1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-10 14:02:43 +00:00
freebsd/sbin/newfs/mkfs.c
Peter Wemm 4af9705ceb Fix the mount_mfs case from the last cleanup. The code was (ab)using
it's internal malloc() implementation to try and avoid overstepping it's
resource limits (yuk!).  Remain using libc's malloc(), but check the
resource limits right before trying to malloc the ramdisk space and leave
some spare memory for libc.  In Andrey's words, the internal malloc
was "true evil"..  Among it's sins is it's ability to allocate less memory
than asked for and still return success.  stdio would just love that. :-)

Reviewed by: ache
1997-03-31 16:43:16 +00:00

1403 lines
37 KiB
C

/*
* Copyright (c) 1980, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef lint
static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95";
#endif /* not lint */
#include <unistd.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <sys/resource.h>
#include <ufs/ufs/dinode.h>
#include <ufs/ufs/dir.h>
#include <ufs/ffs/fs.h>
#include <sys/disklabel.h>
#include <sys/file.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#ifndef STANDALONE
#include <a.out.h>
#include <stdio.h>
#include <stdlib.h>
#endif
/*
* make file system for cylinder-group style file systems
*/
/*
* We limit the size of the inode map to be no more than a
* third of the cylinder group space, since we must leave at
* least an equal amount of space for the block map.
*
* N.B.: MAXIPG must be a multiple of INOPB(fs).
*/
#define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
#define UMASK 0755
#define MAXINOPB (MAXBSIZE / sizeof(struct dinode))
#define POWEROF2(num) (((num) & ((num) - 1)) == 0)
/*
* variables set up by front end.
*/
extern int mfs; /* run as the memory based filesystem */
extern int Nflag; /* run mkfs without writing file system */
extern int Oflag; /* format as an 4.3BSD file system */
extern int fssize; /* file system size */
extern int ntracks; /* # tracks/cylinder */
extern int nsectors; /* # sectors/track */
extern int nphyssectors; /* # sectors/track including spares */
extern int secpercyl; /* sectors per cylinder */
extern int sectorsize; /* bytes/sector */
extern int realsectorsize; /* bytes/sector in hardware*/
extern int rpm; /* revolutions/minute of drive */
extern int interleave; /* hardware sector interleave */
extern int trackskew; /* sector 0 skew, per track */
extern int fsize; /* fragment size */
extern int bsize; /* block size */
extern int cpg; /* cylinders/cylinder group */
extern int cpgflg; /* cylinders/cylinder group flag was given */
extern int minfree; /* free space threshold */
extern int opt; /* optimization preference (space or time) */
extern int density; /* number of bytes per inode */
extern int maxcontig; /* max contiguous blocks to allocate */
extern int rotdelay; /* rotational delay between blocks */
extern int maxbpg; /* maximum blocks per file in a cyl group */
extern int nrpos; /* # of distinguished rotational positions */
extern int bbsize; /* boot block size */
extern int sbsize; /* superblock size */
extern u_long memleft; /* virtual memory available */
extern caddr_t membase; /* start address of memory based filesystem */
#ifdef STANDALONE
extern caddr_t malloc(), calloc();
#endif
extern char * filename;
union {
struct fs fs;
char pad[SBSIZE];
} fsun;
#define sblock fsun.fs
struct csum *fscs;
union {
struct cg cg;
char pad[MAXBSIZE];
} cgun;
#define acg cgun.cg
struct dinode zino[MAXBSIZE / sizeof(struct dinode)];
int fsi, fso;
#ifdef FSIRAND
int randinit;
#endif
daddr_t alloc();
static int charsperline();
long calcipg();
mkfs(pp, fsys, fi, fo)
struct partition *pp;
char *fsys;
int fi, fo;
{
register long i, mincpc, mincpg, inospercg;
long cylno, rpos, blk, j, warn = 0;
long used, mincpgcnt, bpcg;
off_t usedb;
long mapcramped, inodecramped;
long postblsize, rotblsize, totalsbsize;
int ppid, status, fd;
time_t utime;
quad_t sizepb;
void started();
int width;
char tmpbuf[100]; /* XXX this will break in about 2,500 years */
#ifndef STANDALONE
time(&utime);
#endif
#ifdef FSIRAND
if (!randinit) {
randinit = 1;
if (srandomdev() < 0)
srandom(utime ^ getpid());
}
#endif
if (mfs) {
ppid = getpid();
(void) signal(SIGUSR1, started);
if (i = fork()) {
if (i == -1) {
perror("mfs");
exit(10);
}
if (waitpid(i, &status, 0) != -1 && WIFEXITED(status))
exit(WEXITSTATUS(status));
exit(11);
/* NOTREACHED */
}
#ifdef STANDALONE
(void)malloc(0);
#else
raise_data_limit();
#endif
if(filename) {
unsigned char buf[BUFSIZ];
unsigned long l,l1;
fd = open(filename,O_RDWR|O_TRUNC|O_CREAT,0644);
if(fd < 0) {
perror(filename);
exit(12);
}
for(l=0;l< fssize * sectorsize;l += l1) {
l1 = fssize * sectorsize;
if (BUFSIZ < l1)
l1 = BUFSIZ;
if (l1 != write(fd,buf,l1)) {
perror(filename);
exit(12);
}
}
membase = mmap(
0,
fssize * sectorsize,
PROT_READ|PROT_WRITE,
MAP_SHARED,
fd,
0);
if(membase == MAP_FAILED) {
perror("mmap");
exit(12);
}
close(fd);
} else {
#ifndef STANDALONE
get_memleft();
#endif
if (fssize * sectorsize > (memleft - 16384))
fssize = (memleft - 16384) / sectorsize;
if ((membase = malloc(fssize * sectorsize)) == 0) {
perror("malloc");
exit(13);
}
}
}
fsi = fi;
fso = fo;
if (Oflag) {
sblock.fs_inodefmt = FS_42INODEFMT;
sblock.fs_maxsymlinklen = 0;
} else {
sblock.fs_inodefmt = FS_44INODEFMT;
sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
}
/*
* Validate the given file system size.
* Verify that its last block can actually be accessed.
*/
if (fssize <= 0)
printf("preposterous size %d\n", fssize), exit(13);
wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
(char *)&sblock);
/*
* collect and verify the sector and track info
*/
sblock.fs_nsect = nsectors;
sblock.fs_ntrak = ntracks;
if (sblock.fs_ntrak <= 0)
printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
if (sblock.fs_nsect <= 0)
printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
/*
* collect and verify the block and fragment sizes
*/
sblock.fs_bsize = bsize;
sblock.fs_fsize = fsize;
if (!POWEROF2(sblock.fs_bsize)) {
printf("block size must be a power of 2, not %d\n",
sblock.fs_bsize);
exit(16);
}
if (!POWEROF2(sblock.fs_fsize)) {
printf("fragment size must be a power of 2, not %d\n",
sblock.fs_fsize);
exit(17);
}
if (sblock.fs_fsize < sectorsize) {
printf("fragment size %d is too small, minimum is %d\n",
sblock.fs_fsize, sectorsize);
exit(18);
}
if (sblock.fs_bsize < MINBSIZE) {
printf("block size %d is too small, minimum is %d\n",
sblock.fs_bsize, MINBSIZE);
exit(19);
}
if (sblock.fs_bsize < sblock.fs_fsize) {
printf("block size (%d) cannot be smaller than fragment size (%d)\n",
sblock.fs_bsize, sblock.fs_fsize);
exit(20);
}
sblock.fs_bmask = ~(sblock.fs_bsize - 1);
sblock.fs_fmask = ~(sblock.fs_fsize - 1);
sblock.fs_qbmask = ~sblock.fs_bmask;
sblock.fs_qfmask = ~sblock.fs_fmask;
for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
sblock.fs_bshift++;
for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
sblock.fs_fshift++;
sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
sblock.fs_fragshift++;
if (sblock.fs_frag > MAXFRAG) {
printf("fragment size %d is too small, minimum with block size %d is %d\n",
sblock.fs_fsize, sblock.fs_bsize,
sblock.fs_bsize / MAXFRAG);
exit(21);
}
sblock.fs_nrpos = nrpos;
sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
sblock.fs_inopb = sblock.fs_bsize / sizeof(struct dinode);
sblock.fs_nspf = sblock.fs_fsize / sectorsize;
for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
sblock.fs_fsbtodb++;
sblock.fs_sblkno =
roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
sblock.fs_cgoffset = roundup(
howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
sblock.fs_cgmask <<= 1;
if (!POWEROF2(sblock.fs_ntrak))
sblock.fs_cgmask <<= 1;
sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
sizepb *= NINDIR(&sblock);
sblock.fs_maxfilesize += sizepb;
}
/* XXX - hack to prevent overflow of a 32bit block number */
sblock.fs_maxfilesize = MIN(sblock.fs_maxfilesize, (u_quad_t) 1 << 39);
/*
* Validate specified/determined secpercyl
* and calculate minimum cylinders per group.
*/
sblock.fs_spc = secpercyl;
for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
sblock.fs_cpc > 1 && (i & 1) == 0;
sblock.fs_cpc >>= 1, i >>= 1)
/* void */;
mincpc = sblock.fs_cpc;
bpcg = sblock.fs_spc * sectorsize;
inospercg = roundup(bpcg / sizeof(struct dinode), INOPB(&sblock));
if (inospercg > MAXIPG(&sblock))
inospercg = MAXIPG(&sblock);
used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
sblock.fs_spc);
mincpg = roundup(mincpgcnt, mincpc);
/*
* Ensure that cylinder group with mincpg has enough space
* for block maps.
*/
sblock.fs_cpg = mincpg;
sblock.fs_ipg = inospercg;
if (maxcontig > 1)
sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
mapcramped = 0;
while (CGSIZE(&sblock) > sblock.fs_bsize) {
mapcramped = 1;
if (sblock.fs_bsize < MAXBSIZE) {
sblock.fs_bsize <<= 1;
if ((i & 1) == 0) {
i >>= 1;
} else {
sblock.fs_cpc <<= 1;
mincpc <<= 1;
mincpg = roundup(mincpgcnt, mincpc);
sblock.fs_cpg = mincpg;
}
sblock.fs_frag <<= 1;
sblock.fs_fragshift += 1;
if (sblock.fs_frag <= MAXFRAG)
continue;
}
if (sblock.fs_fsize == sblock.fs_bsize) {
printf("There is no block size that");
printf(" can support this disk\n");
exit(22);
}
sblock.fs_frag >>= 1;
sblock.fs_fragshift -= 1;
sblock.fs_fsize <<= 1;
sblock.fs_nspf <<= 1;
}
/*
* Ensure that cylinder group with mincpg has enough space for inodes.
*/
inodecramped = 0;
inospercg = calcipg(mincpg, bpcg, &usedb);
sblock.fs_ipg = inospercg;
while (inospercg > MAXIPG(&sblock)) {
inodecramped = 1;
if (mincpc == 1 || sblock.fs_frag == 1 ||
sblock.fs_bsize == MINBSIZE)
break;
printf("With a block size of %d %s %d\n", sblock.fs_bsize,
"minimum bytes per inode is",
(int)((mincpg * (off_t)bpcg - usedb)
/ MAXIPG(&sblock) + 1));
sblock.fs_bsize >>= 1;
sblock.fs_frag >>= 1;
sblock.fs_fragshift -= 1;
mincpc >>= 1;
sblock.fs_cpg = roundup(mincpgcnt, mincpc);
if (CGSIZE(&sblock) > sblock.fs_bsize) {
sblock.fs_bsize <<= 1;
break;
}
mincpg = sblock.fs_cpg;
inospercg = calcipg(mincpg, bpcg, &usedb);
sblock.fs_ipg = inospercg;
}
if (inodecramped) {
if (inospercg > MAXIPG(&sblock)) {
printf("Minimum bytes per inode is %d\n",
(int)((mincpg * (off_t)bpcg - usedb)
/ MAXIPG(&sblock) + 1));
} else if (!mapcramped) {
printf("With %d bytes per inode, ", density);
printf("minimum cylinders per group is %d\n", mincpg);
}
}
if (mapcramped) {
printf("With %d sectors per cylinder, ", sblock.fs_spc);
printf("minimum cylinders per group is %d\n", mincpg);
}
if (inodecramped || mapcramped) {
if (sblock.fs_bsize != bsize)
printf("%s to be changed from %d to %d\n",
"This requires the block size",
bsize, sblock.fs_bsize);
if (sblock.fs_fsize != fsize)
printf("\t%s to be changed from %d to %d\n",
"and the fragment size",
fsize, sblock.fs_fsize);
exit(23);
}
/*
* Calculate the number of cylinders per group
*/
sblock.fs_cpg = cpg;
if (sblock.fs_cpg % mincpc != 0) {
printf("%s groups must have a multiple of %d cylinders\n",
cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
if (!cpgflg)
cpg = sblock.fs_cpg;
}
/*
* Must ensure there is enough space for inodes.
*/
sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
while (sblock.fs_ipg > MAXIPG(&sblock)) {
inodecramped = 1;
sblock.fs_cpg -= mincpc;
sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
}
/*
* Must ensure there is enough space to hold block map.
*/
while (CGSIZE(&sblock) > sblock.fs_bsize) {
mapcramped = 1;
sblock.fs_cpg -= mincpc;
sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
}
sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
printf("panic (fs_cpg * fs_spc) % NSPF != 0");
exit(24);
}
if (sblock.fs_cpg < mincpg) {
printf("cylinder groups must have at least %d cylinders\n",
mincpg);
exit(25);
} else if (sblock.fs_cpg != cpg) {
if (!cpgflg)
printf("Warning: ");
else if (!mapcramped && !inodecramped)
exit(26);
if (mapcramped && inodecramped)
printf("Block size and bytes per inode restrict");
else if (mapcramped)
printf("Block size restricts");
else
printf("Bytes per inode restrict");
printf(" cylinders per group to %d.\n", sblock.fs_cpg);
if (cpgflg)
exit(27);
}
sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
/*
* Now have size for file system and nsect and ntrak.
* Determine number of cylinders and blocks in the file system.
*/
sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
sblock.fs_ncyl++;
warn = 1;
}
if (sblock.fs_ncyl < 1) {
printf("file systems must have at least one cylinder\n");
exit(28);
}
/*
* Determine feasability/values of rotational layout tables.
*
* The size of the rotational layout tables is limited by the
* size of the superblock, SBSIZE. The amount of space available
* for tables is calculated as (SBSIZE - sizeof (struct fs)).
* The size of these tables is inversely proportional to the block
* size of the file system. The size increases if sectors per track
* are not powers of two, because more cylinders must be described
* by the tables before the rotational pattern repeats (fs_cpc).
*/
sblock.fs_interleave = interleave;
sblock.fs_trackskew = trackskew;
sblock.fs_npsect = nphyssectors;
sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
if (sblock.fs_ntrak == 1) {
sblock.fs_cpc = 0;
goto next;
}
postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(short);
rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
totalsbsize = sizeof(struct fs) + rotblsize;
if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
/* use old static table space */
sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
(char *)(&sblock.fs_firstfield);
sblock.fs_rotbloff = &sblock.fs_space[0] -
(u_char *)(&sblock.fs_firstfield);
} else {
/* use dynamic table space */
sblock.fs_postbloff = &sblock.fs_space[0] -
(u_char *)(&sblock.fs_firstfield);
sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
totalsbsize += postblsize;
}
if (totalsbsize > SBSIZE ||
sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
printf("%s %s %d %s %d.%s",
"Warning: insufficient space in super block for\n",
"rotational layout tables with nsect", sblock.fs_nsect,
"and ntrak", sblock.fs_ntrak,
"\nFile system performance may be impaired.\n");
sblock.fs_cpc = 0;
goto next;
}
sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
/*
* calculate the available blocks for each rotational position
*/
for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
fs_postbl(&sblock, cylno)[rpos] = -1;
for (i = (rotblsize - 1) * sblock.fs_frag;
i >= 0; i -= sblock.fs_frag) {
cylno = cbtocylno(&sblock, i);
rpos = cbtorpos(&sblock, i);
blk = fragstoblks(&sblock, i);
if (fs_postbl(&sblock, cylno)[rpos] == -1)
fs_rotbl(&sblock)[blk] = 0;
else
fs_rotbl(&sblock)[blk] =
fs_postbl(&sblock, cylno)[rpos] - blk;
fs_postbl(&sblock, cylno)[rpos] = blk;
}
next:
/*
* Compute/validate number of cylinder groups.
*/
sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
if (sblock.fs_ncyl % sblock.fs_cpg)
sblock.fs_ncg++;
sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
sblock.fs_fpg / sblock.fs_frag);
printf("number of cylinders per cylinder group (%d) %s.\n",
sblock.fs_cpg, "must be increased");
exit(29);
}
j = sblock.fs_ncg - 1;
if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
if (j == 0) {
printf("Filesystem must have at least %d sectors\n",
NSPF(&sblock) *
(cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
exit(30);
}
printf("Warning: inode blocks/cyl group (%d) >= data blocks (%d) in last\n",
(cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
i / sblock.fs_frag);
printf(" cylinder group. This implies %d sector(s) cannot be allocated.\n",
i * NSPF(&sblock));
sblock.fs_ncg--;
sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
NSPF(&sblock);
warn = 0;
}
if (warn && !mfs) {
printf("Warning: %d sector(s) in last cylinder unallocated\n",
sblock.fs_spc -
(fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
* sblock.fs_spc));
}
/*
* fill in remaining fields of the super block
*/
sblock.fs_csaddr = cgdmin(&sblock, 0);
sblock.fs_cssize =
fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
i = sblock.fs_bsize / sizeof(struct csum);
sblock.fs_csmask = ~(i - 1);
for (sblock.fs_csshift = 0; i > 1; i >>= 1)
sblock.fs_csshift++;
fscs = (struct csum *)calloc(1, sblock.fs_cssize);
if (fscs == NULL) {
perror("calloc");
exit(31);
}
sblock.fs_magic = FS_MAGIC;
sblock.fs_rotdelay = rotdelay;
sblock.fs_minfree = minfree;
sblock.fs_maxcontig = maxcontig;
sblock.fs_maxbpg = maxbpg;
sblock.fs_rps = rpm / 60;
sblock.fs_optim = opt;
sblock.fs_cgrotor = 0;
sblock.fs_cstotal.cs_ndir = 0;
sblock.fs_cstotal.cs_nbfree = 0;
sblock.fs_cstotal.cs_nifree = 0;
sblock.fs_cstotal.cs_nffree = 0;
sblock.fs_fmod = 0;
sblock.fs_ronly = 0;
sblock.fs_clean = 1;
#ifdef FSIRAND
sblock.fs_id[0] = (long)utime;
sblock.fs_id[1] = random();
#endif
/*
* Dump out summary information about file system.
*/
if (!mfs) {
printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
"cylinders", sblock.fs_ntrak, sblock.fs_nsect);
#define B2MBFACTOR (1 / (1024.0 * 1024.0))
printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
(float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
sblock.fs_ncg, sblock.fs_cpg,
(float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
sblock.fs_ipg);
#undef B2MBFACTOR
}
/*
* Now build the cylinders group blocks and
* then print out indices of cylinder groups.
*/
if (!mfs)
printf("super-block backups (for fsck -b #) at:\n");
i = 0;
width = charsperline();
for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
initcg(cylno, utime);
if (mfs)
continue;
j = sprintf(tmpbuf, " %d,",
fsbtodb(&sblock, cgsblock(&sblock, cylno)));
if (i+j >= width) {
printf("\n");
i = 0;
}
i += j;
printf("%s", tmpbuf);
fflush(stdout);
}
if (!mfs)
printf("\n");
if (Nflag && !mfs)
exit(0);
/*
* Now construct the initial file system,
* then write out the super-block.
*/
fsinit(utime);
sblock.fs_time = utime;
wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock);
for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
sblock.fs_cssize - i < sblock.fs_bsize ?
sblock.fs_cssize - i : sblock.fs_bsize,
((char *)fscs) + i);
/*
* Write out the duplicate super blocks
*/
for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
sbsize, (char *)&sblock);
/*
* Update information about this partion in pack
* label, to that it may be updated on disk.
*/
pp->p_fstype = FS_BSDFFS;
pp->p_fsize = sblock.fs_fsize;
pp->p_frag = sblock.fs_frag;
pp->p_cpg = sblock.fs_cpg;
/*
* Notify parent process of success.
* Dissociate from session and tty.
*/
if (mfs) {
kill(ppid, SIGUSR1);
(void) setsid();
(void) close(0);
(void) close(1);
(void) close(2);
(void) chdir("/");
}
}
/*
* Initialize a cylinder group.
*/
initcg(cylno, utime)
int cylno;
time_t utime;
{
daddr_t cbase, d, dlower, dupper, dmax, blkno;
long i, j, s;
register struct csum *cs;
/*
* Determine block bounds for cylinder group.
* Allow space for super block summary information in first
* cylinder group.
*/
cbase = cgbase(&sblock, cylno);
dmax = cbase + sblock.fs_fpg;
if (dmax > sblock.fs_size)
dmax = sblock.fs_size;
dlower = cgsblock(&sblock, cylno) - cbase;
dupper = cgdmin(&sblock, cylno) - cbase;
if (cylno == 0)
dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
cs = fscs + cylno;
memset(&acg, 0, sblock.fs_cgsize);
acg.cg_time = utime;
acg.cg_magic = CG_MAGIC;
acg.cg_cgx = cylno;
if (cylno == sblock.fs_ncg - 1)
acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
else
acg.cg_ncyl = sblock.fs_cpg;
acg.cg_niblk = sblock.fs_ipg;
acg.cg_ndblk = dmax - cbase;
if (sblock.fs_contigsumsize > 0)
acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(long);
acg.cg_iusedoff = acg.cg_boff +
sblock.fs_cpg * sblock.fs_nrpos * sizeof(short);
acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
if (sblock.fs_contigsumsize <= 0) {
acg.cg_nextfreeoff = acg.cg_freeoff +
howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
} else {
acg.cg_clustersumoff = acg.cg_freeoff + howmany
(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
sizeof(long);
acg.cg_clustersumoff =
roundup(acg.cg_clustersumoff, sizeof(long));
acg.cg_clusteroff = acg.cg_clustersumoff +
(sblock.fs_contigsumsize + 1) * sizeof(long);
acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
(sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
}
if (acg.cg_nextfreeoff - (long)(&acg.cg_firstfield) > sblock.fs_cgsize) {
printf("Panic: cylinder group too big\n");
exit(37);
}
acg.cg_cs.cs_nifree += sblock.fs_ipg;
if (cylno == 0)
for (i = 0; i < ROOTINO; i++) {
setbit(cg_inosused(&acg), i);
acg.cg_cs.cs_nifree--;
}
for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
#ifdef FSIRAND
for (j = 0; j < sblock.fs_bsize / sizeof(struct dinode); j++)
zino[j].di_gen = random();
#endif
wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
sblock.fs_bsize, (char *)zino);
}
if (cylno > 0) {
/*
* In cylno 0, beginning space is reserved
* for boot and super blocks.
*/
for (d = 0; d < dlower; d += sblock.fs_frag) {
blkno = d / sblock.fs_frag;
setblock(&sblock, cg_blksfree(&acg), blkno);
if (sblock.fs_contigsumsize > 0)
setbit(cg_clustersfree(&acg), blkno);
acg.cg_cs.cs_nbfree++;
cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
[cbtorpos(&sblock, d)]++;
}
sblock.fs_dsize += dlower;
}
sblock.fs_dsize += acg.cg_ndblk - dupper;
if (i = dupper % sblock.fs_frag) {
acg.cg_frsum[sblock.fs_frag - i]++;
for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
setbit(cg_blksfree(&acg), dupper);
acg.cg_cs.cs_nffree++;
}
}
for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
blkno = d / sblock.fs_frag;
setblock(&sblock, cg_blksfree(&acg), blkno);
if (sblock.fs_contigsumsize > 0)
setbit(cg_clustersfree(&acg), blkno);
acg.cg_cs.cs_nbfree++;
cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
[cbtorpos(&sblock, d)]++;
d += sblock.fs_frag;
}
if (d < dmax - cbase) {
acg.cg_frsum[dmax - cbase - d]++;
for (; d < dmax - cbase; d++) {
setbit(cg_blksfree(&acg), d);
acg.cg_cs.cs_nffree++;
}
}
if (sblock.fs_contigsumsize > 0) {
int32_t *sump = cg_clustersum(&acg);
u_char *mapp = cg_clustersfree(&acg);
int map = *mapp++;
int bit = 1;
int run = 0;
for (i = 0; i < acg.cg_nclusterblks; i++) {
if ((map & bit) != 0) {
run++;
} else if (run != 0) {
if (run > sblock.fs_contigsumsize)
run = sblock.fs_contigsumsize;
sump[run]++;
run = 0;
}
if ((i & (NBBY - 1)) != (NBBY - 1)) {
bit <<= 1;
} else {
map = *mapp++;
bit = 1;
}
}
if (run != 0) {
if (run > sblock.fs_contigsumsize)
run = sblock.fs_contigsumsize;
sump[run]++;
}
}
sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
*cs = acg.cg_cs;
wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
sblock.fs_bsize, (char *)&acg);
}
/*
* initialize the file system
*/
struct dinode node;
#ifdef LOSTDIR
#define PREDEFDIR 3
#else
#define PREDEFDIR 2
#endif
struct direct root_dir[] = {
{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
#ifdef LOSTDIR
{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
#endif
};
struct odirect {
u_long d_ino;
u_short d_reclen;
u_short d_namlen;
u_char d_name[MAXNAMLEN + 1];
} oroot_dir[] = {
{ ROOTINO, sizeof(struct direct), 1, "." },
{ ROOTINO, sizeof(struct direct), 2, ".." },
#ifdef LOSTDIR
{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
#endif
};
#ifdef LOSTDIR
struct direct lost_found_dir[] = {
{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
{ 0, DIRBLKSIZ, 0, 0, 0 },
};
struct odirect olost_found_dir[] = {
{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
{ ROOTINO, sizeof(struct direct), 2, ".." },
{ 0, DIRBLKSIZ, 0, 0 },
};
#endif
char buf[MAXBSIZE];
fsinit(utime)
time_t utime;
{
int i;
/*
* initialize the node
*/
node.di_atime = utime;
node.di_mtime = utime;
node.di_ctime = utime;
#ifdef LOSTDIR
/*
* create the lost+found directory
*/
if (Oflag) {
(void)makedir((struct direct *)olost_found_dir, 2);
for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
memmove(&buf[i], &olost_found_dir[2],
DIRSIZ(0, &olost_found_dir[2]));
} else {
(void)makedir(lost_found_dir, 2);
for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
memmove(&buf[i], &lost_found_dir[2],
DIRSIZ(0, &lost_found_dir[2]));
}
node.di_mode = IFDIR | UMASK;
node.di_nlink = 2;
node.di_size = sblock.fs_bsize;
node.di_db[0] = alloc(node.di_size, node.di_mode);
node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
iput(&node, LOSTFOUNDINO);
#endif
/*
* create the root directory
*/
if (mfs)
node.di_mode = IFDIR | 01777;
else
node.di_mode = IFDIR | UMASK;
node.di_nlink = PREDEFDIR;
if (Oflag)
node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
else
node.di_size = makedir(root_dir, PREDEFDIR);
node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
iput(&node, ROOTINO);
}
/*
* construct a set of directory entries in "buf".
* return size of directory.
*/
makedir(protodir, entries)
register struct direct *protodir;
int entries;
{
char *cp;
int i, spcleft;
spcleft = DIRBLKSIZ;
for (cp = buf, i = 0; i < entries - 1; i++) {
protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
memmove(cp, &protodir[i], protodir[i].d_reclen);
cp += protodir[i].d_reclen;
spcleft -= protodir[i].d_reclen;
}
protodir[i].d_reclen = spcleft;
memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
return (DIRBLKSIZ);
}
/*
* allocate a block or frag
*/
daddr_t
alloc(size, mode)
int size;
int mode;
{
int i, frag;
daddr_t d, blkno;
rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
(char *)&acg);
if (acg.cg_magic != CG_MAGIC) {
printf("cg 0: bad magic number\n");
return (0);
}
if (acg.cg_cs.cs_nbfree == 0) {
printf("first cylinder group ran out of space\n");
return (0);
}
for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
goto goth;
printf("internal error: can't find block in cyl 0\n");
return (0);
goth:
blkno = fragstoblks(&sblock, d);
clrblock(&sblock, cg_blksfree(&acg), blkno);
if (sblock.fs_contigsumsize > 0)
clrbit(cg_clustersfree(&acg), blkno);
acg.cg_cs.cs_nbfree--;
sblock.fs_cstotal.cs_nbfree--;
fscs[0].cs_nbfree--;
if (mode & IFDIR) {
acg.cg_cs.cs_ndir++;
sblock.fs_cstotal.cs_ndir++;
fscs[0].cs_ndir++;
}
cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
if (size != sblock.fs_bsize) {
frag = howmany(size, sblock.fs_fsize);
fscs[0].cs_nffree += sblock.fs_frag - frag;
sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
acg.cg_frsum[sblock.fs_frag - frag]++;
for (i = frag; i < sblock.fs_frag; i++)
setbit(cg_blksfree(&acg), d + i);
}
wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
(char *)&acg);
return (d);
}
/*
* Calculate number of inodes per group.
*/
long
calcipg(cpg, bpcg, usedbp)
long cpg;
long bpcg;
off_t *usedbp;
{
int i;
long ipg, new_ipg, ncg, ncyl;
off_t usedb;
/*
* Prepare to scale by fssize / (number of sectors in cylinder groups).
* Note that fssize is still in sectors, not filesystem blocks.
*/
ncyl = howmany(fssize, secpercyl);
ncg = howmany(ncyl, cpg);
/*
* Iterate a few times to allow for ipg depending on itself.
*/
ipg = 0;
for (i = 0; i < 10; i++) {
usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
* NSPF(&sblock) * (off_t)sectorsize;
new_ipg = (cpg * (quad_t)bpcg - usedb) / density * fssize
/ ncg / secpercyl / cpg;
new_ipg = roundup(new_ipg, INOPB(&sblock));
if (new_ipg == ipg)
break;
ipg = new_ipg;
}
*usedbp = usedb;
return (ipg);
}
/*
* Allocate an inode on the disk
*/
iput(ip, ino)
register struct dinode *ip;
register ino_t ino;
{
struct dinode buf[MAXINOPB];
daddr_t d;
int c;
#ifdef FSIRAND
ip->di_gen = random();
#endif
c = ino_to_cg(&sblock, ino);
rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
(char *)&acg);
if (acg.cg_magic != CG_MAGIC) {
printf("cg 0: bad magic number\n");
exit(31);
}
acg.cg_cs.cs_nifree--;
setbit(cg_inosused(&acg), ino);
wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
(char *)&acg);
sblock.fs_cstotal.cs_nifree--;
fscs[0].cs_nifree--;
if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
printf("fsinit: inode value out of range (%d).\n", ino);
exit(32);
}
d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
rdfs(d, sblock.fs_bsize, buf);
buf[ino_to_fsbo(&sblock, ino)] = *ip;
wtfs(d, sblock.fs_bsize, buf);
}
/*
* Notify parent process that the filesystem has created itself successfully.
*/
void
started()
{
exit(0);
}
#ifdef STANDALONE
/*
* Replace libc function with one suited to our needs.
*/
caddr_t
malloc(size)
register u_long size;
{
char *base, *i;
static u_long pgsz;
struct rlimit rlp;
if (pgsz == 0) {
base = sbrk(0);
pgsz = getpagesize() - 1;
i = (char *)((u_long)(base + pgsz) &~ pgsz);
base = sbrk(i - base);
if (getrlimit(RLIMIT_DATA, &rlp) < 0)
perror("getrlimit");
rlp.rlim_cur = rlp.rlim_max;
if (setrlimit(RLIMIT_DATA, &rlp) < 0)
perror("setrlimit");
memleft = rlp.rlim_max - (u_long)base;
}
size = (size + pgsz) &~ pgsz;
if (size > memleft)
size = memleft;
memleft -= size;
if (size == 0)
return (0);
return ((caddr_t)sbrk(size));
}
/*
* Replace libc function with one suited to our needs.
*/
caddr_t
realloc(ptr, size)
char *ptr;
u_long size;
{
void *p;
if ((p = malloc(size)) == NULL)
return (NULL);
memmove(p, ptr, size);
free(ptr);
return (p);
}
/*
* Replace libc function with one suited to our needs.
*/
char *
calloc(size, numelm)
u_long size, numelm;
{
caddr_t base;
size *= numelm;
base = malloc(size);
memset(base, 0, size);
return (base);
}
/*
* Replace libc function with one suited to our needs.
*/
free(ptr)
char *ptr;
{
/* do not worry about it for now */
}
#else /* !STANDALONE */
raise_data_limit()
{
struct rlimit rlp;
if (getrlimit(RLIMIT_DATA, &rlp) < 0)
perror("getrlimit");
rlp.rlim_cur = rlp.rlim_max;
if (setrlimit(RLIMIT_DATA, &rlp) < 0)
perror("setrlimit");
}
get_memleft()
{
char *base;
static u_long pgsz, i;
struct rlimit rlp;
base = sbrk(0);
pgsz = getpagesize() - 1;
i = ((u_long)(base + pgsz) &~ pgsz);
if (getrlimit(RLIMIT_DATA, &rlp) < 0)
perror("getrlimit");
memleft = rlp.rlim_cur - (u_long)base - i;
}
#endif /* STANDALONE */
/*
* read a block from the file system
*/
rdfs(bno, size, bf)
daddr_t bno;
int size;
char *bf;
{
int n;
if (mfs) {
memmove(bf, membase + bno * sectorsize, size);
return;
}
if (lseek(fsi, (off_t)bno * sectorsize, 0) < 0) {
printf("seek error: %ld\n", bno);
perror("rdfs");
exit(33);
}
n = read(fsi, bf, size);
if (n != size) {
printf("read error: %ld\n", bno);
perror("rdfs");
exit(34);
}
}
/*
* write a block to the file system
*/
wtfs(bno, size, bf)
daddr_t bno;
int size;
char *bf;
{
int n;
if (mfs) {
memmove(membase + bno * sectorsize, bf, size);
return;
}
if (Nflag)
return;
if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) {
printf("seek error: %ld\n", bno);
perror("wtfs");
exit(35);
}
n = write(fso, bf, size);
if (n != size) {
printf("write error: %ld\n", bno);
perror("wtfs");
exit(36);
}
}
/*
* check if a block is available
*/
isblock(fs, cp, h)
struct fs *fs;
unsigned char *cp;
int h;
{
unsigned char mask;
switch (fs->fs_frag) {
case 8:
return (cp[h] == 0xff);
case 4:
mask = 0x0f << ((h & 0x1) << 2);
return ((cp[h >> 1] & mask) == mask);
case 2:
mask = 0x03 << ((h & 0x3) << 1);
return ((cp[h >> 2] & mask) == mask);
case 1:
mask = 0x01 << (h & 0x7);
return ((cp[h >> 3] & mask) == mask);
default:
#ifdef STANDALONE
printf("isblock bad fs_frag %d\n", fs->fs_frag);
#else
fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
#endif
return (0);
}
}
/*
* take a block out of the map
*/
clrblock(fs, cp, h)
struct fs *fs;
unsigned char *cp;
int h;
{
switch ((fs)->fs_frag) {
case 8:
cp[h] = 0;
return;
case 4:
cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
return;
case 2:
cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
return;
case 1:
cp[h >> 3] &= ~(0x01 << (h & 0x7));
return;
default:
#ifdef STANDALONE
printf("clrblock bad fs_frag %d\n", fs->fs_frag);
#else
fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
#endif
return;
}
}
/*
* put a block into the map
*/
setblock(fs, cp, h)
struct fs *fs;
unsigned char *cp;
int h;
{
switch (fs->fs_frag) {
case 8:
cp[h] = 0xff;
return;
case 4:
cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
return;
case 2:
cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
return;
case 1:
cp[h >> 3] |= (0x01 << (h & 0x7));
return;
default:
#ifdef STANDALONE
printf("setblock bad fs_frag %d\n", fs->fs_frag);
#else
fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
#endif
return;
}
}
/*
* Determine the number of characters in a
* single line.
*/
static int
charsperline()
{
int columns;
char *cp;
struct winsize ws;
extern char *getenv();
columns = 0;
if (ioctl(0, TIOCGWINSZ, &ws) != -1)
columns = ws.ws_col;
if (columns == 0 && (cp = getenv("COLUMNS")))
columns = atoi(cp);
if (columns == 0)
columns = 80; /* last resort */
return columns;
}