1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-11-24 07:40:52 +00:00
freebsd/sys/netinet/tcp_input.c
Richard Scheffenegger 7dc78150c7 tcp: refactor cwnd during SACK transmissions to allow TSO
Refactoring of cwnd and moving the adjustment for SACKed data into
tcp_output() - cwnd tracking the maximum extent starting at snd_una -
allows both SACK loss recovery as well as SACK transmissions after
RTO during slow start and if allowed, the use of TSO while in loss
recovery.

Reviewed By:		tuexen, cc, #transport
Sponsored by:		NetApp, Inc.
Differential Revision:	https://reviews.freebsd.org/D43470
2024-10-29 19:04:12 +01:00

4251 lines
122 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
* The Regents of the University of California. All rights reserved.
* Copyright (c) 2007-2008,2010
* Swinburne University of Technology, Melbourne, Australia.
* Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
* Copyright (c) 2010 The FreeBSD Foundation
* Copyright (c) 2010-2011 Juniper Networks, Inc.
* All rights reserved.
*
* Portions of this software were developed at the Centre for Advanced Internet
* Architectures, Swinburne University of Technology, by Lawrence Stewart,
* James Healy and David Hayes, made possible in part by a grant from the Cisco
* University Research Program Fund at Community Foundation Silicon Valley.
*
* Portions of this software were developed at the Centre for Advanced
* Internet Architectures, Swinburne University of Technology, Melbourne,
* Australia by David Hayes under sponsorship from the FreeBSD Foundation.
*
* Portions of this software were developed by Robert N. M. Watson under
* contract to Juniper Networks, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_ipsec.h"
#include "opt_rss.h"
#include <sys/param.h>
#include <sys/arb.h>
#include <sys/kernel.h>
#ifdef TCP_HHOOK
#include <sys/hhook.h>
#endif
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/proc.h> /* for proc0 declaration */
#include <sys/protosw.h>
#include <sys/qmath.h>
#include <sys/sdt.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/systm.h>
#include <sys/stats.h>
#include <machine/cpu.h> /* before tcp_seq.h, for tcp_random18() */
#include <vm/uma.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/route.h>
#include <net/rss_config.h>
#include <net/vnet.h>
#define TCPSTATES /* for logging */
#include <netinet/in.h>
#include <netinet/in_kdtrace.h>
#include <netinet/in_pcb.h>
#include <netinet/in_rss.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h> /* required for icmp_var.h */
#include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
#include <netinet/ip_var.h>
#include <netinet/ip_options.h>
#include <netinet/ip6.h>
#include <netinet/icmp6.h>
#include <netinet6/in6_pcb.h>
#include <netinet6/in6_rss.h>
#include <netinet6/in6_var.h>
#include <netinet6/ip6_var.h>
#include <netinet6/nd6.h>
#include <netinet/tcp.h>
#include <netinet/tcp_fsm.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_timer.h>
#include <netinet/tcp_var.h>
#include <netinet/tcp_log_buf.h>
#include <netinet6/tcp6_var.h>
#include <netinet/tcpip.h>
#include <netinet/cc/cc.h>
#include <netinet/tcp_fastopen.h>
#ifdef TCPPCAP
#include <netinet/tcp_pcap.h>
#endif
#include <netinet/tcp_syncache.h>
#ifdef TCP_OFFLOAD
#include <netinet/tcp_offload.h>
#endif
#include <netinet/tcp_ecn.h>
#include <netinet/udp.h>
#include <netipsec/ipsec_support.h>
#include <machine/in_cksum.h>
#include <security/mac/mac_framework.h>
const int tcprexmtthresh = 3;
VNET_DEFINE(int, tcp_log_in_vain) = 0;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(tcp_log_in_vain), 0,
"Log all incoming TCP segments to closed ports");
VNET_DEFINE(int, blackhole) = 0;
#define V_blackhole VNET(blackhole)
SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(blackhole), 0,
"Do not send RST on segments to closed ports");
VNET_DEFINE(bool, blackhole_local) = false;
#define V_blackhole_local VNET(blackhole_local)
SYSCTL_BOOL(_net_inet_tcp, OID_AUTO, blackhole_local, CTLFLAG_VNET |
CTLFLAG_RW, &VNET_NAME(blackhole_local), false,
"Enforce net.inet.tcp.blackhole for locally originated packets");
VNET_DEFINE(int, tcp_delack_enabled) = 1;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(tcp_delack_enabled), 0,
"Delay ACK to try and piggyback it onto a data packet");
VNET_DEFINE(int, drop_synfin) = 0;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(drop_synfin), 0,
"Drop TCP packets with SYN+FIN set");
VNET_DEFINE(int, tcp_do_prr) = 1;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_prr, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(tcp_do_prr), 1,
"Enable Proportional Rate Reduction per RFC 6937");
VNET_DEFINE(int, tcp_do_newcwv) = 0;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, newcwv, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(tcp_do_newcwv), 0,
"Enable New Congestion Window Validation per RFC7661");
VNET_DEFINE(int, tcp_do_rfc3042) = 1;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(tcp_do_rfc3042), 0,
"Enable RFC 3042 (Limited Transmit)");
VNET_DEFINE(int, tcp_do_rfc3390) = 1;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(tcp_do_rfc3390), 0,
"Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
VNET_DEFINE(int, tcp_initcwnd_segments) = 10;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments,
CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0,
"Slow-start flight size (initial congestion window) in number of segments");
VNET_DEFINE(int, tcp_do_rfc3465) = 1;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(tcp_do_rfc3465), 0,
"Enable RFC 3465 (Appropriate Byte Counting)");
VNET_DEFINE(int, tcp_abc_l_var) = 2;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(tcp_abc_l_var), 2,
"Cap the max cwnd increment during slow-start to this number of segments");
VNET_DEFINE(int, tcp_insecure_syn) = 0;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(tcp_insecure_syn), 0,
"Follow RFC793 instead of RFC5961 criteria for accepting SYN packets");
VNET_DEFINE(int, tcp_insecure_rst) = 0;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(tcp_insecure_rst), 0,
"Follow RFC793 instead of RFC5961 criteria for accepting RST packets");
VNET_DEFINE(int, tcp_insecure_ack) = 0;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_ack, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(tcp_insecure_ack), 0,
"Follow RFC793 criteria for validating SEG.ACK");
VNET_DEFINE(int, tcp_recvspace) = 1024*64;
#define V_tcp_recvspace VNET(tcp_recvspace)
SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(tcp_do_autorcvbuf), 0,
"Enable automatic receive buffer sizing");
VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(tcp_autorcvbuf_max), 0,
"Max size of automatic receive buffer");
VNET_DEFINE(struct inpcbinfo, tcbinfo);
/*
* TCP statistics are stored in an array of counter(9)s, which size matches
* size of struct tcpstat. TCP running connection count is a regular array.
*/
VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
VNET_DEFINE(counter_u64_t, tcps_states[TCP_NSTATES]);
SYSCTL_COUNTER_U64_ARRAY(_net_inet_tcp, TCPCTL_STATES, states, CTLFLAG_RD |
CTLFLAG_VNET, &VNET_NAME(tcps_states)[0], TCP_NSTATES,
"TCP connection counts by TCP state");
/*
* Kernel module interface for updating tcpstat. The first argument is an index
* into tcpstat treated as an array.
*/
void
kmod_tcpstat_add(int statnum, int val)
{
counter_u64_add(VNET(tcpstat)[statnum], val);
}
/*
* Make sure that we only start a SACK loss recovery when
* receiving a duplicate ACK with a SACK block, and also
* complete SACK loss recovery in case the other end
* reneges.
*/
static bool inline
tcp_is_sack_recovery(struct tcpcb *tp, struct tcpopt *to)
{
return ((tp->t_flags & TF_SACK_PERMIT) &&
((to->to_flags & TOF_SACK) ||
(!TAILQ_EMPTY(&tp->snd_holes))));
}
#ifdef TCP_HHOOK
/*
* Wrapper for the TCP established input helper hook.
*/
void
hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
{
struct tcp_hhook_data hhook_data;
if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
hhook_data.tp = tp;
hhook_data.th = th;
hhook_data.to = to;
hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
&tp->t_osd);
}
}
#endif
/*
* CC wrapper hook functions
*/
void
cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t nsegs,
uint16_t type)
{
#ifdef STATS
int32_t gput;
#endif
INP_WLOCK_ASSERT(tptoinpcb(tp));
tp->t_ccv.nsegs = nsegs;
tp->t_ccv.bytes_this_ack = BYTES_THIS_ACK(tp, th);
if ((!V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd)) ||
(V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd) &&
(tp->snd_cwnd < (tcp_compute_pipe(tp) * 2))))
tp->t_ccv.flags |= CCF_CWND_LIMITED;
else
tp->t_ccv.flags &= ~CCF_CWND_LIMITED;
if (type == CC_ACK) {
#ifdef STATS
stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
((int32_t)tp->snd_cwnd) - tp->snd_wnd);
if (!IN_RECOVERY(tp->t_flags))
stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_ACKLEN,
tp->t_ccv.bytes_this_ack / (tcp_maxseg(tp) * nsegs));
if ((tp->t_flags & TF_GPUTINPROG) &&
SEQ_GEQ(th->th_ack, tp->gput_ack)) {
/*
* Compute goodput in bits per millisecond.
*/
gput = (((int64_t)SEQ_SUB(th->th_ack, tp->gput_seq)) << 3) /
max(1, tcp_ts_getticks() - tp->gput_ts);
stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
gput);
/*
* XXXLAS: This is a temporary hack, and should be
* chained off VOI_TCP_GPUT when stats(9) grows an API
* to deal with chained VOIs.
*/
if (tp->t_stats_gput_prev > 0)
stats_voi_update_abs_s32(tp->t_stats,
VOI_TCP_GPUT_ND,
((gput - tp->t_stats_gput_prev) * 100) /
tp->t_stats_gput_prev);
tp->t_flags &= ~TF_GPUTINPROG;
tp->t_stats_gput_prev = gput;
}
#endif /* STATS */
if (tp->snd_cwnd > tp->snd_ssthresh) {
tp->t_bytes_acked += tp->t_ccv.bytes_this_ack;
if (tp->t_bytes_acked >= tp->snd_cwnd) {
tp->t_bytes_acked -= tp->snd_cwnd;
tp->t_ccv.flags |= CCF_ABC_SENTAWND;
}
} else {
tp->t_ccv.flags &= ~CCF_ABC_SENTAWND;
tp->t_bytes_acked = 0;
}
}
if (CC_ALGO(tp)->ack_received != NULL) {
/* XXXLAS: Find a way to live without this */
tp->t_ccv.curack = th->th_ack;
CC_ALGO(tp)->ack_received(&tp->t_ccv, type);
}
#ifdef STATS
stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, tp->snd_cwnd);
#endif
}
void
cc_conn_init(struct tcpcb *tp)
{
struct hc_metrics_lite metrics;
struct inpcb *inp = tptoinpcb(tp);
u_int maxseg;
int rtt;
INP_WLOCK_ASSERT(inp);
tcp_hc_get(&inp->inp_inc, &metrics);
maxseg = tcp_maxseg(tp);
if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
tp->t_srtt = rtt;
TCPSTAT_INC(tcps_usedrtt);
if (metrics.rmx_rttvar) {
tp->t_rttvar = metrics.rmx_rttvar;
TCPSTAT_INC(tcps_usedrttvar);
} else {
/* default variation is +- 1 rtt */
tp->t_rttvar =
tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
}
TCPT_RANGESET(tp->t_rxtcur,
((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
tp->t_rttmin, TCPTV_REXMTMAX);
}
if (metrics.rmx_ssthresh) {
/*
* There's some sort of gateway or interface
* buffer limit on the path. Use this to set
* the slow start threshold, but set the
* threshold to no less than 2*mss.
*/
tp->snd_ssthresh = max(2 * maxseg, metrics.rmx_ssthresh);
TCPSTAT_INC(tcps_usedssthresh);
}
/*
* Set the initial slow-start flight size.
*
* If a SYN or SYN/ACK was lost and retransmitted, we have to
* reduce the initial CWND to one segment as congestion is likely
* requiring us to be cautious.
*/
if (tp->snd_cwnd == 1)
tp->snd_cwnd = maxseg; /* SYN(-ACK) lost */
else
tp->snd_cwnd = tcp_compute_initwnd(maxseg);
if (CC_ALGO(tp)->conn_init != NULL)
CC_ALGO(tp)->conn_init(&tp->t_ccv);
}
void inline
cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
{
INP_WLOCK_ASSERT(tptoinpcb(tp));
#ifdef STATS
stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_CSIG, type);
#endif
switch(type) {
case CC_NDUPACK:
if (!IN_FASTRECOVERY(tp->t_flags)) {
tp->snd_recover = tp->snd_max;
if (tp->t_flags2 & TF2_ECN_PERMIT)
tp->t_flags2 |= TF2_ECN_SND_CWR;
}
break;
case CC_ECN:
if (!IN_CONGRECOVERY(tp->t_flags) ||
/*
* Allow ECN reaction on ACK to CWR, if
* that data segment was also CE marked.
*/
SEQ_GEQ(th->th_ack, tp->snd_recover)) {
EXIT_CONGRECOVERY(tp->t_flags);
TCPSTAT_INC(tcps_ecn_rcwnd);
tp->snd_recover = tp->snd_max + 1;
if (tp->t_flags2 & TF2_ECN_PERMIT)
tp->t_flags2 |= TF2_ECN_SND_CWR;
}
break;
case CC_RTO:
tp->t_dupacks = 0;
tp->t_bytes_acked = 0;
EXIT_RECOVERY(tp->t_flags);
if (tp->t_flags2 & TF2_ECN_PERMIT)
tp->t_flags2 |= TF2_ECN_SND_CWR;
break;
case CC_RTO_ERR:
TCPSTAT_INC(tcps_sndrexmitbad);
/* RTO was unnecessary, so reset everything. */
tp->snd_cwnd = tp->snd_cwnd_prev;
tp->snd_ssthresh = tp->snd_ssthresh_prev;
tp->snd_recover = tp->snd_recover_prev;
if (tp->t_flags & TF_WASFRECOVERY)
ENTER_FASTRECOVERY(tp->t_flags);
if (tp->t_flags & TF_WASCRECOVERY)
ENTER_CONGRECOVERY(tp->t_flags);
tp->snd_nxt = tp->snd_max;
tp->t_flags &= ~TF_PREVVALID;
tp->t_badrxtwin = 0;
break;
}
if (SEQ_LT(tp->snd_fack, tp->snd_una) ||
SEQ_GT(tp->snd_fack, tp->snd_max)) {
tp->snd_fack = tp->snd_una;
}
if (CC_ALGO(tp)->cong_signal != NULL) {
if (th != NULL)
tp->t_ccv.curack = th->th_ack;
CC_ALGO(tp)->cong_signal(&tp->t_ccv, type);
}
}
void inline
cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
{
INP_WLOCK_ASSERT(tptoinpcb(tp));
if (CC_ALGO(tp)->post_recovery != NULL) {
if (SEQ_LT(tp->snd_fack, th->th_ack) ||
SEQ_GT(tp->snd_fack, tp->snd_max)) {
tp->snd_fack = th->th_ack;
}
tp->t_ccv.curack = th->th_ack;
CC_ALGO(tp)->post_recovery(&tp->t_ccv);
}
EXIT_RECOVERY(tp->t_flags);
tp->t_bytes_acked = 0;
tp->sackhint.delivered_data = 0;
tp->sackhint.prr_delivered = 0;
tp->sackhint.prr_out = 0;
}
/*
* Indicate whether this ack should be delayed. We can delay the ack if
* following conditions are met:
* - There is no delayed ack timer in progress.
* - Our last ack wasn't a 0-sized window. We never want to delay
* the ack that opens up a 0-sized window.
* - LRO wasn't used for this segment. We make sure by checking that the
* segment size is not larger than the MSS.
*/
#define DELAY_ACK(tp, tlen) \
((!tcp_timer_active(tp, TT_DELACK) && \
(tp->t_flags & TF_RXWIN0SENT) == 0) && \
(tlen <= tp->t_maxseg) && \
(V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
void inline
cc_ecnpkt_handler_flags(struct tcpcb *tp, uint16_t flags, uint8_t iptos)
{
INP_WLOCK_ASSERT(tptoinpcb(tp));
if (CC_ALGO(tp)->ecnpkt_handler != NULL) {
switch (iptos & IPTOS_ECN_MASK) {
case IPTOS_ECN_CE:
tp->t_ccv.flags |= CCF_IPHDR_CE;
break;
case IPTOS_ECN_ECT0:
/* FALLTHROUGH */
case IPTOS_ECN_ECT1:
/* FALLTHROUGH */
case IPTOS_ECN_NOTECT:
tp->t_ccv.flags &= ~CCF_IPHDR_CE;
break;
}
if (flags & TH_CWR)
tp->t_ccv.flags |= CCF_TCPHDR_CWR;
else
tp->t_ccv.flags &= ~CCF_TCPHDR_CWR;
CC_ALGO(tp)->ecnpkt_handler(&tp->t_ccv);
if (tp->t_ccv.flags & CCF_ACKNOW) {
tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
tp->t_flags |= TF_ACKNOW;
}
}
}
void inline
cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos)
{
cc_ecnpkt_handler_flags(tp, tcp_get_flags(th), iptos);
}
/*
* TCP input handling is split into multiple parts:
* tcp6_input is a thin wrapper around tcp_input for the extended
* ip6_protox[] call format in ip6_input
* tcp_input handles primary segment validation, inpcb lookup and
* SYN processing on listen sockets
* tcp_do_segment processes the ACK and text of the segment for
* establishing, established and closing connections
*/
#ifdef INET6
int
tcp6_input_with_port(struct mbuf **mp, int *offp, int proto, uint16_t port)
{
struct mbuf *m;
struct in6_ifaddr *ia6;
struct ip6_hdr *ip6;
m = *mp;
if (m->m_len < *offp + sizeof(struct tcphdr)) {
m = m_pullup(m, *offp + sizeof(struct tcphdr));
if (m == NULL) {
*mp = m;
TCPSTAT_INC(tcps_rcvshort);
return (IPPROTO_DONE);
}
}
/*
* draft-itojun-ipv6-tcp-to-anycast
* better place to put this in?
*/
ip6 = mtod(m, struct ip6_hdr *);
ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
(caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
*mp = NULL;
return (IPPROTO_DONE);
}
*mp = m;
return (tcp_input_with_port(mp, offp, proto, port));
}
int
tcp6_input(struct mbuf **mp, int *offp, int proto)
{
return(tcp6_input_with_port(mp, offp, proto, 0));
}
#endif /* INET6 */
int
tcp_input_with_port(struct mbuf **mp, int *offp, int proto, uint16_t port)
{
struct mbuf *m = *mp;
struct tcphdr *th = NULL;
struct ip *ip = NULL;
struct inpcb *inp = NULL;
struct tcpcb *tp = NULL;
struct socket *so = NULL;
u_char *optp = NULL;
int off0;
int optlen = 0;
#ifdef INET
int len;
uint8_t ipttl;
#endif
int tlen = 0, off;
int drop_hdrlen;
int thflags;
int rstreason = 0; /* For badport_bandlim accounting purposes */
int lookupflag;
uint8_t iptos;
struct m_tag *fwd_tag = NULL;
#ifdef INET6
struct ip6_hdr *ip6 = NULL;
int isipv6;
#else
const void *ip6 = NULL;
#endif /* INET6 */
struct tcpopt to; /* options in this segment */
char *s = NULL; /* address and port logging */
NET_EPOCH_ASSERT();
#ifdef INET6
isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
#endif
off0 = *offp;
m = *mp;
*mp = NULL;
to.to_flags = 0;
TCPSTAT_INC(tcps_rcvtotal);
m->m_pkthdr.tcp_tun_port = port;
#ifdef INET6
if (isipv6) {
ip6 = mtod(m, struct ip6_hdr *);
th = (struct tcphdr *)((caddr_t)ip6 + off0);
tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
if (port)
goto skip6_csum;
if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
th->th_sum = m->m_pkthdr.csum_data;
else
th->th_sum = in6_cksum_pseudo(ip6, tlen,
IPPROTO_TCP, m->m_pkthdr.csum_data);
th->th_sum ^= 0xffff;
} else
th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
if (th->th_sum) {
TCPSTAT_INC(tcps_rcvbadsum);
goto drop;
}
skip6_csum:
/*
* Be proactive about unspecified IPv6 address in source.
* As we use all-zero to indicate unbounded/unconnected pcb,
* unspecified IPv6 address can be used to confuse us.
*
* Note that packets with unspecified IPv6 destination is
* already dropped in ip6_input.
*/
KASSERT(!IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_dst),
("%s: unspecified destination v6 address", __func__));
if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
IP6STAT_INC(ip6s_badscope); /* XXX */
goto drop;
}
iptos = IPV6_TRAFFIC_CLASS(ip6);
}
#endif
#if defined(INET) && defined(INET6)
else
#endif
#ifdef INET
{
/*
* Get IP and TCP header together in first mbuf.
* Note: IP leaves IP header in first mbuf.
*/
if (off0 > sizeof (struct ip)) {
ip_stripoptions(m);
off0 = sizeof(struct ip);
}
if (m->m_len < sizeof (struct tcpiphdr)) {
if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
== NULL) {
TCPSTAT_INC(tcps_rcvshort);
return (IPPROTO_DONE);
}
}
ip = mtod(m, struct ip *);
th = (struct tcphdr *)((caddr_t)ip + off0);
tlen = ntohs(ip->ip_len) - off0;
iptos = ip->ip_tos;
if (port)
goto skip_csum;
if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
th->th_sum = m->m_pkthdr.csum_data;
else
th->th_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr,
htonl(m->m_pkthdr.csum_data + tlen +
IPPROTO_TCP));
th->th_sum ^= 0xffff;
} else {
struct ipovly *ipov = (struct ipovly *)ip;
/*
* Checksum extended TCP header and data.
*/
len = off0 + tlen;
ipttl = ip->ip_ttl;
bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
ipov->ih_len = htons(tlen);
th->th_sum = in_cksum(m, len);
/* Reset length for SDT probes. */
ip->ip_len = htons(len);
/* Reset TOS bits */
ip->ip_tos = iptos;
/* Re-initialization for later version check */
ip->ip_ttl = ipttl;
ip->ip_v = IPVERSION;
ip->ip_hl = off0 >> 2;
}
skip_csum:
if (th->th_sum && (port == 0)) {
TCPSTAT_INC(tcps_rcvbadsum);
goto drop;
}
KASSERT(ip->ip_dst.s_addr != INADDR_ANY,
("%s: unspecified destination v4 address", __func__));
if (__predict_false(ip->ip_src.s_addr == INADDR_ANY)) {
IPSTAT_INC(ips_badaddr);
goto drop;
}
}
#endif /* INET */
/*
* Check that TCP offset makes sense,
* pull out TCP options and adjust length. XXX
*/
off = th->th_off << 2;
if (off < sizeof (struct tcphdr) || off > tlen) {
TCPSTAT_INC(tcps_rcvbadoff);
goto drop;
}
tlen -= off; /* tlen is used instead of ti->ti_len */
if (off > sizeof (struct tcphdr)) {
#ifdef INET6
if (isipv6) {
if (m->m_len < off0 + off) {
m = m_pullup(m, off0 + off);
if (m == NULL) {
TCPSTAT_INC(tcps_rcvshort);
return (IPPROTO_DONE);
}
}
ip6 = mtod(m, struct ip6_hdr *);
th = (struct tcphdr *)((caddr_t)ip6 + off0);
}
#endif
#if defined(INET) && defined(INET6)
else
#endif
#ifdef INET
{
if (m->m_len < sizeof(struct ip) + off) {
if ((m = m_pullup(m, sizeof (struct ip) + off))
== NULL) {
TCPSTAT_INC(tcps_rcvshort);
return (IPPROTO_DONE);
}
ip = mtod(m, struct ip *);
th = (struct tcphdr *)((caddr_t)ip + off0);
}
}
#endif
optlen = off - sizeof (struct tcphdr);
optp = (u_char *)(th + 1);
}
thflags = tcp_get_flags(th);
/*
* Convert TCP protocol specific fields to host format.
*/
tcp_fields_to_host(th);
/*
* Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
*/
drop_hdrlen = off0 + off;
/*
* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
*/
if (
#ifdef INET6
(isipv6 && (m->m_flags & M_IP6_NEXTHOP))
#ifdef INET
|| (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
#endif
#endif
#if defined(INET) && !defined(INET6)
(m->m_flags & M_IP_NEXTHOP)
#endif
)
fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
/*
* For initial SYN packets we don't need write lock on matching
* PCB, be it a listening one or a synchronized one. The packet
* shall not modify its state.
*/
lookupflag = INPLOOKUP_WILDCARD |
((thflags & (TH_ACK|TH_SYN)) == TH_SYN ?
INPLOOKUP_RLOCKPCB : INPLOOKUP_WLOCKPCB);
findpcb:
tp = NULL;
#ifdef INET6
if (isipv6 && fwd_tag != NULL) {
struct sockaddr_in6 *next_hop6;
next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
/*
* Transparently forwarded. Pretend to be the destination.
* Already got one like this?
*/
inp = in6_pcblookup_mbuf(&V_tcbinfo,
&ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
lookupflag & ~INPLOOKUP_WILDCARD, m->m_pkthdr.rcvif, m);
if (!inp) {
/*
* It's new. Try to find the ambushing socket.
* Because we've rewritten the destination address,
* any hardware-generated hash is ignored.
*/
inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
th->th_sport, &next_hop6->sin6_addr,
next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
th->th_dport, lookupflag, m->m_pkthdr.rcvif);
}
} else if (isipv6) {
inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
th->th_sport, &ip6->ip6_dst, th->th_dport, lookupflag,
m->m_pkthdr.rcvif, m);
}
#endif /* INET6 */
#if defined(INET6) && defined(INET)
else
#endif
#ifdef INET
if (fwd_tag != NULL) {
struct sockaddr_in *next_hop;
next_hop = (struct sockaddr_in *)(fwd_tag+1);
/*
* Transparently forwarded. Pretend to be the destination.
* already got one like this?
*/
inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
ip->ip_dst, th->th_dport, lookupflag & ~INPLOOKUP_WILDCARD,
m->m_pkthdr.rcvif, m);
if (!inp) {
/*
* It's new. Try to find the ambushing socket.
* Because we've rewritten the destination address,
* any hardware-generated hash is ignored.
*/
inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
th->th_sport, next_hop->sin_addr,
next_hop->sin_port ? ntohs(next_hop->sin_port) :
th->th_dport, lookupflag, m->m_pkthdr.rcvif);
}
} else
inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
th->th_sport, ip->ip_dst, th->th_dport, lookupflag,
m->m_pkthdr.rcvif, m);
#endif /* INET */
/*
* If the INPCB does not exist then all data in the incoming
* segment is discarded and an appropriate RST is sent back.
* XXX MRT Send RST using which routing table?
*/
if (inp == NULL) {
if (rstreason != 0) {
/* We came here after second (safety) lookup. */
MPASS((lookupflag & INPLOOKUP_WILDCARD) == 0);
goto dropwithreset;
}
/*
* Log communication attempts to ports that are not
* in use.
*/
if ((V_tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
V_tcp_log_in_vain == 2) {
if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
log(LOG_INFO, "%s; %s: Connection attempt "
"to closed port\n", s, __func__);
}
rstreason = BANDLIM_RST_CLOSEDPORT;
goto dropwithreset;
}
INP_LOCK_ASSERT(inp);
if ((inp->inp_flowtype == M_HASHTYPE_NONE) &&
!SOLISTENING(inp->inp_socket)) {
if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
inp->inp_flowid = m->m_pkthdr.flowid;
inp->inp_flowtype = M_HASHTYPE_GET(m);
#ifdef RSS
} else {
/* assign flowid by software RSS hash */
#ifdef INET6
if (isipv6) {
rss_proto_software_hash_v6(&inp->in6p_faddr,
&inp->in6p_laddr,
inp->inp_fport,
inp->inp_lport,
IPPROTO_TCP,
&inp->inp_flowid,
&inp->inp_flowtype);
} else
#endif /* INET6 */
{
rss_proto_software_hash_v4(inp->inp_faddr,
inp->inp_laddr,
inp->inp_fport,
inp->inp_lport,
IPPROTO_TCP,
&inp->inp_flowid,
&inp->inp_flowtype);
}
#endif /* RSS */
}
}
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
#ifdef INET6
if (isipv6 && IPSEC_ENABLED(ipv6) &&
IPSEC_CHECK_POLICY(ipv6, m, inp) != 0) {
goto dropunlock;
}
#ifdef INET
else
#endif
#endif /* INET6 */
#ifdef INET
if (IPSEC_ENABLED(ipv4) &&
IPSEC_CHECK_POLICY(ipv4, m, inp) != 0) {
goto dropunlock;
}
#endif /* INET */
#endif /* IPSEC */
/*
* Check the minimum TTL for socket.
*/
if (inp->inp_ip_minttl != 0) {
#ifdef INET6
if (isipv6) {
if (inp->inp_ip_minttl > ip6->ip6_hlim)
goto dropunlock;
} else
#endif
if (inp->inp_ip_minttl > ip->ip_ttl)
goto dropunlock;
}
tp = intotcpcb(inp);
switch (tp->t_state) {
case TCPS_TIME_WAIT:
/*
* A previous connection in TIMEWAIT state is supposed to catch
* stray or duplicate segments arriving late. If this segment
* was a legitimate new connection attempt, the old INPCB gets
* removed and we can try again to find a listening socket.
*/
tcp_dooptions(&to, optp, optlen,
(thflags & TH_SYN) ? TO_SYN : 0);
/*
* tcp_twcheck unlocks the inp always, and frees the m if fails.
*/
if (tcp_twcheck(inp, &to, th, m, tlen))
goto findpcb;
return (IPPROTO_DONE);
case TCPS_CLOSED:
/*
* The TCPCB may no longer exist if the connection is winding
* down or it is in the CLOSED state. Either way we drop the
* segment and send an appropriate response.
*/
rstreason = BANDLIM_RST_CLOSEDPORT;
goto dropwithreset;
}
if ((tp->t_port != port) && (tp->t_state > TCPS_LISTEN)) {
rstreason = BANDLIM_RST_CLOSEDPORT;
goto dropwithreset;
}
#ifdef TCP_OFFLOAD
if (tp->t_flags & TF_TOE) {
tcp_offload_input(tp, m);
m = NULL; /* consumed by the TOE driver */
goto dropunlock;
}
#endif
#ifdef MAC
if (mac_inpcb_check_deliver(inp, m))
goto dropunlock;
#endif
so = inp->inp_socket;
KASSERT(so != NULL, ("%s: so == NULL", __func__));
/*
* When the socket is accepting connections (the INPCB is in LISTEN
* state) we look into the SYN cache if this is a new connection
* attempt or the completion of a previous one.
*/
KASSERT(tp->t_state == TCPS_LISTEN || !SOLISTENING(so),
("%s: so accepting but tp %p not listening", __func__, tp));
if (tp->t_state == TCPS_LISTEN && SOLISTENING(so)) {
struct in_conninfo inc;
bzero(&inc, sizeof(inc));
#ifdef INET6
if (isipv6) {
inc.inc_flags |= INC_ISIPV6;
if (inp->inp_inc.inc_flags & INC_IPV6MINMTU)
inc.inc_flags |= INC_IPV6MINMTU;
inc.inc6_faddr = ip6->ip6_src;
inc.inc6_laddr = ip6->ip6_dst;
} else
#endif
{
inc.inc_faddr = ip->ip_src;
inc.inc_laddr = ip->ip_dst;
}
inc.inc_fport = th->th_sport;
inc.inc_lport = th->th_dport;
inc.inc_fibnum = so->so_fibnum;
/*
* Check for an existing connection attempt in syncache if
* the flag is only ACK. A successful lookup creates a new
* socket appended to the listen queue in SYN_RECEIVED state.
*/
if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
/*
* Parse the TCP options here because
* syncookies need access to the reflected
* timestamp.
*/
tcp_dooptions(&to, optp, optlen, 0);
/*
* NB: syncache_expand() doesn't unlock inp.
*/
rstreason = syncache_expand(&inc, &to, th, &so, m, port);
if (rstreason < 0) {
/*
* A failing TCP MD5 signature comparison
* must result in the segment being dropped
* and must not produce any response back
* to the sender.
*/
goto dropunlock;
} else if (rstreason == 0) {
/*
* No syncache entry, or ACK was not for our
* SYN/ACK. Do our protection against double
* ACK. If peer sent us 2 ACKs, then for the
* first one syncache_expand() successfully
* converted syncache entry into a socket,
* while we were waiting on the inpcb lock. We
* don't want to sent RST for the second ACK,
* so we perform second lookup without wildcard
* match, hoping to find the new socket. If
* the ACK is stray indeed, rstreason would
* hint the above code that the lookup was a
* second attempt.
*
* NB: syncache did its own logging
* of the failure cause.
*/
INP_WUNLOCK(inp);
rstreason = BANDLIM_RST_OPENPORT;
lookupflag &= ~INPLOOKUP_WILDCARD;
goto findpcb;
}
tfo_socket_result:
if (so == NULL) {
/*
* We completed the 3-way handshake
* but could not allocate a socket
* either due to memory shortage,
* listen queue length limits or
* global socket limits. Send RST
* or wait and have the remote end
* retransmit the ACK for another
* try.
*/
if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
log(LOG_DEBUG, "%s; %s: Listen socket: "
"Socket allocation failed due to "
"limits or memory shortage, %s\n",
s, __func__,
V_tcp_sc_rst_sock_fail ?
"sending RST" : "try again");
if (V_tcp_sc_rst_sock_fail) {
rstreason = BANDLIM_UNLIMITED;
goto dropwithreset;
} else
goto dropunlock;
}
/*
* Socket is created in state SYN_RECEIVED.
* Unlock the listen socket, lock the newly
* created socket and update the tp variable.
* If we came here via jump to tfo_socket_result,
* then listening socket is read-locked.
*/
INP_UNLOCK(inp); /* listen socket */
inp = sotoinpcb(so);
/*
* New connection inpcb is already locked by
* syncache_expand().
*/
INP_WLOCK_ASSERT(inp);
tp = intotcpcb(inp);
KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
("%s: ", __func__));
/*
* Process the segment and the data it
* contains. tcp_do_segment() consumes
* the mbuf chain and unlocks the inpcb.
*/
TCP_PROBE5(receive, NULL, tp, m, tp, th);
tp->t_fb->tfb_tcp_do_segment(tp, m, th, drop_hdrlen,
tlen, iptos);
return (IPPROTO_DONE);
}
/*
* Segment flag validation for new connection attempts:
*
* Our (SYN|ACK) response was rejected.
* Check with syncache and remove entry to prevent
* retransmits.
*
* NB: syncache_chkrst does its own logging of failure
* causes.
*/
if (thflags & TH_RST) {
syncache_chkrst(&inc, th, m, port);
goto dropunlock;
}
/*
* We can't do anything without SYN.
*/
if ((thflags & TH_SYN) == 0) {
if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
log(LOG_DEBUG, "%s; %s: Listen socket: "
"SYN is missing, segment ignored\n",
s, __func__);
TCPSTAT_INC(tcps_badsyn);
goto dropunlock;
}
/*
* (SYN|ACK) is bogus on a listen socket.
*/
if (thflags & TH_ACK) {
if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
log(LOG_DEBUG, "%s; %s: Listen socket: "
"SYN|ACK invalid, segment rejected\n",
s, __func__);
syncache_badack(&inc, port); /* XXX: Not needed! */
TCPSTAT_INC(tcps_badsyn);
rstreason = BANDLIM_RST_OPENPORT;
goto dropwithreset;
}
/*
* If the drop_synfin option is enabled, drop all
* segments with both the SYN and FIN bits set.
* This prevents e.g. nmap from identifying the
* TCP/IP stack.
* XXX: Poor reasoning. nmap has other methods
* and is constantly refining its stack detection
* strategies.
* XXX: This is a violation of the TCP specification
* and was used by RFC1644.
*/
if ((thflags & TH_FIN) && V_drop_synfin) {
if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
log(LOG_DEBUG, "%s; %s: Listen socket: "
"SYN|FIN segment ignored (based on "
"sysctl setting)\n", s, __func__);
TCPSTAT_INC(tcps_badsyn);
goto dropunlock;
}
/*
* Segment's flags are (SYN) or (SYN|FIN).
*
* TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
* as they do not affect the state of the TCP FSM.
* The data pointed to by TH_URG and th_urp is ignored.
*/
KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
("%s: Listen socket: TH_RST or TH_ACK set", __func__));
KASSERT(thflags & (TH_SYN),
("%s: Listen socket: TH_SYN not set", __func__));
INP_RLOCK_ASSERT(inp);
#ifdef INET6
/*
* If deprecated address is forbidden,
* we do not accept SYN to deprecated interface
* address to prevent any new inbound connection from
* getting established.
* When we do not accept SYN, we send a TCP RST,
* with deprecated source address (instead of dropping
* it). We compromise it as it is much better for peer
* to send a RST, and RST will be the final packet
* for the exchange.
*
* If we do not forbid deprecated addresses, we accept
* the SYN packet. RFC2462 does not suggest dropping
* SYN in this case.
* If we decipher RFC2462 5.5.4, it says like this:
* 1. use of deprecated addr with existing
* communication is okay - "SHOULD continue to be
* used"
* 2. use of it with new communication:
* (2a) "SHOULD NOT be used if alternate address
* with sufficient scope is available"
* (2b) nothing mentioned otherwise.
* Here we fall into (2b) case as we have no choice in
* our source address selection - we must obey the peer.
*
* The wording in RFC2462 is confusing, and there are
* multiple description text for deprecated address
* handling - worse, they are not exactly the same.
* I believe 5.5.4 is the best one, so we follow 5.5.4.
*/
if (isipv6 && !V_ip6_use_deprecated) {
struct in6_ifaddr *ia6;
ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
if (ia6 != NULL &&
(ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
log(LOG_DEBUG, "%s; %s: Listen socket: "
"Connection attempt to deprecated "
"IPv6 address rejected\n",
s, __func__);
rstreason = BANDLIM_RST_OPENPORT;
goto dropwithreset;
}
}
#endif /* INET6 */
/*
* Basic sanity checks on incoming SYN requests:
* Don't respond if the destination is a link layer
* broadcast according to RFC1122 4.2.3.10, p. 104.
* If it is from this socket it must be forged.
* Don't respond if the source or destination is a
* global or subnet broad- or multicast address.
* Note that it is quite possible to receive unicast
* link-layer packets with a broadcast IP address. Use
* in_broadcast() to find them.
*/
if (m->m_flags & (M_BCAST|M_MCAST)) {
if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
log(LOG_DEBUG, "%s; %s: Listen socket: "
"Connection attempt from broad- or multicast "
"link layer address ignored\n", s, __func__);
goto dropunlock;
}
#ifdef INET6
if (isipv6) {
if (th->th_dport == th->th_sport &&
IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
log(LOG_DEBUG, "%s; %s: Listen socket: "
"Connection attempt to/from self "
"ignored\n", s, __func__);
goto dropunlock;
}
if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
log(LOG_DEBUG, "%s; %s: Listen socket: "
"Connection attempt from/to multicast "
"address ignored\n", s, __func__);
goto dropunlock;
}
}
#endif
#if defined(INET) && defined(INET6)
else
#endif
#ifdef INET
{
if (th->th_dport == th->th_sport &&
ip->ip_dst.s_addr == ip->ip_src.s_addr) {
if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
log(LOG_DEBUG, "%s; %s: Listen socket: "
"Connection attempt from/to self "
"ignored\n", s, __func__);
goto dropunlock;
}
if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
log(LOG_DEBUG, "%s; %s: Listen socket: "
"Connection attempt from/to broad- "
"or multicast address ignored\n",
s, __func__);
goto dropunlock;
}
}
#endif
/*
* SYN appears to be valid. Create compressed TCP state
* for syncache.
*/
TCP_PROBE3(debug__input, tp, th, m);
tcp_dooptions(&to, optp, optlen, TO_SYN);
if ((so = syncache_add(&inc, &to, th, inp, so, m, NULL, NULL,
iptos, port)) != NULL)
goto tfo_socket_result;
/*
* Entry added to syncache and mbuf consumed.
* Only the listen socket is unlocked by syncache_add().
*/
return (IPPROTO_DONE);
} else if (tp->t_state == TCPS_LISTEN) {
/*
* When a listen socket is torn down the SO_ACCEPTCONN
* flag is removed first while connections are drained
* from the accept queue in a unlock/lock cycle of the
* ACCEPT_LOCK, opening a race condition allowing a SYN
* attempt go through unhandled.
*/
goto dropunlock;
}
#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
if (tp->t_flags & TF_SIGNATURE) {
tcp_dooptions(&to, optp, optlen, thflags);
if ((to.to_flags & TOF_SIGNATURE) == 0) {
TCPSTAT_INC(tcps_sig_err_nosigopt);
goto dropunlock;
}
if (!TCPMD5_ENABLED() ||
TCPMD5_INPUT(m, th, to.to_signature) != 0)
goto dropunlock;
}
#endif
TCP_PROBE5(receive, NULL, tp, m, tp, th);
/*
* Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
* state. tcp_do_segment() always consumes the mbuf chain, unlocks
* the inpcb, and unlocks pcbinfo.
*
* XXXGL: in case of a pure SYN arriving on existing connection
* TCP stacks won't need to modify the PCB, they would either drop
* the segment silently, or send a challenge ACK. However, we try
* to upgrade the lock, because calling convention for stacks is
* write-lock on PCB. If upgrade fails, drop the SYN.
*/
if ((lookupflag & INPLOOKUP_RLOCKPCB) && INP_TRY_UPGRADE(inp) == 0)
goto dropunlock;
tp->t_fb->tfb_tcp_do_segment(tp, m, th, drop_hdrlen, tlen, iptos);
return (IPPROTO_DONE);
dropwithreset:
/*
* When blackholing do not respond with a RST but
* completely ignore the segment and drop it.
*/
if (((rstreason == BANDLIM_RST_OPENPORT && V_blackhole == 3) ||
(rstreason == BANDLIM_RST_CLOSEDPORT &&
((V_blackhole == 1 && (thflags & TH_SYN)) || V_blackhole > 1))) &&
(V_blackhole_local || (
#ifdef INET6
isipv6 ? !in6_localaddr(&ip6->ip6_src) :
#endif
#ifdef INET
!in_localip(ip->ip_src)
#else
true
#endif
)))
goto dropunlock;
TCP_PROBE5(receive, NULL, tp, m, tp, th);
tcp_dropwithreset(m, th, tp, tlen, rstreason);
m = NULL; /* mbuf chain got consumed. */
dropunlock:
if (m != NULL)
TCP_PROBE5(receive, NULL, tp, m, tp, th);
if (inp != NULL)
INP_UNLOCK(inp);
drop:
if (s != NULL)
free(s, M_TCPLOG);
if (m != NULL)
m_freem(m);
return (IPPROTO_DONE);
}
/*
* Automatic sizing of receive socket buffer. Often the send
* buffer size is not optimally adjusted to the actual network
* conditions at hand (delay bandwidth product). Setting the
* buffer size too small limits throughput on links with high
* bandwidth and high delay (eg. trans-continental/oceanic links).
*
* On the receive side the socket buffer memory is only rarely
* used to any significant extent. This allows us to be much
* more aggressive in scaling the receive socket buffer. For
* the case that the buffer space is actually used to a large
* extent and we run out of kernel memory we can simply drop
* the new segments; TCP on the sender will just retransmit it
* later. Setting the buffer size too big may only consume too
* much kernel memory if the application doesn't read() from
* the socket or packet loss or reordering makes use of the
* reassembly queue.
*
* The criteria to step up the receive buffer one notch are:
* 1. Application has not set receive buffer size with
* SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
* 2. the number of bytes received during 1/2 of an sRTT
* is at least 3/8 of the current socket buffer size.
* 3. receive buffer size has not hit maximal automatic size;
*
* If all of the criteria are met we increaset the socket buffer
* by a 1/2 (bounded by the max). This allows us to keep ahead
* of slow-start but also makes it so our peer never gets limited
* by our rwnd which we then open up causing a burst.
*
* This algorithm does two steps per RTT at most and only if
* we receive a bulk stream w/o packet losses or reorderings.
* Shrinking the buffer during idle times is not necessary as
* it doesn't consume any memory when idle.
*
* TODO: Only step up if the application is actually serving
* the buffer to better manage the socket buffer resources.
*/
int
tcp_autorcvbuf(struct mbuf *m, struct tcphdr *th, struct socket *so,
struct tcpcb *tp, int tlen)
{
int newsize = 0;
if (V_tcp_do_autorcvbuf && (so->so_rcv.sb_flags & SB_AUTOSIZE) &&
tp->t_srtt != 0 && tp->rfbuf_ts != 0 &&
TCP_TS_TO_TICKS(tcp_ts_getticks() - tp->rfbuf_ts) >
((tp->t_srtt >> TCP_RTT_SHIFT)/2)) {
if (tp->rfbuf_cnt > ((so->so_rcv.sb_hiwat / 2)/ 4 * 3) &&
so->so_rcv.sb_hiwat < V_tcp_autorcvbuf_max) {
newsize = min((so->so_rcv.sb_hiwat + (so->so_rcv.sb_hiwat/2)), V_tcp_autorcvbuf_max);
}
TCP_PROBE6(receive__autoresize, NULL, tp, m, tp, th, newsize);
/* Start over with next RTT. */
tp->rfbuf_ts = 0;
tp->rfbuf_cnt = 0;
} else {
tp->rfbuf_cnt += tlen; /* add up */
}
return (newsize);
}
int
tcp_input(struct mbuf **mp, int *offp, int proto)
{
return(tcp_input_with_port(mp, offp, proto, 0));
}
static void
tcp_handle_wakeup(struct tcpcb *tp)
{
INP_WLOCK_ASSERT(tptoinpcb(tp));
if (tp->t_flags & TF_WAKESOR) {
struct socket *so = tptosocket(tp);
tp->t_flags &= ~TF_WAKESOR;
SOCKBUF_LOCK_ASSERT(&so->so_rcv);
sorwakeup_locked(so);
}
}
void
tcp_do_segment(struct tcpcb *tp, struct mbuf *m, struct tcphdr *th,
int drop_hdrlen, int tlen, uint8_t iptos)
{
uint16_t thflags;
int acked, ourfinisacked, needoutput = 0;
sackstatus_t sack_changed;
int rstreason, todrop, win, incforsyn = 0;
uint32_t tiwin;
uint16_t nsegs;
char *s;
struct inpcb *inp = tptoinpcb(tp);
struct socket *so = tptosocket(tp);
struct in_conninfo *inc = &inp->inp_inc;
struct mbuf *mfree;
struct tcpopt to;
int tfo_syn;
u_int maxseg = 0;
thflags = tcp_get_flags(th);
tp->sackhint.last_sack_ack = 0;
sack_changed = SACK_NOCHANGE;
nsegs = max(1, m->m_pkthdr.lro_nsegs);
NET_EPOCH_ASSERT();
INP_WLOCK_ASSERT(inp);
KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
__func__));
KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
__func__));
#ifdef TCPPCAP
/* Save segment, if requested. */
tcp_pcap_add(th, m, &(tp->t_inpkts));
#endif
TCP_LOG_EVENT(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
tlen, NULL, true);
if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
log(LOG_DEBUG, "%s; %s: "
"SYN|FIN segment ignored (based on "
"sysctl setting)\n", s, __func__);
free(s, M_TCPLOG);
}
goto drop;
}
/*
* If a segment with the ACK-bit set arrives in the SYN-SENT state
* check SEQ.ACK first.
*/
if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
(SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
rstreason = BANDLIM_UNLIMITED;
tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
goto dropwithreset;
}
/*
* Segment received on connection.
* Reset idle time and keep-alive timer.
* XXX: This should be done after segment
* validation to ignore broken/spoofed segs.
*/
if (tp->t_idle_reduce &&
(tp->snd_max == tp->snd_una) &&
((ticks - tp->t_rcvtime) >= tp->t_rxtcur))
cc_after_idle(tp);
tp->t_rcvtime = ticks;
if (thflags & TH_FIN)
tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_FIN);
/*
* Scale up the window into a 32-bit value.
* For the SYN_SENT state the scale is zero.
*/
tiwin = th->th_win << tp->snd_scale;
#ifdef STATS
stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
#endif
/*
* TCP ECN processing.
*/
if (tcp_ecn_input_segment(tp, thflags, tlen,
tcp_packets_this_ack(tp, th->th_ack),
iptos))
cc_cong_signal(tp, th, CC_ECN);
/*
* Parse options on any incoming segment.
*/
tcp_dooptions(&to, (u_char *)(th + 1),
(th->th_off << 2) - sizeof(struct tcphdr),
(thflags & TH_SYN) ? TO_SYN : 0);
if (tp->t_flags2 & TF2_PROC_SACK_PROHIBIT) {
/*
* We don't look at sack's from the
* peer because the MSS is too small which
* can subject us to an attack.
*/
to.to_flags &= ~TOF_SACK;
}
#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
if ((tp->t_flags & TF_SIGNATURE) != 0 &&
(to.to_flags & TOF_SIGNATURE) == 0) {
TCPSTAT_INC(tcps_sig_err_sigopt);
/* XXX: should drop? */
}
#endif
/*
* If echoed timestamp is later than the current time,
* fall back to non RFC1323 RTT calculation. Normalize
* timestamp if syncookies were used when this connection
* was established.
*/
if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
to.to_tsecr -= tp->ts_offset;
if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks())) {
to.to_tsecr = 0;
} else if (tp->t_rxtshift == 1 &&
tp->t_flags & TF_PREVVALID &&
tp->t_badrxtwin != 0 &&
TSTMP_LT(to.to_tsecr, tp->t_badrxtwin)) {
cc_cong_signal(tp, th, CC_RTO_ERR);
}
}
/*
* Process options only when we get SYN/ACK back. The SYN case
* for incoming connections is handled in tcp_syncache.
* According to RFC1323 the window field in a SYN (i.e., a <SYN>
* or <SYN,ACK>) segment itself is never scaled.
* XXX this is traditional behavior, may need to be cleaned up.
*/
if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
/* Handle parallel SYN for ECN */
tcp_ecn_input_parallel_syn(tp, thflags, iptos);
if ((to.to_flags & TOF_SCALE) &&
(tp->t_flags & TF_REQ_SCALE) &&
!(tp->t_flags & TF_NOOPT)) {
tp->t_flags |= TF_RCVD_SCALE;
tp->snd_scale = to.to_wscale;
} else {
tp->t_flags &= ~TF_REQ_SCALE;
}
/*
* Initial send window. It will be updated with
* the next incoming segment to the scaled value.
*/
tp->snd_wnd = th->th_win;
if ((to.to_flags & TOF_TS) &&
(tp->t_flags & TF_REQ_TSTMP) &&
!(tp->t_flags & TF_NOOPT)) {
tp->t_flags |= TF_RCVD_TSTMP;
tp->ts_recent = to.to_tsval;
tp->ts_recent_age = tcp_ts_getticks();
} else {
tp->t_flags &= ~TF_REQ_TSTMP;
}
if (to.to_flags & TOF_MSS) {
tcp_mss(tp, to.to_mss);
}
if ((tp->t_flags & TF_SACK_PERMIT) &&
(!(to.to_flags & TOF_SACKPERM) ||
(tp->t_flags & TF_NOOPT))) {
tp->t_flags &= ~TF_SACK_PERMIT;
}
if (tp->t_flags & TF_FASTOPEN) {
if ((to.to_flags & TOF_FASTOPEN) &&
!(tp->t_flags & TF_NOOPT)) {
uint16_t mss;
if (to.to_flags & TOF_MSS) {
mss = to.to_mss;
} else {
if ((inp->inp_vflag & INP_IPV6) != 0) {
mss = TCP6_MSS;
} else {
mss = TCP_MSS;
}
}
tcp_fastopen_update_cache(tp, mss,
to.to_tfo_len, to.to_tfo_cookie);
} else {
tcp_fastopen_disable_path(tp);
}
}
}
/*
* If timestamps were negotiated during SYN/ACK and a
* segment without a timestamp is received, silently drop
* the segment, unless it is a RST segment or missing timestamps are
* tolerated.
* See section 3.2 of RFC 7323.
*/
if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
if (((thflags & TH_RST) != 0) || V_tcp_tolerate_missing_ts) {
if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
log(LOG_DEBUG, "%s; %s: Timestamp missing, "
"segment processed normally\n",
s, __func__);
free(s, M_TCPLOG);
}
} else {
if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
log(LOG_DEBUG, "%s; %s: Timestamp missing, "
"segment silently dropped\n", s, __func__);
free(s, M_TCPLOG);
}
goto drop;
}
}
/*
* If timestamps were not negotiated during SYN/ACK and a
* segment with a timestamp is received, ignore the
* timestamp and process the packet normally.
* See section 3.2 of RFC 7323.
*/
if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
"segment processed normally\n", s, __func__);
free(s, M_TCPLOG);
}
}
/*
* Header prediction: check for the two common cases
* of a uni-directional data xfer. If the packet has
* no control flags, is in-sequence, the window didn't
* change and we're not retransmitting, it's a
* candidate. If the length is zero and the ack moved
* forward, we're the sender side of the xfer. Just
* free the data acked & wake any higher level process
* that was blocked waiting for space. If the length
* is non-zero and the ack didn't move, we're the
* receiver side. If we're getting packets in-order
* (the reassembly queue is empty), add the data to
* the socket buffer and note that we need a delayed ack.
* Make sure that the hidden state-flags are also off.
* Since we check for TCPS_ESTABLISHED first, it can only
* be TH_NEEDSYN.
*/
if (tp->t_state == TCPS_ESTABLISHED &&
th->th_seq == tp->rcv_nxt &&
(thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
tp->snd_nxt == tp->snd_max &&
tiwin && tiwin == tp->snd_wnd &&
((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
SEGQ_EMPTY(tp) &&
((to.to_flags & TOF_TS) == 0 ||
TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
/*
* If last ACK falls within this segment's sequence numbers,
* record the timestamp.
* NOTE that the test is modified according to the latest
* proposal of the tcplw@cray.com list (Braden 1993/04/26).
*/
if ((to.to_flags & TOF_TS) != 0 &&
SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
tp->ts_recent_age = tcp_ts_getticks();
tp->ts_recent = to.to_tsval;
}
if (tlen == 0) {
if (SEQ_GT(th->th_ack, tp->snd_una) &&
SEQ_LEQ(th->th_ack, tp->snd_max) &&
!IN_RECOVERY(tp->t_flags) &&
(to.to_flags & TOF_SACK) == 0 &&
TAILQ_EMPTY(&tp->snd_holes)) {
/*
* This is a pure ack for outstanding data.
*/
TCPSTAT_INC(tcps_predack);
/*
* "bad retransmit" recovery without timestamps.
*/
if ((to.to_flags & TOF_TS) == 0 &&
tp->t_rxtshift == 1 &&
tp->t_flags & TF_PREVVALID &&
tp->t_badrxtwin != 0 &&
TSTMP_LT(ticks, tp->t_badrxtwin)) {
cc_cong_signal(tp, th, CC_RTO_ERR);
}
/*
* Recalculate the transmit timer / rtt.
*
* Some boxes send broken timestamp replies
* during the SYN+ACK phase, ignore
* timestamps of 0 or we could calculate a
* huge RTT and blow up the retransmit timer.
*/
if ((to.to_flags & TOF_TS) != 0 &&
to.to_tsecr) {
uint32_t t;
t = tcp_ts_getticks() - to.to_tsecr;
if (!tp->t_rttlow || tp->t_rttlow > t)
tp->t_rttlow = t;
tcp_xmit_timer(tp,
TCP_TS_TO_TICKS(t) + 1);
} else if (tp->t_rtttime &&
SEQ_GT(th->th_ack, tp->t_rtseq)) {
if (!tp->t_rttlow ||
tp->t_rttlow > ticks - tp->t_rtttime)
tp->t_rttlow = ticks - tp->t_rtttime;
tcp_xmit_timer(tp,
ticks - tp->t_rtttime);
}
acked = BYTES_THIS_ACK(tp, th);
#ifdef TCP_HHOOK
/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
hhook_run_tcp_est_in(tp, th, &to);
#endif
TCPSTAT_ADD(tcps_rcvackpack, nsegs);
TCPSTAT_ADD(tcps_rcvackbyte, acked);
sbdrop(&so->so_snd, acked);
if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
SEQ_LEQ(th->th_ack, tp->snd_recover))
tp->snd_recover = th->th_ack - 1;
/*
* Let the congestion control algorithm update
* congestion control related information. This
* typically means increasing the congestion
* window.
*/
cc_ack_received(tp, th, nsegs, CC_ACK);
tp->snd_una = th->th_ack;
/*
* Pull snd_wl2 up to prevent seq wrap relative
* to th_ack.
*/
tp->snd_wl2 = th->th_ack;
tp->t_dupacks = 0;
m_freem(m);
/*
* If all outstanding data are acked, stop
* retransmit timer, otherwise restart timer
* using current (possibly backed-off) value.
* If process is waiting for space,
* wakeup/selwakeup/signal. If data
* are ready to send, let tcp_output
* decide between more output or persist.
*/
TCP_PROBE3(debug__input, tp, th, m);
/*
* Clear t_acktime if remote side has ACKd
* all data in the socket buffer.
* Otherwise, update t_acktime if we received
* a sufficiently large ACK.
*/
if (sbavail(&so->so_snd) == 0)
tp->t_acktime = 0;
else if (acked > 1)
tp->t_acktime = ticks;
if (tp->snd_una == tp->snd_max)
tcp_timer_activate(tp, TT_REXMT, 0);
else if (!tcp_timer_active(tp, TT_PERSIST))
tcp_timer_activate(tp, TT_REXMT,
TP_RXTCUR(tp));
sowwakeup(so);
/*
* Only call tcp_output when there
* is new data available to be sent
* or we need to send an ACK.
*/
if ((tp->t_flags & TF_ACKNOW) ||
(sbavail(&so->so_snd) >=
SEQ_SUB(tp->snd_max, tp->snd_una))) {
(void) tcp_output(tp);
}
goto check_delack;
}
} else if (th->th_ack == tp->snd_una &&
tlen <= sbspace(&so->so_rcv)) {
int newsize = 0; /* automatic sockbuf scaling */
/*
* This is a pure, in-sequence data packet with
* nothing on the reassembly queue and we have enough
* buffer space to take it.
*/
/* Clean receiver SACK report if present */
if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
tcp_clean_sackreport(tp);
TCPSTAT_INC(tcps_preddat);
tp->rcv_nxt += tlen;
if (tlen &&
((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
(tp->t_fbyte_in == 0)) {
tp->t_fbyte_in = ticks;
if (tp->t_fbyte_in == 0)
tp->t_fbyte_in = 1;
if (tp->t_fbyte_out && tp->t_fbyte_in)
tp->t_flags2 |= TF2_FBYTES_COMPLETE;
}
/*
* Pull snd_wl1 up to prevent seq wrap relative to
* th_seq.
*/
tp->snd_wl1 = th->th_seq;
/*
* Pull rcv_up up to prevent seq wrap relative to
* rcv_nxt.
*/
tp->rcv_up = tp->rcv_nxt;
TCPSTAT_ADD(tcps_rcvpack, nsegs);
TCPSTAT_ADD(tcps_rcvbyte, tlen);
TCP_PROBE3(debug__input, tp, th, m);
newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
/* Add data to socket buffer. */
SOCKBUF_LOCK(&so->so_rcv);
if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
m_freem(m);
} else {
/*
* Set new socket buffer size.
* Give up when limit is reached.
*/
if (newsize)
if (!sbreserve_locked(so, SO_RCV,
newsize, NULL))
so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
m_adj(m, drop_hdrlen); /* delayed header drop */
sbappendstream_locked(&so->so_rcv, m, 0);
}
/* NB: sorwakeup_locked() does an implicit unlock. */
sorwakeup_locked(so);
if (DELAY_ACK(tp, tlen)) {
tp->t_flags |= TF_DELACK;
} else {
tp->t_flags |= TF_ACKNOW;
(void) tcp_output(tp);
}
goto check_delack;
}
}
/*
* Calculate amount of space in receive window,
* and then do TCP input processing.
* Receive window is amount of space in rcv queue,
* but not less than advertised window.
*/
win = sbspace(&so->so_rcv);
if (win < 0)
win = 0;
tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
switch (tp->t_state) {
/*
* If the state is SYN_RECEIVED:
* if seg contains an ACK, but not for our SYN/ACK, send a RST.
*/
case TCPS_SYN_RECEIVED:
if (thflags & TH_RST) {
/* Handle RST segments later. */
break;
}
if ((thflags & TH_ACK) &&
(SEQ_LEQ(th->th_ack, tp->snd_una) ||
SEQ_GT(th->th_ack, tp->snd_max))) {
rstreason = BANDLIM_RST_OPENPORT;
tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
goto dropwithreset;
}
if (tp->t_flags & TF_FASTOPEN) {
/*
* When a TFO connection is in SYN_RECEIVED, the
* only valid packets are the initial SYN, a
* retransmit/copy of the initial SYN (possibly with
* a subset of the original data), a valid ACK, a
* FIN, or a RST.
*/
if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) {
rstreason = BANDLIM_RST_OPENPORT;
tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
goto dropwithreset;
} else if (thflags & TH_SYN) {
/* non-initial SYN is ignored */
if ((tcp_timer_active(tp, TT_DELACK) ||
tcp_timer_active(tp, TT_REXMT)))
goto drop;
} else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) {
goto drop;
}
}
break;
/*
* If the state is SYN_SENT:
* if seg contains a RST with valid ACK (SEQ.ACK has already
* been verified), then drop the connection.
* if seg contains a RST without an ACK, drop the seg.
* if seg does not contain SYN, then drop the seg.
* Otherwise this is an acceptable SYN segment
* initialize tp->rcv_nxt and tp->irs
* if seg contains ack then advance tp->snd_una
* if seg contains an ECE and ECN support is enabled, the stream
* is ECN capable.
* if SYN has been acked change to ESTABLISHED else SYN_RCVD state
* arrange for segment to be acked (eventually)
* continue processing rest of data/controls, beginning with URG
*/
case TCPS_SYN_SENT:
if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
TCP_PROBE5(connect__refused, NULL, tp,
m, tp, th);
tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
tp = tcp_drop(tp, ECONNREFUSED);
}
if (thflags & TH_RST)
goto drop;
if (!(thflags & TH_SYN))
goto drop;
tp->irs = th->th_seq;
tcp_rcvseqinit(tp);
if (thflags & TH_ACK) {
int tfo_partial_ack = 0;
TCPSTAT_INC(tcps_connects);
soisconnected(so);
#ifdef MAC
mac_socketpeer_set_from_mbuf(m, so);
#endif
/* Do window scaling on this connection? */
if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
(TF_RCVD_SCALE|TF_REQ_SCALE)) {
tp->rcv_scale = tp->request_r_scale;
}
tp->rcv_adv += min(tp->rcv_wnd,
TCP_MAXWIN << tp->rcv_scale);
tp->snd_una++; /* SYN is acked */
if (SEQ_LT(tp->snd_nxt, tp->snd_una))
tp->snd_nxt = tp->snd_una;
/*
* If not all the data that was sent in the TFO SYN
* has been acked, resend the remainder right away.
*/
if ((tp->t_flags & TF_FASTOPEN) &&
(tp->snd_una != tp->snd_max)) {
tp->snd_nxt = th->th_ack;
tfo_partial_ack = 1;
}
/*
* If there's data, delay ACK; if there's also a FIN
* ACKNOW will be turned on later.
*/
if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial_ack)
tcp_timer_activate(tp, TT_DELACK,
tcp_delacktime);
else
tp->t_flags |= TF_ACKNOW;
tcp_ecn_input_syn_sent(tp, thflags, iptos);
/*
* Received <SYN,ACK> in SYN_SENT[*] state.
* Transitions:
* SYN_SENT --> ESTABLISHED
* SYN_SENT* --> FIN_WAIT_1
*/
tp->t_starttime = ticks;
if (tp->t_flags & TF_NEEDFIN) {
tp->t_acktime = ticks;
tcp_state_change(tp, TCPS_FIN_WAIT_1);
tp->t_flags &= ~TF_NEEDFIN;
thflags &= ~TH_SYN;
} else {
tcp_state_change(tp, TCPS_ESTABLISHED);
TCP_PROBE5(connect__established, NULL, tp,
m, tp, th);
cc_conn_init(tp);
tcp_timer_activate(tp, TT_KEEP,
TP_KEEPIDLE(tp));
}
} else {
/*
* Received initial SYN in SYN-SENT[*] state =>
* simultaneous open.
* If it succeeds, connection is * half-synchronized.
* Otherwise, do 3-way handshake:
* SYN-SENT -> SYN-RECEIVED
* SYN-SENT* -> SYN-RECEIVED*
*/
tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN | TF_SONOTCONN);
tcp_timer_activate(tp, TT_REXMT, 0);
tcp_state_change(tp, TCPS_SYN_RECEIVED);
}
/*
* Advance th->th_seq to correspond to first data byte.
* If data, trim to stay within window,
* dropping FIN if necessary.
*/
th->th_seq++;
if (tlen > tp->rcv_wnd) {
todrop = tlen - tp->rcv_wnd;
m_adj(m, -todrop);
tlen = tp->rcv_wnd;
thflags &= ~TH_FIN;
TCPSTAT_INC(tcps_rcvpackafterwin);
TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
}
tp->snd_wl1 = th->th_seq - 1;
tp->rcv_up = th->th_seq;
/*
* Client side of transaction: already sent SYN and data.
* If the remote host used T/TCP to validate the SYN,
* our data will be ACK'd; if so, enter normal data segment
* processing in the middle of step 5, ack processing.
* Otherwise, goto step 6.
*/
if (thflags & TH_ACK)
goto process_ACK;
goto step6;
}
/*
* States other than LISTEN or SYN_SENT.
* First check the RST flag and sequence number since reset segments
* are exempt from the timestamp and connection count tests. This
* fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
* below which allowed reset segments in half the sequence space
* to fall though and be processed (which gives forged reset
* segments with a random sequence number a 50 percent chance of
* killing a connection).
* Then check timestamp, if present.
* Then check the connection count, if present.
* Then check that at least some bytes of segment are within
* receive window. If segment begins before rcv_nxt,
* drop leading data (and SYN); if nothing left, just ack.
*/
if (thflags & TH_RST) {
/*
* RFC5961 Section 3.2
*
* - RST drops connection only if SEG.SEQ == RCV.NXT.
* - If RST is in window, we send challenge ACK.
*
* Note: to take into account delayed ACKs, we should
* test against last_ack_sent instead of rcv_nxt.
* Note 2: we handle special case of closed window, not
* covered by the RFC.
*/
if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
(tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
KASSERT(tp->t_state != TCPS_SYN_SENT,
("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
__func__, th, tp));
if (V_tcp_insecure_rst ||
tp->last_ack_sent == th->th_seq) {
TCPSTAT_INC(tcps_drops);
/* Drop the connection. */
switch (tp->t_state) {
case TCPS_SYN_RECEIVED:
so->so_error = ECONNREFUSED;
goto close;
case TCPS_ESTABLISHED:
case TCPS_FIN_WAIT_1:
case TCPS_FIN_WAIT_2:
case TCPS_CLOSE_WAIT:
case TCPS_CLOSING:
case TCPS_LAST_ACK:
so->so_error = ECONNRESET;
close:
/* FALLTHROUGH */
default:
tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_RST);
tp = tcp_close(tp);
}
} else {
TCPSTAT_INC(tcps_badrst);
tcp_send_challenge_ack(tp, th, m);
m = NULL;
}
}
goto drop;
}
/*
* RFC5961 Section 4.2
* Send challenge ACK for any SYN in synchronized state.
*/
if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT &&
tp->t_state != TCPS_SYN_RECEIVED) {
TCPSTAT_INC(tcps_badsyn);
if (V_tcp_insecure_syn &&
SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
tp = tcp_drop(tp, ECONNRESET);
rstreason = BANDLIM_UNLIMITED;
} else {
tcp_ecn_input_syn_sent(tp, thflags, iptos);
tcp_send_challenge_ack(tp, th, m);
m = NULL;
}
goto drop;
}
/*
* RFC 1323 PAWS: If we have a timestamp reply on this segment
* and it's less than ts_recent, drop it.
*/
if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
TSTMP_LT(to.to_tsval, tp->ts_recent)) {
/* Check to see if ts_recent is over 24 days old. */
if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
/*
* Invalidate ts_recent. If this segment updates
* ts_recent, the age will be reset later and ts_recent
* will get a valid value. If it does not, setting
* ts_recent to zero will at least satisfy the
* requirement that zero be placed in the timestamp
* echo reply when ts_recent isn't valid. The
* age isn't reset until we get a valid ts_recent
* because we don't want out-of-order segments to be
* dropped when ts_recent is old.
*/
tp->ts_recent = 0;
} else {
TCPSTAT_INC(tcps_rcvduppack);
TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
TCPSTAT_INC(tcps_pawsdrop);
if (tlen)
goto dropafterack;
goto drop;
}
}
/*
* In the SYN-RECEIVED state, validate that the packet belongs to
* this connection before trimming the data to fit the receive
* window. Check the sequence number versus IRS since we know
* the sequence numbers haven't wrapped. This is a partial fix
* for the "LAND" DoS attack.
*/
if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
rstreason = BANDLIM_RST_OPENPORT;
tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
goto dropwithreset;
}
todrop = tp->rcv_nxt - th->th_seq;
if (todrop > 0) {
if (thflags & TH_SYN) {
thflags &= ~TH_SYN;
th->th_seq++;
if (th->th_urp > 1)
th->th_urp--;
else
thflags &= ~TH_URG;
todrop--;
}
/*
* Following if statement from Stevens, vol. 2, p. 960.
*/
if (todrop > tlen
|| (todrop == tlen && (thflags & TH_FIN) == 0)) {
/*
* Any valid FIN must be to the left of the window.
* At this point the FIN must be a duplicate or out
* of sequence; drop it.
*/
thflags &= ~TH_FIN;
/*
* Send an ACK to resynchronize and drop any data.
* But keep on processing for RST or ACK.
*/
tp->t_flags |= TF_ACKNOW;
todrop = tlen;
TCPSTAT_INC(tcps_rcvduppack);
TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
} else {
TCPSTAT_INC(tcps_rcvpartduppack);
TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
}
/*
* DSACK - add SACK block for dropped range
*/
if ((todrop > 0) && (tp->t_flags & TF_SACK_PERMIT)) {
tcp_update_sack_list(tp, th->th_seq,
th->th_seq + todrop);
/*
* ACK now, as the next in-sequence segment
* will clear the DSACK block again
*/
tp->t_flags |= TF_ACKNOW;
}
drop_hdrlen += todrop; /* drop from the top afterwards */
th->th_seq += todrop;
tlen -= todrop;
if (th->th_urp > todrop)
th->th_urp -= todrop;
else {
thflags &= ~TH_URG;
th->th_urp = 0;
}
}
/*
* If new data are received on a connection after the
* user processes are gone, then RST the other end if
* no FIN has been processed.
*/
if ((tp->t_flags & TF_CLOSED) && tlen > 0 &&
TCPS_HAVERCVDFIN(tp->t_state) == 0) {
if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
"after socket was closed, "
"sending RST and removing tcpcb\n",
s, __func__, tcpstates[tp->t_state], tlen);
free(s, M_TCPLOG);
}
tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE);
/* tcp_close will kill the inp pre-log the Reset */
tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
tp = tcp_close(tp);
TCPSTAT_INC(tcps_rcvafterclose);
rstreason = BANDLIM_UNLIMITED;
goto dropwithreset;
}
/*
* If segment ends after window, drop trailing data
* (and PUSH and FIN); if nothing left, just ACK.
*/
todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
if (todrop > 0) {
TCPSTAT_INC(tcps_rcvpackafterwin);
if (todrop >= tlen) {
TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
/*
* If window is closed can only take segments at
* window edge, and have to drop data and PUSH from
* incoming segments. Continue processing, but
* remember to ack. Otherwise, drop segment
* and ack.
*/
if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
tp->t_flags |= TF_ACKNOW;
TCPSTAT_INC(tcps_rcvwinprobe);
} else
goto dropafterack;
} else
TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
m_adj(m, -todrop);
tlen -= todrop;
thflags &= ~(TH_PUSH|TH_FIN);
}
/*
* If last ACK falls within this segment's sequence numbers,
* record its timestamp.
* NOTE:
* 1) That the test incorporates suggestions from the latest
* proposal of the tcplw@cray.com list (Braden 1993/04/26).
* 2) That updating only on newer timestamps interferes with
* our earlier PAWS tests, so this check should be solely
* predicated on the sequence space of this segment.
* 3) That we modify the segment boundary check to be
* Last.ACK.Sent <= SEG.SEQ + SEG.Len
* instead of RFC1323's
* Last.ACK.Sent < SEG.SEQ + SEG.Len,
* This modified check allows us to overcome RFC1323's
* limitations as described in Stevens TCP/IP Illustrated
* Vol. 2 p.869. In such cases, we can still calculate the
* RTT correctly when RCV.NXT == Last.ACK.Sent.
*/
if ((to.to_flags & TOF_TS) != 0 &&
SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
((thflags & (TH_SYN|TH_FIN)) != 0))) {
tp->ts_recent_age = tcp_ts_getticks();
tp->ts_recent = to.to_tsval;
}
/*
* If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN
* flag is on (half-synchronized state), then queue data for
* later processing; else drop segment and return.
*/
if ((thflags & TH_ACK) == 0) {
if (tp->t_state == TCPS_SYN_RECEIVED ||
(tp->t_flags & TF_NEEDSYN)) {
if (tp->t_state == TCPS_SYN_RECEIVED &&
(tp->t_flags & TF_FASTOPEN)) {
tp->snd_wnd = tiwin;
cc_conn_init(tp);
}
goto step6;
} else if (tp->t_flags & TF_ACKNOW)
goto dropafterack;
else
goto drop;
}
/*
* Ack processing.
*/
if (SEQ_GEQ(tp->snd_una, tp->iss + (TCP_MAXWIN << tp->snd_scale))) {
/* Checking SEG.ACK against ISS is definitely redundant. */
tp->t_flags2 |= TF2_NO_ISS_CHECK;
}
if (!V_tcp_insecure_ack) {
tcp_seq seq_min;
bool ghost_ack_check;
if (tp->t_flags2 & TF2_NO_ISS_CHECK) {
/* Check for too old ACKs (RFC 5961, Section 5.2). */
seq_min = tp->snd_una - tp->max_sndwnd;
ghost_ack_check = false;
} else {
if (SEQ_GT(tp->iss + 1, tp->snd_una - tp->max_sndwnd)) {
/* Checking for ghost ACKs is stricter. */
seq_min = tp->iss + 1;
ghost_ack_check = true;
} else {
/*
* Checking for too old ACKs (RFC 5961,
* Section 5.2) is stricter.
*/
seq_min = tp->snd_una - tp->max_sndwnd;
ghost_ack_check = false;
}
}
if (SEQ_LT(th->th_ack, seq_min)) {
if (ghost_ack_check)
TCPSTAT_INC(tcps_rcvghostack);
else
TCPSTAT_INC(tcps_rcvacktooold);
tcp_send_challenge_ack(tp, th, m);
m = NULL;
goto drop;
}
}
switch (tp->t_state) {
/*
* In SYN_RECEIVED state, the ack ACKs our SYN, so enter
* ESTABLISHED state and continue processing.
* The ACK was checked above.
*/
case TCPS_SYN_RECEIVED:
TCPSTAT_INC(tcps_connects);
if (tp->t_flags & TF_SONOTCONN) {
/*
* Usually SYN_RECEIVED had been created from a LISTEN,
* and solisten_enqueue() has already marked the socket
* layer as connected. If it didn't, which can happen
* only with an accept_filter(9), then the tp is marked
* with TF_SONOTCONN. The other reason for this mark
* to be set is a simultaneous open, a SYN_RECEIVED
* that had been created from SYN_SENT.
*/
tp->t_flags &= ~TF_SONOTCONN;
soisconnected(so);
}
/* Do window scaling? */
if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
(TF_RCVD_SCALE|TF_REQ_SCALE)) {
tp->rcv_scale = tp->request_r_scale;
}
tp->snd_wnd = tiwin;
/*
* Make transitions:
* SYN-RECEIVED -> ESTABLISHED
* SYN-RECEIVED* -> FIN-WAIT-1
*/
tp->t_starttime = ticks;
if ((tp->t_flags & TF_FASTOPEN) && tp->t_tfo_pending) {
tcp_fastopen_decrement_counter(tp->t_tfo_pending);
tp->t_tfo_pending = NULL;
}
if (tp->t_flags & TF_NEEDFIN) {
tp->t_acktime = ticks;
tcp_state_change(tp, TCPS_FIN_WAIT_1);
tp->t_flags &= ~TF_NEEDFIN;
} else {
tcp_state_change(tp, TCPS_ESTABLISHED);
TCP_PROBE5(accept__established, NULL, tp,
m, tp, th);
/*
* TFO connections call cc_conn_init() during SYN
* processing. Calling it again here for such
* connections is not harmless as it would undo the
* snd_cwnd reduction that occurs when a TFO SYN|ACK
* is retransmitted.
*/
if (!(tp->t_flags & TF_FASTOPEN))
cc_conn_init(tp);
tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
}
/*
* Account for the ACK of our SYN prior to
* regular ACK processing below, except for
* simultaneous SYN, which is handled later.
*/
if (SEQ_GT(th->th_ack, tp->snd_una) && !(tp->t_flags & TF_NEEDSYN))
incforsyn = 1;
/*
* If segment contains data or ACK, will call tcp_reass()
* later; if not, do so now to pass queued data to user.
*/
if (tlen == 0 && (thflags & TH_FIN) == 0) {
(void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
(struct mbuf *)0);
tcp_handle_wakeup(tp);
}
tp->snd_wl1 = th->th_seq - 1;
/* FALLTHROUGH */
/*
* In ESTABLISHED state: drop duplicate ACKs; ACK out of range
* ACKs. If the ack is in the range
* tp->snd_una < th->th_ack <= tp->snd_max
* then advance tp->snd_una to th->th_ack and drop
* data from the retransmission queue. If this ACK reflects
* more up to date window information we update our window information.
*/
case TCPS_ESTABLISHED:
case TCPS_FIN_WAIT_1:
case TCPS_FIN_WAIT_2:
case TCPS_CLOSE_WAIT:
case TCPS_CLOSING:
case TCPS_LAST_ACK:
if (SEQ_GT(th->th_ack, tp->snd_max)) {
TCPSTAT_INC(tcps_rcvacktoomuch);
goto dropafterack;
}
if (tcp_is_sack_recovery(tp, &to)) {
sack_changed = tcp_sack_doack(tp, &to, th->th_ack);
if ((sack_changed != SACK_NOCHANGE) &&
(tp->t_flags & TF_LRD)) {
tcp_sack_lost_retransmission(tp, th);
}
} else
/*
* Reset the value so that previous (valid) value
* from the last ack with SACK doesn't get used.
*/
tp->sackhint.sacked_bytes = 0;
#ifdef TCP_HHOOK
/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
hhook_run_tcp_est_in(tp, th, &to);
#endif
if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
maxseg = tcp_maxseg(tp);
if (tlen == 0 &&
(tiwin == tp->snd_wnd ||
(tp->t_flags & TF_SACK_PERMIT))) {
/*
* If this is the first time we've seen a
* FIN from the remote, this is not a
* duplicate and it needs to be processed
* normally. This happens during a
* simultaneous close.
*/
if ((thflags & TH_FIN) &&
(TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
tp->t_dupacks = 0;
break;
}
TCPSTAT_INC(tcps_rcvdupack);
/*
* If we have outstanding data (other than
* a window probe), this is a completely
* duplicate ack (ie, window info didn't
* change and FIN isn't set),
* the ack is the biggest we've
* seen and we've seen exactly our rexmt
* threshold of them, assume a packet
* has been dropped and retransmit it.
* Kludge snd_nxt & the congestion
* window so we send only this one
* packet.
*
* We know we're losing at the current
* window size so do congestion avoidance
* (set ssthresh to half the current window
* and pull our congestion window back to
* the new ssthresh).
*
* Dup acks mean that packets have left the
* network (they're now cached at the receiver)
* so bump cwnd by the amount in the receiver
* to keep a constant cwnd packets in the
* network.
*
* When using TCP ECN, notify the peer that
* we reduced the cwnd.
*/
/*
* Following 2 kinds of acks should not affect
* dupack counting:
* 1) Old acks
* 2) Acks with SACK but without any new SACK
* information in them. These could result from
* any anomaly in the network like a switch
* duplicating packets or a possible DoS attack.
*/
if (th->th_ack != tp->snd_una ||
(tcp_is_sack_recovery(tp, &to) &&
(sack_changed == SACK_NOCHANGE))) {
break;
} else if (!tcp_timer_active(tp, TT_REXMT)) {
tp->t_dupacks = 0;
} else if (++tp->t_dupacks > tcprexmtthresh ||
IN_FASTRECOVERY(tp->t_flags)) {
cc_ack_received(tp, th, nsegs,
CC_DUPACK);
if (V_tcp_do_prr &&
IN_FASTRECOVERY(tp->t_flags) &&
(tp->t_flags & TF_SACK_PERMIT)) {
tcp_do_prr_ack(tp, th, &to,
sack_changed, &maxseg);
} else if (tcp_is_sack_recovery(tp, &to) &&
IN_FASTRECOVERY(tp->t_flags) &&
(tp->snd_nxt == tp->snd_max)) {
int awnd;
/*
* Compute the amount of data in flight first.
* We can inject new data into the pipe iff
* we have less than ssthresh
* worth of data in flight.
*/
if (V_tcp_do_newsack) {
awnd = tcp_compute_pipe(tp);
} else {
awnd = (tp->snd_nxt - tp->snd_fack) +
tp->sackhint.sack_bytes_rexmit;
}
if (awnd < tp->snd_ssthresh) {
tp->snd_cwnd += imax(maxseg,
imin(2 * maxseg,
tp->sackhint.delivered_data));
if (tp->snd_cwnd > tp->snd_ssthresh)
tp->snd_cwnd = tp->snd_ssthresh;
}
} else if (tcp_is_sack_recovery(tp, &to) &&
IN_FASTRECOVERY(tp->t_flags) &&
SEQ_LT(tp->snd_nxt, tp->snd_max)) {
tp->snd_cwnd += imax(maxseg,
imin(2 * maxseg,
tp->sackhint.delivered_data));
} else {
tp->snd_cwnd += maxseg;
}
(void) tcp_output(tp);
goto drop;
} else if (tp->t_dupacks == tcprexmtthresh ||
(tp->t_flags & TF_SACK_PERMIT &&
V_tcp_do_newsack &&
tp->sackhint.sacked_bytes >
(tcprexmtthresh - 1) * maxseg)) {
enter_recovery:
/*
* Above is the RFC6675 trigger condition of
* more than (dupthresh-1)*maxseg sacked data.
* If the count of holes in the
* scoreboard is >= dupthresh, we could
* also enter loss recovery, but don't
* have that value readily available.
*/
tp->t_dupacks = tcprexmtthresh;
tcp_seq onxt = tp->snd_nxt;
/*
* If we're doing sack, check to
* see if we're already in sack
* recovery. If we're not doing sack,
* check to see if we're in newreno
* recovery.
*/
if (tcp_is_sack_recovery(tp, &to)) {
if (IN_FASTRECOVERY(tp->t_flags)) {
tp->t_dupacks = 0;
break;
}
} else {
if (SEQ_LEQ(th->th_ack,
tp->snd_recover)) {
tp->t_dupacks = 0;
break;
}
}
/* Congestion signal before ack. */
cc_cong_signal(tp, th, CC_NDUPACK);
cc_ack_received(tp, th, nsegs,
CC_DUPACK);
tcp_timer_activate(tp, TT_REXMT, 0);
tp->t_rtttime = 0;
if (V_tcp_do_prr) {
/*
* snd_ssthresh and snd_recover are
* already updated by cc_cong_signal.
*/
if (tcp_is_sack_recovery(tp, &to)) {
/*
* Include Limited Transmit
* segments here
*/
tp->sackhint.prr_delivered =
imin(tp->snd_max - th->th_ack,
(tp->snd_limited + 1) * maxseg);
} else {
tp->sackhint.prr_delivered =
maxseg;
}
tp->sackhint.recover_fs = max(1,
tp->snd_nxt - tp->snd_una);
}
tp->snd_limited = 0;
if (tcp_is_sack_recovery(tp, &to)) {
TCPSTAT_INC(tcps_sack_recovery_episode);
/*
* When entering LR after RTO due to
* Duplicate ACKs, retransmit existing
* holes from the scoreboard.
*/
tcp_resend_sackholes(tp);
/* Avoid inflating cwnd in tcp_output */
tp->snd_nxt = tp->snd_max;
tp->snd_cwnd = tcp_compute_pipe(tp) +
maxseg;
(void) tcp_output(tp);
/* Set cwnd to the expected flightsize */
tp->snd_cwnd = tp->snd_ssthresh;
if (SEQ_GT(th->th_ack, tp->snd_una)) {
goto resume_partialack;
}
goto drop;
}
tp->snd_nxt = th->th_ack;
tp->snd_cwnd = maxseg;
(void) tcp_output(tp);
KASSERT(tp->snd_limited <= 2,
("%s: tp->snd_limited too big",
__func__));
tp->snd_cwnd = tp->snd_ssthresh +
maxseg *
(tp->t_dupacks - tp->snd_limited);
if (SEQ_GT(onxt, tp->snd_nxt))
tp->snd_nxt = onxt;
goto drop;
} else if (V_tcp_do_rfc3042) {
/*
* Process first and second duplicate
* ACKs. Each indicates a segment
* leaving the network, creating room
* for more. Make sure we can send a
* packet on reception of each duplicate
* ACK by increasing snd_cwnd by one
* segment. Restore the original
* snd_cwnd after packet transmission.
*/
cc_ack_received(tp, th, nsegs, CC_DUPACK);
uint32_t oldcwnd = tp->snd_cwnd;
tcp_seq oldsndmax = tp->snd_max;
u_int sent;
int avail;
KASSERT(tp->t_dupacks == 1 ||
tp->t_dupacks == 2,
("%s: dupacks not 1 or 2",
__func__));
if (tp->t_dupacks == 1)
tp->snd_limited = 0;
if ((tp->snd_nxt == tp->snd_max) &&
(tp->t_rxtshift == 0))
tp->snd_cwnd =
SEQ_SUB(tp->snd_nxt,
tp->snd_una) -
tcp_sack_adjust(tp);
tp->snd_cwnd +=
(tp->t_dupacks - tp->snd_limited) *
maxseg;
/*
* Only call tcp_output when there
* is new data available to be sent
* or we need to send an ACK.
*/
SOCKBUF_LOCK(&so->so_snd);
avail = sbavail(&so->so_snd);
SOCKBUF_UNLOCK(&so->so_snd);
if (tp->t_flags & TF_ACKNOW ||
(avail >=
SEQ_SUB(tp->snd_nxt, tp->snd_una))) {
(void) tcp_output(tp);
}
sent = SEQ_SUB(tp->snd_max, oldsndmax);
if (sent > maxseg) {
KASSERT((tp->t_dupacks == 2 &&
tp->snd_limited == 0) ||
(sent == maxseg + 1 &&
tp->t_flags & TF_SENTFIN),
("%s: sent too much",
__func__));
tp->snd_limited = 2;
} else if (sent > 0) {
++tp->snd_limited;
}
tp->snd_cwnd = oldcwnd;
goto drop;
}
}
break;
} else {
/*
* This ack is advancing the left edge, reset the
* counter.
*/
tp->t_dupacks = 0;
/*
* If this ack also has new SACK info, increment the
* counter as per rfc6675. The variable
* sack_changed tracks all changes to the SACK
* scoreboard, including when partial ACKs without
* SACK options are received, and clear the scoreboard
* from the left side. Such partial ACKs should not be
* counted as dupacks here.
*/
if (tcp_is_sack_recovery(tp, &to) &&
(((tp->t_rxtshift == 0) && (sack_changed != SACK_NOCHANGE)) ||
((tp->t_rxtshift > 0) && (sack_changed == SACK_NEWLOSS))) &&
(tp->snd_nxt == tp->snd_max)) {
tp->t_dupacks++;
/* limit overhead by setting maxseg last */
if (!IN_FASTRECOVERY(tp->t_flags) &&
(tp->sackhint.sacked_bytes >
((tcprexmtthresh - 1) *
(maxseg = tcp_maxseg(tp))))) {
goto enter_recovery;
}
}
}
resume_partialack:
KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
("%s: th_ack <= snd_una", __func__));
/*
* If the congestion window was inflated to account
* for the other side's cached packets, retract it.
*/
if (SEQ_LT(th->th_ack, tp->snd_recover)) {
if (IN_FASTRECOVERY(tp->t_flags)) {
if (tp->t_flags & TF_SACK_PERMIT) {
if (V_tcp_do_prr &&
(to.to_flags & TOF_SACK)) {
tcp_timer_activate(tp,
TT_REXMT, 0);
tp->t_rtttime = 0;
tcp_do_prr_ack(tp, th, &to,
sack_changed, &maxseg);
tp->t_flags |= TF_ACKNOW;
(void) tcp_output(tp);
} else {
tcp_sack_partialack(tp, th,
&maxseg);
}
} else {
tcp_newreno_partial_ack(tp, th);
}
} else if (IN_CONGRECOVERY(tp->t_flags) &&
(V_tcp_do_prr)) {
tp->sackhint.delivered_data =
BYTES_THIS_ACK(tp, th);
tp->snd_fack = th->th_ack;
/*
* During ECN cwnd reduction
* always use PRR-SSRB
*/
tcp_do_prr_ack(tp, th, &to, SACK_CHANGE,
&maxseg);
(void) tcp_output(tp);
}
}
/*
* If we reach this point, ACK is not a duplicate,
* i.e., it ACKs something we sent.
*/
if (tp->t_flags & TF_NEEDSYN) {
/*
* T/TCP: Connection was half-synchronized, and our
* SYN has been ACK'd (so connection is now fully
* synchronized). Go to non-starred state,
* increment snd_una for ACK of SYN, and check if
* we can do window scaling.
*/
tp->t_flags &= ~TF_NEEDSYN;
tp->snd_una++;
/* Do window scaling? */
if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
(TF_RCVD_SCALE|TF_REQ_SCALE)) {
tp->rcv_scale = tp->request_r_scale;
/* Send window already scaled. */
}
}
process_ACK:
INP_WLOCK_ASSERT(inp);
/*
* Adjust for the SYN bit in sequence space,
* but don't account for it in cwnd calculations.
* This is for the SYN_RECEIVED, non-simultaneous
* SYN case. SYN_SENT and simultaneous SYN are
* treated elsewhere.
*/
if (incforsyn)
tp->snd_una++;
acked = BYTES_THIS_ACK(tp, th);
KASSERT(acked >= 0, ("%s: acked unexepectedly negative "
"(tp->snd_una=%u, th->th_ack=%u, tp=%p, m=%p)", __func__,
tp->snd_una, th->th_ack, tp, m));
TCPSTAT_ADD(tcps_rcvackpack, nsegs);
TCPSTAT_ADD(tcps_rcvackbyte, acked);
/*
* If we just performed our first retransmit, and the ACK
* arrives within our recovery window, then it was a mistake
* to do the retransmit in the first place. Recover our
* original cwnd and ssthresh, and proceed to transmit where
* we left off.
*/
if (tp->t_rxtshift == 1 &&
tp->t_flags & TF_PREVVALID &&
tp->t_badrxtwin != 0 &&
to.to_flags & TOF_TS &&
to.to_tsecr != 0 &&
TSTMP_LT(to.to_tsecr, tp->t_badrxtwin))
cc_cong_signal(tp, th, CC_RTO_ERR);
/*
* If we have a timestamp reply, update smoothed
* round trip time. If no timestamp is present but
* transmit timer is running and timed sequence
* number was acked, update smoothed round trip time.
* Since we now have an rtt measurement, cancel the
* timer backoff (cf., Phil Karn's retransmit alg.).
* Recompute the initial retransmit timer.
*
* Some boxes send broken timestamp replies
* during the SYN+ACK phase, ignore
* timestamps of 0 or we could calculate a
* huge RTT and blow up the retransmit timer.
*/
if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
uint32_t t;
t = tcp_ts_getticks() - to.to_tsecr;
if (!tp->t_rttlow || tp->t_rttlow > t)
tp->t_rttlow = t;
tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
tp->t_rttlow = ticks - tp->t_rtttime;
tcp_xmit_timer(tp, ticks - tp->t_rtttime);
}
SOCKBUF_LOCK(&so->so_snd);
/*
* Clear t_acktime if remote side has ACKd all data in the
* socket buffer and FIN (if applicable).
* Otherwise, update t_acktime if we received a sufficiently
* large ACK.
*/
if ((tp->t_state <= TCPS_CLOSE_WAIT &&
acked == sbavail(&so->so_snd)) ||
acked > sbavail(&so->so_snd))
tp->t_acktime = 0;
else if (acked > 1)
tp->t_acktime = ticks;
/*
* If all outstanding data is acked, stop retransmit
* timer and remember to restart (more output or persist).
* If there is more data to be acked, restart retransmit
* timer, using current (possibly backed-off) value.
*/
if (th->th_ack == tp->snd_max) {
tcp_timer_activate(tp, TT_REXMT, 0);
needoutput = 1;
} else if (!tcp_timer_active(tp, TT_PERSIST))
tcp_timer_activate(tp, TT_REXMT, TP_RXTCUR(tp));
/*
* If no data (only SYN) was ACK'd,
* skip rest of ACK processing.
*/
if (acked == 0) {
SOCKBUF_UNLOCK(&so->so_snd);
goto step6;
}
/*
* Let the congestion control algorithm update congestion
* control related information. This typically means increasing
* the congestion window.
*/
cc_ack_received(tp, th, nsegs, CC_ACK);
if (acked > sbavail(&so->so_snd)) {
if (tp->snd_wnd >= sbavail(&so->so_snd))
tp->snd_wnd -= sbavail(&so->so_snd);
else
tp->snd_wnd = 0;
mfree = sbcut_locked(&so->so_snd,
(int)sbavail(&so->so_snd));
ourfinisacked = 1;
} else {
mfree = sbcut_locked(&so->so_snd, acked);
if (tp->snd_wnd >= (uint32_t) acked)
tp->snd_wnd -= acked;
else
tp->snd_wnd = 0;
ourfinisacked = 0;
}
/* NB: sowwakeup_locked() does an implicit unlock. */
sowwakeup_locked(so);
m_freem(mfree);
/* Detect una wraparound. */
if (!IN_RECOVERY(tp->t_flags) &&
SEQ_GT(tp->snd_una, tp->snd_recover) &&
SEQ_LEQ(th->th_ack, tp->snd_recover))
tp->snd_recover = th->th_ack - 1;
tp->snd_una = th->th_ack;
if (IN_RECOVERY(tp->t_flags) &&
SEQ_GEQ(th->th_ack, tp->snd_recover)) {
cc_post_recovery(tp, th);
}
if (SEQ_GT(tp->snd_una, tp->snd_recover)) {
tp->snd_recover = tp->snd_una;
}
if (SEQ_LT(tp->snd_nxt, tp->snd_una))
tp->snd_nxt = tp->snd_una;
switch (tp->t_state) {
/*
* In FIN_WAIT_1 STATE in addition to the processing
* for the ESTABLISHED state if our FIN is now acknowledged
* then enter FIN_WAIT_2.
*/
case TCPS_FIN_WAIT_1:
if (ourfinisacked) {
/*
* If we can't receive any more
* data, then closing user can proceed.
* Starting the timer is contrary to the
* specification, but if we don't get a FIN
* we'll hang forever.
*/
if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
tcp_free_sackholes(tp);
soisdisconnected(so);
tcp_timer_activate(tp, TT_2MSL,
(tcp_fast_finwait2_recycle ?
tcp_finwait2_timeout :
TP_MAXIDLE(tp)));
}
tcp_state_change(tp, TCPS_FIN_WAIT_2);
}
break;
/*
* In CLOSING STATE in addition to the processing for
* the ESTABLISHED state if the ACK acknowledges our FIN
* then enter the TIME-WAIT state, otherwise ignore
* the segment.
*/
case TCPS_CLOSING:
if (ourfinisacked) {
tcp_twstart(tp);
m_freem(m);
return;
}
break;
/*
* In LAST_ACK, we may still be waiting for data to drain
* and/or to be acked, as well as for the ack of our FIN.
* If our FIN is now acknowledged, delete the TCB,
* enter the closed state and return.
*/
case TCPS_LAST_ACK:
if (ourfinisacked) {
tp = tcp_close(tp);
goto drop;
}
break;
}
}
step6:
INP_WLOCK_ASSERT(inp);
/*
* Update window information.
* Don't look at window if no ACK: TAC's send garbage on first SYN.
*/
if ((thflags & TH_ACK) &&
(SEQ_LT(tp->snd_wl1, th->th_seq) ||
(tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
(tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
/* keep track of pure window updates */
if (tlen == 0 &&
tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
TCPSTAT_INC(tcps_rcvwinupd);
tp->snd_wnd = tiwin;
tp->snd_wl1 = th->th_seq;
tp->snd_wl2 = th->th_ack;
if (tp->snd_wnd > tp->max_sndwnd)
tp->max_sndwnd = tp->snd_wnd;
needoutput = 1;
}
/*
* Process segments with URG.
*/
if ((thflags & TH_URG) && th->th_urp &&
TCPS_HAVERCVDFIN(tp->t_state) == 0) {
/*
* This is a kludge, but if we receive and accept
* random urgent pointers, we'll crash in
* soreceive. It's hard to imagine someone
* actually wanting to send this much urgent data.
*/
SOCKBUF_LOCK(&so->so_rcv);
if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
th->th_urp = 0; /* XXX */
thflags &= ~TH_URG; /* XXX */
SOCKBUF_UNLOCK(&so->so_rcv); /* XXX */
goto dodata; /* XXX */
}
/*
* If this segment advances the known urgent pointer,
* then mark the data stream. This should not happen
* in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
* a FIN has been received from the remote side.
* In these states we ignore the URG.
*
* According to RFC961 (Assigned Protocols),
* the urgent pointer points to the last octet
* of urgent data. We continue, however,
* to consider it to indicate the first octet
* of data past the urgent section as the original
* spec states (in one of two places).
*/
if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
tp->rcv_up = th->th_seq + th->th_urp;
so->so_oobmark = sbavail(&so->so_rcv) +
(tp->rcv_up - tp->rcv_nxt) - 1;
if (so->so_oobmark == 0)
so->so_rcv.sb_state |= SBS_RCVATMARK;
sohasoutofband(so);
tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
}
SOCKBUF_UNLOCK(&so->so_rcv);
/*
* Remove out of band data so doesn't get presented to user.
* This can happen independent of advancing the URG pointer,
* but if two URG's are pending at once, some out-of-band
* data may creep in... ick.
*/
if (th->th_urp <= (uint32_t)tlen &&
!(so->so_options & SO_OOBINLINE)) {
/* hdr drop is delayed */
tcp_pulloutofband(so, th, m, drop_hdrlen);
}
} else {
/*
* If no out of band data is expected,
* pull receive urgent pointer along
* with the receive window.
*/
if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
tp->rcv_up = tp->rcv_nxt;
}
dodata: /* XXX */
INP_WLOCK_ASSERT(inp);
/*
* Process the segment text, merging it into the TCP sequencing queue,
* and arranging for acknowledgment of receipt if necessary.
* This process logically involves adjusting tp->rcv_wnd as data
* is presented to the user (this happens in tcp_usrreq.c,
* case PRU_RCVD). If a FIN has already been received on this
* connection then we just ignore the text.
*/
tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
(tp->t_flags & TF_FASTOPEN));
if ((tlen || (thflags & TH_FIN) || (tfo_syn && tlen > 0)) &&
TCPS_HAVERCVDFIN(tp->t_state) == 0) {
tcp_seq save_start = th->th_seq;
tcp_seq save_rnxt = tp->rcv_nxt;
int save_tlen = tlen;
m_adj(m, drop_hdrlen); /* delayed header drop */
/*
* Insert segment which includes th into TCP reassembly queue
* with control block tp. Set thflags to whether reassembly now
* includes a segment with FIN. This handles the common case
* inline (segment is the next to be received on an established
* connection, and the queue is empty), avoiding linkage into
* and removal from the queue and repetition of various
* conversions.
* Set DELACK for segments received in order, but ack
* immediately when segments are out of order (so
* fast retransmit can work).
*/
if (th->th_seq == tp->rcv_nxt &&
SEGQ_EMPTY(tp) &&
(TCPS_HAVEESTABLISHED(tp->t_state) ||
tfo_syn)) {
if (DELAY_ACK(tp, tlen) || tfo_syn)
tp->t_flags |= TF_DELACK;
else
tp->t_flags |= TF_ACKNOW;
tp->rcv_nxt += tlen;
if (tlen &&
((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
(tp->t_fbyte_in == 0)) {
tp->t_fbyte_in = ticks;
if (tp->t_fbyte_in == 0)
tp->t_fbyte_in = 1;
if (tp->t_fbyte_out && tp->t_fbyte_in)
tp->t_flags2 |= TF2_FBYTES_COMPLETE;
}
thflags = tcp_get_flags(th) & TH_FIN;
TCPSTAT_INC(tcps_rcvpack);
TCPSTAT_ADD(tcps_rcvbyte, tlen);
SOCKBUF_LOCK(&so->so_rcv);
if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
m_freem(m);
else
sbappendstream_locked(&so->so_rcv, m, 0);
tp->t_flags |= TF_WAKESOR;
} else {
/*
* XXX: Due to the header drop above "th" is
* theoretically invalid by now. Fortunately
* m_adj() doesn't actually frees any mbufs
* when trimming from the head.
*/
tcp_seq temp = save_start;
thflags = tcp_reass(tp, th, &temp, &tlen, m);
tp->t_flags |= TF_ACKNOW;
}
if ((tp->t_flags & TF_SACK_PERMIT) &&
(save_tlen > 0) &&
TCPS_HAVEESTABLISHED(tp->t_state)) {
if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) {
/*
* DSACK actually handled in the fastpath
* above.
*/
tcp_update_sack_list(tp, save_start,
save_start + save_tlen);
} else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
if ((tp->rcv_numsacks >= 1) &&
(tp->sackblks[0].end == save_start)) {
/*
* Partial overlap, recorded at todrop
* above.
*/
tcp_update_sack_list(tp,
tp->sackblks[0].start,
tp->sackblks[0].end);
} else {
tcp_update_dsack_list(tp, save_start,
save_start + save_tlen);
}
} else if (tlen >= save_tlen) {
/* Update of sackblks. */
tcp_update_dsack_list(tp, save_start,
save_start + save_tlen);
} else if (tlen > 0) {
tcp_update_dsack_list(tp, save_start,
save_start + tlen);
}
}
tcp_handle_wakeup(tp);
#if 0
/*
* Note the amount of data that peer has sent into
* our window, in order to estimate the sender's
* buffer size.
* XXX: Unused.
*/
if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
else
len = so->so_rcv.sb_hiwat;
#endif
} else {
if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
if (tlen > 0) {
if ((thflags & TH_FIN) != 0) {
log(LOG_DEBUG, "%s; %s: %s: "
"Received %d bytes of data and FIN "
"after having received a FIN, "
"just dropping both\n",
s, __func__,
tcpstates[tp->t_state], tlen);
} else {
log(LOG_DEBUG, "%s; %s: %s: "
"Received %d bytes of data "
"after having received a FIN, "
"just dropping it\n",
s, __func__,
tcpstates[tp->t_state], tlen);
}
} else {
if ((thflags & TH_FIN) != 0) {
log(LOG_DEBUG, "%s; %s: %s: "
"Received FIN "
"after having received a FIN, "
"just dropping it\n",
s, __func__,
tcpstates[tp->t_state]);
}
}
free(s, M_TCPLOG);
}
m_freem(m);
thflags &= ~TH_FIN;
}
/*
* If FIN is received ACK the FIN and let the user know
* that the connection is closing.
*/
if (thflags & TH_FIN) {
if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
/* The socket upcall is handled by socantrcvmore. */
socantrcvmore(so);
/*
* If connection is half-synchronized
* (ie NEEDSYN flag on) then delay ACK,
* so it may be piggybacked when SYN is sent.
* Otherwise, since we received a FIN then no
* more input can be expected, send ACK now.
*/
if (tp->t_flags & TF_NEEDSYN)
tp->t_flags |= TF_DELACK;
else
tp->t_flags |= TF_ACKNOW;
tp->rcv_nxt++;
}
switch (tp->t_state) {
/*
* In SYN_RECEIVED and ESTABLISHED STATES
* enter the CLOSE_WAIT state.
*/
case TCPS_SYN_RECEIVED:
tp->t_starttime = ticks;
/* FALLTHROUGH */
case TCPS_ESTABLISHED:
tcp_state_change(tp, TCPS_CLOSE_WAIT);
break;
/*
* If still in FIN_WAIT_1 STATE FIN has not been acked so
* enter the CLOSING state.
*/
case TCPS_FIN_WAIT_1:
tcp_state_change(tp, TCPS_CLOSING);
break;
/*
* In FIN_WAIT_2 state enter the TIME_WAIT state,
* starting the time-wait timer, turning off the other
* standard timers.
*/
case TCPS_FIN_WAIT_2:
tcp_twstart(tp);
return;
}
}
TCP_PROBE3(debug__input, tp, th, m);
/*
* Return any desired output.
*/
if (needoutput || (tp->t_flags & TF_ACKNOW)) {
(void) tcp_output(tp);
}
check_delack:
INP_WLOCK_ASSERT(inp);
if (tp->t_flags & TF_DELACK) {
tp->t_flags &= ~TF_DELACK;
tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
}
INP_WUNLOCK(inp);
return;
dropafterack:
/*
* Generate an ACK dropping incoming segment if it occupies
* sequence space, where the ACK reflects our state.
*
* We can now skip the test for the RST flag since all
* paths to this code happen after packets containing
* RST have been dropped.
*
* In the SYN-RECEIVED state, don't send an ACK unless the
* segment we received passes the SYN-RECEIVED ACK test.
* If it fails send a RST. This breaks the loop in the
* "LAND" DoS attack, and also prevents an ACK storm
* between two listening ports that have been sent forged
* SYN segments, each with the source address of the other.
*/
if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
(SEQ_GT(tp->snd_una, th->th_ack) ||
SEQ_GT(th->th_ack, tp->snd_max)) ) {
rstreason = BANDLIM_RST_OPENPORT;
tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
goto dropwithreset;
}
TCP_PROBE3(debug__input, tp, th, m);
tp->t_flags |= TF_ACKNOW;
(void) tcp_output(tp);
INP_WUNLOCK(inp);
m_freem(m);
return;
dropwithreset:
if (tp != NULL) {
tcp_dropwithreset(m, th, tp, tlen, rstreason);
INP_WUNLOCK(inp);
} else
tcp_dropwithreset(m, th, NULL, tlen, rstreason);
return;
drop:
/*
* Drop space held by incoming segment and return.
*/
TCP_PROBE3(debug__input, tp, th, m);
if (tp != NULL) {
INP_WUNLOCK(inp);
}
m_freem(m);
}
/*
* Issue RST and make ACK acceptable to originator of segment.
* The mbuf must still include the original packet header.
* tp may be NULL.
*/
void
tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
int tlen, int rstreason)
{
#ifdef INET
struct ip *ip;
#endif
#ifdef INET6
struct ip6_hdr *ip6;
#endif
if (tp != NULL) {
INP_LOCK_ASSERT(tptoinpcb(tp));
}
/* Don't bother if destination was broadcast/multicast. */
if ((tcp_get_flags(th) & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
goto drop;
#ifdef INET6
if (mtod(m, struct ip *)->ip_v == 6) {
ip6 = mtod(m, struct ip6_hdr *);
if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
goto drop;
/* IPv6 anycast check is done at tcp6_input() */
}
#endif
#if defined(INET) && defined(INET6)
else
#endif
#ifdef INET
{
ip = mtod(m, struct ip *);
if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
goto drop;
}
#endif
/* Perform bandwidth limiting. */
if (badport_bandlim(rstreason) < 0)
goto drop;
/* tcp_respond consumes the mbuf chain. */
if (tcp_get_flags(th) & TH_ACK) {
tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
th->th_ack, TH_RST);
} else {
if (tcp_get_flags(th) & TH_SYN)
tlen++;
if (tcp_get_flags(th) & TH_FIN)
tlen++;
tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
(tcp_seq)0, TH_RST|TH_ACK);
}
return;
drop:
m_freem(m);
}
/*
* Parse TCP options and place in tcpopt.
*/
void
tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
{
int opt, optlen;
to->to_flags = 0;
for (; cnt > 0; cnt -= optlen, cp += optlen) {
opt = cp[0];
if (opt == TCPOPT_EOL)
break;
if (opt == TCPOPT_NOP)
optlen = 1;
else {
if (cnt < 2)
break;
optlen = cp[1];
if (optlen < 2 || optlen > cnt)
break;
}
switch (opt) {
case TCPOPT_MAXSEG:
if (optlen != TCPOLEN_MAXSEG)
continue;
if (!(flags & TO_SYN))
continue;
to->to_flags |= TOF_MSS;
bcopy((char *)cp + 2,
(char *)&to->to_mss, sizeof(to->to_mss));
to->to_mss = ntohs(to->to_mss);
break;
case TCPOPT_WINDOW:
if (optlen != TCPOLEN_WINDOW)
continue;
if (!(flags & TO_SYN))
continue;
to->to_flags |= TOF_SCALE;
to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
break;
case TCPOPT_TIMESTAMP:
if (optlen != TCPOLEN_TIMESTAMP)
continue;
to->to_flags |= TOF_TS;
bcopy((char *)cp + 2,
(char *)&to->to_tsval, sizeof(to->to_tsval));
to->to_tsval = ntohl(to->to_tsval);
bcopy((char *)cp + 6,
(char *)&to->to_tsecr, sizeof(to->to_tsecr));
to->to_tsecr = ntohl(to->to_tsecr);
break;
case TCPOPT_SIGNATURE:
/*
* In order to reply to a host which has set the
* TCP_SIGNATURE option in its initial SYN, we have
* to record the fact that the option was observed
* here for the syncache code to perform the correct
* response.
*/
if (optlen != TCPOLEN_SIGNATURE)
continue;
to->to_flags |= TOF_SIGNATURE;
to->to_signature = cp + 2;
break;
case TCPOPT_SACK_PERMITTED:
if (optlen != TCPOLEN_SACK_PERMITTED)
continue;
if (!(flags & TO_SYN))
continue;
if (!V_tcp_do_sack)
continue;
to->to_flags |= TOF_SACKPERM;
break;
case TCPOPT_SACK:
if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
continue;
if (flags & TO_SYN)
continue;
to->to_flags |= TOF_SACK;
to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
to->to_sacks = cp + 2;
TCPSTAT_INC(tcps_sack_rcv_blocks);
break;
case TCPOPT_FAST_OPEN:
/*
* Cookie length validation is performed by the
* server side cookie checking code or the client
* side cookie cache update code.
*/
if (!(flags & TO_SYN))
continue;
if (!V_tcp_fastopen_client_enable &&
!V_tcp_fastopen_server_enable)
continue;
to->to_flags |= TOF_FASTOPEN;
to->to_tfo_len = optlen - 2;
to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL;
break;
default:
continue;
}
}
}
/*
* Pull out of band byte out of a segment so
* it doesn't appear in the user's data queue.
* It is still reflected in the segment length for
* sequencing purposes.
*/
void
tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
int off)
{
int cnt = off + th->th_urp - 1;
while (cnt >= 0) {
if (m->m_len > cnt) {
char *cp = mtod(m, caddr_t) + cnt;
struct tcpcb *tp = sototcpcb(so);
INP_WLOCK_ASSERT(tptoinpcb(tp));
tp->t_iobc = *cp;
tp->t_oobflags |= TCPOOB_HAVEDATA;
bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
m->m_len--;
if (m->m_flags & M_PKTHDR)
m->m_pkthdr.len--;
return;
}
cnt -= m->m_len;
m = m->m_next;
if (m == NULL)
break;
}
panic("tcp_pulloutofband");
}
/*
* Collect new round-trip time estimate
* and update averages and current timeout.
*/
void
tcp_xmit_timer(struct tcpcb *tp, int rtt)
{
int delta;
INP_WLOCK_ASSERT(tptoinpcb(tp));
TCPSTAT_INC(tcps_rttupdated);
if (tp->t_rttupdated < UCHAR_MAX)
tp->t_rttupdated++;
#ifdef STATS
stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT,
imax(0, rtt * 1000 / hz));
#endif
if ((tp->t_srtt != 0) && (tp->t_rxtshift <= TCP_RTT_INVALIDATE)) {
/*
* srtt is stored as fixed point with 5 bits after the
* binary point (i.e., scaled by 8). The following magic
* is equivalent to the smoothing algorithm in rfc793 with
* an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
* point). Adjust rtt to origin 0.
*/
delta = ((rtt - 1) << TCP_DELTA_SHIFT)
- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
if ((tp->t_srtt += delta) <= 0)
tp->t_srtt = 1;
/*
* We accumulate a smoothed rtt variance (actually, a
* smoothed mean difference), then set the retransmit
* timer to smoothed rtt + 4 times the smoothed variance.
* rttvar is stored as fixed point with 4 bits after the
* binary point (scaled by 16). The following is
* equivalent to rfc793 smoothing with an alpha of .75
* (rttvar = rttvar*3/4 + |delta| / 4). This replaces
* rfc793's wired-in beta.
*/
if (delta < 0)
delta = -delta;
delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
if ((tp->t_rttvar += delta) <= 0)
tp->t_rttvar = 1;
} else {
/*
* No rtt measurement yet - use the unsmoothed rtt.
* Set the variance to half the rtt (so our first
* retransmit happens at 3*rtt).
*/
tp->t_srtt = rtt << TCP_RTT_SHIFT;
tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
}
tp->t_rtttime = 0;
tp->t_rxtshift = 0;
/*
* the retransmit should happen at rtt + 4 * rttvar.
* Because of the way we do the smoothing, srtt and rttvar
* will each average +1/2 tick of bias. When we compute
* the retransmit timer, we want 1/2 tick of rounding and
* 1 extra tick because of +-1/2 tick uncertainty in the
* firing of the timer. The bias will give us exactly the
* 1.5 tick we need. But, because the bias is
* statistical, we have to test that we don't drop below
* the minimum feasible timer (which is 2 ticks).
*/
TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
/*
* We received an ack for a packet that wasn't retransmitted;
* it is probably safe to discard any error indications we've
* received recently. This isn't quite right, but close enough
* for now (a route might have failed after we sent a segment,
* and the return path might not be symmetrical).
*/
tp->t_softerror = 0;
}
/*
* Determine a reasonable value for maxseg size.
* If the route is known, check route for mtu.
* If none, use an mss that can be handled on the outgoing interface
* without forcing IP to fragment. If no route is found, route has no mtu,
* or the destination isn't local, use a default, hopefully conservative
* size (usually 512 or the default IP max size, but no more than the mtu
* of the interface), as we can't discover anything about intervening
* gateways or networks. We also initialize the congestion/slow start
* window to be a single segment if the destination isn't local.
* While looking at the routing entry, we also initialize other path-dependent
* parameters from pre-set or cached values in the routing entry.
*
* NOTE that resulting t_maxseg doesn't include space for TCP options or
* IP options, e.g. IPSEC data, since length of this data may vary, and
* thus it is calculated for every segment separately in tcp_output().
*
* NOTE that this routine is only called when we process an incoming
* segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
* settings are handled in tcp_mssopt().
*/
void
tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
{
int mss = 0;
uint32_t maxmtu = 0;
struct inpcb *inp = tptoinpcb(tp);
struct hc_metrics_lite metrics;
#ifdef INET6
int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
size_t min_protoh = isipv6 ?
sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
sizeof (struct tcpiphdr);
#else
size_t min_protoh = sizeof(struct tcpiphdr);
#endif
INP_WLOCK_ASSERT(inp);
if (tp->t_port)
min_protoh += V_tcp_udp_tunneling_overhead;
if (mtuoffer != -1) {
KASSERT(offer == -1, ("%s: conflict", __func__));
offer = mtuoffer - min_protoh;
}
/* Initialize. */
#ifdef INET6
if (isipv6) {
maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
tp->t_maxseg = V_tcp_v6mssdflt;
}
#endif
#if defined(INET) && defined(INET6)
else
#endif
#ifdef INET
{
maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
tp->t_maxseg = V_tcp_mssdflt;
}
#endif
/*
* No route to sender, stay with default mss and return.
*/
if (maxmtu == 0) {
/*
* In case we return early we need to initialize metrics
* to a defined state as tcp_hc_get() would do for us
* if there was no cache hit.
*/
if (metricptr != NULL)
bzero(metricptr, sizeof(struct hc_metrics_lite));
return;
}
/* What have we got? */
switch (offer) {
case 0:
/*
* Offer == 0 means that there was no MSS on the SYN
* segment, in this case we use tcp_mssdflt as
* already assigned to t_maxseg above.
*/
offer = tp->t_maxseg;
break;
case -1:
/*
* Offer == -1 means that we didn't receive SYN yet.
*/
/* FALLTHROUGH */
default:
/*
* Prevent DoS attack with too small MSS. Round up
* to at least minmss.
*/
offer = max(offer, V_tcp_minmss);
}
/*
* rmx information is now retrieved from tcp_hostcache.
*/
tcp_hc_get(&inp->inp_inc, &metrics);
if (metricptr != NULL)
bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
/*
* If there's a discovered mtu in tcp hostcache, use it.
* Else, use the link mtu.
*/
if (metrics.rmx_mtu)
mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
else {
#ifdef INET6
if (isipv6) {
mss = maxmtu - min_protoh;
if (!V_path_mtu_discovery &&
!in6_localaddr(&inp->in6p_faddr))
mss = min(mss, V_tcp_v6mssdflt);
}
#endif
#if defined(INET) && defined(INET6)
else
#endif
#ifdef INET
{
mss = maxmtu - min_protoh;
if (!V_path_mtu_discovery &&
!in_localaddr(inp->inp_faddr))
mss = min(mss, V_tcp_mssdflt);
}
#endif
/*
* XXX - The above conditional (mss = maxmtu - min_protoh)
* probably violates the TCP spec.
* The problem is that, since we don't know the
* other end's MSS, we are supposed to use a conservative
* default. But, if we do that, then MTU discovery will
* never actually take place, because the conservative
* default is much less than the MTUs typically seen
* on the Internet today. For the moment, we'll sweep
* this under the carpet.
*
* The conservative default might not actually be a problem
* if the only case this occurs is when sending an initial
* SYN with options and data to a host we've never talked
* to before. Then, they will reply with an MSS value which
* will get recorded and the new parameters should get
* recomputed. For Further Study.
*/
}
mss = min(mss, offer);
/*
* Sanity check: make sure that maxseg will be large
* enough to allow some data on segments even if the
* all the option space is used (40bytes). Otherwise
* funny things may happen in tcp_output.
*
* XXXGL: shouldn't we reserve space for IP/IPv6 options?
*/
mss = max(mss, 64);
tp->t_maxseg = mss;
if (tp->t_maxseg < V_tcp_mssdflt) {
/*
* The MSS is so small we should not process incoming
* SACK's since we are subject to attack in such a
* case.
*/
tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT;
} else {
tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT;
}
}
void
tcp_mss(struct tcpcb *tp, int offer)
{
int mss;
uint32_t bufsize;
struct inpcb *inp = tptoinpcb(tp);
struct socket *so;
struct hc_metrics_lite metrics;
struct tcp_ifcap cap;
KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
bzero(&cap, sizeof(cap));
tcp_mss_update(tp, offer, -1, &metrics, &cap);
mss = tp->t_maxseg;
/*
* If there's a pipesize, change the socket buffer to that size,
* don't change if sb_hiwat is different than default (then it
* has been changed on purpose with setsockopt).
* Make the socket buffers an integral number of mss units;
* if the mss is larger than the socket buffer, decrease the mss.
*/
so = inp->inp_socket;
SOCKBUF_LOCK(&so->so_snd);
if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
bufsize = metrics.rmx_sendpipe;
else
bufsize = so->so_snd.sb_hiwat;
if (bufsize < mss)
mss = bufsize;
else {
bufsize = roundup(bufsize, mss);
if (bufsize > sb_max)
bufsize = sb_max;
if (bufsize > so->so_snd.sb_hiwat)
(void)sbreserve_locked(so, SO_SND, bufsize, NULL);
}
SOCKBUF_UNLOCK(&so->so_snd);
/*
* Sanity check: make sure that maxseg will be large
* enough to allow some data on segments even if the
* all the option space is used (40bytes). Otherwise
* funny things may happen in tcp_output.
*
* XXXGL: shouldn't we reserve space for IP/IPv6 options?
*/
tp->t_maxseg = max(mss, 64);
if (tp->t_maxseg < V_tcp_mssdflt) {
/*
* The MSS is so small we should not process incoming
* SACK's since we are subject to attack in such a
* case.
*/
tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT;
} else {
tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT;
}
SOCKBUF_LOCK(&so->so_rcv);
if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
bufsize = metrics.rmx_recvpipe;
else
bufsize = so->so_rcv.sb_hiwat;
if (bufsize > mss) {
bufsize = roundup(bufsize, mss);
if (bufsize > sb_max)
bufsize = sb_max;
if (bufsize > so->so_rcv.sb_hiwat)
(void)sbreserve_locked(so, SO_RCV, bufsize, NULL);
}
SOCKBUF_UNLOCK(&so->so_rcv);
/* Check the interface for TSO capabilities. */
if (cap.ifcap & CSUM_TSO) {
tp->t_flags |= TF_TSO;
tp->t_tsomax = cap.tsomax;
tp->t_tsomaxsegcount = cap.tsomaxsegcount;
tp->t_tsomaxsegsize = cap.tsomaxsegsize;
if (cap.ipsec_tso)
tp->t_flags2 |= TF2_IPSEC_TSO;
}
}
/*
* Determine the MSS option to send on an outgoing SYN.
*/
int
tcp_mssopt(struct in_conninfo *inc)
{
int mss = 0;
uint32_t thcmtu = 0;
uint32_t maxmtu = 0;
size_t min_protoh;
KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
#ifdef INET6
if (inc->inc_flags & INC_ISIPV6) {
mss = V_tcp_v6mssdflt;
maxmtu = tcp_maxmtu6(inc, NULL);
min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
}
#endif
#if defined(INET) && defined(INET6)
else
#endif
#ifdef INET
{
mss = V_tcp_mssdflt;
maxmtu = tcp_maxmtu(inc, NULL);
min_protoh = sizeof(struct tcpiphdr);
}
#endif
#if defined(INET6) || defined(INET)
thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
#endif
if (maxmtu && thcmtu)
mss = min(maxmtu, thcmtu) - min_protoh;
else if (maxmtu || thcmtu)
mss = max(maxmtu, thcmtu) - min_protoh;
return (mss);
}
void
tcp_do_prr_ack(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to,
sackstatus_t sack_changed, u_int *maxsegp)
{
int snd_cnt = 0, limit = 0, del_data = 0, pipe = 0;
u_int maxseg;
INP_WLOCK_ASSERT(tptoinpcb(tp));
if (*maxsegp == 0) {
*maxsegp = tcp_maxseg(tp);
}
maxseg = *maxsegp;
/*
* Compute the amount of data that this ACK is indicating
* (del_data) and an estimate of how many bytes are in the
* network.
*/
if (tcp_is_sack_recovery(tp, to) ||
(IN_CONGRECOVERY(tp->t_flags) &&
!IN_FASTRECOVERY(tp->t_flags))) {
del_data = tp->sackhint.delivered_data;
if (V_tcp_do_newsack)
pipe = tcp_compute_pipe(tp);
else
pipe = (tp->snd_nxt - tp->snd_fack) +
tp->sackhint.sack_bytes_rexmit;
} else {
if (tp->sackhint.prr_delivered < (tcprexmtthresh * maxseg +
tp->snd_recover - tp->snd_una)) {
del_data = maxseg;
}
pipe = imax(0, tp->snd_max - tp->snd_una -
imin(INT_MAX / 65536, tp->t_dupacks) * maxseg);
}
tp->sackhint.prr_delivered += del_data;
/*
* Proportional Rate Reduction
*/
if (pipe >= tp->snd_ssthresh) {
if (tp->sackhint.recover_fs == 0)
tp->sackhint.recover_fs =
imax(1, tp->snd_nxt - tp->snd_una);
snd_cnt = howmany((long)tp->sackhint.prr_delivered *
tp->snd_ssthresh, tp->sackhint.recover_fs) -
tp->sackhint.prr_out + maxseg - 1;
} else {
/*
* PRR 6937bis heuristic:
* - A partial ack without SACK block beneath snd_recover
* indicates further loss.
* - An SACK scoreboard update adding a new hole indicates
* further loss, so be conservative and send at most one
* segment.
* - Prevent ACK splitting attacks, by being conservative
* when no new data is acked.
*/
if ((sack_changed == SACK_NEWLOSS) || (del_data == 0)) {
limit = tp->sackhint.prr_delivered -
tp->sackhint.prr_out;
} else {
limit = imax(tp->sackhint.prr_delivered -
tp->sackhint.prr_out, del_data) +
maxseg;
}
snd_cnt = imin((tp->snd_ssthresh - pipe), limit);
}
snd_cnt = imax(snd_cnt, 0) / maxseg;
/*
* Send snd_cnt new data into the network in response to this ack.
* If there is going to be a SACK retransmission, adjust snd_cwnd
* accordingly.
*/
if (IN_FASTRECOVERY(tp->t_flags)) {
if (tcp_is_sack_recovery(tp, to)) {
tp->snd_cwnd = pipe - del_data + (snd_cnt * maxseg);
} else {
tp->snd_cwnd = (tp->snd_max - tp->snd_una) +
(snd_cnt * maxseg);
}
} else if (IN_CONGRECOVERY(tp->t_flags)) {
tp->snd_cwnd = pipe - del_data + (snd_cnt * maxseg);
}
tp->snd_cwnd = imax(maxseg, tp->snd_cwnd);
}
/*
* On a partial ack arrives, force the retransmission of the
* next unacknowledged segment. Do not clear tp->t_dupacks.
* By setting snd_nxt to ti_ack, this forces retransmission timer to
* be started again.
*/
void
tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
{
tcp_seq onxt = tp->snd_nxt;
uint32_t ocwnd = tp->snd_cwnd;
u_int maxseg = tcp_maxseg(tp);
INP_WLOCK_ASSERT(tptoinpcb(tp));
tcp_timer_activate(tp, TT_REXMT, 0);
tp->t_rtttime = 0;
if (IN_FASTRECOVERY(tp->t_flags)) {
tp->snd_nxt = th->th_ack;
/*
* Set snd_cwnd to one segment beyond acknowledged offset.
* (tp->snd_una has not yet been updated when this function is called.)
*/
tp->snd_cwnd = maxseg + BYTES_THIS_ACK(tp, th);
tp->t_flags |= TF_ACKNOW;
(void) tcp_output(tp);
tp->snd_cwnd = ocwnd;
if (SEQ_GT(onxt, tp->snd_nxt))
tp->snd_nxt = onxt;
}
/*
* Partial window deflation. Relies on fact that tp->snd_una
* not updated yet.
*/
if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
else
tp->snd_cwnd = 0;
tp->snd_cwnd += maxseg;
}
int
tcp_compute_pipe(struct tcpcb *tp)
{
if (tp->t_fb->tfb_compute_pipe == NULL) {
return (tp->snd_max - tp->snd_una +
tp->sackhint.sack_bytes_rexmit -
tp->sackhint.sacked_bytes -
tp->sackhint.lost_bytes);
} else {
return((*tp->t_fb->tfb_compute_pipe)(tp));
}
}
uint32_t
tcp_compute_initwnd(uint32_t maxseg)
{
/*
* Calculate the Initial Window, also used as Restart Window
*
* RFC5681 Section 3.1 specifies the default conservative values.
* RFC3390 specifies slightly more aggressive values.
* RFC6928 increases it to ten segments.
* Support for user specified value for initial flight size.
*/
if (V_tcp_initcwnd_segments)
return min(V_tcp_initcwnd_segments * maxseg,
max(2 * maxseg, V_tcp_initcwnd_segments * 1460));
else if (V_tcp_do_rfc3390)
return min(4 * maxseg, max(2 * maxseg, 4380));
else {
/* Per RFC5681 Section 3.1 */
if (maxseg > 2190)
return (2 * maxseg);
else if (maxseg > 1095)
return (3 * maxseg);
else
return (4 * maxseg);
}
}