1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-22 15:47:37 +00:00
freebsd/contrib/llvm/utils/TableGen/SubtargetEmitter.cpp
Dimitry Andric f785676f2a Upgrade our copy of llvm/clang to 3.4 release. This version supports
all of the features in the current working draft of the upcoming C++
standard, provisionally named C++1y.

The code generator's performance is greatly increased, and the loop
auto-vectorizer is now enabled at -Os and -O2 in addition to -O3.  The
PowerPC backend has made several major improvements to code generation
quality and compile time, and the X86, SPARC, ARM32, Aarch64 and SystemZ
backends have all seen major feature work.

Release notes for llvm and clang can be found here:
<http://llvm.org/releases/3.4/docs/ReleaseNotes.html>
<http://llvm.org/releases/3.4/tools/clang/docs/ReleaseNotes.html>

MFC after:	1 month
2014-02-16 19:44:07 +00:00

1571 lines
57 KiB
C++

//===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits subtarget enumerations.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "subtarget-emitter"
#include "CodeGenTarget.h"
#include "CodeGenSchedule.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <algorithm>
#include <map>
#include <string>
#include <vector>
using namespace llvm;
namespace {
class SubtargetEmitter {
// Each processor has a SchedClassDesc table with an entry for each SchedClass.
// The SchedClassDesc table indexes into a global write resource table, write
// latency table, and read advance table.
struct SchedClassTables {
std::vector<std::vector<MCSchedClassDesc> > ProcSchedClasses;
std::vector<MCWriteProcResEntry> WriteProcResources;
std::vector<MCWriteLatencyEntry> WriteLatencies;
std::vector<std::string> WriterNames;
std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
// Reserve an invalid entry at index 0
SchedClassTables() {
ProcSchedClasses.resize(1);
WriteProcResources.resize(1);
WriteLatencies.resize(1);
WriterNames.push_back("InvalidWrite");
ReadAdvanceEntries.resize(1);
}
};
struct LessWriteProcResources {
bool operator()(const MCWriteProcResEntry &LHS,
const MCWriteProcResEntry &RHS) {
return LHS.ProcResourceIdx < RHS.ProcResourceIdx;
}
};
RecordKeeper &Records;
CodeGenSchedModels &SchedModels;
std::string Target;
void Enumeration(raw_ostream &OS, const char *ClassName, bool isBits);
unsigned FeatureKeyValues(raw_ostream &OS);
unsigned CPUKeyValues(raw_ostream &OS);
void FormItineraryStageString(const std::string &Names,
Record *ItinData, std::string &ItinString,
unsigned &NStages);
void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString,
unsigned &NOperandCycles);
void FormItineraryBypassString(const std::string &Names,
Record *ItinData,
std::string &ItinString, unsigned NOperandCycles);
void EmitStageAndOperandCycleData(raw_ostream &OS,
std::vector<std::vector<InstrItinerary> >
&ProcItinLists);
void EmitItineraries(raw_ostream &OS,
std::vector<std::vector<InstrItinerary> >
&ProcItinLists);
void EmitProcessorProp(raw_ostream &OS, const Record *R, const char *Name,
char Separator);
void EmitProcessorResources(const CodeGenProcModel &ProcModel,
raw_ostream &OS);
Record *FindWriteResources(const CodeGenSchedRW &SchedWrite,
const CodeGenProcModel &ProcModel);
Record *FindReadAdvance(const CodeGenSchedRW &SchedRead,
const CodeGenProcModel &ProcModel);
void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles,
const CodeGenProcModel &ProcModel);
void GenSchedClassTables(const CodeGenProcModel &ProcModel,
SchedClassTables &SchedTables);
void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS);
void EmitProcessorModels(raw_ostream &OS);
void EmitProcessorLookup(raw_ostream &OS);
void EmitSchedModelHelpers(std::string ClassName, raw_ostream &OS);
void EmitSchedModel(raw_ostream &OS);
void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures,
unsigned NumProcs);
public:
SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT):
Records(R), SchedModels(TGT.getSchedModels()), Target(TGT.getName()) {}
void run(raw_ostream &o);
};
} // End anonymous namespace
//
// Enumeration - Emit the specified class as an enumeration.
//
void SubtargetEmitter::Enumeration(raw_ostream &OS,
const char *ClassName,
bool isBits) {
// Get all records of class and sort
std::vector<Record*> DefList = Records.getAllDerivedDefinitions(ClassName);
std::sort(DefList.begin(), DefList.end(), LessRecord());
unsigned N = DefList.size();
if (N == 0)
return;
if (N > 64) {
errs() << "Too many (> 64) subtarget features!\n";
exit(1);
}
OS << "namespace " << Target << " {\n";
// For bit flag enumerations with more than 32 items, emit constants.
// Emit an enum for everything else.
if (isBits && N > 32) {
// For each record
for (unsigned i = 0; i < N; i++) {
// Next record
Record *Def = DefList[i];
// Get and emit name and expression (1 << i)
OS << " const uint64_t " << Def->getName() << " = 1ULL << " << i << ";\n";
}
} else {
// Open enumeration
OS << "enum {\n";
// For each record
for (unsigned i = 0; i < N;) {
// Next record
Record *Def = DefList[i];
// Get and emit name
OS << " " << Def->getName();
// If bit flags then emit expression (1 << i)
if (isBits) OS << " = " << " 1ULL << " << i;
// Depending on 'if more in the list' emit comma
if (++i < N) OS << ",";
OS << "\n";
}
// Close enumeration
OS << "};\n";
}
OS << "}\n";
}
//
// FeatureKeyValues - Emit data of all the subtarget features. Used by the
// command line.
//
unsigned SubtargetEmitter::FeatureKeyValues(raw_ostream &OS) {
// Gather and sort all the features
std::vector<Record*> FeatureList =
Records.getAllDerivedDefinitions("SubtargetFeature");
if (FeatureList.empty())
return 0;
std::sort(FeatureList.begin(), FeatureList.end(), LessRecordFieldName());
// Begin feature table
OS << "// Sorted (by key) array of values for CPU features.\n"
<< "extern const llvm::SubtargetFeatureKV " << Target
<< "FeatureKV[] = {\n";
// For each feature
unsigned NumFeatures = 0;
for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) {
// Next feature
Record *Feature = FeatureList[i];
const std::string &Name = Feature->getName();
const std::string &CommandLineName = Feature->getValueAsString("Name");
const std::string &Desc = Feature->getValueAsString("Desc");
if (CommandLineName.empty()) continue;
// Emit as { "feature", "description", featureEnum, i1 | i2 | ... | in }
OS << " { "
<< "\"" << CommandLineName << "\", "
<< "\"" << Desc << "\", "
<< Target << "::" << Name << ", ";
const std::vector<Record*> &ImpliesList =
Feature->getValueAsListOfDefs("Implies");
if (ImpliesList.empty()) {
OS << "0ULL";
} else {
for (unsigned j = 0, M = ImpliesList.size(); j < M;) {
OS << Target << "::" << ImpliesList[j]->getName();
if (++j < M) OS << " | ";
}
}
OS << " }";
++NumFeatures;
// Depending on 'if more in the list' emit comma
if ((i + 1) < N) OS << ",";
OS << "\n";
}
// End feature table
OS << "};\n";
return NumFeatures;
}
//
// CPUKeyValues - Emit data of all the subtarget processors. Used by command
// line.
//
unsigned SubtargetEmitter::CPUKeyValues(raw_ostream &OS) {
// Gather and sort processor information
std::vector<Record*> ProcessorList =
Records.getAllDerivedDefinitions("Processor");
std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName());
// Begin processor table
OS << "// Sorted (by key) array of values for CPU subtype.\n"
<< "extern const llvm::SubtargetFeatureKV " << Target
<< "SubTypeKV[] = {\n";
// For each processor
for (unsigned i = 0, N = ProcessorList.size(); i < N;) {
// Next processor
Record *Processor = ProcessorList[i];
const std::string &Name = Processor->getValueAsString("Name");
const std::vector<Record*> &FeatureList =
Processor->getValueAsListOfDefs("Features");
// Emit as { "cpu", "description", f1 | f2 | ... fn },
OS << " { "
<< "\"" << Name << "\", "
<< "\"Select the " << Name << " processor\", ";
if (FeatureList.empty()) {
OS << "0ULL";
} else {
for (unsigned j = 0, M = FeatureList.size(); j < M;) {
OS << Target << "::" << FeatureList[j]->getName();
if (++j < M) OS << " | ";
}
}
// The "0" is for the "implies" section of this data structure.
OS << ", 0ULL }";
// Depending on 'if more in the list' emit comma
if (++i < N) OS << ",";
OS << "\n";
}
// End processor table
OS << "};\n";
return ProcessorList.size();
}
//
// FormItineraryStageString - Compose a string containing the stage
// data initialization for the specified itinerary. N is the number
// of stages.
//
void SubtargetEmitter::FormItineraryStageString(const std::string &Name,
Record *ItinData,
std::string &ItinString,
unsigned &NStages) {
// Get states list
const std::vector<Record*> &StageList =
ItinData->getValueAsListOfDefs("Stages");
// For each stage
unsigned N = NStages = StageList.size();
for (unsigned i = 0; i < N;) {
// Next stage
const Record *Stage = StageList[i];
// Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind }
int Cycles = Stage->getValueAsInt("Cycles");
ItinString += " { " + itostr(Cycles) + ", ";
// Get unit list
const std::vector<Record*> &UnitList = Stage->getValueAsListOfDefs("Units");
// For each unit
for (unsigned j = 0, M = UnitList.size(); j < M;) {
// Add name and bitwise or
ItinString += Name + "FU::" + UnitList[j]->getName();
if (++j < M) ItinString += " | ";
}
int TimeInc = Stage->getValueAsInt("TimeInc");
ItinString += ", " + itostr(TimeInc);
int Kind = Stage->getValueAsInt("Kind");
ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind);
// Close off stage
ItinString += " }";
if (++i < N) ItinString += ", ";
}
}
//
// FormItineraryOperandCycleString - Compose a string containing the
// operand cycle initialization for the specified itinerary. N is the
// number of operands that has cycles specified.
//
void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData,
std::string &ItinString, unsigned &NOperandCycles) {
// Get operand cycle list
const std::vector<int64_t> &OperandCycleList =
ItinData->getValueAsListOfInts("OperandCycles");
// For each operand cycle
unsigned N = NOperandCycles = OperandCycleList.size();
for (unsigned i = 0; i < N;) {
// Next operand cycle
const int OCycle = OperandCycleList[i];
ItinString += " " + itostr(OCycle);
if (++i < N) ItinString += ", ";
}
}
void SubtargetEmitter::FormItineraryBypassString(const std::string &Name,
Record *ItinData,
std::string &ItinString,
unsigned NOperandCycles) {
const std::vector<Record*> &BypassList =
ItinData->getValueAsListOfDefs("Bypasses");
unsigned N = BypassList.size();
unsigned i = 0;
for (; i < N;) {
ItinString += Name + "Bypass::" + BypassList[i]->getName();
if (++i < NOperandCycles) ItinString += ", ";
}
for (; i < NOperandCycles;) {
ItinString += " 0";
if (++i < NOperandCycles) ItinString += ", ";
}
}
//
// EmitStageAndOperandCycleData - Generate unique itinerary stages and operand
// cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed
// by CodeGenSchedClass::Index.
//
void SubtargetEmitter::
EmitStageAndOperandCycleData(raw_ostream &OS,
std::vector<std::vector<InstrItinerary> >
&ProcItinLists) {
// Multiple processor models may share an itinerary record. Emit it once.
SmallPtrSet<Record*, 8> ItinsDefSet;
// Emit functional units for all the itineraries.
for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
if (!ItinsDefSet.insert(PI->ItinsDef))
continue;
std::vector<Record*> FUs = PI->ItinsDef->getValueAsListOfDefs("FU");
if (FUs.empty())
continue;
const std::string &Name = PI->ItinsDef->getName();
OS << "\n// Functional units for \"" << Name << "\"\n"
<< "namespace " << Name << "FU {\n";
for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j)
OS << " const unsigned " << FUs[j]->getName()
<< " = 1 << " << j << ";\n";
OS << "}\n";
std::vector<Record*> BPs = PI->ItinsDef->getValueAsListOfDefs("BP");
if (BPs.size()) {
OS << "\n// Pipeline forwarding pathes for itineraries \"" << Name
<< "\"\n" << "namespace " << Name << "Bypass {\n";
OS << " const unsigned NoBypass = 0;\n";
for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j)
OS << " const unsigned " << BPs[j]->getName()
<< " = 1 << " << j << ";\n";
OS << "}\n";
}
}
// Begin stages table
std::string StageTable = "\nextern const llvm::InstrStage " + Target +
"Stages[] = {\n";
StageTable += " { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n";
// Begin operand cycle table
std::string OperandCycleTable = "extern const unsigned " + Target +
"OperandCycles[] = {\n";
OperandCycleTable += " 0, // No itinerary\n";
// Begin pipeline bypass table
std::string BypassTable = "extern const unsigned " + Target +
"ForwardingPaths[] = {\n";
BypassTable += " 0, // No itinerary\n";
// For each Itinerary across all processors, add a unique entry to the stages,
// operand cycles, and pipepine bypess tables. Then add the new Itinerary
// object with computed offsets to the ProcItinLists result.
unsigned StageCount = 1, OperandCycleCount = 1;
std::map<std::string, unsigned> ItinStageMap, ItinOperandMap;
for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
const CodeGenProcModel &ProcModel = *PI;
// Add process itinerary to the list.
ProcItinLists.resize(ProcItinLists.size()+1);
// If this processor defines no itineraries, then leave the itinerary list
// empty.
std::vector<InstrItinerary> &ItinList = ProcItinLists.back();
if (!ProcModel.hasItineraries())
continue;
const std::string &Name = ProcModel.ItinsDef->getName();
ItinList.resize(SchedModels.numInstrSchedClasses());
assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins");
for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size();
SchedClassIdx < SchedClassEnd; ++SchedClassIdx) {
// Next itinerary data
Record *ItinData = ProcModel.ItinDefList[SchedClassIdx];
// Get string and stage count
std::string ItinStageString;
unsigned NStages = 0;
if (ItinData)
FormItineraryStageString(Name, ItinData, ItinStageString, NStages);
// Get string and operand cycle count
std::string ItinOperandCycleString;
unsigned NOperandCycles = 0;
std::string ItinBypassString;
if (ItinData) {
FormItineraryOperandCycleString(ItinData, ItinOperandCycleString,
NOperandCycles);
FormItineraryBypassString(Name, ItinData, ItinBypassString,
NOperandCycles);
}
// Check to see if stage already exists and create if it doesn't
unsigned FindStage = 0;
if (NStages > 0) {
FindStage = ItinStageMap[ItinStageString];
if (FindStage == 0) {
// Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices
StageTable += ItinStageString + ", // " + itostr(StageCount);
if (NStages > 1)
StageTable += "-" + itostr(StageCount + NStages - 1);
StageTable += "\n";
// Record Itin class number.
ItinStageMap[ItinStageString] = FindStage = StageCount;
StageCount += NStages;
}
}
// Check to see if operand cycle already exists and create if it doesn't
unsigned FindOperandCycle = 0;
if (NOperandCycles > 0) {
std::string ItinOperandString = ItinOperandCycleString+ItinBypassString;
FindOperandCycle = ItinOperandMap[ItinOperandString];
if (FindOperandCycle == 0) {
// Emit as cycle, // index
OperandCycleTable += ItinOperandCycleString + ", // ";
std::string OperandIdxComment = itostr(OperandCycleCount);
if (NOperandCycles > 1)
OperandIdxComment += "-"
+ itostr(OperandCycleCount + NOperandCycles - 1);
OperandCycleTable += OperandIdxComment + "\n";
// Record Itin class number.
ItinOperandMap[ItinOperandCycleString] =
FindOperandCycle = OperandCycleCount;
// Emit as bypass, // index
BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n";
OperandCycleCount += NOperandCycles;
}
}
// Set up itinerary as location and location + stage count
int NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0;
InstrItinerary Intinerary = { NumUOps, FindStage, FindStage + NStages,
FindOperandCycle,
FindOperandCycle + NOperandCycles};
// Inject - empty slots will be 0, 0
ItinList[SchedClassIdx] = Intinerary;
}
}
// Closing stage
StageTable += " { 0, 0, 0, llvm::InstrStage::Required } // End stages\n";
StageTable += "};\n";
// Closing operand cycles
OperandCycleTable += " 0 // End operand cycles\n";
OperandCycleTable += "};\n";
BypassTable += " 0 // End bypass tables\n";
BypassTable += "};\n";
// Emit tables.
OS << StageTable;
OS << OperandCycleTable;
OS << BypassTable;
}
//
// EmitProcessorData - Generate data for processor itineraries that were
// computed during EmitStageAndOperandCycleData(). ProcItinLists lists all
// Itineraries for each processor. The Itinerary lists are indexed on
// CodeGenSchedClass::Index.
//
void SubtargetEmitter::
EmitItineraries(raw_ostream &OS,
std::vector<std::vector<InstrItinerary> > &ProcItinLists) {
// Multiple processor models may share an itinerary record. Emit it once.
SmallPtrSet<Record*, 8> ItinsDefSet;
// For each processor's machine model
std::vector<std::vector<InstrItinerary> >::iterator
ProcItinListsIter = ProcItinLists.begin();
for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) {
Record *ItinsDef = PI->ItinsDef;
if (!ItinsDefSet.insert(ItinsDef))
continue;
// Get processor itinerary name
const std::string &Name = ItinsDef->getName();
// Get the itinerary list for the processor.
assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator");
std::vector<InstrItinerary> &ItinList = *ProcItinListsIter;
OS << "\n";
OS << "static const llvm::InstrItinerary ";
if (ItinList.empty()) {
OS << '*' << Name << " = 0;\n";
continue;
}
// Begin processor itinerary table
OS << Name << "[] = {\n";
// For each itinerary class in CodeGenSchedClass::Index order.
for (unsigned j = 0, M = ItinList.size(); j < M; ++j) {
InstrItinerary &Intinerary = ItinList[j];
// Emit Itinerary in the form of
// { firstStage, lastStage, firstCycle, lastCycle } // index
OS << " { " <<
Intinerary.NumMicroOps << ", " <<
Intinerary.FirstStage << ", " <<
Intinerary.LastStage << ", " <<
Intinerary.FirstOperandCycle << ", " <<
Intinerary.LastOperandCycle << " }" <<
", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n";
}
// End processor itinerary table
OS << " { 0, ~0U, ~0U, ~0U, ~0U } // end marker\n";
OS << "};\n";
}
}
// Emit either the value defined in the TableGen Record, or the default
// value defined in the C++ header. The Record is null if the processor does not
// define a model.
void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R,
const char *Name, char Separator) {
OS << " ";
int V = R ? R->getValueAsInt(Name) : -1;
if (V >= 0)
OS << V << Separator << " // " << Name;
else
OS << "MCSchedModel::Default" << Name << Separator;
OS << '\n';
}
void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel,
raw_ostream &OS) {
char Sep = ProcModel.ProcResourceDefs.empty() ? ' ' : ',';
OS << "\n// {Name, NumUnits, SuperIdx, IsBuffered}\n";
OS << "static const llvm::MCProcResourceDesc "
<< ProcModel.ModelName << "ProcResources" << "[] = {\n"
<< " {DBGFIELD(\"InvalidUnit\") 0, 0, 0}" << Sep << "\n";
for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
Record *PRDef = ProcModel.ProcResourceDefs[i];
Record *SuperDef = 0;
unsigned SuperIdx = 0;
unsigned NumUnits = 0;
int BufferSize = PRDef->getValueAsInt("BufferSize");
if (PRDef->isSubClassOf("ProcResGroup")) {
RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
for (RecIter RUI = ResUnits.begin(), RUE = ResUnits.end();
RUI != RUE; ++RUI) {
NumUnits += (*RUI)->getValueAsInt("NumUnits");
}
}
else {
// Find the SuperIdx
if (PRDef->getValueInit("Super")->isComplete()) {
SuperDef = SchedModels.findProcResUnits(
PRDef->getValueAsDef("Super"), ProcModel);
SuperIdx = ProcModel.getProcResourceIdx(SuperDef);
}
NumUnits = PRDef->getValueAsInt("NumUnits");
}
// Emit the ProcResourceDesc
if (i+1 == e)
Sep = ' ';
OS << " {DBGFIELD(\"" << PRDef->getName() << "\") ";
if (PRDef->getName().size() < 15)
OS.indent(15 - PRDef->getName().size());
OS << NumUnits << ", " << SuperIdx << ", "
<< BufferSize << "}" << Sep << " // #" << i+1;
if (SuperDef)
OS << ", Super=" << SuperDef->getName();
OS << "\n";
}
OS << "};\n";
}
// Find the WriteRes Record that defines processor resources for this
// SchedWrite.
Record *SubtargetEmitter::FindWriteResources(
const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) {
// Check if the SchedWrite is already subtarget-specific and directly
// specifies a set of processor resources.
if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes"))
return SchedWrite.TheDef;
Record *AliasDef = 0;
for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end();
AI != AE; ++AI) {
const CodeGenSchedRW &AliasRW =
SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
continue;
}
if (AliasDef)
PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
"defined for processor " + ProcModel.ModelName +
" Ensure only one SchedAlias exists per RW.");
AliasDef = AliasRW.TheDef;
}
if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes"))
return AliasDef;
// Check this processor's list of write resources.
Record *ResDef = 0;
for (RecIter WRI = ProcModel.WriteResDefs.begin(),
WRE = ProcModel.WriteResDefs.end(); WRI != WRE; ++WRI) {
if (!(*WRI)->isSubClassOf("WriteRes"))
continue;
if (AliasDef == (*WRI)->getValueAsDef("WriteType")
|| SchedWrite.TheDef == (*WRI)->getValueAsDef("WriteType")) {
if (ResDef) {
PrintFatalError((*WRI)->getLoc(), "Resources are defined for both "
"SchedWrite and its alias on processor " +
ProcModel.ModelName);
}
ResDef = *WRI;
}
}
// TODO: If ProcModel has a base model (previous generation processor),
// then call FindWriteResources recursively with that model here.
if (!ResDef) {
PrintFatalError(ProcModel.ModelDef->getLoc(),
std::string("Processor does not define resources for ")
+ SchedWrite.TheDef->getName());
}
return ResDef;
}
/// Find the ReadAdvance record for the given SchedRead on this processor or
/// return NULL.
Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead,
const CodeGenProcModel &ProcModel) {
// Check for SchedReads that directly specify a ReadAdvance.
if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance"))
return SchedRead.TheDef;
// Check this processor's list of aliases for SchedRead.
Record *AliasDef = 0;
for (RecIter AI = SchedRead.Aliases.begin(), AE = SchedRead.Aliases.end();
AI != AE; ++AI) {
const CodeGenSchedRW &AliasRW =
SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
continue;
}
if (AliasDef)
PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
"defined for processor " + ProcModel.ModelName +
" Ensure only one SchedAlias exists per RW.");
AliasDef = AliasRW.TheDef;
}
if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance"))
return AliasDef;
// Check this processor's ReadAdvanceList.
Record *ResDef = 0;
for (RecIter RAI = ProcModel.ReadAdvanceDefs.begin(),
RAE = ProcModel.ReadAdvanceDefs.end(); RAI != RAE; ++RAI) {
if (!(*RAI)->isSubClassOf("ReadAdvance"))
continue;
if (AliasDef == (*RAI)->getValueAsDef("ReadType")
|| SchedRead.TheDef == (*RAI)->getValueAsDef("ReadType")) {
if (ResDef) {
PrintFatalError((*RAI)->getLoc(), "Resources are defined for both "
"SchedRead and its alias on processor " +
ProcModel.ModelName);
}
ResDef = *RAI;
}
}
// TODO: If ProcModel has a base model (previous generation processor),
// then call FindReadAdvance recursively with that model here.
if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") {
PrintFatalError(ProcModel.ModelDef->getLoc(),
std::string("Processor does not define resources for ")
+ SchedRead.TheDef->getName());
}
return ResDef;
}
// Expand an explicit list of processor resources into a full list of implied
// resource groups and super resources that cover them.
void SubtargetEmitter::ExpandProcResources(RecVec &PRVec,
std::vector<int64_t> &Cycles,
const CodeGenProcModel &PM) {
// Default to 1 resource cycle.
Cycles.resize(PRVec.size(), 1);
for (unsigned i = 0, e = PRVec.size(); i != e; ++i) {
Record *PRDef = PRVec[i];
RecVec SubResources;
if (PRDef->isSubClassOf("ProcResGroup"))
SubResources = PRDef->getValueAsListOfDefs("Resources");
else {
SubResources.push_back(PRDef);
PRDef = SchedModels.findProcResUnits(PRVec[i], PM);
for (Record *SubDef = PRDef;
SubDef->getValueInit("Super")->isComplete();) {
if (SubDef->isSubClassOf("ProcResGroup")) {
// Disallow this for simplicitly.
PrintFatalError(SubDef->getLoc(), "Processor resource group "
" cannot be a super resources.");
}
Record *SuperDef =
SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM);
PRVec.push_back(SuperDef);
Cycles.push_back(Cycles[i]);
SubDef = SuperDef;
}
}
for (RecIter PRI = PM.ProcResourceDefs.begin(),
PRE = PM.ProcResourceDefs.end();
PRI != PRE; ++PRI) {
if (*PRI == PRDef || !(*PRI)->isSubClassOf("ProcResGroup"))
continue;
RecVec SuperResources = (*PRI)->getValueAsListOfDefs("Resources");
RecIter SubI = SubResources.begin(), SubE = SubResources.end();
for( ; SubI != SubE; ++SubI) {
if (std::find(SuperResources.begin(), SuperResources.end(), *SubI)
== SuperResources.end()) {
break;
}
}
if (SubI == SubE) {
PRVec.push_back(*PRI);
Cycles.push_back(Cycles[i]);
}
}
}
}
// Generate the SchedClass table for this processor and update global
// tables. Must be called for each processor in order.
void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel,
SchedClassTables &SchedTables) {
SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1);
if (!ProcModel.hasInstrSchedModel())
return;
std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back();
for (CodeGenSchedModels::SchedClassIter SCI = SchedModels.schedClassBegin(),
SCE = SchedModels.schedClassEnd(); SCI != SCE; ++SCI) {
DEBUG(SCI->dump(&SchedModels));
SCTab.resize(SCTab.size() + 1);
MCSchedClassDesc &SCDesc = SCTab.back();
// SCDesc.Name is guarded by NDEBUG
SCDesc.NumMicroOps = 0;
SCDesc.BeginGroup = false;
SCDesc.EndGroup = false;
SCDesc.WriteProcResIdx = 0;
SCDesc.WriteLatencyIdx = 0;
SCDesc.ReadAdvanceIdx = 0;
// A Variant SchedClass has no resources of its own.
bool HasVariants = false;
for (std::vector<CodeGenSchedTransition>::const_iterator
TI = SCI->Transitions.begin(), TE = SCI->Transitions.end();
TI != TE; ++TI) {
if (TI->ProcIndices[0] == 0) {
HasVariants = true;
break;
}
IdxIter PIPos = std::find(TI->ProcIndices.begin(),
TI->ProcIndices.end(), ProcModel.Index);
if (PIPos != TI->ProcIndices.end()) {
HasVariants = true;
break;
}
}
if (HasVariants) {
SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps;
continue;
}
// Determine if the SchedClass is actually reachable on this processor. If
// not don't try to locate the processor resources, it will fail.
// If ProcIndices contains 0, this class applies to all processors.
assert(!SCI->ProcIndices.empty() && "expect at least one procidx");
if (SCI->ProcIndices[0] != 0) {
IdxIter PIPos = std::find(SCI->ProcIndices.begin(),
SCI->ProcIndices.end(), ProcModel.Index);
if (PIPos == SCI->ProcIndices.end())
continue;
}
IdxVec Writes = SCI->Writes;
IdxVec Reads = SCI->Reads;
if (!SCI->InstRWs.empty()) {
// This class has a default ReadWrite list which can be overriden by
// InstRW definitions.
Record *RWDef = 0;
for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end();
RWI != RWE; ++RWI) {
Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel");
if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) {
RWDef = *RWI;
break;
}
}
if (RWDef) {
Writes.clear();
Reads.clear();
SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
Writes, Reads);
}
}
if (Writes.empty()) {
// Check this processor's itinerary class resources.
for (RecIter II = ProcModel.ItinRWDefs.begin(),
IE = ProcModel.ItinRWDefs.end(); II != IE; ++II) {
RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
if (std::find(Matched.begin(), Matched.end(), SCI->ItinClassDef)
!= Matched.end()) {
SchedModels.findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"),
Writes, Reads);
break;
}
}
if (Writes.empty()) {
DEBUG(dbgs() << ProcModel.ModelName
<< " does not have resources for class " << SCI->Name << '\n');
}
}
// Sum resources across all operand writes.
std::vector<MCWriteProcResEntry> WriteProcResources;
std::vector<MCWriteLatencyEntry> WriteLatencies;
std::vector<std::string> WriterNames;
std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) {
IdxVec WriteSeq;
SchedModels.expandRWSeqForProc(*WI, WriteSeq, /*IsRead=*/false,
ProcModel);
// For each operand, create a latency entry.
MCWriteLatencyEntry WLEntry;
WLEntry.Cycles = 0;
unsigned WriteID = WriteSeq.back();
WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name);
// If this Write is not referenced by a ReadAdvance, don't distinguish it
// from other WriteLatency entries.
if (!SchedModels.hasReadOfWrite(
SchedModels.getSchedWrite(WriteID).TheDef)) {
WriteID = 0;
}
WLEntry.WriteResourceID = WriteID;
for (IdxIter WSI = WriteSeq.begin(), WSE = WriteSeq.end();
WSI != WSE; ++WSI) {
Record *WriteRes =
FindWriteResources(SchedModels.getSchedWrite(*WSI), ProcModel);
// Mark the parent class as invalid for unsupported write types.
if (WriteRes->getValueAsBit("Unsupported")) {
SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
break;
}
WLEntry.Cycles += WriteRes->getValueAsInt("Latency");
SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps");
SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup");
SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup");
// Create an entry for each ProcResource listed in WriteRes.
RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources");
std::vector<int64_t> Cycles =
WriteRes->getValueAsListOfInts("ResourceCycles");
ExpandProcResources(PRVec, Cycles, ProcModel);
for (unsigned PRIdx = 0, PREnd = PRVec.size();
PRIdx != PREnd; ++PRIdx) {
MCWriteProcResEntry WPREntry;
WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]);
assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx");
WPREntry.Cycles = Cycles[PRIdx];
// If this resource is already used in this sequence, add the current
// entry's cycles so that the same resource appears to be used
// serially, rather than multiple parallel uses. This is important for
// in-order machine where the resource consumption is a hazard.
unsigned WPRIdx = 0, WPREnd = WriteProcResources.size();
for( ; WPRIdx != WPREnd; ++WPRIdx) {
if (WriteProcResources[WPRIdx].ProcResourceIdx
== WPREntry.ProcResourceIdx) {
WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles;
break;
}
}
if (WPRIdx == WPREnd)
WriteProcResources.push_back(WPREntry);
}
}
WriteLatencies.push_back(WLEntry);
}
// Create an entry for each operand Read in this SchedClass.
// Entries must be sorted first by UseIdx then by WriteResourceID.
for (unsigned UseIdx = 0, EndIdx = Reads.size();
UseIdx != EndIdx; ++UseIdx) {
Record *ReadAdvance =
FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel);
if (!ReadAdvance)
continue;
// Mark the parent class as invalid for unsupported write types.
if (ReadAdvance->getValueAsBit("Unsupported")) {
SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
break;
}
RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites");
IdxVec WriteIDs;
if (ValidWrites.empty())
WriteIDs.push_back(0);
else {
for (RecIter VWI = ValidWrites.begin(), VWE = ValidWrites.end();
VWI != VWE; ++VWI) {
WriteIDs.push_back(SchedModels.getSchedRWIdx(*VWI, /*IsRead=*/false));
}
}
std::sort(WriteIDs.begin(), WriteIDs.end());
for(IdxIter WI = WriteIDs.begin(), WE = WriteIDs.end(); WI != WE; ++WI) {
MCReadAdvanceEntry RAEntry;
RAEntry.UseIdx = UseIdx;
RAEntry.WriteResourceID = *WI;
RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles");
ReadAdvanceEntries.push_back(RAEntry);
}
}
if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
WriteProcResources.clear();
WriteLatencies.clear();
ReadAdvanceEntries.clear();
}
// Add the information for this SchedClass to the global tables using basic
// compression.
//
// WritePrecRes entries are sorted by ProcResIdx.
std::sort(WriteProcResources.begin(), WriteProcResources.end(),
LessWriteProcResources());
SCDesc.NumWriteProcResEntries = WriteProcResources.size();
std::vector<MCWriteProcResEntry>::iterator WPRPos =
std::search(SchedTables.WriteProcResources.begin(),
SchedTables.WriteProcResources.end(),
WriteProcResources.begin(), WriteProcResources.end());
if (WPRPos != SchedTables.WriteProcResources.end())
SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin();
else {
SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size();
SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(),
WriteProcResources.end());
}
// Latency entries must remain in operand order.
SCDesc.NumWriteLatencyEntries = WriteLatencies.size();
std::vector<MCWriteLatencyEntry>::iterator WLPos =
std::search(SchedTables.WriteLatencies.begin(),
SchedTables.WriteLatencies.end(),
WriteLatencies.begin(), WriteLatencies.end());
if (WLPos != SchedTables.WriteLatencies.end()) {
unsigned idx = WLPos - SchedTables.WriteLatencies.begin();
SCDesc.WriteLatencyIdx = idx;
for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i)
if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) ==
std::string::npos) {
SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i];
}
}
else {
SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size();
SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(),
WriteLatencies.begin(),
WriteLatencies.end());
SchedTables.WriterNames.insert(SchedTables.WriterNames.end(),
WriterNames.begin(), WriterNames.end());
}
// ReadAdvanceEntries must remain in operand order.
SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size();
std::vector<MCReadAdvanceEntry>::iterator RAPos =
std::search(SchedTables.ReadAdvanceEntries.begin(),
SchedTables.ReadAdvanceEntries.end(),
ReadAdvanceEntries.begin(), ReadAdvanceEntries.end());
if (RAPos != SchedTables.ReadAdvanceEntries.end())
SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin();
else {
SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size();
SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(),
ReadAdvanceEntries.end());
}
}
}
// Emit SchedClass tables for all processors and associated global tables.
void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables,
raw_ostream &OS) {
// Emit global WriteProcResTable.
OS << "\n// {ProcResourceIdx, Cycles}\n"
<< "extern const llvm::MCWriteProcResEntry "
<< Target << "WriteProcResTable[] = {\n"
<< " { 0, 0}, // Invalid\n";
for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size();
WPRIdx != WPREnd; ++WPRIdx) {
MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx];
OS << " {" << format("%2d", WPREntry.ProcResourceIdx) << ", "
<< format("%2d", WPREntry.Cycles) << "}";
if (WPRIdx + 1 < WPREnd)
OS << ',';
OS << " // #" << WPRIdx << '\n';
}
OS << "}; // " << Target << "WriteProcResTable\n";
// Emit global WriteLatencyTable.
OS << "\n// {Cycles, WriteResourceID}\n"
<< "extern const llvm::MCWriteLatencyEntry "
<< Target << "WriteLatencyTable[] = {\n"
<< " { 0, 0}, // Invalid\n";
for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size();
WLIdx != WLEnd; ++WLIdx) {
MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx];
OS << " {" << format("%2d", WLEntry.Cycles) << ", "
<< format("%2d", WLEntry.WriteResourceID) << "}";
if (WLIdx + 1 < WLEnd)
OS << ',';
OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n';
}
OS << "}; // " << Target << "WriteLatencyTable\n";
// Emit global ReadAdvanceTable.
OS << "\n// {UseIdx, WriteResourceID, Cycles}\n"
<< "extern const llvm::MCReadAdvanceEntry "
<< Target << "ReadAdvanceTable[] = {\n"
<< " {0, 0, 0}, // Invalid\n";
for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size();
RAIdx != RAEnd; ++RAIdx) {
MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx];
OS << " {" << RAEntry.UseIdx << ", "
<< format("%2d", RAEntry.WriteResourceID) << ", "
<< format("%2d", RAEntry.Cycles) << "}";
if (RAIdx + 1 < RAEnd)
OS << ',';
OS << " // #" << RAIdx << '\n';
}
OS << "}; // " << Target << "ReadAdvanceTable\n";
// Emit a SchedClass table for each processor.
for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
if (!PI->hasInstrSchedModel())
continue;
std::vector<MCSchedClassDesc> &SCTab =
SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())];
OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup,"
<< " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n";
OS << "static const llvm::MCSchedClassDesc "
<< PI->ModelName << "SchedClasses[] = {\n";
// The first class is always invalid. We no way to distinguish it except by
// name and position.
assert(SchedModels.getSchedClass(0).Name == "NoInstrModel"
&& "invalid class not first");
OS << " {DBGFIELD(\"InvalidSchedClass\") "
<< MCSchedClassDesc::InvalidNumMicroOps
<< ", 0, 0, 0, 0, 0, 0, 0, 0},\n";
for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) {
MCSchedClassDesc &MCDesc = SCTab[SCIdx];
const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx);
OS << " {DBGFIELD(\"" << SchedClass.Name << "\") ";
if (SchedClass.Name.size() < 18)
OS.indent(18 - SchedClass.Name.size());
OS << MCDesc.NumMicroOps
<< ", " << MCDesc.BeginGroup << ", " << MCDesc.EndGroup
<< ", " << format("%2d", MCDesc.WriteProcResIdx)
<< ", " << MCDesc.NumWriteProcResEntries
<< ", " << format("%2d", MCDesc.WriteLatencyIdx)
<< ", " << MCDesc.NumWriteLatencyEntries
<< ", " << format("%2d", MCDesc.ReadAdvanceIdx)
<< ", " << MCDesc.NumReadAdvanceEntries << "}";
if (SCIdx + 1 < SCEnd)
OS << ',';
OS << " // #" << SCIdx << '\n';
}
OS << "}; // " << PI->ModelName << "SchedClasses\n";
}
}
void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) {
// For each processor model.
for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
// Emit processor resource table.
if (PI->hasInstrSchedModel())
EmitProcessorResources(*PI, OS);
else if(!PI->ProcResourceDefs.empty())
PrintFatalError(PI->ModelDef->getLoc(), "SchedMachineModel defines "
"ProcResources without defining WriteRes SchedWriteRes");
// Begin processor itinerary properties
OS << "\n";
OS << "static const llvm::MCSchedModel " << PI->ModelName << "(\n";
EmitProcessorProp(OS, PI->ModelDef, "IssueWidth", ',');
EmitProcessorProp(OS, PI->ModelDef, "MicroOpBufferSize", ',');
EmitProcessorProp(OS, PI->ModelDef, "LoadLatency", ',');
EmitProcessorProp(OS, PI->ModelDef, "HighLatency", ',');
EmitProcessorProp(OS, PI->ModelDef, "MispredictPenalty", ',');
OS << " " << (bool)(PI->ModelDef ?
PI->ModelDef->getValueAsBit("CompleteModel") : 0)
<< ", // " << "CompleteModel\n";
OS << " " << PI->Index << ", // Processor ID\n";
if (PI->hasInstrSchedModel())
OS << " " << PI->ModelName << "ProcResources" << ",\n"
<< " " << PI->ModelName << "SchedClasses" << ",\n"
<< " " << PI->ProcResourceDefs.size()+1 << ",\n"
<< " " << (SchedModels.schedClassEnd()
- SchedModels.schedClassBegin()) << ",\n";
else
OS << " 0, 0, 0, 0, // No instruction-level machine model.\n";
if (SchedModels.hasItineraries())
OS << " " << PI->ItinsDef->getName() << ");\n";
else
OS << " 0); // No Itinerary\n";
}
}
//
// EmitProcessorLookup - generate cpu name to itinerary lookup table.
//
void SubtargetEmitter::EmitProcessorLookup(raw_ostream &OS) {
// Gather and sort processor information
std::vector<Record*> ProcessorList =
Records.getAllDerivedDefinitions("Processor");
std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName());
// Begin processor table
OS << "\n";
OS << "// Sorted (by key) array of itineraries for CPU subtype.\n"
<< "extern const llvm::SubtargetInfoKV "
<< Target << "ProcSchedKV[] = {\n";
// For each processor
for (unsigned i = 0, N = ProcessorList.size(); i < N;) {
// Next processor
Record *Processor = ProcessorList[i];
const std::string &Name = Processor->getValueAsString("Name");
const std::string &ProcModelName =
SchedModels.getModelForProc(Processor).ModelName;
// Emit as { "cpu", procinit },
OS << " { \"" << Name << "\", (const void *)&" << ProcModelName << " }";
// Depending on ''if more in the list'' emit comma
if (++i < N) OS << ",";
OS << "\n";
}
// End processor table
OS << "};\n";
}
//
// EmitSchedModel - Emits all scheduling model tables, folding common patterns.
//
void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) {
OS << "#ifdef DBGFIELD\n"
<< "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n"
<< "#endif\n"
<< "#ifndef NDEBUG\n"
<< "#define DBGFIELD(x) x,\n"
<< "#else\n"
<< "#define DBGFIELD(x)\n"
<< "#endif\n";
if (SchedModels.hasItineraries()) {
std::vector<std::vector<InstrItinerary> > ProcItinLists;
// Emit the stage data
EmitStageAndOperandCycleData(OS, ProcItinLists);
EmitItineraries(OS, ProcItinLists);
}
OS << "\n// ===============================================================\n"
<< "// Data tables for the new per-operand machine model.\n";
SchedClassTables SchedTables;
for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
GenSchedClassTables(*PI, SchedTables);
}
EmitSchedClassTables(SchedTables, OS);
// Emit the processor machine model
EmitProcessorModels(OS);
// Emit the processor lookup data
EmitProcessorLookup(OS);
OS << "#undef DBGFIELD";
}
void SubtargetEmitter::EmitSchedModelHelpers(std::string ClassName,
raw_ostream &OS) {
OS << "unsigned " << ClassName
<< "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI,"
<< " const TargetSchedModel *SchedModel) const {\n";
std::vector<Record*> Prologs = Records.getAllDerivedDefinitions("PredicateProlog");
std::sort(Prologs.begin(), Prologs.end(), LessRecord());
for (std::vector<Record*>::const_iterator
PI = Prologs.begin(), PE = Prologs.end(); PI != PE; ++PI) {
OS << (*PI)->getValueAsString("Code") << '\n';
}
IdxVec VariantClasses;
for (CodeGenSchedModels::SchedClassIter SCI = SchedModels.schedClassBegin(),
SCE = SchedModels.schedClassEnd(); SCI != SCE; ++SCI) {
if (SCI->Transitions.empty())
continue;
VariantClasses.push_back(SCI->Index);
}
if (!VariantClasses.empty()) {
OS << " switch (SchedClass) {\n";
for (IdxIter VCI = VariantClasses.begin(), VCE = VariantClasses.end();
VCI != VCE; ++VCI) {
const CodeGenSchedClass &SC = SchedModels.getSchedClass(*VCI);
OS << " case " << *VCI << ": // " << SC.Name << '\n';
IdxVec ProcIndices;
for (std::vector<CodeGenSchedTransition>::const_iterator
TI = SC.Transitions.begin(), TE = SC.Transitions.end();
TI != TE; ++TI) {
IdxVec PI;
std::set_union(TI->ProcIndices.begin(), TI->ProcIndices.end(),
ProcIndices.begin(), ProcIndices.end(),
std::back_inserter(PI));
ProcIndices.swap(PI);
}
for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end();
PI != PE; ++PI) {
OS << " ";
if (*PI != 0)
OS << "if (SchedModel->getProcessorID() == " << *PI << ") ";
OS << "{ // " << (SchedModels.procModelBegin() + *PI)->ModelName
<< '\n';
for (std::vector<CodeGenSchedTransition>::const_iterator
TI = SC.Transitions.begin(), TE = SC.Transitions.end();
TI != TE; ++TI) {
if (*PI != 0 && !std::count(TI->ProcIndices.begin(),
TI->ProcIndices.end(), *PI)) {
continue;
}
OS << " if (";
for (RecIter RI = TI->PredTerm.begin(), RE = TI->PredTerm.end();
RI != RE; ++RI) {
if (RI != TI->PredTerm.begin())
OS << "\n && ";
OS << "(" << (*RI)->getValueAsString("Predicate") << ")";
}
OS << ")\n"
<< " return " << TI->ToClassIdx << "; // "
<< SchedModels.getSchedClass(TI->ToClassIdx).Name << '\n';
}
OS << " }\n";
if (*PI == 0)
break;
}
if (SC.isInferred())
OS << " return " << SC.Index << ";\n";
OS << " break;\n";
}
OS << " };\n";
}
OS << " report_fatal_error(\"Expected a variant SchedClass\");\n"
<< "} // " << ClassName << "::resolveSchedClass\n";
}
//
// ParseFeaturesFunction - Produces a subtarget specific function for parsing
// the subtarget features string.
//
void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS,
unsigned NumFeatures,
unsigned NumProcs) {
std::vector<Record*> Features =
Records.getAllDerivedDefinitions("SubtargetFeature");
std::sort(Features.begin(), Features.end(), LessRecord());
OS << "// ParseSubtargetFeatures - Parses features string setting specified\n"
<< "// subtarget options.\n"
<< "void llvm::";
OS << Target;
OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n"
<< " DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n"
<< " DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n";
if (Features.empty()) {
OS << "}\n";
return;
}
OS << " InitMCProcessorInfo(CPU, FS);\n"
<< " uint64_t Bits = getFeatureBits();\n";
for (unsigned i = 0; i < Features.size(); i++) {
// Next record
Record *R = Features[i];
const std::string &Instance = R->getName();
const std::string &Value = R->getValueAsString("Value");
const std::string &Attribute = R->getValueAsString("Attribute");
if (Value=="true" || Value=="false")
OS << " if ((Bits & " << Target << "::"
<< Instance << ") != 0) "
<< Attribute << " = " << Value << ";\n";
else
OS << " if ((Bits & " << Target << "::"
<< Instance << ") != 0 && "
<< Attribute << " < " << Value << ") "
<< Attribute << " = " << Value << ";\n";
}
OS << "}\n";
}
//
// SubtargetEmitter::run - Main subtarget enumeration emitter.
//
void SubtargetEmitter::run(raw_ostream &OS) {
emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS);
OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n";
OS << "#undef GET_SUBTARGETINFO_ENUM\n";
OS << "namespace llvm {\n";
Enumeration(OS, "SubtargetFeature", true);
OS << "} // End llvm namespace \n";
OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n";
OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n";
OS << "#undef GET_SUBTARGETINFO_MC_DESC\n";
OS << "namespace llvm {\n";
#if 0
OS << "namespace {\n";
#endif
unsigned NumFeatures = FeatureKeyValues(OS);
OS << "\n";
unsigned NumProcs = CPUKeyValues(OS);
OS << "\n";
EmitSchedModel(OS);
OS << "\n";
#if 0
OS << "}\n";
#endif
// MCInstrInfo initialization routine.
OS << "static inline void Init" << Target
<< "MCSubtargetInfo(MCSubtargetInfo *II, "
<< "StringRef TT, StringRef CPU, StringRef FS) {\n";
OS << " II->InitMCSubtargetInfo(TT, CPU, FS, ";
if (NumFeatures)
OS << Target << "FeatureKV, ";
else
OS << "0, ";
if (NumProcs)
OS << Target << "SubTypeKV, ";
else
OS << "0, ";
OS << '\n'; OS.indent(22);
OS << Target << "ProcSchedKV, "
<< Target << "WriteProcResTable, "
<< Target << "WriteLatencyTable, "
<< Target << "ReadAdvanceTable, ";
if (SchedModels.hasItineraries()) {
OS << '\n'; OS.indent(22);
OS << Target << "Stages, "
<< Target << "OperandCycles, "
<< Target << "ForwardingPaths, ";
} else
OS << "0, 0, 0, ";
OS << NumFeatures << ", " << NumProcs << ");\n}\n\n";
OS << "} // End llvm namespace \n";
OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n";
OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n";
OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n";
OS << "#include \"llvm/Support/Debug.h\"\n";
OS << "#include \"llvm/Support/raw_ostream.h\"\n";
ParseFeaturesFunction(OS, NumFeatures, NumProcs);
OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n";
// Create a TargetSubtargetInfo subclass to hide the MC layer initialization.
OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n";
OS << "#undef GET_SUBTARGETINFO_HEADER\n";
std::string ClassName = Target + "GenSubtargetInfo";
OS << "namespace llvm {\n";
OS << "class DFAPacketizer;\n";
OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n"
<< " explicit " << ClassName << "(StringRef TT, StringRef CPU, "
<< "StringRef FS);\n"
<< "public:\n"
<< " unsigned resolveSchedClass(unsigned SchedClass, const MachineInstr *DefMI,"
<< " const TargetSchedModel *SchedModel) const;\n"
<< " DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)"
<< " const;\n"
<< "};\n";
OS << "} // End llvm namespace \n";
OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n";
OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n";
OS << "#undef GET_SUBTARGETINFO_CTOR\n";
OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n";
OS << "namespace llvm {\n";
OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n";
OS << "extern const llvm::SubtargetFeatureKV " << Target << "SubTypeKV[];\n";
OS << "extern const llvm::SubtargetInfoKV " << Target << "ProcSchedKV[];\n";
OS << "extern const llvm::MCWriteProcResEntry "
<< Target << "WriteProcResTable[];\n";
OS << "extern const llvm::MCWriteLatencyEntry "
<< Target << "WriteLatencyTable[];\n";
OS << "extern const llvm::MCReadAdvanceEntry "
<< Target << "ReadAdvanceTable[];\n";
if (SchedModels.hasItineraries()) {
OS << "extern const llvm::InstrStage " << Target << "Stages[];\n";
OS << "extern const unsigned " << Target << "OperandCycles[];\n";
OS << "extern const unsigned " << Target << "ForwardingPaths[];\n";
}
OS << ClassName << "::" << ClassName << "(StringRef TT, StringRef CPU, "
<< "StringRef FS)\n"
<< " : TargetSubtargetInfo() {\n"
<< " InitMCSubtargetInfo(TT, CPU, FS, ";
if (NumFeatures)
OS << Target << "FeatureKV, ";
else
OS << "0, ";
if (NumProcs)
OS << Target << "SubTypeKV, ";
else
OS << "0, ";
OS << '\n'; OS.indent(22);
OS << Target << "ProcSchedKV, "
<< Target << "WriteProcResTable, "
<< Target << "WriteLatencyTable, "
<< Target << "ReadAdvanceTable, ";
OS << '\n'; OS.indent(22);
if (SchedModels.hasItineraries()) {
OS << Target << "Stages, "
<< Target << "OperandCycles, "
<< Target << "ForwardingPaths, ";
} else
OS << "0, 0, 0, ";
OS << NumFeatures << ", " << NumProcs << ");\n}\n\n";
EmitSchedModelHelpers(ClassName, OS);
OS << "} // End llvm namespace \n";
OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n";
}
namespace llvm {
void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) {
CodeGenTarget CGTarget(RK);
SubtargetEmitter(RK, CGTarget).run(OS);
}
} // End llvm namespace