mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-22 11:17:19 +00:00
3a8617a83f
-- Begin comments from J.T. Conklin: The most significant improvement is the addition of "float" versions of the math functions that take float arguments, return floats, and do all operations in floating point. This doesn't help (performance) much on the i386, but they are still nice to have. The float versions were orginally done by Cygnus' Ian Taylor when fdlibm was integrated into the libm we support for embedded systems. I gave Ian a copy of my libm as a starting point since I had already fixed a lot of bugs & problems in Sun's original code. After he was done, I cleaned it up a bit and integrated the changes back into my libm. -- End comments Reviewed by: jkh Submitted by: jtc
77 lines
1.9 KiB
C
77 lines
1.9 KiB
C
/* @(#)s_tan.c 5.1 93/09/24 */
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
#ifndef lint
|
|
static char rcsid[] = "$Id: s_tan.c,v 1.5 1994/08/18 23:10:19 jtc Exp $";
|
|
#endif
|
|
|
|
/* tan(x)
|
|
* Return tangent function of x.
|
|
*
|
|
* kernel function:
|
|
* __kernel_tan ... tangent function on [-pi/4,pi/4]
|
|
* __ieee754_rem_pio2 ... argument reduction routine
|
|
*
|
|
* Method.
|
|
* Let S,C and T denote the sin, cos and tan respectively on
|
|
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
|
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
|
* We have
|
|
*
|
|
* n sin(x) cos(x) tan(x)
|
|
* ----------------------------------------------------------
|
|
* 0 S C T
|
|
* 1 C -S -1/T
|
|
* 2 -S -C T
|
|
* 3 -C S -1/T
|
|
* ----------------------------------------------------------
|
|
*
|
|
* Special cases:
|
|
* Let trig be any of sin, cos, or tan.
|
|
* trig(+-INF) is NaN, with signals;
|
|
* trig(NaN) is that NaN;
|
|
*
|
|
* Accuracy:
|
|
* TRIG(x) returns trig(x) nearly rounded
|
|
*/
|
|
|
|
#include "math.h"
|
|
#include "math_private.h"
|
|
|
|
#ifdef __STDC__
|
|
double tan(double x)
|
|
#else
|
|
double tan(x)
|
|
double x;
|
|
#endif
|
|
{
|
|
double y[2],z=0.0;
|
|
int32_t n, ix;
|
|
|
|
/* High word of x. */
|
|
GET_HIGH_WORD(ix,x);
|
|
|
|
/* |x| ~< pi/4 */
|
|
ix &= 0x7fffffff;
|
|
if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
|
|
|
|
/* tan(Inf or NaN) is NaN */
|
|
else if (ix>=0x7ff00000) return x-x; /* NaN */
|
|
|
|
/* argument reduction needed */
|
|
else {
|
|
n = __ieee754_rem_pio2(x,y);
|
|
return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even
|
|
-1 -- n odd */
|
|
}
|
|
}
|