1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-26 11:47:31 +00:00
freebsd/sys/netatm/atm_device.c
Andrew R. Reiter b6037a7953 - Turn the hea and hfa HARP storage pools into UMA zones and insert
the necesary uma_zcreate() and uma_zdestroy calls into module loading
  handler and the device attach handling.
- Change the related HARP netatm code to use UMA zone functions when
  dealing with the zones that were formerly the ATM interface (hea, hfa)
  storage pools.
- Have atm_physif_freenifs() now get passed an uma_zone_t so that we can
  properly free the allocated NIF's back to their zone.

This should be the last commit to remove any code that makes use of the
netatm storage pool api.  I will be removing the api code within the near
future.

Reviewed by:	mdodd
2002-06-14 16:59:38 +00:00

815 lines
16 KiB
C

/*
*
* ===================================
* HARP | Host ATM Research Platform
* ===================================
*
*
* This Host ATM Research Platform ("HARP") file (the "Software") is
* made available by Network Computing Services, Inc. ("NetworkCS")
* "AS IS". NetworkCS does not provide maintenance, improvements or
* support of any kind.
*
* NETWORKCS MAKES NO WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED,
* INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE, AS TO ANY ELEMENT OF THE
* SOFTWARE OR ANY SUPPORT PROVIDED IN CONNECTION WITH THIS SOFTWARE.
* In no event shall NetworkCS be responsible for any damages, including
* but not limited to consequential damages, arising from or relating to
* any use of the Software or related support.
*
* Copyright 1994-1998 Network Computing Services, Inc.
*
* Copies of this Software may be made, however, the above copyright
* notice must be reproduced on all copies.
*
* @(#) $FreeBSD$
*
*/
/*
* Core ATM Services
* -----------------
*
* ATM device support functions
*
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/syslog.h>
#include <net/if.h>
#include <netatm/port.h>
#include <netatm/queue.h>
#include <netatm/atm.h>
#include <netatm/atm_sys.h>
#include <netatm/atm_sap.h>
#include <netatm/atm_cm.h>
#include <netatm/atm_if.h>
#include <netatm/atm_vc.h>
#include <netatm/atm_stack.h>
#include <netatm/atm_pcb.h>
#include <netatm/atm_var.h>
#ifndef lint
__RCSID("@(#) $FreeBSD$");
#endif
/*
* Private structures for managing allocated kernel memory resources
*
* For each allocation of kernel memory, one Mem_ent will be used.
* The Mem_ent structures will be allocated in blocks inside of a
* Mem_blk structure.
*/
#define MEM_NMEMENT 10 /* How many Mem_ent's in a Mem_blk */
struct mem_ent {
void *me_kaddr; /* Allocated memory address */
u_int me_ksize; /* Allocated memory length */
void *me_uaddr; /* Memory address returned to caller */
u_int me_flags; /* Flags (see below) */
};
typedef struct mem_ent Mem_ent;
/*
* Memory entry flags
*/
#define MEF_NONCACHE 1 /* Memory is noncacheable */
struct mem_blk {
struct mem_blk *mb_next; /* Next block in chain */
Mem_ent mb_mement[MEM_NMEMENT]; /* Allocated memory entries */
};
typedef struct mem_blk Mem_blk;
static Mem_blk *atm_mem_head = NULL;
static struct t_atm_cause atm_dev_cause = {
T_ATM_ITU_CODING,
T_ATM_LOC_USER,
T_ATM_CAUSE_VPCI_VCI_ASSIGNMENT_FAILURE,
{0, 0, 0, 0}
};
/*
* ATM Device Stack Instantiation
*
* Called at splnet.
*
* Arguments
* ssp pointer to array of stack definition pointers
* for connection
* ssp[0] points to upper layer's stack definition
* ssp[1] points to this layer's stack definition
* ssp[2] points to lower layer's stack definition
* cvcp pointer to connection vcc for this stack
*
* Returns
* 0 instantiation successful
* err instantiation failed - reason indicated
*
*/
int
atm_dev_inst(ssp, cvcp)
struct stack_defn **ssp;
Atm_connvc *cvcp;
{
Cmn_unit *cup = (Cmn_unit *)cvcp->cvc_attr.nif->nif_pif;
Cmn_vcc *cvp;
int err;
/*
* Check to see if device has been initialized
*/
if ((cup->cu_flags & CUF_INITED) == 0)
return ( EIO );
/*
* Validate lower SAP
*/
/*
* Device driver is the lowest layer - no need to validate
*/
/*
* Validate PVC vpi.vci
*/
if (cvcp->cvc_attr.called.addr.address_format == T_ATM_PVC_ADDR) {
/*
* Look through existing circuits - return error if found
*/
Atm_addr_pvc *pp;
pp = (Atm_addr_pvc *)cvcp->cvc_attr.called.addr.address;
if (atm_dev_vcc_find(cup, ATM_PVC_GET_VPI(pp),
ATM_PVC_GET_VCI(pp), 0))
return ( EADDRINUSE );
}
/*
* Validate our SAP type
*/
switch ((*(ssp+1))->sd_sap) {
case SAP_CPCS_AAL3_4:
case SAP_CPCS_AAL5:
case SAP_ATM:
break;
default:
return (EINVAL);
}
/*
* Allocate a VCC control block
*/
cvp = uma_zalloc(cup->cu_vcc_zone, M_WAITOK);
if (cvp == NULL)
return (ENOMEM);
cvp->cv_state = CVS_INST;
cvp->cv_toku = (*ssp)->sd_toku;
cvp->cv_upper = (*ssp)->sd_upper;
cvp->cv_connvc = cvcp;
/*
* Let device have a look at the connection request
*/
err = (*cup->cu_instvcc)(cup, cvp);
if (err) {
uma_zfree(cup->cu_vcc_zone, cvp);
return (err);
}
/*
* Looks good so far, so link in device VCC
*/
LINK2TAIL ( cvp, Cmn_vcc, cup->cu_vcc, cv_next );
/*
* Save my token
*/
(*++ssp)->sd_toku = cvp;
/*
* Pass instantiation down the stack
*/
/*
* No need - we're the lowest point.
*/
/* err = (*(ssp + 1))->sd_inst(ssp, cvcp); */
/*
* Save the lower layer's interface info
*/
/*
* No need - we're the lowest point
*/
/* cvp->cv_lower = (*++ssp)->sd_lower; */
/* cvp->cv_tok1 = (*ssp)->sd_toku; */
return (0);
}
/*
* ATM Device Stack Command Handler
*
* Arguments
* cmd stack command code
* tok session token (Cmn_vcc)
* arg1 command specific argument
* arg2 command specific argument
*
* Returns
* none
*
*/
/*ARGSUSED*/
void
atm_dev_lower(cmd, tok, arg1, arg2)
int cmd;
void *tok;
int arg1;
int arg2;
{
Cmn_vcc *cvp = (Cmn_vcc *)tok;
Atm_connvc *cvcp = cvp->cv_connvc;
Cmn_unit *cup = (Cmn_unit *)cvcp->cvc_attr.nif->nif_pif;
struct vccb *vcp;
u_int state;
int s;
switch ( cmd ) {
case CPCS_INIT:
/*
* Sanity check
*/
if ( cvp->cv_state != CVS_INST ) {
log ( LOG_ERR,
"atm_dev_lower: INIT: tok=%p, state=%d\n",
tok, cvp->cv_state );
break;
}
vcp = cvp->cv_connvc->cvc_vcc;
/*
* Validate SVC vpi.vci
*/
if ( vcp->vc_type & VCC_SVC ) {
if (atm_dev_vcc_find(cup, vcp->vc_vpi, vcp->vc_vci,
vcp->vc_type & (VCC_IN | VCC_OUT))
!= cvp){
log ( LOG_ERR,
"atm_dev_lower: dup SVC (%d,%d) tok=%p\n",
vcp->vc_vpi, vcp->vc_vci, tok );
atm_cm_abort(cvp->cv_connvc, &atm_dev_cause);
break;
}
}
/*
* Tell the device to open the VCC
*/
cvp->cv_state = CVS_INITED;
s = splimp();
if ((*cup->cu_openvcc)(cup, cvp)) {
atm_cm_abort(cvp->cv_connvc, &atm_dev_cause);
(void) splx(s);
break;
}
(void) splx(s);
break;
case CPCS_TERM: {
KBuffer *m, *prev, *next;
int *ip;
s = splimp();
/*
* Disconnect the VCC - ignore return code
*/
if ((cvp->cv_state == CVS_INITED) ||
(cvp->cv_state == CVS_ACTIVE)) {
(void) (*cup->cu_closevcc)(cup, cvp);
}
cvp->cv_state = CVS_TERM;
/*
* Remove from interface list
*/
UNLINK ( cvp, Cmn_vcc, cup->cu_vcc, cv_next );
/*
* Free any buffers from this VCC on the ATM interrupt queue
*/
prev = NULL;
IF_LOCK(&atm_intrq);
for (m = atm_intrq.ifq_head; m; m = next) {
next = KB_QNEXT(m);
/*
* See if this entry is for the terminating VCC
*/
KB_DATASTART(m, ip, int *);
ip++;
if (*ip == (int)cvp) {
/*
* Yep, so dequeue the entry
*/
if (prev == NULL)
atm_intrq.ifq_head = next;
else
KB_QNEXT(prev) = next;
if (next == NULL)
atm_intrq.ifq_tail = prev;
atm_intrq.ifq_len--;
/*
* Free the unwanted buffers
*/
KB_FREEALL(m);
} else {
prev = m;
}
}
IF_UNLOCK(&atm_intrq);
(void) splx(s);
/*
* Free VCC resources
*/
uma_zfree(cup->cu_vcc_zone, cvp);
break;
}
case CPCS_UNITDATA_INV:
/*
* Sanity check
*
* Use temp state variable since we dont want to lock out
* interrupts, but initial VC activation interrupt may
* happen here, changing state somewhere in the middle.
*/
state = cvp->cv_state;
if ((state != CVS_ACTIVE) &&
(state != CVS_INITED)) {
log ( LOG_ERR,
"atm_dev_lower: UNITDATA: tok=%p, state=%d\n",
tok, state );
KB_FREEALL((KBuffer *)arg1);
break;
}
/*
* Hand the data off to the device
*/
(*cup->cu_output)(cup, cvp, (KBuffer *)arg1);
break;
case CPCS_UABORT_INV:
log ( LOG_ERR,
"atm_dev_lower: unimplemented stack cmd 0x%x, tok=%p\n",
cmd, tok );
break;
default:
log ( LOG_ERR,
"atm_dev_lower: unknown stack cmd 0x%x, tok=%p\n",
cmd, tok );
}
return;
}
/*
* Allocate kernel memory block
*
* This function will allocate a kernel memory block of the type specified
* in the flags parameter. The returned address will point to a memory
* block of the requested size and alignment. The memory block will also
* be zeroed. The alloc/free functions will manage/mask both the OS-specific
* kernel memory management requirements and the bookkeeping required to
* deal with data alignment issues.
*
* This function should not be called from interrupt level.
*
* Arguments:
* size size of memory block to allocate
* align data alignment requirement
* flags allocation flags (ATM_DEV_*)
*
* Returns:
* uaddr pointer to aligned memory block
* NULL unable to allocate memory
*
*/
void *
atm_dev_alloc(size, align, flags)
u_int size;
u_int align;
u_int flags;
{
Mem_blk *mbp;
Mem_ent *mep;
u_int kalign, ksize;
int s, i;
s = splimp();
/*
* Find a free Mem_ent
*/
mep = NULL;
for (mbp = atm_mem_head; mbp && mep == NULL; mbp = mbp->mb_next) {
for (i = 0; i < MEM_NMEMENT; i++) {
if (mbp->mb_mement[i].me_uaddr == NULL) {
mep = &mbp->mb_mement[i];
break;
}
}
}
/*
* If there are no free Mem_ent's, then allocate a new Mem_blk
* and link it into the chain
*/
if (mep == NULL) {
mbp = malloc(sizeof(Mem_blk), M_DEVBUF, M_NOWAIT|M_ZERO);
if (mbp == NULL) {
log(LOG_ERR, "atm_dev_alloc: Mem_blk failure\n");
(void) splx(s);
return (NULL);
}
mbp->mb_next = atm_mem_head;
atm_mem_head = mbp;
mep = mbp->mb_mement;
}
/*
* Now we need to get the kernel's allocation alignment minimum
*
* This is obviously very OS-specific stuff
*/
kalign = MINALLOCSIZE;
/*
* Figure out how much memory we must allocate to satify the
* user's size and alignment needs
*/
if (align <= kalign)
ksize = size;
else
ksize = size + align - kalign;
/*
* Finally, go get the memory
*/
if (flags & ATM_DEV_NONCACHE) {
mep->me_kaddr = malloc(ksize, M_DEVBUF, M_NOWAIT);
} else {
mep->me_kaddr = malloc(ksize, M_DEVBUF, M_NOWAIT);
}
if (mep->me_kaddr == NULL) {
log(LOG_ERR, "atm_dev_alloc: %skernel memory unavailable\n",
(flags & ATM_DEV_NONCACHE) ? "non-cacheable " : "");
(void) splx(s);
return (NULL);
}
/*
* Calculate correct alignment address to pass back to user
*/
mep->me_uaddr = (void *) roundup((u_int)mep->me_kaddr, align);
mep->me_ksize = ksize;
mep->me_flags = flags;
/*
* Clear memory for user
*/
bzero(mep->me_uaddr, size);
ATM_DEBUG4("atm_dev_alloc: size=%d, align=%d, flags=%d, uaddr=%p\n",
size, align, flags, mep->me_uaddr);
(void) splx(s);
return (mep->me_uaddr);
}
/*
* Free kernel memory block
*
* This function will free a kernel memory block previously allocated by
* the atm_dev_alloc function.
*
* This function should not be called from interrupt level.
*
* Arguments:
* uaddr pointer to allocated aligned memory block
*
* Returns:
* none
*
*/
void
atm_dev_free(uaddr)
volatile void *uaddr;
{
Mem_blk *mbp;
Mem_ent *mep;
int s, i;
ATM_DEBUG1("atm_dev_free: uaddr=%p\n", uaddr);
s = splimp();
/*
* Protect ourselves...
*/
if (uaddr == NULL)
panic("atm_dev_free: trying to free null address");
/*
* Find our associated entry
*/
mep = NULL;
for (mbp = atm_mem_head; mbp && mep == NULL; mbp = mbp->mb_next) {
for (i = 0; i < MEM_NMEMENT; i++) {
if (mbp->mb_mement[i].me_uaddr == uaddr) {
mep = &mbp->mb_mement[i];
break;
}
}
}
/*
* If we didn't find our entry, then unceremoniously let the caller
* know they screwed up (it certainly couldn't be a bug here...)
*/
if (mep == NULL)
panic("atm_dev_free: trying to free unknown address");
/*
* Give the memory space back to the kernel
*/
if (mep->me_flags & ATM_DEV_NONCACHE) {
free(mep->me_kaddr, M_DEVBUF);
} else {
free(mep->me_kaddr, M_DEVBUF);
}
/*
* Free our entry
*/
mep->me_uaddr = NULL;
(void) splx(s);
return;
}
/*
* Compress buffer chain
*
* This function will compress a supplied buffer chain into a minimum number
* of kernel buffers. Typically, this function will be used because the
* number of buffers in an output buffer chain is too large for a device's
* DMA capabilities. This should only be called as a last resort, since
* all the data copying will surely kill any hopes of decent performance.
*
* Arguments:
* m pointer to source buffer chain
*
* Returns:
* n pointer to compressed buffer chain
*
*/
KBuffer *
atm_dev_compress(m)
KBuffer *m;
{
KBuffer *n, *n0, **np;
int len, space;
caddr_t src, dst;
n = n0 = NULL;
np = &n0;
dst = NULL;
space = 0;
/*
* Copy each source buffer into compressed chain
*/
while (m) {
if (space == 0) {
/*
* Allocate another buffer for compressed chain
*/
KB_ALLOCEXT(n, ATM_DEV_CMPR_LG, KB_F_NOWAIT, KB_T_DATA);
if (n) {
space = ATM_DEV_CMPR_LG;
} else {
KB_ALLOC(n, ATM_DEV_CMPR_SM, KB_F_NOWAIT,
KB_T_DATA);
if (n) {
space = ATM_DEV_CMPR_SM;
} else {
/*
* Unable to get any new buffers, so
* just return the partially compressed
* chain and hope...
*/
*np = m;
break;
}
}
KB_HEADSET(n, 0);
KB_LEN(n) = 0;
KB_BFRSTART(n, dst, caddr_t);
*np = n;
np = &KB_NEXT(n);
}
/*
* Copy what we can from source buffer
*/
len = MIN(space, KB_LEN(m));
KB_DATASTART(m, src, caddr_t);
bcopy(src, dst, len);
/*
* Adjust for copied data
*/
dst += len;
space -= len;
KB_HEADADJ(m, -len);
KB_TAILADJ(n, len);
/*
* If we've exhausted our current source buffer, free it
* and move to the next one
*/
if (KB_LEN(m) == 0) {
KB_FREEONE(m, m);
}
}
return (n0);
}
/*
* Locate VCC entry
*
* This function will return the VCC entry for a specified interface and
* VPI/VCI value.
*
* Arguments:
* cup pointer to interface unit structure
* vpi VPI value
* vci VCI value
* type VCC type
*
* Returns:
* vcp pointer to located VCC entry matching
* NULL no VCC found
*
*/
Cmn_vcc *
atm_dev_vcc_find(cup, vpi, vci, type)
Cmn_unit *cup;
u_int vpi;
u_int vci;
u_int type;
{
Cmn_vcc *cvp;
int s = splnet();
/*
* Go find VCC
*
* (Probably should stick in a hash table some time)
*/
for (cvp = cup->cu_vcc; cvp; cvp = cvp->cv_next) {
struct vccb *vcp;
vcp = cvp->cv_connvc->cvc_vcc;
if ((vcp->vc_vci == vci) && (vcp->vc_vpi == vpi) &&
((vcp->vc_type & type) == type))
break;
}
(void) splx(s);
return (cvp);
}
#ifdef notdef
/*
* Module unloading notification
*
* This function must be called just prior to unloading the module from
* memory. All allocated memory will be freed here and anything else that
* needs cleaning up.
*
* Arguments:
* none
*
* Returns:
* none
*
*/
void
atm_unload()
{
Mem_blk *mbp;
Mem_ent *mep;
int s, i;
s = splimp();
/*
* Free up all of our memory management storage
*/
while (mbp = atm_mem_head) {
/*
* Make sure users have freed up all of their memory
*/
for (i = 0; i < MEM_NMEMENT; i++) {
if (mbp->mb_mement[i].me_uaddr != NULL) {
panic("atm_unload: unfreed memory");
}
}
atm_mem_head = mbp->mb_next;
/*
* Hand this block back to the kernel
*/
free((caddr_t)mbp, M_DEVBUF);
}
(void) splx(s);
return;
}
#endif /* notdef */
/*
* Print a PDU
*
* Arguments:
* cup pointer to device unit
* cvp pointer to VCC control block
* m pointer to pdu buffer chain
* msg pointer to message string
*
* Returns:
* none
*
*/
void
atm_dev_pdu_print(cup, cvp, m, msg)
Cmn_unit *cup;
Cmn_vcc *cvp;
KBuffer *m;
char *msg;
{
char buf[128];
snprintf(buf, sizeof(buf), "%s vcc=(%d,%d)", msg,
cvp->cv_connvc->cvc_vcc->vc_vpi,
cvp->cv_connvc->cvc_vcc->vc_vci);
atm_pdu_print(m, buf);
}