
}
static void
sctp_ss_fb_remove(struct sctp_tcb *stcb, struct sctp_association *asoc,
struct sctp_stream_out *strq, struct sctp_stream_queue_pending *sp SCTP_UNUSED)
{
SCTP_TCB_LOCK_ASSERT(stcb);
/*
* Remove from wheel if stream queue is empty and actually is on the
* wheel
*/
if (TAILQ_EMPTY(&strq->outqueue) && strq->ss_params.scheduled) {
if (asoc->ss_data.last_out_stream == strq) {
asoc->ss_data.last_out_stream = TAILQ_PREV(asoc->ss_data.last_out_stream,
sctpwheel_listhead,
ss_params.ss.fb.next_spoke);
if (asoc->ss_data.last_out_stream == NULL) {
asoc->ss_data.last_out_stream = TAILQ_LAST(&asoc->ss_data.out.wheel,
sctpwheel_listhead);
}
if (asoc->ss_data.last_out_stream == strq) {
asoc->ss_data.last_out_stream = NULL;
}
}
if (asoc->ss_data.locked_on_sending == strq) {
asoc->ss_data.locked_on_sending = NULL;
}
TAILQ_REMOVE(&asoc->ss_data.out.wheel, strq, ss_params.ss.fb.next_spoke);
strq->ss_params.scheduled = false;
}
return;
}
static struct sctp_stream_out *
sctp_ss_fb_select(struct sctp_tcb *stcb SCTP_UNUSED, struct sctp_nets *net,
struct sctp_association *asoc)
{
struct sctp_stream_out *strq = NULL, *strqt;
SCTP_TCB_LOCK_ASSERT(stcb);
if (asoc->ss_data.locked_on_sending != NULL) {
KASSERT(asoc->ss_data.locked_on_sending->ss_params.scheduled,
("locked_on_sending %p not scheduled",
(void *)asoc->ss_data.locked_on_sending));
return (asoc->ss_data.locked_on_sending);
}
if (asoc->ss_data.last_out_stream == NULL ||
TAILQ_FIRST(&asoc->ss_data.out.wheel) == TAILQ_LAST(&asoc->ss_data.out.wheel, sctpwheel_listhead)) {
strqt = TAILQ_FIRST(&asoc->ss_data.out.wheel);
} else {
strqt = TAILQ_NEXT(asoc->ss_data.last_out_stream, ss_params.ss.fb.next_spoke);
}
do {
if ((strqt != NULL) &&
((SCTP_BASE_SYSCTL(sctp_cmt_on_off) > 0) ||
(SCTP_BASE_SYSCTL(sctp_cmt_on_off) == 0 &&
(net == NULL || (TAILQ_FIRST(&strqt->outqueue) && TAILQ_FIRST(&strqt->outqueue)->net == NULL) ||
(net != NULL && TAILQ_FIRST(&strqt->outqueue) && TAILQ_FIRST(&strqt->outqueue)->net != NULL &&
TAILQ_FIRST(&strqt->outqueue)->net == net))))) {
if ((strqt->ss_params.ss.fb.rounds >= 0) &&
((strq == NULL) ||
(strqt->ss_params.ss.fb.rounds < strq->ss_params.ss.fb.rounds))) {
strq = strqt;
}
}
if (strqt != NULL) {
strqt = TAILQ_NEXT(strqt, ss_params.ss.fb.next_spoke);
} else {
strqt = TAILQ_FIRST(&asoc->ss_data.out.wheel);
}
} while (strqt != strq);
return (strq);
}
static void
sctp_ss_fb_scheduled(struct sctp_tcb *stcb, struct sctp_nets *net SCTP_UNUSED,
struct sctp_association *asoc, struct sctp_stream_out *strq,
int moved_how_much SCTP_UNUSED)
{
struct sctp_stream_queue_pending *sp;
struct sctp_stream_out *strqt;
int subtract;
SCTP_TCB_LOCK_ASSERT(stcb);
if (asoc->idata_supported == 0) {
sp = TAILQ_FIRST(&strq->outqueue);
if ((sp != NULL) && (sp->some_taken == 1)) {
asoc->ss_data.locked_on_sending = strq;
} else {
asoc->ss_data.locked_on_sending = NULL;
}
} else {
asoc->ss_data.locked_on_sending = NULL;
}
subtract = strq->ss_params.ss.fb.rounds;
TAILQ_FOREACH(strqt, &asoc->ss_data.out.wheel, ss_params.ss.fb.next_spoke) {
strqt->ss_params.ss.fb.rounds -= subtract;
if (strqt->ss_params.ss.fb.rounds < 0)
strqt->ss_params.ss.fb.rounds = 0;
}
if (TAILQ_FIRST(&strq->outqueue)) {
strq->ss_params.ss.fb.rounds = TAILQ_FIRST(&strq->outqueue)->length;
} else {
strq->ss_params.ss.fb.rounds = -1;
}
asoc->ss_data.last_out_stream = strq;
return;
}
/*
* First-come, first-serve algorithm.
* Maintains the order provided by the application.
*/
static void
sctp_ss_fcfs_add(struct sctp_tcb *stcb, struct sctp_association *asoc,
struct sctp_stream_out *strq SCTP_UNUSED,
struct sctp_stream_queue_pending *sp);
static void
sctp_ss_fcfs_init(struct sctp_tcb *stcb, struct sctp_association *asoc)
{
uint32_t x, n = 0, add_more = 1;
struct sctp_stream_queue_pending *sp;
uint16_t i;
SCTP_TCB_LOCK_ASSERT(stcb);
TAILQ_INIT(&asoc->ss_data.out.list);
/*
* If there is data in the stream queues already, the scheduler of
* an existing association has been changed. We can only cycle
* through the stream queues and add everything to the FCFS queue.
*/
while (add_more) {
add_more = 0;
for (i = 0; i < asoc->streamoutcnt; i++) {
sp = TAILQ_FIRST(&asoc->strmout[i].outqueue);
x = 0;
/* Find n. message in current stream queue */
while (sp != NULL && x < n) {
sp = TAILQ_NEXT(sp, next);
x++;
}
if (sp != NULL) {
sctp_ss_fcfs_add(stcb, asoc, &asoc->strmout[i], sp);
add_more = 1;
}
}
n++;
}
return;
}
static void
sctp_ss_fcfs_clear(struct sctp_tcb *stcb, struct sctp_association *asoc,
bool clear_values SCTP_UNUSED)
{
struct sctp_stream_queue_pending *sp;
SCTP_TCB_LOCK_ASSERT(stcb);
while (!TAILQ_EMPTY(&asoc->ss_data.out.list)) {
sp = TAILQ_FIRST(&asoc->ss_data.out.list);
KASSERT(sp->scheduled, ("sp %p not scheduled", (void *)sp));
TAILQ_REMOVE(&asoc->ss_data.out.list, sp, ss_next);
sp->scheduled = false;
}
asoc->ss_data.last_out_stream = NULL;
return;
}
static void
sctp_ss_fcfs_init_stream(struct sctp_tcb *stcb, struct sctp_stream_out *strq, struct sctp_stream_out *with_strq)
{
SCTP_TCB_LOCK_ASSERT(stcb);
if (with_strq != NULL) {
if (stcb->asoc.ss_data.locked_on_sending == with_strq) {
stcb->asoc.ss_data.locked_on_sending = strq;
}
if (stcb->asoc.ss_data.last_out_stream == with_strq) {
stcb->asoc.ss_data.last_out_stream = strq;
}
}
strq->ss_params.scheduled = false;
return;
}
static void
sctp_ss_fcfs_add(struct sctp_tcb *stcb, struct sctp_association *asoc,
struct sctp_stream_out *strq SCTP_UNUSED, struct sctp_stream_queue_pending *sp)
{
SCTP_TCB_LOCK_ASSERT(stcb);
if (!sp->scheduled) {
TAILQ_INSERT_TAIL(&asoc->ss_data.out.list, sp, ss_next);
sp->scheduled = true;
}
return;
}
static bool
sctp_ss_fcfs_is_empty(struct sctp_tcb *stcb SCTP_UNUSED, struct sctp_association *asoc)
{
SCTP_TCB_LOCK_ASSERT(stcb);
return (TAILQ_EMPTY(&asoc->ss_data.out.list));
}
static void
sctp_ss_fcfs_remove(struct sctp_tcb *stcb, struct sctp_association *asoc,
struct sctp_stream_out *strq SCTP_UNUSED, struct sctp_stream_queue_pending *sp)
{
SCTP_TCB_LOCK_ASSERT(stcb);
if (sp->scheduled) {
TAILQ_REMOVE(&asoc->ss_data.out.list, sp, ss_next);
sp->scheduled = false;
}
return;
}
static struct sctp_stream_out *
sctp_ss_fcfs_select(struct sctp_tcb *stcb SCTP_UNUSED, struct sctp_nets *net,
struct sctp_association *asoc)
{
struct sctp_stream_out *strq;
struct sctp_stream_queue_pending *sp;
SCTP_TCB_LOCK_ASSERT(stcb);
if (asoc->ss_data.locked_on_sending) {
return (asoc->ss_data.locked_on_sending);
}
sp = TAILQ_FIRST(&asoc->ss_data.out.list);
default_again:
if (sp != NULL) {
strq = &asoc->strmout[sp->sid];
} else {
strq = NULL;
}
/*
* If CMT is off, we must validate that the stream in question has
* the first item pointed towards are network destination requested
* by the caller. Note that if we turn out to be locked to a stream
* (assigning TSN's then we must stop, since we cannot look for
* another stream with data to send to that destination). In CMT's
* case, by skipping this check, we will send one data packet
* towards the requested net.
*/
if (net != NULL && strq != NULL &&
SCTP_BASE_SYSCTL(sctp_cmt_on_off) == 0) {
if (TAILQ_FIRST(&strq->outqueue) &&
TAILQ_FIRST(&strq->outqueue)->net != NULL &&
TAILQ_FIRST(&strq->outqueue)->net != net) {
sp = TAILQ_NEXT(sp, ss_next);
goto default_again;
}
}
return (strq);
}
static void
sctp_ss_fcfs_scheduled(struct sctp_tcb *stcb,
struct sctp_nets *net SCTP_UNUSED,
struct sctp_association *asoc,
struct sctp_stream_out *strq,
int moved_how_much SCTP_UNUSED)
{
struct sctp_stream_queue_pending *sp;
KASSERT(strq != NULL, ("strq is NULL"));
asoc->ss_data.last_out_stream = strq;
if (asoc->idata_supported == 0) {
sp = TAILQ_FIRST(&strq->outqueue);
if ((sp != NULL) && (sp->some_taken == 1)) {
asoc->ss_data.locked_on_sending = strq;
} else {
asoc->ss_data.locked_on_sending = NULL;
}
} else {
asoc->ss_data.locked_on_sending = NULL;
}
return;
}
const struct sctp_ss_functions sctp_ss_functions[] = {
/* SCTP_SS_DEFAULT */
{
.sctp_ss_init = sctp_ss_default_init,
.sctp_ss_clear = sctp_ss_default_clear,
.sctp_ss_init_stream = sctp_ss_default_init_stream,
.sctp_ss_add_to_stream = sctp_ss_default_add,
.sctp_ss_is_empty = sctp_ss_default_is_empty,
.sctp_ss_remove_from_stream = sctp_ss_default_remove,
.sctp_ss_select_stream = sctp_ss_default_select,
.sctp_ss_scheduled = sctp_ss_default_scheduled,
.sctp_ss_packet_done = sctp_ss_default_packet_done,
.sctp_ss_get_value = sctp_ss_default_get_value,
.sctp_ss_set_value = sctp_ss_default_set_value,
.sctp_ss_is_user_msgs_incomplete = sctp_ss_default_is_user_msgs_incomplete
},
/* SCTP_SS_RR */
{
.sctp_ss_init = sctp_ss_default_init,
.sctp_ss_clear = sctp_ss_default_clear,
.sctp_ss_init_stream = sctp_ss_default_init_stream,
.sctp_ss_add_to_stream = sctp_ss_rr_add,
.sctp_ss_is_empty = sctp_ss_default_is_empty,
.sctp_ss_remove_from_stream = sctp_ss_default_remove,
.sctp_ss_select_stream = sctp_ss_default_select,
.sctp_ss_scheduled = sctp_ss_default_scheduled,
.sctp_ss_packet_done = sctp_ss_default_packet_done,
.sctp_ss_get_value = sctp_ss_default_get_value,
.sctp_ss_set_value = sctp_ss_default_set_value,
.sctp_ss_is_user_msgs_incomplete = sctp_ss_default_is_user_msgs_incomplete
},
/* SCTP_SS_RR_PKT */
{
.sctp_ss_init = sctp_ss_default_init,
.sctp_ss_clear = sctp_ss_default_clear,
.sctp_ss_init_stream = sctp_ss_default_init_stream,
.sctp_ss_add_to_stream = sctp_ss_rr_add,
.sctp_ss_is_empty = sctp_ss_default_is_empty,
.sctp_ss_remove_from_stream = sctp_ss_default_remove,
.sctp_ss_select_stream = sctp_ss_rrp_select,
.sctp_ss_scheduled = sctp_ss_default_scheduled,
.sctp_ss_packet_done = sctp_ss_rrp_packet_done,
.sctp_ss_get_value = sctp_ss_default_get_value,
.sctp_ss_set_value = sctp_ss_default_set_value,
.sctp_ss_is_user_msgs_incomplete = sctp_ss_default_is_user_msgs_incomplete
},
/* SCTP_SS_PRIO */
{
.sctp_ss_init = sctp_ss_default_init,
.sctp_ss_clear = sctp_ss_prio_clear,
.sctp_ss_init_stream = sctp_ss_prio_init_stream,
.sctp_ss_add_to_stream = sctp_ss_prio_add,
.sctp_ss_is_empty = sctp_ss_default_is_empty,
.sctp_ss_remove_from_stream = sctp_ss_prio_remove,
.sctp_ss_select_stream = sctp_ss_prio_select,
.sctp_ss_scheduled = sctp_ss_default_scheduled,
.sctp_ss_packet_done = sctp_ss_default_packet_done,
.sctp_ss_get_value = sctp_ss_prio_get_value,
.sctp_ss_set_value = sctp_ss_prio_set_value,
.sctp_ss_is_user_msgs_incomplete = sctp_ss_default_is_user_msgs_incomplete
},
/* SCTP_SS_FB */
{
.sctp_ss_init = sctp_ss_default_init,
.sctp_ss_clear = sctp_ss_fb_clear,
.sctp_ss_init_stream = sctp_ss_fb_init_stream,
.sctp_ss_add_to_stream = sctp_ss_fb_add,
.sctp_ss_is_empty = sctp_ss_default_is_empty,
.sctp_ss_remove_from_stream = sctp_ss_fb_remove,
.sctp_ss_select_stream = sctp_ss_fb_select,
.sctp_ss_scheduled = sctp_ss_fb_scheduled,
.sctp_ss_packet_done = sctp_ss_default_packet_done,
.sctp_ss_get_value = sctp_ss_default_get_value,
.sctp_ss_set_value = sctp_ss_default_set_value,
.sctp_ss_is_user_msgs_incomplete = sctp_ss_default_is_user_msgs_incomplete
},
/* SCTP_SS_FCFS */
{
.sctp_ss_init = sctp_ss_fcfs_init,
.sctp_ss_clear = sctp_ss_fcfs_clear,
.sctp_ss_init_stream = sctp_ss_fcfs_init_stream,
.sctp_ss_add_to_stream = sctp_ss_fcfs_add,
.sctp_ss_is_empty = sctp_ss_fcfs_is_empty,
.sctp_ss_remove_from_stream = sctp_ss_fcfs_remove,
.sctp_ss_select_stream = sctp_ss_fcfs_select,
.sctp_ss_scheduled = sctp_ss_fcfs_scheduled,
.sctp_ss_packet_done = sctp_ss_default_packet_done,
.sctp_ss_get_value = sctp_ss_default_get_value,
.sctp_ss_set_value = sctp_ss_default_set_value,
.sctp_ss_is_user_msgs_incomplete = sctp_ss_default_is_user_msgs_incomplete
}
};