mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-29 12:03:03 +00:00
3322 lines
98 KiB
C
3322 lines
98 KiB
C
/* Handle initialization things in C++.
|
||
Copyright (C) 1987, 89, 92-98, 1999 Free Software Foundation, Inc.
|
||
Contributed by Michael Tiemann (tiemann@cygnus.com)
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
/* High-level class interface. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "tree.h"
|
||
#include "rtl.h"
|
||
#include "cp-tree.h"
|
||
#include "flags.h"
|
||
#include "output.h"
|
||
#include "except.h"
|
||
#include "expr.h"
|
||
#include "toplev.h"
|
||
|
||
/* In C++, structures with well-defined constructors are initialized by
|
||
those constructors, unasked. CURRENT_BASE_INIT_LIST
|
||
holds a list of stmts for a BASE_INIT term in the grammar.
|
||
This list has one element for each base class which must be
|
||
initialized. The list elements are [basename, init], with
|
||
type basetype. This allows the possibly anachronistic form
|
||
(assuming d : a, b, c) "d (int a) : c(a+5), b (a-4), a (a+3)"
|
||
where each successive term can be handed down the constructor
|
||
line. Perhaps this was not intended. */
|
||
tree current_base_init_list, current_member_init_list;
|
||
|
||
static void expand_aggr_vbase_init_1 PROTO((tree, tree, tree, tree));
|
||
static void construct_virtual_bases PROTO((tree, tree, tree, tree, tree));
|
||
static void expand_aggr_init_1 PROTO((tree, tree, tree, tree, int));
|
||
static void expand_default_init PROTO((tree, tree, tree, tree, int));
|
||
static tree build_vec_delete_1 PROTO((tree, tree, tree, tree, tree,
|
||
int));
|
||
static void perform_member_init PROTO((tree, tree, tree, int));
|
||
static void sort_base_init PROTO((tree, tree *, tree *));
|
||
static tree build_builtin_delete_call PROTO((tree));
|
||
static int member_init_ok_or_else PROTO((tree, tree, const char *));
|
||
static void expand_virtual_init PROTO((tree, tree));
|
||
static tree sort_member_init PROTO((tree));
|
||
static tree initializing_context PROTO((tree));
|
||
static void expand_vec_init_try_block PROTO((tree));
|
||
static void expand_vec_init_catch_clause PROTO((tree, tree, tree, tree));
|
||
static tree build_java_class_ref PROTO((tree));
|
||
static void expand_cleanup_for_base PROTO((tree, tree));
|
||
|
||
/* Cache the identifier nodes for the magic field of a new cookie. */
|
||
static tree nc_nelts_field_id;
|
||
|
||
static tree minus_one;
|
||
|
||
/* Set up local variable for this file. MUST BE CALLED AFTER
|
||
INIT_DECL_PROCESSING. */
|
||
|
||
static tree BI_header_type, BI_header_size;
|
||
|
||
void init_init_processing ()
|
||
{
|
||
tree fields[1];
|
||
|
||
minus_one = build_int_2 (-1, -1);
|
||
|
||
/* Define the structure that holds header information for
|
||
arrays allocated via operator new. */
|
||
BI_header_type = make_lang_type (RECORD_TYPE);
|
||
nc_nelts_field_id = get_identifier ("nelts");
|
||
fields[0] = build_lang_field_decl (FIELD_DECL, nc_nelts_field_id, sizetype);
|
||
finish_builtin_type (BI_header_type, "__new_cookie", fields,
|
||
0, double_type_node);
|
||
BI_header_size = size_in_bytes (BI_header_type);
|
||
}
|
||
|
||
/* Subroutine of emit_base_init. For BINFO, initialize all the
|
||
virtual function table pointers, except those that come from
|
||
virtual base classes. Initialize binfo's vtable pointer, if
|
||
INIT_SELF is true. CAN_ELIDE is true when we know that all virtual
|
||
function table pointers in all bases have been initialized already,
|
||
probably because their constructors have just be run. ADDR is the
|
||
pointer to the object whos vtables we are going to initialize.
|
||
|
||
REAL_BINFO is usually the same as BINFO, except when addr is not of
|
||
pointer to the type of the real derived type that we want to
|
||
initialize for. This is the case when addr is a pointer to a sub
|
||
object of a complete object, and we only want to do part of the
|
||
complete object's initialization of vtable pointers. This is done
|
||
for all virtual table pointers in virtual base classes. REAL_BINFO
|
||
is used to find the BINFO_VTABLE that we initialize with. BINFO is
|
||
used for conversions of addr to subobjects.
|
||
|
||
BINFO_TYPE (real_binfo) must be BINFO_TYPE (binfo).
|
||
|
||
Relies upon binfo being inside TYPE_BINFO (TREE_TYPE (TREE_TYPE
|
||
(addr))). */
|
||
|
||
void
|
||
expand_direct_vtbls_init (real_binfo, binfo, init_self, can_elide, addr)
|
||
tree real_binfo, binfo, addr;
|
||
int init_self, can_elide;
|
||
{
|
||
tree real_binfos = BINFO_BASETYPES (real_binfo);
|
||
tree binfos = BINFO_BASETYPES (binfo);
|
||
int i, n_baselinks = real_binfos ? TREE_VEC_LENGTH (real_binfos) : 0;
|
||
|
||
for (i = 0; i < n_baselinks; i++)
|
||
{
|
||
tree real_base_binfo = TREE_VEC_ELT (real_binfos, i);
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
int is_not_base_vtable
|
||
= i != CLASSTYPE_VFIELD_PARENT (BINFO_TYPE (real_binfo));
|
||
if (! TREE_VIA_VIRTUAL (real_base_binfo))
|
||
expand_direct_vtbls_init (real_base_binfo, base_binfo,
|
||
is_not_base_vtable, can_elide, addr);
|
||
}
|
||
#if 0
|
||
/* Before turning this on, make sure it is correct. */
|
||
if (can_elide && ! BINFO_MODIFIED (binfo))
|
||
return;
|
||
#endif
|
||
/* Should we use something besides CLASSTYPE_VFIELDS? */
|
||
if (init_self && CLASSTYPE_VFIELDS (BINFO_TYPE (real_binfo)))
|
||
{
|
||
tree base_ptr = convert_pointer_to_real (binfo, addr);
|
||
expand_virtual_init (real_binfo, base_ptr);
|
||
}
|
||
}
|
||
|
||
/* 348 - 351 */
|
||
/* Subroutine of emit_base_init. */
|
||
|
||
static void
|
||
perform_member_init (member, name, init, explicit)
|
||
tree member, name, init;
|
||
int explicit;
|
||
{
|
||
tree decl;
|
||
tree type = TREE_TYPE (member);
|
||
|
||
expand_start_target_temps ();
|
||
|
||
if (TYPE_NEEDS_CONSTRUCTING (type)
|
||
|| (init && TYPE_HAS_CONSTRUCTOR (type)))
|
||
{
|
||
/* Since `init' is already a TREE_LIST on the current_member_init_list,
|
||
only build it into one if we aren't already a list. */
|
||
if (init != NULL_TREE && TREE_CODE (init) != TREE_LIST)
|
||
init = build_expr_list (NULL_TREE, init);
|
||
|
||
decl = build_component_ref (current_class_ref, name, NULL_TREE, explicit);
|
||
|
||
if (explicit
|
||
&& TREE_CODE (type) == ARRAY_TYPE
|
||
&& init != NULL_TREE
|
||
&& TREE_CHAIN (init) == NULL_TREE
|
||
&& TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
|
||
{
|
||
/* Initialization of one array from another. */
|
||
expand_vec_init (TREE_OPERAND (decl, 1), decl,
|
||
array_type_nelts (type), TREE_VALUE (init), 1);
|
||
}
|
||
else
|
||
expand_aggr_init (decl, init, 0);
|
||
}
|
||
else
|
||
{
|
||
if (init == NULL_TREE)
|
||
{
|
||
if (explicit)
|
||
{
|
||
/* default-initialization. */
|
||
if (AGGREGATE_TYPE_P (type))
|
||
init = build (CONSTRUCTOR, type, NULL_TREE, NULL_TREE);
|
||
else if (TREE_CODE (type) == REFERENCE_TYPE)
|
||
{
|
||
cp_error ("default-initialization of `%#D', which has reference type",
|
||
member);
|
||
init = error_mark_node;
|
||
}
|
||
else
|
||
init = integer_zero_node;
|
||
}
|
||
/* member traversal: note it leaves init NULL */
|
||
else if (TREE_CODE (TREE_TYPE (member)) == REFERENCE_TYPE)
|
||
cp_pedwarn ("uninitialized reference member `%D'", member);
|
||
}
|
||
else if (TREE_CODE (init) == TREE_LIST)
|
||
{
|
||
/* There was an explicit member initialization. Do some
|
||
work in that case. */
|
||
if (TREE_CHAIN (init))
|
||
{
|
||
warning ("initializer list treated as compound expression");
|
||
init = build_compound_expr (init);
|
||
}
|
||
else
|
||
init = TREE_VALUE (init);
|
||
}
|
||
|
||
/* We only build this with a null init if we got it from the
|
||
current_member_init_list. */
|
||
if (init || explicit)
|
||
{
|
||
decl = build_component_ref (current_class_ref, name, NULL_TREE,
|
||
explicit);
|
||
expand_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
|
||
}
|
||
}
|
||
|
||
expand_end_target_temps ();
|
||
free_temp_slots ();
|
||
|
||
if (TYPE_NEEDS_DESTRUCTOR (type))
|
||
{
|
||
tree expr;
|
||
|
||
/* All cleanups must be on the function_obstack. */
|
||
push_obstacks_nochange ();
|
||
resume_temporary_allocation ();
|
||
|
||
expr = build_component_ref (current_class_ref, name, NULL_TREE,
|
||
explicit);
|
||
expr = build_delete (type, expr, integer_zero_node,
|
||
LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
|
||
|
||
if (expr != error_mark_node)
|
||
add_partial_entry (expr);
|
||
|
||
pop_obstacks ();
|
||
}
|
||
}
|
||
|
||
extern int warn_reorder;
|
||
|
||
/* Subroutine of emit_member_init. */
|
||
|
||
static tree
|
||
sort_member_init (t)
|
||
tree t;
|
||
{
|
||
tree x, member, name, field;
|
||
tree init_list = NULL_TREE;
|
||
int last_pos = 0;
|
||
tree last_field = NULL_TREE;
|
||
|
||
for (member = TYPE_FIELDS (t); member ; member = TREE_CHAIN (member))
|
||
{
|
||
int pos;
|
||
|
||
/* member could be, for example, a CONST_DECL for an enumerated
|
||
tag; we don't want to try to initialize that, since it already
|
||
has a value. */
|
||
if (TREE_CODE (member) != FIELD_DECL || !DECL_NAME (member))
|
||
continue;
|
||
|
||
for (x = current_member_init_list, pos = 0; x; x = TREE_CHAIN (x), ++pos)
|
||
{
|
||
/* If we cleared this out, then pay no attention to it. */
|
||
if (TREE_PURPOSE (x) == NULL_TREE)
|
||
continue;
|
||
name = TREE_PURPOSE (x);
|
||
|
||
#if 0
|
||
/* This happens in templates, since the IDENTIFIER is replaced
|
||
with the COMPONENT_REF in tsubst_expr. */
|
||
field = (TREE_CODE (name) == COMPONENT_REF
|
||
? TREE_OPERAND (name, 1) : IDENTIFIER_CLASS_VALUE (name));
|
||
#else
|
||
/* Let's find out when this happens. */
|
||
my_friendly_assert (TREE_CODE (name) != COMPONENT_REF, 348);
|
||
field = IDENTIFIER_CLASS_VALUE (name);
|
||
#endif
|
||
|
||
/* If one member shadows another, get the outermost one. */
|
||
if (TREE_CODE (field) == TREE_LIST)
|
||
field = TREE_VALUE (field);
|
||
|
||
if (field == member)
|
||
{
|
||
if (warn_reorder)
|
||
{
|
||
if (pos < last_pos)
|
||
{
|
||
cp_warning_at ("member initializers for `%#D'", last_field);
|
||
cp_warning_at (" and `%#D'", field);
|
||
warning (" will be re-ordered to match declaration order");
|
||
}
|
||
last_pos = pos;
|
||
last_field = field;
|
||
}
|
||
|
||
/* Make sure we won't try to work on this init again. */
|
||
TREE_PURPOSE (x) = NULL_TREE;
|
||
x = build_tree_list (name, TREE_VALUE (x));
|
||
goto got_it;
|
||
}
|
||
}
|
||
|
||
/* If we didn't find MEMBER in the list, create a dummy entry
|
||
so the two lists (INIT_LIST and the list of members) will be
|
||
symmetrical. */
|
||
x = build_tree_list (NULL_TREE, NULL_TREE);
|
||
got_it:
|
||
init_list = chainon (init_list, x);
|
||
}
|
||
|
||
/* Initializers for base members go at the end. */
|
||
for (x = current_member_init_list ; x ; x = TREE_CHAIN (x))
|
||
{
|
||
name = TREE_PURPOSE (x);
|
||
if (name)
|
||
{
|
||
if (purpose_member (name, init_list))
|
||
{
|
||
cp_error ("multiple initializations given for member `%D'",
|
||
IDENTIFIER_CLASS_VALUE (name));
|
||
continue;
|
||
}
|
||
|
||
init_list = chainon (init_list,
|
||
build_tree_list (name, TREE_VALUE (x)));
|
||
TREE_PURPOSE (x) = NULL_TREE;
|
||
}
|
||
}
|
||
|
||
return init_list;
|
||
}
|
||
|
||
static void
|
||
sort_base_init (t, rbase_ptr, vbase_ptr)
|
||
tree t, *rbase_ptr, *vbase_ptr;
|
||
{
|
||
tree binfos = BINFO_BASETYPES (TYPE_BINFO (t));
|
||
int n_baseclasses = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
|
||
int i;
|
||
tree x;
|
||
tree last;
|
||
|
||
/* For warn_reorder. */
|
||
int last_pos = 0;
|
||
tree last_base = NULL_TREE;
|
||
|
||
tree rbases = NULL_TREE;
|
||
tree vbases = NULL_TREE;
|
||
|
||
/* First walk through and splice out vbase and invalid initializers.
|
||
Also replace names with binfos. */
|
||
|
||
last = tree_cons (NULL_TREE, NULL_TREE, current_base_init_list);
|
||
for (x = TREE_CHAIN (last); x; x = TREE_CHAIN (x))
|
||
{
|
||
tree basetype = TREE_PURPOSE (x);
|
||
tree binfo = NULL_TREE;
|
||
|
||
if (basetype == NULL_TREE)
|
||
{
|
||
/* Initializer for single base class. Must not
|
||
use multiple inheritance or this is ambiguous. */
|
||
switch (n_baseclasses)
|
||
{
|
||
case 0:
|
||
cp_error ("`%T' does not have a base class to initialize",
|
||
current_class_type);
|
||
return;
|
||
case 1:
|
||
break;
|
||
default:
|
||
cp_error ("unnamed initializer ambiguous for `%T' which uses multiple inheritance",
|
||
current_class_type);
|
||
return;
|
||
}
|
||
binfo = TREE_VEC_ELT (binfos, 0);
|
||
}
|
||
else if (is_aggr_type (basetype, 1))
|
||
{
|
||
binfo = binfo_or_else (basetype, t);
|
||
if (binfo == NULL_TREE)
|
||
continue;
|
||
|
||
/* Virtual base classes are special cases. Their initializers
|
||
are recorded with this constructor, and they are used when
|
||
this constructor is the top-level constructor called. */
|
||
if (TREE_VIA_VIRTUAL (binfo))
|
||
{
|
||
tree v = CLASSTYPE_VBASECLASSES (t);
|
||
while (BINFO_TYPE (v) != BINFO_TYPE (binfo))
|
||
v = TREE_CHAIN (v);
|
||
|
||
vbases = tree_cons (v, TREE_VALUE (x), vbases);
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
/* Otherwise, if it is not an immediate base class, complain. */
|
||
for (i = n_baseclasses-1; i >= 0; i--)
|
||
if (BINFO_TYPE (binfo) == BINFO_TYPE (TREE_VEC_ELT (binfos, i)))
|
||
break;
|
||
if (i < 0)
|
||
{
|
||
cp_error ("`%T' is not an immediate base class of `%T'",
|
||
basetype, current_class_type);
|
||
continue;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
my_friendly_abort (365);
|
||
|
||
TREE_PURPOSE (x) = binfo;
|
||
TREE_CHAIN (last) = x;
|
||
last = x;
|
||
}
|
||
TREE_CHAIN (last) = NULL_TREE;
|
||
|
||
/* Now walk through our regular bases and make sure they're initialized. */
|
||
|
||
for (i = 0; i < n_baseclasses; ++i)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
int pos;
|
||
|
||
if (TREE_VIA_VIRTUAL (base_binfo))
|
||
continue;
|
||
|
||
for (x = current_base_init_list, pos = 0; x; x = TREE_CHAIN (x), ++pos)
|
||
{
|
||
tree binfo = TREE_PURPOSE (x);
|
||
|
||
if (binfo == NULL_TREE)
|
||
continue;
|
||
|
||
if (binfo == base_binfo)
|
||
{
|
||
if (warn_reorder)
|
||
{
|
||
if (pos < last_pos)
|
||
{
|
||
cp_warning_at ("base initializers for `%#T'", last_base);
|
||
cp_warning_at (" and `%#T'", BINFO_TYPE (binfo));
|
||
warning (" will be re-ordered to match inheritance order");
|
||
}
|
||
last_pos = pos;
|
||
last_base = BINFO_TYPE (binfo);
|
||
}
|
||
|
||
/* Make sure we won't try to work on this init again. */
|
||
TREE_PURPOSE (x) = NULL_TREE;
|
||
x = build_tree_list (binfo, TREE_VALUE (x));
|
||
goto got_it;
|
||
}
|
||
}
|
||
|
||
/* If we didn't find BASE_BINFO in the list, create a dummy entry
|
||
so the two lists (RBASES and the list of bases) will be
|
||
symmetrical. */
|
||
x = build_tree_list (NULL_TREE, NULL_TREE);
|
||
got_it:
|
||
rbases = chainon (rbases, x);
|
||
}
|
||
|
||
*rbase_ptr = rbases;
|
||
*vbase_ptr = vbases;
|
||
}
|
||
|
||
/* Perform whatever initializations have yet to be done on the base
|
||
class of the class variable. These actions are in the global
|
||
variable CURRENT_BASE_INIT_LIST. Such an action could be
|
||
NULL_TREE, meaning that the user has explicitly called the base
|
||
class constructor with no arguments.
|
||
|
||
If there is a need for a call to a constructor, we must surround
|
||
that call with a pushlevel/poplevel pair, since we are technically
|
||
at the PARM level of scope.
|
||
|
||
Argument IMMEDIATELY, if zero, forces a new sequence to be
|
||
generated to contain these new insns, so it can be emitted later.
|
||
This sequence is saved in the global variable BASE_INIT_EXPR.
|
||
Otherwise, the insns are emitted into the current sequence.
|
||
|
||
Note that emit_base_init does *not* initialize virtual base
|
||
classes. That is done specially, elsewhere. */
|
||
|
||
extern tree base_init_expr, rtl_expr_chain;
|
||
|
||
void
|
||
emit_base_init (t, immediately)
|
||
tree t;
|
||
int immediately;
|
||
{
|
||
tree member;
|
||
tree mem_init_list;
|
||
tree rbase_init_list, vbase_init_list;
|
||
tree t_binfo = TYPE_BINFO (t);
|
||
tree binfos = BINFO_BASETYPES (t_binfo);
|
||
int i, n_baseclasses = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
tree expr = NULL_TREE;
|
||
|
||
if (! immediately)
|
||
{
|
||
int momentary;
|
||
do_pending_stack_adjust ();
|
||
/* Make the RTL_EXPR node temporary, not momentary,
|
||
so that rtl_expr_chain doesn't become garbage. */
|
||
momentary = suspend_momentary ();
|
||
expr = make_node (RTL_EXPR);
|
||
resume_momentary (momentary);
|
||
start_sequence_for_rtl_expr (expr);
|
||
}
|
||
|
||
if (write_symbols == NO_DEBUG)
|
||
/* As a matter of principle, `start_sequence' should do this. */
|
||
emit_note (0, -1);
|
||
else
|
||
/* Always emit a line number note so we can step into constructors. */
|
||
emit_line_note_force (DECL_SOURCE_FILE (current_function_decl),
|
||
DECL_SOURCE_LINE (current_function_decl));
|
||
|
||
mem_init_list = sort_member_init (t);
|
||
current_member_init_list = NULL_TREE;
|
||
|
||
sort_base_init (t, &rbase_init_list, &vbase_init_list);
|
||
current_base_init_list = NULL_TREE;
|
||
|
||
/* First, initialize the virtual base classes, if we are
|
||
constructing the most-derived object. */
|
||
if (TYPE_USES_VIRTUAL_BASECLASSES (t))
|
||
{
|
||
tree first_arg = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
|
||
construct_virtual_bases (t, current_class_ref, current_class_ptr,
|
||
vbase_init_list, first_arg);
|
||
}
|
||
|
||
/* Now, perform initialization of non-virtual base classes. */
|
||
for (i = 0; i < n_baseclasses; i++)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
tree init = void_list_node;
|
||
|
||
if (TREE_VIA_VIRTUAL (base_binfo))
|
||
continue;
|
||
|
||
my_friendly_assert (BINFO_INHERITANCE_CHAIN (base_binfo) == t_binfo,
|
||
999);
|
||
|
||
if (TREE_PURPOSE (rbase_init_list))
|
||
init = TREE_VALUE (rbase_init_list);
|
||
else if (TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (base_binfo)))
|
||
{
|
||
init = NULL_TREE;
|
||
if (extra_warnings && copy_args_p (current_function_decl))
|
||
cp_warning ("base class `%#T' should be explicitly initialized in the copy constructor",
|
||
BINFO_TYPE (base_binfo));
|
||
}
|
||
|
||
if (init != void_list_node)
|
||
{
|
||
expand_start_target_temps ();
|
||
|
||
member = convert_pointer_to_real (base_binfo, current_class_ptr);
|
||
expand_aggr_init_1 (base_binfo, NULL_TREE,
|
||
build_indirect_ref (member, NULL_PTR), init,
|
||
LOOKUP_NORMAL);
|
||
|
||
expand_end_target_temps ();
|
||
free_temp_slots ();
|
||
}
|
||
|
||
expand_cleanup_for_base (base_binfo, NULL_TREE);
|
||
rbase_init_list = TREE_CHAIN (rbase_init_list);
|
||
}
|
||
|
||
/* Initialize all the virtual function table fields that
|
||
do come from virtual base classes. */
|
||
if (TYPE_USES_VIRTUAL_BASECLASSES (t))
|
||
expand_indirect_vtbls_init (t_binfo, current_class_ref, current_class_ptr);
|
||
|
||
/* Initialize all the virtual function table fields that
|
||
do not come from virtual base classes. */
|
||
expand_direct_vtbls_init (t_binfo, t_binfo, 1, 1, current_class_ptr);
|
||
|
||
for (member = TYPE_FIELDS (t); member; member = TREE_CHAIN (member))
|
||
{
|
||
tree init, name;
|
||
int from_init_list;
|
||
|
||
/* member could be, for example, a CONST_DECL for an enumerated
|
||
tag; we don't want to try to initialize that, since it already
|
||
has a value. */
|
||
if (TREE_CODE (member) != FIELD_DECL || !DECL_NAME (member))
|
||
continue;
|
||
|
||
/* See if we had a user-specified member initialization. */
|
||
if (TREE_PURPOSE (mem_init_list))
|
||
{
|
||
name = TREE_PURPOSE (mem_init_list);
|
||
init = TREE_VALUE (mem_init_list);
|
||
from_init_list = 1;
|
||
|
||
#if 0
|
||
if (TREE_CODE (name) == COMPONENT_REF)
|
||
name = DECL_NAME (TREE_OPERAND (name, 1));
|
||
#else
|
||
/* Also see if it's ever a COMPONENT_REF here. If it is, we
|
||
need to do `expand_assignment (name, init, 0, 0);' and
|
||
a continue. */
|
||
my_friendly_assert (TREE_CODE (name) != COMPONENT_REF, 349);
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
name = DECL_NAME (member);
|
||
init = DECL_INITIAL (member);
|
||
|
||
from_init_list = 0;
|
||
|
||
/* Effective C++ rule 12. */
|
||
if (warn_ecpp && init == NULL_TREE
|
||
&& !DECL_ARTIFICIAL (member)
|
||
&& TREE_CODE (TREE_TYPE (member)) != ARRAY_TYPE)
|
||
cp_warning ("`%D' should be initialized in the member initialization list", member);
|
||
}
|
||
|
||
perform_member_init (member, name, init, from_init_list);
|
||
mem_init_list = TREE_CHAIN (mem_init_list);
|
||
}
|
||
|
||
/* Now initialize any members from our bases. */
|
||
while (mem_init_list)
|
||
{
|
||
tree name, init, field;
|
||
|
||
if (TREE_PURPOSE (mem_init_list))
|
||
{
|
||
name = TREE_PURPOSE (mem_init_list);
|
||
init = TREE_VALUE (mem_init_list);
|
||
/* XXX: this may need the COMPONENT_REF operand 0 check if
|
||
it turns out we actually get them. */
|
||
field = IDENTIFIER_CLASS_VALUE (name);
|
||
|
||
/* If one member shadows another, get the outermost one. */
|
||
if (TREE_CODE (field) == TREE_LIST)
|
||
{
|
||
field = TREE_VALUE (field);
|
||
if (decl_type_context (field) != current_class_type)
|
||
cp_error ("field `%D' not in immediate context", field);
|
||
}
|
||
|
||
#if 0
|
||
/* It turns out if you have an anonymous union in the
|
||
class, a member from it can end up not being on the
|
||
list of fields (rather, the type is), and therefore
|
||
won't be seen by the for loop above. */
|
||
|
||
/* The code in this for loop is derived from a general loop
|
||
which had this check in it. Theoretically, we've hit
|
||
every initialization for the list of members in T, so
|
||
we shouldn't have anything but these left in this list. */
|
||
my_friendly_assert (DECL_FIELD_CONTEXT (field) != t, 351);
|
||
#endif
|
||
|
||
perform_member_init (field, name, init, 1);
|
||
}
|
||
mem_init_list = TREE_CHAIN (mem_init_list);
|
||
}
|
||
|
||
if (! immediately)
|
||
{
|
||
do_pending_stack_adjust ();
|
||
my_friendly_assert (base_init_expr == 0, 207);
|
||
base_init_expr = expr;
|
||
TREE_TYPE (expr) = void_type_node;
|
||
RTL_EXPR_RTL (expr) = const0_rtx;
|
||
RTL_EXPR_SEQUENCE (expr) = get_insns ();
|
||
rtl_expr_chain = tree_cons (NULL_TREE, expr, rtl_expr_chain);
|
||
end_sequence ();
|
||
TREE_SIDE_EFFECTS (expr) = 1;
|
||
}
|
||
|
||
/* All the implicit try blocks we built up will be zapped
|
||
when we come to a real binding contour boundary. */
|
||
}
|
||
|
||
/* Check that all fields are properly initialized after
|
||
an assignment to `this'. */
|
||
|
||
void
|
||
check_base_init (t)
|
||
tree t;
|
||
{
|
||
tree member;
|
||
for (member = TYPE_FIELDS (t); member; member = TREE_CHAIN (member))
|
||
if (DECL_NAME (member) && TREE_USED (member))
|
||
cp_error ("field `%D' used before initialized (after assignment to `this')",
|
||
member);
|
||
}
|
||
|
||
/* This code sets up the virtual function tables appropriate for
|
||
the pointer DECL. It is a one-ply initialization.
|
||
|
||
BINFO is the exact type that DECL is supposed to be. In
|
||
multiple inheritance, this might mean "C's A" if C : A, B. */
|
||
|
||
static void
|
||
expand_virtual_init (binfo, decl)
|
||
tree binfo, decl;
|
||
{
|
||
tree type = BINFO_TYPE (binfo);
|
||
tree vtbl, vtbl_ptr;
|
||
tree vtype, vtype_binfo;
|
||
|
||
/* This code is crusty. Should be simple, like:
|
||
vtbl = BINFO_VTABLE (binfo);
|
||
*/
|
||
vtype = DECL_CONTEXT (CLASSTYPE_VFIELD (type));
|
||
vtype_binfo = get_binfo (vtype, TREE_TYPE (TREE_TYPE (decl)), 0);
|
||
vtbl = BINFO_VTABLE (binfo_value (DECL_FIELD_CONTEXT (CLASSTYPE_VFIELD (type)), binfo));
|
||
assemble_external (vtbl);
|
||
TREE_USED (vtbl) = 1;
|
||
vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
|
||
decl = convert_pointer_to_real (vtype_binfo, decl);
|
||
vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL_PTR), vtype);
|
||
if (vtbl_ptr == error_mark_node)
|
||
return;
|
||
|
||
/* Have to convert VTBL since array sizes may be different. */
|
||
vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
|
||
expand_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
|
||
}
|
||
|
||
/* If an exception is thrown in a constructor, those base classes already
|
||
constructed must be destroyed. This function creates the cleanup
|
||
for BINFO, which has just been constructed. If FLAG is non-NULL,
|
||
it is a DECL which is non-zero when this base needs to be
|
||
destroyed. */
|
||
|
||
static void
|
||
expand_cleanup_for_base (binfo, flag)
|
||
tree binfo;
|
||
tree flag;
|
||
{
|
||
tree expr;
|
||
|
||
if (!TYPE_NEEDS_DESTRUCTOR (BINFO_TYPE (binfo)))
|
||
return;
|
||
|
||
/* All cleanups must be on the function_obstack. */
|
||
push_obstacks_nochange ();
|
||
resume_temporary_allocation ();
|
||
|
||
/* Call the destructor. */
|
||
expr = (build_scoped_method_call
|
||
(current_class_ref, binfo, dtor_identifier,
|
||
build_expr_list (NULL_TREE, integer_zero_node)));
|
||
if (flag)
|
||
expr = fold (build (COND_EXPR, void_type_node,
|
||
truthvalue_conversion (flag),
|
||
expr, integer_zero_node));
|
||
|
||
pop_obstacks ();
|
||
add_partial_entry (expr);
|
||
}
|
||
|
||
/* Subroutine of `expand_aggr_vbase_init'.
|
||
BINFO is the binfo of the type that is being initialized.
|
||
INIT_LIST is the list of initializers for the virtual baseclass. */
|
||
|
||
static void
|
||
expand_aggr_vbase_init_1 (binfo, exp, addr, init_list)
|
||
tree binfo, exp, addr, init_list;
|
||
{
|
||
tree init = purpose_member (binfo, init_list);
|
||
tree ref = build_indirect_ref (addr, NULL_PTR);
|
||
|
||
expand_start_target_temps ();
|
||
|
||
if (init)
|
||
init = TREE_VALUE (init);
|
||
/* Call constructors, but don't set up vtables. */
|
||
expand_aggr_init_1 (binfo, exp, ref, init, LOOKUP_COMPLAIN);
|
||
|
||
expand_end_target_temps ();
|
||
free_temp_slots ();
|
||
}
|
||
|
||
/* Construct the virtual base-classes of THIS_REF (whose address is
|
||
THIS_PTR). The object has the indicated TYPE. The construction
|
||
actually takes place only if FLAG is non-zero. INIT_LIST is list
|
||
of initialization for constructor to perform. */
|
||
|
||
static void
|
||
construct_virtual_bases (type, this_ref, this_ptr, init_list, flag)
|
||
tree type;
|
||
tree this_ref;
|
||
tree this_ptr;
|
||
tree init_list;
|
||
tree flag;
|
||
{
|
||
tree vbases;
|
||
tree result;
|
||
|
||
/* If there are no virtual baseclasses, we shouldn't even be here. */
|
||
my_friendly_assert (TYPE_USES_VIRTUAL_BASECLASSES (type), 19990621);
|
||
|
||
/* First set the pointers in our object that tell us where to find
|
||
our virtual baseclasses. */
|
||
expand_start_cond (flag, 0);
|
||
result = init_vbase_pointers (type, this_ptr);
|
||
if (result)
|
||
expand_expr_stmt (build_compound_expr (result));
|
||
expand_end_cond ();
|
||
|
||
/* Now, run through the baseclasses, initializing each. */
|
||
for (vbases = CLASSTYPE_VBASECLASSES (type); vbases;
|
||
vbases = TREE_CHAIN (vbases))
|
||
{
|
||
tree tmp = purpose_member (vbases, result);
|
||
|
||
/* If there are virtual base classes with destructors, we need to
|
||
emit cleanups to destroy them if an exception is thrown during
|
||
the construction process. These exception regions (i.e., the
|
||
period during which the cleanups must occur) begin from the time
|
||
the construction is complete to the end of the function. If we
|
||
create a conditional block in which to initialize the
|
||
base-classes, then the cleanup region for the virtual base begins
|
||
inside a block, and ends outside of that block. This situation
|
||
confuses the sjlj exception-handling code. Therefore, we do not
|
||
create a single conditional block, but one for each
|
||
initialization. (That way the cleanup regions always begin
|
||
in the outer block.) We trust the back-end to figure out
|
||
that the FLAG will not change across initializations, and
|
||
avoid doing multiple tests. */
|
||
expand_start_cond (flag, 0);
|
||
expand_aggr_vbase_init_1 (vbases, this_ref,
|
||
TREE_OPERAND (TREE_VALUE (tmp), 0),
|
||
init_list);
|
||
expand_end_cond ();
|
||
|
||
expand_cleanup_for_base (vbases, flag);
|
||
}
|
||
}
|
||
|
||
/* Find the context in which this FIELD can be initialized. */
|
||
|
||
static tree
|
||
initializing_context (field)
|
||
tree field;
|
||
{
|
||
tree t = DECL_CONTEXT (field);
|
||
|
||
/* Anonymous union members can be initialized in the first enclosing
|
||
non-anonymous union context. */
|
||
while (t && ANON_UNION_TYPE_P (t))
|
||
t = TYPE_CONTEXT (t);
|
||
return t;
|
||
}
|
||
|
||
/* Function to give error message if member initialization specification
|
||
is erroneous. FIELD is the member we decided to initialize.
|
||
TYPE is the type for which the initialization is being performed.
|
||
FIELD must be a member of TYPE.
|
||
|
||
MEMBER_NAME is the name of the member. */
|
||
|
||
static int
|
||
member_init_ok_or_else (field, type, member_name)
|
||
tree field;
|
||
tree type;
|
||
const char *member_name;
|
||
{
|
||
if (field == error_mark_node)
|
||
return 0;
|
||
if (field == NULL_TREE || initializing_context (field) != type)
|
||
{
|
||
cp_error ("class `%T' does not have any field named `%s'", type,
|
||
member_name);
|
||
return 0;
|
||
}
|
||
if (TREE_STATIC (field))
|
||
{
|
||
cp_error ("field `%#D' is static; only point of initialization is its declaration",
|
||
field);
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* If NAME is a viable field name for the aggregate DECL,
|
||
and PARMS is a viable parameter list, then expand an _EXPR
|
||
which describes this initialization.
|
||
|
||
Note that we do not need to chase through the class's base classes
|
||
to look for NAME, because if it's in that list, it will be handled
|
||
by the constructor for that base class.
|
||
|
||
We do not yet have a fixed-point finder to instantiate types
|
||
being fed to overloaded constructors. If there is a unique
|
||
constructor, then argument types can be got from that one.
|
||
|
||
If INIT is non-NULL, then it the initialization should
|
||
be placed in `current_base_init_list', where it will be processed
|
||
by `emit_base_init'. */
|
||
|
||
void
|
||
expand_member_init (exp, name, init)
|
||
tree exp, name, init;
|
||
{
|
||
tree basetype = NULL_TREE, field;
|
||
tree type;
|
||
|
||
if (exp == NULL_TREE)
|
||
return; /* complain about this later */
|
||
|
||
type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
|
||
|
||
if (name && TREE_CODE (name) == TYPE_DECL)
|
||
{
|
||
basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
|
||
name = DECL_NAME (name);
|
||
}
|
||
|
||
if (name == NULL_TREE && IS_AGGR_TYPE (type))
|
||
switch (CLASSTYPE_N_BASECLASSES (type))
|
||
{
|
||
case 0:
|
||
error ("base class initializer specified, but no base class to initialize");
|
||
return;
|
||
case 1:
|
||
basetype = TYPE_BINFO_BASETYPE (type, 0);
|
||
break;
|
||
default:
|
||
error ("initializer for unnamed base class ambiguous");
|
||
cp_error ("(type `%T' uses multiple inheritance)", type);
|
||
return;
|
||
}
|
||
|
||
my_friendly_assert (init != NULL_TREE, 0);
|
||
|
||
/* The grammar should not allow fields which have names that are
|
||
TYPENAMEs. Therefore, if the field has a non-NULL TREE_TYPE, we
|
||
may assume that this is an attempt to initialize a base class
|
||
member of the current type. Otherwise, it is an attempt to
|
||
initialize a member field. */
|
||
|
||
if (init == void_type_node)
|
||
init = NULL_TREE;
|
||
|
||
if (name == NULL_TREE || basetype)
|
||
{
|
||
tree base_init;
|
||
|
||
if (name == NULL_TREE)
|
||
{
|
||
#if 0
|
||
if (basetype)
|
||
name = TYPE_IDENTIFIER (basetype);
|
||
else
|
||
{
|
||
error ("no base class to initialize");
|
||
return;
|
||
}
|
||
#endif
|
||
}
|
||
else if (basetype != type
|
||
&& ! current_template_parms
|
||
&& ! vec_binfo_member (basetype,
|
||
TYPE_BINFO_BASETYPES (type))
|
||
&& ! binfo_member (basetype, CLASSTYPE_VBASECLASSES (type)))
|
||
{
|
||
if (IDENTIFIER_CLASS_VALUE (name))
|
||
goto try_member;
|
||
if (TYPE_USES_VIRTUAL_BASECLASSES (type))
|
||
cp_error ("type `%T' is not an immediate or virtual basetype for `%T'",
|
||
basetype, type);
|
||
else
|
||
cp_error ("type `%T' is not an immediate basetype for `%T'",
|
||
basetype, type);
|
||
return;
|
||
}
|
||
|
||
if (purpose_member (basetype, current_base_init_list))
|
||
{
|
||
cp_error ("base class `%T' already initialized", basetype);
|
||
return;
|
||
}
|
||
|
||
if (warn_reorder && current_member_init_list)
|
||
{
|
||
cp_warning ("base initializer for `%T'", basetype);
|
||
warning (" will be re-ordered to precede member initializations");
|
||
}
|
||
|
||
base_init = build_tree_list (basetype, init);
|
||
current_base_init_list = chainon (current_base_init_list, base_init);
|
||
}
|
||
else
|
||
{
|
||
tree member_init;
|
||
|
||
try_member:
|
||
field = lookup_field (type, name, 1, 0);
|
||
|
||
if (! member_init_ok_or_else (field, type, IDENTIFIER_POINTER (name)))
|
||
return;
|
||
|
||
if (purpose_member (name, current_member_init_list))
|
||
{
|
||
cp_error ("field `%D' already initialized", field);
|
||
return;
|
||
}
|
||
|
||
member_init = build_tree_list (name, init);
|
||
current_member_init_list = chainon (current_member_init_list, member_init);
|
||
}
|
||
}
|
||
|
||
/* This is like `expand_member_init', only it stores one aggregate
|
||
value into another.
|
||
|
||
INIT comes in two flavors: it is either a value which
|
||
is to be stored in EXP, or it is a parameter list
|
||
to go to a constructor, which will operate on EXP.
|
||
If INIT is not a parameter list for a constructor, then set
|
||
LOOKUP_ONLYCONVERTING.
|
||
If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
|
||
the initializer, if FLAGS is 0, then it is the (init) form.
|
||
If `init' is a CONSTRUCTOR, then we emit a warning message,
|
||
explaining that such initializations are invalid.
|
||
|
||
ALIAS_THIS is nonzero iff we are initializing something which is
|
||
essentially an alias for current_class_ref. In this case, the base
|
||
constructor may move it on us, and we must keep track of such
|
||
deviations.
|
||
|
||
If INIT resolves to a CALL_EXPR which happens to return
|
||
something of the type we are looking for, then we know
|
||
that we can safely use that call to perform the
|
||
initialization.
|
||
|
||
The virtual function table pointer cannot be set up here, because
|
||
we do not really know its type.
|
||
|
||
Virtual baseclass pointers are also set up here.
|
||
|
||
This never calls operator=().
|
||
|
||
When initializing, nothing is CONST.
|
||
|
||
A default copy constructor may have to be used to perform the
|
||
initialization.
|
||
|
||
A constructor or a conversion operator may have to be used to
|
||
perform the initialization, but not both, as it would be ambiguous. */
|
||
|
||
void
|
||
expand_aggr_init (exp, init, flags)
|
||
tree exp, init;
|
||
int flags;
|
||
{
|
||
tree type = TREE_TYPE (exp);
|
||
int was_const = TREE_READONLY (exp);
|
||
int was_volatile = TREE_THIS_VOLATILE (exp);
|
||
|
||
if (init == error_mark_node)
|
||
return;
|
||
|
||
TREE_READONLY (exp) = 0;
|
||
TREE_THIS_VOLATILE (exp) = 0;
|
||
|
||
if (init && TREE_CODE (init) != TREE_LIST)
|
||
flags |= LOOKUP_ONLYCONVERTING;
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
/* Must arrange to initialize each element of EXP
|
||
from elements of INIT. */
|
||
tree itype = init ? TREE_TYPE (init) : NULL_TREE;
|
||
if (CP_TYPE_QUALS (type) != TYPE_UNQUALIFIED)
|
||
{
|
||
TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
|
||
if (init)
|
||
TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
|
||
}
|
||
if (init && TREE_TYPE (init) == NULL_TREE)
|
||
{
|
||
/* Handle bad initializers like:
|
||
class COMPLEX {
|
||
public:
|
||
double re, im;
|
||
COMPLEX(double r = 0.0, double i = 0.0) {re = r; im = i;};
|
||
~COMPLEX() {};
|
||
};
|
||
|
||
int main(int argc, char **argv) {
|
||
COMPLEX zees(1.0, 0.0)[10];
|
||
}
|
||
*/
|
||
error ("bad array initializer");
|
||
return;
|
||
}
|
||
expand_vec_init (exp, exp, array_type_nelts (type), init,
|
||
init && same_type_p (TREE_TYPE (init),
|
||
TREE_TYPE (exp)));
|
||
TREE_READONLY (exp) = was_const;
|
||
TREE_THIS_VOLATILE (exp) = was_volatile;
|
||
TREE_TYPE (exp) = type;
|
||
if (init)
|
||
TREE_TYPE (init) = itype;
|
||
return;
|
||
}
|
||
|
||
if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
|
||
/* just know that we've seen something for this node */
|
||
TREE_USED (exp) = 1;
|
||
|
||
#if 0
|
||
/* If initializing from a GNU C CONSTRUCTOR, consider the elts in the
|
||
constructor as parameters to an implicit GNU C++ constructor. */
|
||
if (init && TREE_CODE (init) == CONSTRUCTOR
|
||
&& TYPE_HAS_CONSTRUCTOR (type)
|
||
&& TREE_TYPE (init) == type)
|
||
init = CONSTRUCTOR_ELTS (init);
|
||
#endif
|
||
|
||
TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
|
||
expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
|
||
init, LOOKUP_NORMAL|flags);
|
||
TREE_TYPE (exp) = type;
|
||
TREE_READONLY (exp) = was_const;
|
||
TREE_THIS_VOLATILE (exp) = was_volatile;
|
||
}
|
||
|
||
static void
|
||
expand_default_init (binfo, true_exp, exp, init, flags)
|
||
tree binfo;
|
||
tree true_exp, exp;
|
||
tree init;
|
||
int flags;
|
||
{
|
||
tree type = TREE_TYPE (exp);
|
||
|
||
/* It fails because there may not be a constructor which takes
|
||
its own type as the first (or only parameter), but which does
|
||
take other types via a conversion. So, if the thing initializing
|
||
the expression is a unit element of type X, first try X(X&),
|
||
followed by initialization by X. If neither of these work
|
||
out, then look hard. */
|
||
tree rval;
|
||
tree parms;
|
||
|
||
if (init && TREE_CODE (init) != TREE_LIST
|
||
&& (flags & LOOKUP_ONLYCONVERTING))
|
||
{
|
||
/* Base subobjects should only get direct-initialization. */
|
||
if (true_exp != exp)
|
||
abort ();
|
||
|
||
if (flags & DIRECT_BIND)
|
||
/* Do nothing. We hit this in two cases: Reference initialization,
|
||
where we aren't initializing a real variable, so we don't want
|
||
to run a new constructor; and catching an exception, where we
|
||
have already built up the constructor call so we could wrap it
|
||
in an exception region. */;
|
||
else
|
||
init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
|
||
|
||
if (TREE_CODE (init) == TRY_CATCH_EXPR)
|
||
/* We need to protect the initialization of a catch parm
|
||
with a call to terminate(), which shows up as a TRY_CATCH_EXPR
|
||
around the TARGET_EXPR for the copy constructor. See
|
||
expand_start_catch_block. */
|
||
TREE_OPERAND (init, 0) = build (INIT_EXPR, TREE_TYPE (exp), exp,
|
||
TREE_OPERAND (init, 0));
|
||
else
|
||
init = build (INIT_EXPR, TREE_TYPE (exp), exp, init);
|
||
TREE_SIDE_EFFECTS (init) = 1;
|
||
expand_expr_stmt (init);
|
||
return;
|
||
}
|
||
|
||
if (init == NULL_TREE
|
||
|| (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
|
||
{
|
||
parms = init;
|
||
if (parms)
|
||
init = TREE_VALUE (parms);
|
||
}
|
||
else
|
||
parms = build_expr_list (NULL_TREE, init);
|
||
|
||
if (TYPE_USES_VIRTUAL_BASECLASSES (type))
|
||
{
|
||
if (true_exp == exp)
|
||
parms = expr_tree_cons (NULL_TREE, integer_one_node, parms);
|
||
else
|
||
parms = expr_tree_cons (NULL_TREE, integer_zero_node, parms);
|
||
flags |= LOOKUP_HAS_IN_CHARGE;
|
||
}
|
||
|
||
rval = build_method_call (exp, ctor_identifier,
|
||
parms, binfo, flags);
|
||
if (TREE_SIDE_EFFECTS (rval))
|
||
expand_expr_stmt (rval);
|
||
}
|
||
|
||
/* This function is responsible for initializing EXP with INIT
|
||
(if any).
|
||
|
||
BINFO is the binfo of the type for who we are performing the
|
||
initialization. For example, if W is a virtual base class of A and B,
|
||
and C : A, B.
|
||
If we are initializing B, then W must contain B's W vtable, whereas
|
||
were we initializing C, W must contain C's W vtable.
|
||
|
||
TRUE_EXP is nonzero if it is the true expression being initialized.
|
||
In this case, it may be EXP, or may just contain EXP. The reason we
|
||
need this is because if EXP is a base element of TRUE_EXP, we
|
||
don't necessarily know by looking at EXP where its virtual
|
||
baseclass fields should really be pointing. But we do know
|
||
from TRUE_EXP. In constructors, we don't know anything about
|
||
the value being initialized.
|
||
|
||
ALIAS_THIS serves the same purpose it serves for expand_aggr_init.
|
||
|
||
FLAGS is just passes to `build_method_call'. See that function for
|
||
its description. */
|
||
|
||
static void
|
||
expand_aggr_init_1 (binfo, true_exp, exp, init, flags)
|
||
tree binfo;
|
||
tree true_exp, exp;
|
||
tree init;
|
||
int flags;
|
||
{
|
||
tree type = TREE_TYPE (exp);
|
||
|
||
my_friendly_assert (init != error_mark_node && type != error_mark_node, 211);
|
||
|
||
/* Use a function returning the desired type to initialize EXP for us.
|
||
If the function is a constructor, and its first argument is
|
||
NULL_TREE, know that it was meant for us--just slide exp on
|
||
in and expand the constructor. Constructors now come
|
||
as TARGET_EXPRs. */
|
||
|
||
if (init && TREE_CODE (exp) == VAR_DECL
|
||
&& TREE_CODE (init) == CONSTRUCTOR
|
||
&& TREE_HAS_CONSTRUCTOR (init))
|
||
{
|
||
tree t = store_init_value (exp, init);
|
||
if (!t)
|
||
{
|
||
expand_decl_init (exp);
|
||
return;
|
||
}
|
||
t = build (INIT_EXPR, type, exp, init);
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
expand_expr_stmt (t);
|
||
return;
|
||
}
|
||
|
||
/* We know that expand_default_init can handle everything we want
|
||
at this point. */
|
||
expand_default_init (binfo, true_exp, exp, init, flags);
|
||
}
|
||
|
||
/* Report an error if NAME is not the name of a user-defined,
|
||
aggregate type. If OR_ELSE is nonzero, give an error message. */
|
||
|
||
int
|
||
is_aggr_typedef (name, or_else)
|
||
tree name;
|
||
int or_else;
|
||
{
|
||
tree type;
|
||
|
||
if (name == error_mark_node)
|
||
return 0;
|
||
|
||
if (IDENTIFIER_HAS_TYPE_VALUE (name))
|
||
type = IDENTIFIER_TYPE_VALUE (name);
|
||
else
|
||
{
|
||
if (or_else)
|
||
cp_error ("`%T' is not an aggregate typedef", name);
|
||
return 0;
|
||
}
|
||
|
||
if (! IS_AGGR_TYPE (type)
|
||
&& TREE_CODE (type) != TEMPLATE_TYPE_PARM
|
||
&& TREE_CODE (type) != TEMPLATE_TEMPLATE_PARM)
|
||
{
|
||
if (or_else)
|
||
cp_error ("`%T' is not an aggregate type", type);
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Report an error if TYPE is not a user-defined, aggregate type. If
|
||
OR_ELSE is nonzero, give an error message. */
|
||
|
||
int
|
||
is_aggr_type (type, or_else)
|
||
tree type;
|
||
int or_else;
|
||
{
|
||
if (type == error_mark_node)
|
||
return 0;
|
||
|
||
if (! IS_AGGR_TYPE (type)
|
||
&& TREE_CODE (type) != TEMPLATE_TYPE_PARM
|
||
&& TREE_CODE (type) != TEMPLATE_TEMPLATE_PARM)
|
||
{
|
||
if (or_else)
|
||
cp_error ("`%T' is not an aggregate type", type);
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Like is_aggr_typedef, but returns typedef if successful. */
|
||
|
||
tree
|
||
get_aggr_from_typedef (name, or_else)
|
||
tree name;
|
||
int or_else;
|
||
{
|
||
tree type;
|
||
|
||
if (name == error_mark_node)
|
||
return NULL_TREE;
|
||
|
||
if (IDENTIFIER_HAS_TYPE_VALUE (name))
|
||
type = IDENTIFIER_TYPE_VALUE (name);
|
||
else
|
||
{
|
||
if (or_else)
|
||
cp_error ("`%T' fails to be an aggregate typedef", name);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (! IS_AGGR_TYPE (type)
|
||
&& TREE_CODE (type) != TEMPLATE_TYPE_PARM
|
||
&& TREE_CODE (type) != TEMPLATE_TEMPLATE_PARM)
|
||
{
|
||
if (or_else)
|
||
cp_error ("type `%T' is of non-aggregate type", type);
|
||
return NULL_TREE;
|
||
}
|
||
return type;
|
||
}
|
||
|
||
tree
|
||
get_type_value (name)
|
||
tree name;
|
||
{
|
||
if (name == error_mark_node)
|
||
return NULL_TREE;
|
||
|
||
if (IDENTIFIER_HAS_TYPE_VALUE (name))
|
||
return IDENTIFIER_TYPE_VALUE (name);
|
||
else
|
||
return NULL_TREE;
|
||
}
|
||
|
||
|
||
/* This code could just as well go in `class.c', but is placed here for
|
||
modularity. */
|
||
|
||
/* For an expression of the form TYPE :: NAME (PARMLIST), build
|
||
the appropriate function call. */
|
||
|
||
tree
|
||
build_member_call (type, name, parmlist)
|
||
tree type, name, parmlist;
|
||
{
|
||
tree t;
|
||
tree method_name;
|
||
int dtor = 0;
|
||
tree basetype_path, decl;
|
||
|
||
if (TREE_CODE (name) == TEMPLATE_ID_EXPR
|
||
&& TREE_CODE (type) == NAMESPACE_DECL)
|
||
{
|
||
/* 'name' already refers to the decls from the namespace, since we
|
||
hit do_identifier for template_ids. */
|
||
method_name = TREE_OPERAND (name, 0);
|
||
/* FIXME: Since we don't do independent names right yet, the
|
||
name might also be a LOOKUP_EXPR. Once we resolve this to a
|
||
real decl earlier, this can go. This may happen during
|
||
tsubst'ing. */
|
||
if (TREE_CODE (method_name) == LOOKUP_EXPR)
|
||
{
|
||
method_name = lookup_namespace_name
|
||
(type, TREE_OPERAND (method_name, 0));
|
||
TREE_OPERAND (name, 0) = method_name;
|
||
}
|
||
my_friendly_assert (is_overloaded_fn (method_name), 980519);
|
||
return build_x_function_call (name, parmlist, current_class_ref);
|
||
}
|
||
|
||
if (type == std_node)
|
||
return build_x_function_call (do_scoped_id (name, 0), parmlist,
|
||
current_class_ref);
|
||
if (TREE_CODE (type) == NAMESPACE_DECL)
|
||
return build_x_function_call (lookup_namespace_name (type, name),
|
||
parmlist, current_class_ref);
|
||
|
||
if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
|
||
{
|
||
method_name = TREE_OPERAND (name, 0);
|
||
if (TREE_CODE (method_name) == COMPONENT_REF)
|
||
method_name = TREE_OPERAND (method_name, 1);
|
||
if (is_overloaded_fn (method_name))
|
||
method_name = DECL_NAME (OVL_CURRENT (method_name));
|
||
TREE_OPERAND (name, 0) = method_name;
|
||
}
|
||
else
|
||
method_name = name;
|
||
|
||
if (TREE_CODE (method_name) == BIT_NOT_EXPR)
|
||
{
|
||
method_name = TREE_OPERAND (method_name, 0);
|
||
dtor = 1;
|
||
}
|
||
|
||
/* This shouldn't be here, and build_member_call shouldn't appear in
|
||
parse.y! (mrs) */
|
||
if (type && TREE_CODE (type) == IDENTIFIER_NODE
|
||
&& get_aggr_from_typedef (type, 0) == 0)
|
||
{
|
||
tree ns = lookup_name (type, 0);
|
||
if (ns && TREE_CODE (ns) == NAMESPACE_DECL)
|
||
{
|
||
return build_x_function_call (build_offset_ref (type, name), parmlist, current_class_ref);
|
||
}
|
||
}
|
||
|
||
if (type == NULL_TREE || ! is_aggr_type (type, 1))
|
||
return error_mark_node;
|
||
|
||
/* An operator we did not like. */
|
||
if (name == NULL_TREE)
|
||
return error_mark_node;
|
||
|
||
if (dtor)
|
||
{
|
||
cp_error ("cannot call destructor `%T::~%T' without object", type,
|
||
method_name);
|
||
return error_mark_node;
|
||
}
|
||
|
||
decl = maybe_dummy_object (type, &basetype_path);
|
||
|
||
/* Convert 'this' to the specified type to disambiguate conversion
|
||
to the function's context. Apparently Standard C++ says that we
|
||
shouldn't do this. */
|
||
if (decl == current_class_ref
|
||
&& ! pedantic
|
||
&& ACCESSIBLY_UNIQUELY_DERIVED_P (type, current_class_type))
|
||
{
|
||
tree olddecl = current_class_ptr;
|
||
tree oldtype = TREE_TYPE (TREE_TYPE (olddecl));
|
||
if (oldtype != type)
|
||
{
|
||
tree newtype = build_qualified_type (type, TYPE_QUALS (oldtype));
|
||
decl = convert_force (build_pointer_type (newtype), olddecl, 0);
|
||
decl = build_indirect_ref (decl, NULL_PTR);
|
||
}
|
||
}
|
||
|
||
if (method_name == constructor_name (type)
|
||
|| method_name == constructor_name_full (type))
|
||
return build_functional_cast (type, parmlist);
|
||
if (lookup_fnfields (basetype_path, method_name, 0))
|
||
return build_method_call (decl,
|
||
TREE_CODE (name) == TEMPLATE_ID_EXPR
|
||
? name : method_name,
|
||
parmlist, basetype_path,
|
||
LOOKUP_NORMAL|LOOKUP_NONVIRTUAL);
|
||
if (TREE_CODE (name) == IDENTIFIER_NODE
|
||
&& ((t = lookup_field (TYPE_BINFO (type), name, 1, 0))))
|
||
{
|
||
if (t == error_mark_node)
|
||
return error_mark_node;
|
||
if (TREE_CODE (t) == FIELD_DECL)
|
||
{
|
||
if (is_dummy_object (decl))
|
||
{
|
||
cp_error ("invalid use of non-static field `%D'", t);
|
||
return error_mark_node;
|
||
}
|
||
decl = build (COMPONENT_REF, TREE_TYPE (t), decl, t);
|
||
}
|
||
else if (TREE_CODE (t) == VAR_DECL)
|
||
decl = t;
|
||
else
|
||
{
|
||
cp_error ("invalid use of member `%D'", t);
|
||
return error_mark_node;
|
||
}
|
||
if (TYPE_LANG_SPECIFIC (TREE_TYPE (decl)))
|
||
return build_opfncall (CALL_EXPR, LOOKUP_NORMAL, decl,
|
||
parmlist, NULL_TREE);
|
||
return build_function_call (decl, parmlist);
|
||
}
|
||
else
|
||
{
|
||
cp_error ("no method `%T::%D'", type, name);
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
/* Build a reference to a member of an aggregate. This is not a
|
||
C++ `&', but really something which can have its address taken,
|
||
and then act as a pointer to member, for example TYPE :: FIELD
|
||
can have its address taken by saying & TYPE :: FIELD.
|
||
|
||
@@ Prints out lousy diagnostics for operator <typename>
|
||
@@ fields.
|
||
|
||
@@ This function should be rewritten and placed in search.c. */
|
||
|
||
tree
|
||
build_offset_ref (type, name)
|
||
tree type, name;
|
||
{
|
||
tree decl, t = error_mark_node;
|
||
tree member;
|
||
tree basebinfo = NULL_TREE;
|
||
tree orig_name = name;
|
||
|
||
/* class templates can come in as TEMPLATE_DECLs here. */
|
||
if (TREE_CODE (name) == TEMPLATE_DECL)
|
||
return name;
|
||
|
||
if (type == std_node)
|
||
return do_scoped_id (name, 0);
|
||
|
||
if (processing_template_decl || uses_template_parms (type))
|
||
return build_min_nt (SCOPE_REF, type, name);
|
||
|
||
/* Handle namespace names fully here. */
|
||
if (TREE_CODE (type) == NAMESPACE_DECL)
|
||
{
|
||
t = lookup_namespace_name (type, name);
|
||
if (t != error_mark_node && ! type_unknown_p (t))
|
||
{
|
||
mark_used (t);
|
||
t = convert_from_reference (t);
|
||
}
|
||
return t;
|
||
}
|
||
|
||
if (type == NULL_TREE || ! is_aggr_type (type, 1))
|
||
return error_mark_node;
|
||
|
||
if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
|
||
{
|
||
/* If the NAME is a TEMPLATE_ID_EXPR, we are looking at
|
||
something like `a.template f<int>' or the like. For the most
|
||
part, we treat this just like a.f. We do remember, however,
|
||
the template-id that was used. */
|
||
name = TREE_OPERAND (orig_name, 0);
|
||
|
||
if (TREE_CODE (name) == LOOKUP_EXPR)
|
||
/* This can happen during tsubst'ing. */
|
||
name = TREE_OPERAND (name, 0);
|
||
|
||
my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 0);
|
||
}
|
||
|
||
if (TREE_CODE (name) == BIT_NOT_EXPR)
|
||
{
|
||
if (! check_dtor_name (type, name))
|
||
cp_error ("qualified type `%T' does not match destructor name `~%T'",
|
||
type, TREE_OPERAND (name, 0));
|
||
name = dtor_identifier;
|
||
}
|
||
#if 0
|
||
/* I think this is wrong, but the draft is unclear. --jason 6/15/98 */
|
||
else if (name == constructor_name_full (type)
|
||
|| name == constructor_name (type))
|
||
name = ctor_identifier;
|
||
#endif
|
||
|
||
if (TYPE_SIZE (complete_type (type)) == 0
|
||
&& !TYPE_BEING_DEFINED (type))
|
||
{
|
||
cp_error ("incomplete type `%T' does not have member `%D'", type,
|
||
name);
|
||
return error_mark_node;
|
||
}
|
||
|
||
decl = maybe_dummy_object (type, &basebinfo);
|
||
|
||
member = lookup_member (basebinfo, name, 1, 0);
|
||
|
||
if (member == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* A lot of this logic is now handled in lookup_field and
|
||
lookup_fnfield. */
|
||
if (member && BASELINK_P (member))
|
||
{
|
||
/* Go from the TREE_BASELINK to the member function info. */
|
||
tree fnfields = member;
|
||
t = TREE_VALUE (fnfields);
|
||
|
||
if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
|
||
{
|
||
/* The FNFIELDS are going to contain functions that aren't
|
||
necessarily templates, and templates that don't
|
||
necessarily match the explicit template parameters. We
|
||
save all the functions, and the explicit parameters, and
|
||
then figure out exactly what to instantiate with what
|
||
arguments in instantiate_type. */
|
||
|
||
if (TREE_CODE (t) != OVERLOAD)
|
||
/* The code in instantiate_type which will process this
|
||
expects to encounter OVERLOADs, not raw functions. */
|
||
t = ovl_cons (t, NULL_TREE);
|
||
|
||
return build (OFFSET_REF,
|
||
unknown_type_node,
|
||
decl,
|
||
build (TEMPLATE_ID_EXPR,
|
||
TREE_TYPE (t),
|
||
t,
|
||
TREE_OPERAND (orig_name, 1)));
|
||
}
|
||
|
||
if (!really_overloaded_fn (t))
|
||
{
|
||
/* Get rid of a potential OVERLOAD around it */
|
||
t = OVL_CURRENT (t);
|
||
|
||
/* unique functions are handled easily. */
|
||
basebinfo = TREE_PURPOSE (fnfields);
|
||
if (!enforce_access (basebinfo, t))
|
||
return error_mark_node;
|
||
mark_used (t);
|
||
if (DECL_STATIC_FUNCTION_P (t))
|
||
return t;
|
||
return build (OFFSET_REF, TREE_TYPE (t), decl, t);
|
||
}
|
||
|
||
/* FNFIELDS is most likely allocated on the search_obstack,
|
||
which will go away after this class scope. If we need
|
||
to save this value for later (i.e. for use as an initializer
|
||
for a static variable), then do so here.
|
||
|
||
??? The smart thing to do for the case of saving initializers
|
||
is to resolve them before we're done with this scope. */
|
||
if (!TREE_PERMANENT (fnfields)
|
||
&& ! allocation_temporary_p ())
|
||
fnfields = copy_list (fnfields);
|
||
|
||
TREE_TYPE (fnfields) = unknown_type_node;
|
||
return build (OFFSET_REF, unknown_type_node, decl, fnfields);
|
||
}
|
||
|
||
t = member;
|
||
|
||
if (t == NULL_TREE)
|
||
{
|
||
cp_error ("`%D' is not a member of type `%T'", name, type);
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (TREE_CODE (t) == TYPE_DECL)
|
||
{
|
||
TREE_USED (t) = 1;
|
||
return t;
|
||
}
|
||
/* static class members and class-specific enum
|
||
values can be returned without further ado. */
|
||
if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == CONST_DECL)
|
||
{
|
||
mark_used (t);
|
||
return convert_from_reference (t);
|
||
}
|
||
|
||
if (TREE_CODE (t) == FIELD_DECL && DECL_C_BIT_FIELD (t))
|
||
{
|
||
cp_error ("illegal pointer to bit field `%D'", t);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* static class functions too. */
|
||
if (TREE_CODE (t) == FUNCTION_DECL
|
||
&& TREE_CODE (TREE_TYPE (t)) == FUNCTION_TYPE)
|
||
my_friendly_abort (53);
|
||
|
||
/* In member functions, the form `type::name' is no longer
|
||
equivalent to `this->type::name', at least not until
|
||
resolve_offset_ref. */
|
||
return build (OFFSET_REF, build_offset_type (type, TREE_TYPE (t)), decl, t);
|
||
}
|
||
|
||
/* If a OFFSET_REF made it through to here, then it did
|
||
not have its address taken. */
|
||
|
||
tree
|
||
resolve_offset_ref (exp)
|
||
tree exp;
|
||
{
|
||
tree type = TREE_TYPE (exp);
|
||
tree base = NULL_TREE;
|
||
tree member;
|
||
tree basetype, addr;
|
||
|
||
if (TREE_CODE (exp) == OFFSET_REF)
|
||
{
|
||
member = TREE_OPERAND (exp, 1);
|
||
base = TREE_OPERAND (exp, 0);
|
||
}
|
||
else
|
||
{
|
||
my_friendly_assert (TREE_CODE (type) == OFFSET_TYPE, 214);
|
||
if (TYPE_OFFSET_BASETYPE (type) != current_class_type)
|
||
{
|
||
error ("object missing in use of pointer-to-member construct");
|
||
return error_mark_node;
|
||
}
|
||
member = exp;
|
||
type = TREE_TYPE (type);
|
||
base = current_class_ref;
|
||
}
|
||
|
||
if (BASELINK_P (member))
|
||
{
|
||
cp_pedwarn ("assuming & on overloaded member function");
|
||
return build_unary_op (ADDR_EXPR, exp, 0);
|
||
}
|
||
|
||
if (TREE_CODE (TREE_TYPE (member)) == METHOD_TYPE)
|
||
{
|
||
cp_pedwarn ("assuming & on `%E'", member);
|
||
return build_unary_op (ADDR_EXPR, exp, 0);
|
||
}
|
||
|
||
if ((TREE_CODE (member) == VAR_DECL
|
||
&& ! TYPE_PTRMEMFUNC_P (TREE_TYPE (member))
|
||
&& ! TYPE_PTRMEM_P (TREE_TYPE (member)))
|
||
|| TREE_CODE (TREE_TYPE (member)) == FUNCTION_TYPE)
|
||
{
|
||
/* These were static members. */
|
||
if (mark_addressable (member) == 0)
|
||
return error_mark_node;
|
||
return member;
|
||
}
|
||
|
||
if (TREE_CODE (TREE_TYPE (member)) == POINTER_TYPE
|
||
&& TREE_CODE (TREE_TYPE (TREE_TYPE (member))) == METHOD_TYPE)
|
||
return member;
|
||
|
||
/* Syntax error can cause a member which should
|
||
have been seen as static to be grok'd as non-static. */
|
||
if (TREE_CODE (member) == FIELD_DECL && current_class_ref == NULL_TREE)
|
||
{
|
||
if (TREE_ADDRESSABLE (member) == 0)
|
||
{
|
||
cp_error_at ("member `%D' is non-static but referenced as a static member",
|
||
member);
|
||
error ("at this point in file");
|
||
TREE_ADDRESSABLE (member) = 1;
|
||
}
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* The first case is really just a reference to a member of `this'. */
|
||
if (TREE_CODE (member) == FIELD_DECL
|
||
&& (base == current_class_ref || is_dummy_object (base)))
|
||
{
|
||
tree basetype_path;
|
||
tree expr;
|
||
|
||
if (TREE_CODE (exp) == OFFSET_REF && TREE_CODE (type) == OFFSET_TYPE)
|
||
basetype = TYPE_OFFSET_BASETYPE (type);
|
||
else
|
||
basetype = DECL_CONTEXT (member);
|
||
|
||
base = current_class_ptr;
|
||
|
||
if (get_base_distance (basetype, TREE_TYPE (TREE_TYPE (base)), 0, &basetype_path) < 0)
|
||
{
|
||
error_not_base_type (basetype, TREE_TYPE (TREE_TYPE (base)));
|
||
return error_mark_node;
|
||
}
|
||
/* Kludge: we need to use basetype_path now, because
|
||
convert_pointer_to will bash it. */
|
||
enforce_access (basetype_path, member);
|
||
addr = convert_pointer_to (basetype, base);
|
||
|
||
/* Even in the case of illegal access, we form the
|
||
COMPONENT_REF; that will allow better error recovery than
|
||
just feeding back error_mark_node. */
|
||
expr = build (COMPONENT_REF, TREE_TYPE (member),
|
||
build_indirect_ref (addr, NULL_PTR), member);
|
||
return convert_from_reference (expr);
|
||
}
|
||
|
||
/* Ensure that we have an object. */
|
||
if (is_dummy_object (base))
|
||
addr = error_mark_node;
|
||
else
|
||
/* If this is a reference to a member function, then return the
|
||
address of the member function (which may involve going
|
||
through the object's vtable), otherwise, return an expression
|
||
for the dereferenced pointer-to-member construct. */
|
||
addr = build_unary_op (ADDR_EXPR, base, 0);
|
||
|
||
if (TYPE_PTRMEM_P (TREE_TYPE (member)))
|
||
{
|
||
if (addr == error_mark_node)
|
||
{
|
||
cp_error ("object missing in `%E'", exp);
|
||
return error_mark_node;
|
||
}
|
||
|
||
basetype = TYPE_OFFSET_BASETYPE (TREE_TYPE (TREE_TYPE (member)));
|
||
addr = convert_pointer_to (basetype, addr);
|
||
member = cp_convert (ptrdiff_type_node, member);
|
||
|
||
/* Pointer to data members are offset by one, so that a null
|
||
pointer with a real value of 0 is distinguishable from an
|
||
offset of the first member of a structure. */
|
||
member = build_binary_op (MINUS_EXPR, member,
|
||
cp_convert (ptrdiff_type_node, integer_one_node));
|
||
|
||
return build1 (INDIRECT_REF, type,
|
||
build (PLUS_EXPR, build_pointer_type (type),
|
||
addr, member));
|
||
}
|
||
else if (TYPE_PTRMEMFUNC_P (TREE_TYPE (member)))
|
||
{
|
||
return get_member_function_from_ptrfunc (&addr, member);
|
||
}
|
||
my_friendly_abort (56);
|
||
/* NOTREACHED */
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Return either DECL or its known constant value (if it has one). */
|
||
|
||
tree
|
||
decl_constant_value (decl)
|
||
tree decl;
|
||
{
|
||
if (! TREE_THIS_VOLATILE (decl)
|
||
&& DECL_INITIAL (decl)
|
||
&& DECL_INITIAL (decl) != error_mark_node
|
||
/* This is invalid if initial value is not constant.
|
||
If it has either a function call, a memory reference,
|
||
or a variable, then re-evaluating it could give different results. */
|
||
&& TREE_CONSTANT (DECL_INITIAL (decl))
|
||
/* Check for cases where this is sub-optimal, even though valid. */
|
||
&& TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
|
||
return DECL_INITIAL (decl);
|
||
return decl;
|
||
}
|
||
|
||
/* Common subroutines of build_new and build_vec_delete. */
|
||
|
||
/* Call the global __builtin_delete to delete ADDR. */
|
||
|
||
static tree
|
||
build_builtin_delete_call (addr)
|
||
tree addr;
|
||
{
|
||
mark_used (global_delete_fndecl);
|
||
return build_call (global_delete_fndecl,
|
||
void_type_node, build_expr_list (NULL_TREE, addr));
|
||
}
|
||
|
||
/* Generate a C++ "new" expression. DECL is either a TREE_LIST
|
||
(which needs to go through some sort of groktypename) or it
|
||
is the name of the class we are newing. INIT is an initialization value.
|
||
It is either an EXPRLIST, an EXPR_NO_COMMAS, or something in braces.
|
||
If INIT is void_type_node, it means do *not* call a constructor
|
||
for this instance.
|
||
|
||
For types with constructors, the data returned is initialized
|
||
by the appropriate constructor.
|
||
|
||
Whether the type has a constructor or not, if it has a pointer
|
||
to a virtual function table, then that pointer is set up
|
||
here.
|
||
|
||
Unless I am mistaken, a call to new () will return initialized
|
||
data regardless of whether the constructor itself is private or
|
||
not. NOPE; new fails if the constructor is private (jcm).
|
||
|
||
Note that build_new does nothing to assure that any special
|
||
alignment requirements of the type are met. Rather, it leaves
|
||
it up to malloc to do the right thing. Otherwise, folding to
|
||
the right alignment cal cause problems if the user tries to later
|
||
free the memory returned by `new'.
|
||
|
||
PLACEMENT is the `placement' list for user-defined operator new (). */
|
||
|
||
extern int flag_check_new;
|
||
|
||
tree
|
||
build_new (placement, decl, init, use_global_new)
|
||
tree placement;
|
||
tree decl, init;
|
||
int use_global_new;
|
||
{
|
||
tree type, rval;
|
||
tree nelts = NULL_TREE, t;
|
||
int has_array = 0;
|
||
|
||
tree pending_sizes = NULL_TREE;
|
||
|
||
if (decl == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
if (TREE_CODE (decl) == TREE_LIST)
|
||
{
|
||
tree absdcl = TREE_VALUE (decl);
|
||
tree last_absdcl = NULL_TREE;
|
||
int old_immediate_size_expand = 0;
|
||
|
||
if (current_function_decl
|
||
&& DECL_CONSTRUCTOR_P (current_function_decl))
|
||
{
|
||
old_immediate_size_expand = immediate_size_expand;
|
||
immediate_size_expand = 0;
|
||
}
|
||
|
||
nelts = integer_one_node;
|
||
|
||
if (absdcl && TREE_CODE (absdcl) == CALL_EXPR)
|
||
my_friendly_abort (215);
|
||
while (absdcl && TREE_CODE (absdcl) == INDIRECT_REF)
|
||
{
|
||
last_absdcl = absdcl;
|
||
absdcl = TREE_OPERAND (absdcl, 0);
|
||
}
|
||
|
||
if (absdcl && TREE_CODE (absdcl) == ARRAY_REF)
|
||
{
|
||
/* probably meant to be a vec new */
|
||
tree this_nelts;
|
||
|
||
while (TREE_OPERAND (absdcl, 0)
|
||
&& TREE_CODE (TREE_OPERAND (absdcl, 0)) == ARRAY_REF)
|
||
{
|
||
last_absdcl = absdcl;
|
||
absdcl = TREE_OPERAND (absdcl, 0);
|
||
}
|
||
|
||
has_array = 1;
|
||
this_nelts = TREE_OPERAND (absdcl, 1);
|
||
if (this_nelts != error_mark_node)
|
||
{
|
||
if (this_nelts == NULL_TREE)
|
||
error ("new of array type fails to specify size");
|
||
else if (processing_template_decl)
|
||
{
|
||
nelts = this_nelts;
|
||
absdcl = TREE_OPERAND (absdcl, 0);
|
||
}
|
||
else
|
||
{
|
||
int flags = pedantic ? WANT_INT : (WANT_INT | WANT_ENUM);
|
||
if (build_expr_type_conversion (flags, this_nelts, 0)
|
||
== NULL_TREE)
|
||
pedwarn ("size in array new must have integral type");
|
||
|
||
this_nelts = save_expr (cp_convert (sizetype, this_nelts));
|
||
absdcl = TREE_OPERAND (absdcl, 0);
|
||
if (this_nelts == integer_zero_node)
|
||
{
|
||
warning ("zero size array reserves no space");
|
||
nelts = integer_zero_node;
|
||
}
|
||
else
|
||
nelts = build_binary_op (MULT_EXPR, nelts, this_nelts);
|
||
}
|
||
}
|
||
else
|
||
nelts = integer_zero_node;
|
||
}
|
||
|
||
if (last_absdcl)
|
||
TREE_OPERAND (last_absdcl, 0) = absdcl;
|
||
else
|
||
TREE_VALUE (decl) = absdcl;
|
||
|
||
type = groktypename (decl);
|
||
if (! type || type == error_mark_node)
|
||
{
|
||
immediate_size_expand = old_immediate_size_expand;
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (current_function_decl
|
||
&& DECL_CONSTRUCTOR_P (current_function_decl))
|
||
{
|
||
pending_sizes = get_pending_sizes ();
|
||
immediate_size_expand = old_immediate_size_expand;
|
||
}
|
||
}
|
||
else if (TREE_CODE (decl) == IDENTIFIER_NODE)
|
||
{
|
||
if (IDENTIFIER_HAS_TYPE_VALUE (decl))
|
||
{
|
||
/* An aggregate type. */
|
||
type = IDENTIFIER_TYPE_VALUE (decl);
|
||
decl = TYPE_MAIN_DECL (type);
|
||
}
|
||
else
|
||
{
|
||
/* A builtin type. */
|
||
decl = lookup_name (decl, 1);
|
||
my_friendly_assert (TREE_CODE (decl) == TYPE_DECL, 215);
|
||
type = TREE_TYPE (decl);
|
||
}
|
||
}
|
||
else if (TREE_CODE (decl) == TYPE_DECL)
|
||
{
|
||
type = TREE_TYPE (decl);
|
||
}
|
||
else
|
||
{
|
||
type = decl;
|
||
decl = TYPE_MAIN_DECL (type);
|
||
}
|
||
|
||
if (processing_template_decl)
|
||
{
|
||
if (has_array)
|
||
t = min_tree_cons (min_tree_cons (NULL_TREE, type, NULL_TREE),
|
||
build_min_nt (ARRAY_REF, NULL_TREE, nelts),
|
||
NULL_TREE);
|
||
else
|
||
t = type;
|
||
|
||
rval = build_min_nt (NEW_EXPR, placement, t, init);
|
||
NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
|
||
return rval;
|
||
}
|
||
|
||
/* ``A reference cannot be created by the new operator. A reference
|
||
is not an object (8.2.2, 8.4.3), so a pointer to it could not be
|
||
returned by new.'' ARM 5.3.3 */
|
||
if (TREE_CODE (type) == REFERENCE_TYPE)
|
||
{
|
||
error ("new cannot be applied to a reference type");
|
||
type = TREE_TYPE (type);
|
||
}
|
||
|
||
if (TREE_CODE (type) == FUNCTION_TYPE)
|
||
{
|
||
error ("new cannot be applied to a function type");
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* When the object being created is an array, the new-expression yields a
|
||
pointer to the initial element (if any) of the array. For example,
|
||
both new int and new int[10] return an int*. 5.3.4. */
|
||
if (TREE_CODE (type) == ARRAY_TYPE && has_array == 0)
|
||
{
|
||
nelts = array_type_nelts_top (type);
|
||
has_array = 1;
|
||
type = TREE_TYPE (type);
|
||
}
|
||
|
||
if (has_array)
|
||
t = build_nt (ARRAY_REF, type, nelts);
|
||
else
|
||
t = type;
|
||
|
||
rval = build (NEW_EXPR, build_pointer_type (type), placement, t, init);
|
||
NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
|
||
TREE_SIDE_EFFECTS (rval) = 1;
|
||
|
||
/* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
|
||
rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
|
||
TREE_NO_UNUSED_WARNING (rval) = 1;
|
||
|
||
if (pending_sizes)
|
||
rval = build_compound_expr (chainon (pending_sizes,
|
||
build_expr_list (NULL_TREE, rval)));
|
||
|
||
return rval;
|
||
}
|
||
|
||
/* If non-NULL, a POINTER_TYPE equivalent to (java::lang::Class*). */
|
||
|
||
static tree jclass_node = NULL_TREE;
|
||
|
||
/* Given a Java class, return a decl for the corresponding java.lang.Class. */
|
||
|
||
static tree
|
||
build_java_class_ref (type)
|
||
tree type;
|
||
{
|
||
tree name, class_decl;
|
||
static tree CL_prefix = NULL_TREE;
|
||
if (CL_prefix == NULL_TREE)
|
||
CL_prefix = get_identifier("_CL_");
|
||
if (jclass_node == NULL_TREE)
|
||
{
|
||
jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier("jclass"));
|
||
if (jclass_node == NULL_TREE)
|
||
fatal("call to Java constructor, while `jclass' undefined");
|
||
jclass_node = TREE_TYPE (jclass_node);
|
||
}
|
||
name = build_overload_with_type (CL_prefix, type);
|
||
class_decl = IDENTIFIER_GLOBAL_VALUE (name);
|
||
if (class_decl == NULL_TREE)
|
||
{
|
||
push_obstacks_nochange ();
|
||
end_temporary_allocation ();
|
||
class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
|
||
TREE_STATIC (class_decl) = 1;
|
||
DECL_EXTERNAL (class_decl) = 1;
|
||
TREE_PUBLIC (class_decl) = 1;
|
||
DECL_ARTIFICIAL (class_decl) = 1;
|
||
DECL_IGNORED_P (class_decl) = 1;
|
||
pushdecl_top_level (class_decl);
|
||
make_decl_rtl (class_decl, NULL_PTR, 1);
|
||
pop_obstacks ();
|
||
}
|
||
return class_decl;
|
||
}
|
||
|
||
/* Called from cplus_expand_expr when expanding a NEW_EXPR. The return
|
||
value is immediately handed to expand_expr. */
|
||
|
||
tree
|
||
build_new_1 (exp)
|
||
tree exp;
|
||
{
|
||
tree placement, init;
|
||
tree type, true_type, size, rval;
|
||
tree nelts = NULL_TREE;
|
||
tree alloc_expr, alloc_node = NULL_TREE;
|
||
int has_array = 0;
|
||
enum tree_code code = NEW_EXPR;
|
||
int use_cookie, nothrow, check_new;
|
||
int use_global_new;
|
||
int use_java_new = 0;
|
||
|
||
placement = TREE_OPERAND (exp, 0);
|
||
type = TREE_OPERAND (exp, 1);
|
||
init = TREE_OPERAND (exp, 2);
|
||
use_global_new = NEW_EXPR_USE_GLOBAL (exp);
|
||
|
||
if (TREE_CODE (type) == ARRAY_REF)
|
||
{
|
||
has_array = 1;
|
||
nelts = TREE_OPERAND (type, 1);
|
||
type = TREE_OPERAND (type, 0);
|
||
}
|
||
true_type = type;
|
||
|
||
if (CP_TYPE_QUALS (type))
|
||
type = TYPE_MAIN_VARIANT (type);
|
||
|
||
/* If our base type is an array, then make sure we know how many elements
|
||
it has. */
|
||
while (TREE_CODE (true_type) == ARRAY_TYPE)
|
||
{
|
||
tree this_nelts = array_type_nelts_top (true_type);
|
||
nelts = build_binary_op (MULT_EXPR, nelts, this_nelts);
|
||
true_type = TREE_TYPE (true_type);
|
||
}
|
||
|
||
if (!complete_type_or_else (true_type, exp))
|
||
return error_mark_node;
|
||
|
||
if (has_array)
|
||
size = fold (build_binary_op (MULT_EXPR, size_in_bytes (true_type),
|
||
nelts));
|
||
else
|
||
size = size_in_bytes (type);
|
||
|
||
if (TREE_CODE (true_type) == VOID_TYPE)
|
||
{
|
||
error ("invalid type `void' for new");
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (TYPE_LANG_SPECIFIC (true_type)
|
||
&& CLASSTYPE_ABSTRACT_VIRTUALS (true_type))
|
||
{
|
||
abstract_virtuals_error (NULL_TREE, true_type);
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (TYPE_LANG_SPECIFIC (true_type) && IS_SIGNATURE (true_type))
|
||
{
|
||
signature_error (NULL_TREE, true_type);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* When we allocate an array, and the corresponding deallocation
|
||
function takes a second argument of type size_t, and that's the
|
||
"usual deallocation function", we allocate some extra space at
|
||
the beginning of the array to store the size of the array.
|
||
|
||
Well, that's what we should do. For backwards compatibility, we
|
||
have to do this whenever there's a two-argument array-delete
|
||
operator.
|
||
|
||
FIXME: For -fnew-abi, we don't have to maintain backwards
|
||
compatibility and we should fix this. */
|
||
use_cookie = (has_array && TYPE_VEC_NEW_USES_COOKIE (true_type)
|
||
&& ! (placement && ! TREE_CHAIN (placement)
|
||
&& TREE_TYPE (TREE_VALUE (placement)) == ptr_type_node));
|
||
|
||
if (use_cookie)
|
||
{
|
||
tree extra = BI_header_size;
|
||
|
||
size = size_binop (PLUS_EXPR, size, extra);
|
||
}
|
||
|
||
if (has_array)
|
||
{
|
||
code = VEC_NEW_EXPR;
|
||
|
||
if (init && pedantic)
|
||
cp_pedwarn ("initialization in array new");
|
||
}
|
||
|
||
/* Allocate the object. */
|
||
|
||
if (! has_array && ! placement && flag_this_is_variable > 0
|
||
&& TYPE_NEEDS_CONSTRUCTING (true_type) && init != void_type_node)
|
||
{
|
||
if (init == NULL_TREE || TREE_CODE (init) == TREE_LIST)
|
||
rval = NULL_TREE;
|
||
else
|
||
{
|
||
error ("constructors take parameter lists");
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
else if (! placement && TYPE_FOR_JAVA (true_type))
|
||
{
|
||
tree class_addr, alloc_decl;
|
||
tree class_decl = build_java_class_ref (true_type);
|
||
tree class_size = size_in_bytes (true_type);
|
||
static char alloc_name[] = "_Jv_AllocObject";
|
||
use_java_new = 1;
|
||
alloc_decl = IDENTIFIER_GLOBAL_VALUE (get_identifier (alloc_name));
|
||
if (alloc_decl == NULL_TREE)
|
||
fatal("call to Java constructor, while `%s' undefined", alloc_name);
|
||
class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
|
||
rval = build_function_call (alloc_decl,
|
||
tree_cons (NULL_TREE, class_addr,
|
||
build_tree_list (NULL_TREE,
|
||
class_size)));
|
||
rval = cp_convert (build_pointer_type (true_type), rval);
|
||
}
|
||
else
|
||
{
|
||
int susp = 0;
|
||
|
||
if (flag_exceptions)
|
||
/* We will use RVAL when generating an exception handler for
|
||
this new-expression, so we must save it. */
|
||
susp = suspend_momentary ();
|
||
|
||
rval = build_op_new_call
|
||
(code, true_type, expr_tree_cons (NULL_TREE, size, placement),
|
||
LOOKUP_NORMAL | (use_global_new * LOOKUP_GLOBAL));
|
||
rval = cp_convert (build_pointer_type (true_type), rval);
|
||
|
||
if (flag_exceptions)
|
||
resume_momentary (susp);
|
||
}
|
||
|
||
/* unless an allocation function is declared with an empty excep-
|
||
tion-specification (_except.spec_), throw(), it indicates failure to
|
||
allocate storage by throwing a bad_alloc exception (clause _except_,
|
||
_lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
|
||
cation function is declared with an empty exception-specification,
|
||
throw(), it returns null to indicate failure to allocate storage and a
|
||
non-null pointer otherwise.
|
||
|
||
So check for a null exception spec on the op new we just called. */
|
||
|
||
nothrow = 0;
|
||
if (rval)
|
||
{
|
||
/* The CALL_EXPR. */
|
||
tree t = TREE_OPERAND (rval, 0);
|
||
/* The function. */
|
||
t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
|
||
nothrow = TYPE_NOTHROW_P (TREE_TYPE (t));
|
||
}
|
||
check_new = (flag_check_new || nothrow) && ! use_java_new;
|
||
|
||
if ((check_new || flag_exceptions) && rval)
|
||
{
|
||
alloc_expr = get_target_expr (rval);
|
||
alloc_node = rval = TREE_OPERAND (alloc_expr, 0);
|
||
}
|
||
else
|
||
alloc_expr = NULL_TREE;
|
||
|
||
/* if rval is NULL_TREE I don't have to allocate it, but are we totally
|
||
sure we have some extra bytes in that case for the BI_header_size
|
||
cookies? And how does that interact with the code below? (mrs) */
|
||
/* Finish up some magic for new'ed arrays */
|
||
if (use_cookie && rval != NULL_TREE)
|
||
{
|
||
tree extra = BI_header_size;
|
||
tree cookie, exp1;
|
||
rval = convert (string_type_node, rval); /* for ptr arithmetic */
|
||
rval = save_expr (build_binary_op (PLUS_EXPR, rval, extra));
|
||
/* Store header info. */
|
||
cookie = build_indirect_ref (build (MINUS_EXPR,
|
||
build_pointer_type (BI_header_type),
|
||
rval, extra), NULL_PTR);
|
||
exp1 = build (MODIFY_EXPR, void_type_node,
|
||
build_component_ref (cookie, nc_nelts_field_id,
|
||
NULL_TREE, 0),
|
||
nelts);
|
||
TREE_SIDE_EFFECTS (exp1) = 1;
|
||
rval = cp_convert (build_pointer_type (true_type), rval);
|
||
rval = build_compound_expr
|
||
(expr_tree_cons (NULL_TREE, exp1,
|
||
build_expr_list (NULL_TREE, rval)));
|
||
}
|
||
|
||
if (rval == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* Don't call any constructors or do any initialization. */
|
||
if (init == void_type_node)
|
||
goto done;
|
||
|
||
if (TYPE_NEEDS_CONSTRUCTING (type) || init)
|
||
{
|
||
if (! TYPE_NEEDS_CONSTRUCTING (type)
|
||
&& ! IS_AGGR_TYPE (type) && ! has_array)
|
||
{
|
||
/* We are processing something like `new int (10)', which
|
||
means allocate an int, and initialize it with 10. */
|
||
tree deref;
|
||
tree deref_type;
|
||
|
||
/* At present RVAL is a temporary variable, created to hold
|
||
the value from the call to `operator new'. We transform
|
||
it to (*RVAL = INIT, RVAL). */
|
||
rval = save_expr (rval);
|
||
deref = build_indirect_ref (rval, NULL_PTR);
|
||
|
||
/* Even for something like `new const int (10)' we must
|
||
allow the expression to be non-const while we do the
|
||
initialization. */
|
||
deref_type = TREE_TYPE (deref);
|
||
if (CP_TYPE_CONST_P (deref_type))
|
||
TREE_TYPE (deref)
|
||
= cp_build_qualified_type (deref_type,
|
||
CP_TYPE_QUALS (deref_type)
|
||
& ~TYPE_QUAL_CONST);
|
||
TREE_READONLY (deref) = 0;
|
||
|
||
if (TREE_CHAIN (init) != NULL_TREE)
|
||
pedwarn ("initializer list being treated as compound expression");
|
||
else if (TREE_CODE (init) == CONSTRUCTOR)
|
||
{
|
||
pedwarn ("initializer list appears where operand should be used");
|
||
init = TREE_OPERAND (init, 1);
|
||
}
|
||
init = build_compound_expr (init);
|
||
|
||
init = convert_for_initialization (deref, type, init, LOOKUP_NORMAL,
|
||
"new", NULL_TREE, 0);
|
||
rval = build (COMPOUND_EXPR, TREE_TYPE (rval),
|
||
build_modify_expr (deref, NOP_EXPR, init),
|
||
rval);
|
||
TREE_NO_UNUSED_WARNING (rval) = 1;
|
||
TREE_SIDE_EFFECTS (rval) = 1;
|
||
}
|
||
else if (! has_array)
|
||
{
|
||
tree newrval;
|
||
/* Constructors are never virtual. If it has an initialization, we
|
||
need to complain if we aren't allowed to use the ctor that took
|
||
that argument. */
|
||
int flags = LOOKUP_NORMAL|LOOKUP_NONVIRTUAL|LOOKUP_COMPLAIN;
|
||
|
||
if (rval && TYPE_USES_VIRTUAL_BASECLASSES (true_type))
|
||
{
|
||
init = expr_tree_cons (NULL_TREE, integer_one_node, init);
|
||
flags |= LOOKUP_HAS_IN_CHARGE;
|
||
}
|
||
|
||
if (use_java_new)
|
||
rval = save_expr (rval);
|
||
newrval = rval;
|
||
|
||
if (newrval && TREE_CODE (TREE_TYPE (newrval)) == POINTER_TYPE)
|
||
newrval = build_indirect_ref (newrval, NULL_PTR);
|
||
|
||
newrval = build_method_call (newrval, ctor_identifier,
|
||
init, TYPE_BINFO (true_type), flags);
|
||
|
||
if (newrval == NULL_TREE || newrval == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* Java constructors compiled by jc1 do not return this. */
|
||
if (use_java_new)
|
||
newrval = build (COMPOUND_EXPR, TREE_TYPE (newrval),
|
||
newrval, rval);
|
||
rval = newrval;
|
||
TREE_HAS_CONSTRUCTOR (rval) = 1;
|
||
}
|
||
else
|
||
rval = build (VEC_INIT_EXPR, TREE_TYPE (rval),
|
||
save_expr (rval), init, nelts);
|
||
|
||
/* If any part of the object initialization terminates by throwing an
|
||
exception and a suitable deallocation function can be found, the
|
||
deallocation function is called to free the memory in which the
|
||
object was being constructed, after which the exception continues
|
||
to propagate in the context of the new-expression. If no
|
||
unambiguous matching deallocation function can be found,
|
||
propagating the exception does not cause the object's memory to be
|
||
freed. */
|
||
if (flag_exceptions && alloc_expr && ! use_java_new)
|
||
{
|
||
enum tree_code dcode = has_array ? VEC_DELETE_EXPR : DELETE_EXPR;
|
||
tree cleanup, fn = NULL_TREE;
|
||
int flags = LOOKUP_NORMAL | (use_global_new * LOOKUP_GLOBAL);
|
||
|
||
/* All cleanups must last longer than normal. */
|
||
int yes = suspend_momentary ();
|
||
|
||
if (placement)
|
||
{
|
||
flags |= LOOKUP_SPECULATIVELY;
|
||
|
||
/* We expect alloc_expr to look like a TARGET_EXPR around
|
||
a NOP_EXPR around the CALL_EXPR we want. */
|
||
fn = TREE_OPERAND (alloc_expr, 1);
|
||
fn = TREE_OPERAND (fn, 0);
|
||
}
|
||
|
||
/* Copy size to the saveable obstack. */
|
||
size = mapcar (size, permanent_p);
|
||
|
||
cleanup = build_op_delete_call (dcode, alloc_node, size, flags, fn);
|
||
|
||
resume_momentary (yes);
|
||
|
||
/* Ack! First we allocate the memory. Then we set our sentry
|
||
variable to true, and expand a cleanup that deletes the memory
|
||
if sentry is true. Then we run the constructor and store the
|
||
returned pointer in buf. Then we clear sentry and return buf. */
|
||
|
||
if (cleanup)
|
||
{
|
||
tree end, sentry, begin, buf, t = TREE_TYPE (rval);
|
||
|
||
begin = get_target_expr (boolean_true_node);
|
||
sentry = TREE_OPERAND (begin, 0);
|
||
|
||
yes = suspend_momentary ();
|
||
TREE_OPERAND (begin, 2)
|
||
= build (COND_EXPR, void_type_node, sentry,
|
||
cleanup, void_zero_node);
|
||
resume_momentary (yes);
|
||
|
||
rval = get_target_expr (rval);
|
||
|
||
end = build (MODIFY_EXPR, TREE_TYPE (sentry),
|
||
sentry, boolean_false_node);
|
||
TREE_SIDE_EFFECTS (end) = 1;
|
||
|
||
buf = TREE_OPERAND (rval, 0);
|
||
|
||
rval = build (COMPOUND_EXPR, t, begin,
|
||
build (COMPOUND_EXPR, t, rval,
|
||
build (COMPOUND_EXPR, t, end, buf)));
|
||
}
|
||
}
|
||
}
|
||
else if (CP_TYPE_CONST_P (true_type))
|
||
cp_error ("uninitialized const in `new' of `%#T'", true_type);
|
||
|
||
done:
|
||
|
||
if (alloc_expr && rval == alloc_node)
|
||
{
|
||
rval = TREE_OPERAND (alloc_expr, 1);
|
||
alloc_expr = NULL_TREE;
|
||
}
|
||
|
||
if (check_new && alloc_expr)
|
||
{
|
||
/* Did we modify the storage? */
|
||
tree ifexp = build_binary_op (NE_EXPR, alloc_node,
|
||
integer_zero_node);
|
||
rval = build_conditional_expr (ifexp, rval, alloc_node);
|
||
}
|
||
|
||
if (alloc_expr)
|
||
rval = build (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
|
||
|
||
if (rval && TREE_TYPE (rval) != build_pointer_type (type))
|
||
{
|
||
/* The type of new int [3][3] is not int *, but int [3] * */
|
||
rval = build_c_cast (build_pointer_type (type), rval);
|
||
}
|
||
|
||
return rval;
|
||
}
|
||
|
||
static tree
|
||
build_vec_delete_1 (base, maxindex, type, auto_delete_vec, auto_delete,
|
||
use_global_delete)
|
||
tree base, maxindex, type;
|
||
tree auto_delete_vec, auto_delete;
|
||
int use_global_delete;
|
||
{
|
||
tree virtual_size;
|
||
tree ptype = build_pointer_type (type = complete_type (type));
|
||
tree size_exp = size_in_bytes (type);
|
||
|
||
/* Temporary variables used by the loop. */
|
||
tree tbase, tbase_init;
|
||
|
||
/* This is the body of the loop that implements the deletion of a
|
||
single element, and moves temp variables to next elements. */
|
||
tree body;
|
||
|
||
/* This is the LOOP_EXPR that governs the deletion of the elements. */
|
||
tree loop;
|
||
|
||
/* This is the thing that governs what to do after the loop has run. */
|
||
tree deallocate_expr = 0;
|
||
|
||
/* This is the BIND_EXPR which holds the outermost iterator of the
|
||
loop. It is convenient to set this variable up and test it before
|
||
executing any other code in the loop.
|
||
This is also the containing expression returned by this function. */
|
||
tree controller = NULL_TREE;
|
||
|
||
if (! IS_AGGR_TYPE (type) || ! TYPE_NEEDS_DESTRUCTOR (type))
|
||
{
|
||
loop = integer_zero_node;
|
||
goto no_destructor;
|
||
}
|
||
|
||
/* The below is short by BI_header_size */
|
||
virtual_size = fold (size_binop (MULT_EXPR, size_exp, maxindex));
|
||
|
||
tbase = build_decl (VAR_DECL, NULL_TREE, ptype);
|
||
tbase_init = build_modify_expr (tbase, NOP_EXPR,
|
||
fold (build (PLUS_EXPR, ptype,
|
||
base,
|
||
virtual_size)));
|
||
DECL_REGISTER (tbase) = 1;
|
||
controller = build (BIND_EXPR, void_type_node, tbase, NULL_TREE, NULL_TREE);
|
||
TREE_SIDE_EFFECTS (controller) = 1;
|
||
|
||
if (auto_delete != integer_zero_node
|
||
&& auto_delete != integer_two_node)
|
||
{
|
||
tree base_tbd = cp_convert (ptype,
|
||
build_binary_op (MINUS_EXPR,
|
||
cp_convert (ptr_type_node, base),
|
||
BI_header_size));
|
||
/* This is the real size */
|
||
virtual_size = size_binop (PLUS_EXPR, virtual_size, BI_header_size);
|
||
body = build_expr_list (NULL_TREE,
|
||
build_x_delete (base_tbd,
|
||
2 | use_global_delete,
|
||
virtual_size));
|
||
body = build (COND_EXPR, void_type_node,
|
||
build (BIT_AND_EXPR, integer_type_node,
|
||
auto_delete, integer_one_node),
|
||
body, integer_zero_node);
|
||
}
|
||
else
|
||
body = NULL_TREE;
|
||
|
||
body = expr_tree_cons (NULL_TREE,
|
||
build_delete (ptype, tbase, auto_delete,
|
||
LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1),
|
||
body);
|
||
|
||
body = expr_tree_cons (NULL_TREE,
|
||
build_modify_expr (tbase, NOP_EXPR, build (MINUS_EXPR, ptype, tbase, size_exp)),
|
||
body);
|
||
|
||
body = expr_tree_cons (NULL_TREE,
|
||
build (EXIT_EXPR, void_type_node,
|
||
build (EQ_EXPR, boolean_type_node, base, tbase)),
|
||
body);
|
||
|
||
loop = build (LOOP_EXPR, void_type_node, build_compound_expr (body));
|
||
|
||
loop = expr_tree_cons (NULL_TREE, tbase_init,
|
||
expr_tree_cons (NULL_TREE, loop, NULL_TREE));
|
||
loop = build_compound_expr (loop);
|
||
|
||
no_destructor:
|
||
/* If the delete flag is one, or anything else with the low bit set,
|
||
delete the storage. */
|
||
if (auto_delete_vec == integer_zero_node)
|
||
deallocate_expr = integer_zero_node;
|
||
else
|
||
{
|
||
tree base_tbd;
|
||
|
||
/* The below is short by BI_header_size */
|
||
virtual_size = fold (size_binop (MULT_EXPR, size_exp, maxindex));
|
||
|
||
if (! TYPE_VEC_NEW_USES_COOKIE (type))
|
||
/* no header */
|
||
base_tbd = base;
|
||
else
|
||
{
|
||
base_tbd = cp_convert (ptype,
|
||
build_binary_op (MINUS_EXPR,
|
||
cp_convert (string_type_node, base),
|
||
BI_header_size));
|
||
/* True size with header. */
|
||
virtual_size = size_binop (PLUS_EXPR, virtual_size, BI_header_size);
|
||
}
|
||
deallocate_expr = build_x_delete (base_tbd,
|
||
2 | use_global_delete,
|
||
virtual_size);
|
||
if (auto_delete_vec != integer_one_node)
|
||
deallocate_expr = build (COND_EXPR, void_type_node,
|
||
build (BIT_AND_EXPR, integer_type_node,
|
||
auto_delete_vec, integer_one_node),
|
||
deallocate_expr, integer_zero_node);
|
||
}
|
||
|
||
if (loop && deallocate_expr != integer_zero_node)
|
||
{
|
||
body = expr_tree_cons (NULL_TREE, loop,
|
||
expr_tree_cons (NULL_TREE, deallocate_expr, NULL_TREE));
|
||
body = build_compound_expr (body);
|
||
}
|
||
else
|
||
body = loop;
|
||
|
||
/* Outermost wrapper: If pointer is null, punt. */
|
||
body = build (COND_EXPR, void_type_node,
|
||
build (NE_EXPR, boolean_type_node, base, integer_zero_node),
|
||
body, integer_zero_node);
|
||
body = build1 (NOP_EXPR, void_type_node, body);
|
||
|
||
if (controller)
|
||
{
|
||
TREE_OPERAND (controller, 1) = body;
|
||
return controller;
|
||
}
|
||
else
|
||
return cp_convert (void_type_node, body);
|
||
}
|
||
|
||
/* Protect the vector initialization with a try-block so that we can
|
||
destroy the first few elements if constructing a later element
|
||
causes an exception to be thrown. TYPE is the type of the array
|
||
elements. */
|
||
|
||
static void
|
||
expand_vec_init_try_block (type)
|
||
tree type;
|
||
{
|
||
if (!TYPE_NEEDS_DESTRUCTOR (type) || !flag_exceptions)
|
||
return;
|
||
|
||
/* The code we generate looks like:
|
||
|
||
try {
|
||
// Initialize the vector.
|
||
} catch (...) {
|
||
// Destory the elements that need destroying.
|
||
throw;
|
||
}
|
||
|
||
Here we're just beginning the `try'. */
|
||
|
||
expand_eh_region_start ();
|
||
}
|
||
|
||
/* Add code to destroy the array elements constructed so far if the
|
||
construction of some element in the array causes an exception to be
|
||
thrown. RVAL is the address of the last element in the array.
|
||
TYPE is the type of the array elements. MAXINDEX is the maximum
|
||
allowable index into the array. ITERATOR is an integer variable
|
||
indicating how many elements remain to be constructed. */
|
||
|
||
static void
|
||
expand_vec_init_catch_clause (rval, type, maxindex, iterator)
|
||
tree rval;
|
||
tree type;
|
||
tree maxindex;
|
||
tree iterator;
|
||
{
|
||
tree e;
|
||
tree cleanup;
|
||
|
||
if (!TYPE_NEEDS_DESTRUCTOR (type) || !flag_exceptions)
|
||
return;
|
||
|
||
/* We have to ensure that this can live to the cleanup expansion
|
||
time, since we know it is only ever needed once, generate code
|
||
now. */
|
||
push_obstacks_nochange ();
|
||
resume_temporary_allocation ();
|
||
|
||
cleanup = make_node (RTL_EXPR);
|
||
TREE_TYPE (cleanup) = void_type_node;
|
||
RTL_EXPR_RTL (cleanup) = const0_rtx;
|
||
TREE_SIDE_EFFECTS (cleanup) = 1;
|
||
do_pending_stack_adjust ();
|
||
start_sequence_for_rtl_expr (cleanup);
|
||
|
||
e = build_vec_delete_1 (rval,
|
||
build_binary_op (MINUS_EXPR, maxindex,
|
||
iterator),
|
||
type,
|
||
/*auto_delete_vec=*/integer_zero_node,
|
||
/*auto_delete=*/integer_zero_node,
|
||
/*use_global_delete=*/0);
|
||
expand_expr (e, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
||
|
||
do_pending_stack_adjust ();
|
||
RTL_EXPR_SEQUENCE (cleanup) = get_insns ();
|
||
end_sequence ();
|
||
cleanup = protect_with_terminate (cleanup);
|
||
expand_eh_region_end (cleanup);
|
||
pop_obstacks ();
|
||
}
|
||
|
||
/* `expand_vec_init' performs initialization of a vector of aggregate
|
||
types.
|
||
|
||
DECL is passed only for error reporting, and provides line number
|
||
and source file name information.
|
||
BASE is the space where the vector will be.
|
||
MAXINDEX is the maximum index of the array (one less than the
|
||
number of elements).
|
||
INIT is the (possibly NULL) initializer.
|
||
|
||
FROM_ARRAY is 0 if we should init everything with INIT
|
||
(i.e., every element initialized from INIT).
|
||
FROM_ARRAY is 1 if we should index into INIT in parallel
|
||
with initialization of DECL.
|
||
FROM_ARRAY is 2 if we should index into INIT in parallel,
|
||
but use assignment instead of initialization. */
|
||
|
||
tree
|
||
expand_vec_init (decl, base, maxindex, init, from_array)
|
||
tree decl, base, maxindex, init;
|
||
int from_array;
|
||
{
|
||
tree rval;
|
||
tree base2 = NULL_TREE;
|
||
tree type = TREE_TYPE (TREE_TYPE (base));
|
||
tree size;
|
||
tree itype = NULL_TREE;
|
||
tree iterator;
|
||
int num_initialized_elts = 0;
|
||
|
||
maxindex = cp_convert (ptrdiff_type_node, maxindex);
|
||
if (maxindex == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
if (current_function_decl == NULL_TREE)
|
||
{
|
||
rval = make_tree_vec (3);
|
||
TREE_VEC_ELT (rval, 0) = base;
|
||
TREE_VEC_ELT (rval, 1) = maxindex;
|
||
TREE_VEC_ELT (rval, 2) = init;
|
||
return rval;
|
||
}
|
||
|
||
size = size_in_bytes (type);
|
||
|
||
base = default_conversion (base);
|
||
base = cp_convert (build_pointer_type (type), base);
|
||
rval = get_temp_regvar (build_pointer_type (type), base);
|
||
base = get_temp_regvar (build_pointer_type (type), base);
|
||
iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
|
||
|
||
/* Protect the entire array initialization so that we can destroy
|
||
the partially constructed array if an exception is thrown. */
|
||
expand_vec_init_try_block (type);
|
||
|
||
if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR
|
||
&& (!decl || same_type_p (TREE_TYPE (init), TREE_TYPE (decl))))
|
||
{
|
||
/* Do non-default initialization resulting from brace-enclosed
|
||
initializers. */
|
||
|
||
tree elts;
|
||
tree baseref = build1 (INDIRECT_REF, type, base);
|
||
|
||
from_array = 0;
|
||
|
||
for (elts = CONSTRUCTOR_ELTS (init); elts; elts = TREE_CHAIN (elts))
|
||
{
|
||
tree elt = TREE_VALUE (elts);
|
||
|
||
num_initialized_elts++;
|
||
|
||
if (IS_AGGR_TYPE (type) || TREE_CODE (type) == ARRAY_TYPE)
|
||
expand_aggr_init (baseref, elt, 0);
|
||
else
|
||
expand_assignment (baseref, elt, 0, 0);
|
||
|
||
expand_assignment (base,
|
||
build (PLUS_EXPR, build_pointer_type (type),
|
||
base, size),
|
||
0, 0);
|
||
expand_assignment (iterator,
|
||
build (MINUS_EXPR, ptrdiff_type_node,
|
||
iterator, integer_one_node),
|
||
0, 0);
|
||
}
|
||
|
||
/* Clear out INIT so that we don't get confused below. */
|
||
init = NULL_TREE;
|
||
|
||
if (obey_regdecls)
|
||
use_variable (DECL_RTL (base));
|
||
}
|
||
else if (from_array)
|
||
{
|
||
/* If initializing one array from another, initialize element by
|
||
element. We rely upon the below calls the do argument
|
||
checking. */
|
||
if (decl == NULL_TREE)
|
||
{
|
||
sorry ("initialization of array from dissimilar array type");
|
||
return error_mark_node;
|
||
}
|
||
if (init)
|
||
{
|
||
base2 = default_conversion (init);
|
||
itype = TREE_TYPE (base2);
|
||
base2 = get_temp_regvar (itype, base2);
|
||
itype = TREE_TYPE (itype);
|
||
}
|
||
else if (TYPE_LANG_SPECIFIC (type)
|
||
&& TYPE_NEEDS_CONSTRUCTING (type)
|
||
&& ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
|
||
{
|
||
error ("initializer ends prematurely");
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
/* Now, default-initialize any remaining elements. We don't need to
|
||
do that if a) the type does not need constructing, or b) we've
|
||
already initialized all the elements.
|
||
|
||
We do need to keep going if we're copying an array. */
|
||
|
||
if (from_array
|
||
|| (TYPE_NEEDS_CONSTRUCTING (type)
|
||
&& !(TREE_CODE (maxindex) == INTEGER_CST
|
||
&& num_initialized_elts == TREE_INT_CST_LOW (maxindex) + 1)))
|
||
{
|
||
/* If the ITERATOR is equal to -1, then we don't have to loop;
|
||
we've already initialized all the elements. */
|
||
expand_start_cond (build (NE_EXPR, boolean_type_node,
|
||
iterator, minus_one),
|
||
0);
|
||
|
||
/* Otherwise, loop through the elements. */
|
||
expand_start_loop_continue_elsewhere (1);
|
||
|
||
/* The initialization of each array element is a full-expression. */
|
||
expand_start_target_temps ();
|
||
|
||
if (from_array)
|
||
{
|
||
tree to = build1 (INDIRECT_REF, type, base);
|
||
tree from;
|
||
|
||
if (base2)
|
||
from = build1 (INDIRECT_REF, itype, base2);
|
||
else
|
||
from = NULL_TREE;
|
||
|
||
if (from_array == 2)
|
||
expand_expr_stmt (build_modify_expr (to, NOP_EXPR, from));
|
||
else if (TYPE_NEEDS_CONSTRUCTING (type))
|
||
expand_aggr_init (to, from, 0);
|
||
else if (from)
|
||
expand_assignment (to, from, 0, 0);
|
||
else
|
||
my_friendly_abort (57);
|
||
}
|
||
else if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
if (init != 0)
|
||
sorry ("cannot initialize multi-dimensional array with initializer");
|
||
expand_vec_init (decl,
|
||
build1 (NOP_EXPR,
|
||
build_pointer_type (TREE_TYPE
|
||
(type)),
|
||
base),
|
||
array_type_nelts (type), 0, 0);
|
||
}
|
||
else
|
||
expand_aggr_init (build1 (INDIRECT_REF, type, base), init, 0);
|
||
|
||
expand_assignment (base,
|
||
build (PLUS_EXPR, build_pointer_type (type),
|
||
base, size), 0, 0);
|
||
if (base2)
|
||
expand_assignment (base2,
|
||
build (PLUS_EXPR, build_pointer_type (type),
|
||
base2, size), 0, 0);
|
||
|
||
/* Cleanup any temporaries needed for the initial value. */
|
||
expand_end_target_temps ();
|
||
|
||
expand_loop_continue_here ();
|
||
expand_exit_loop_if_false (0, build (NE_EXPR, boolean_type_node,
|
||
build (PREDECREMENT_EXPR,
|
||
ptrdiff_type_node,
|
||
iterator,
|
||
integer_one_node),
|
||
minus_one));
|
||
|
||
if (obey_regdecls)
|
||
{
|
||
use_variable (DECL_RTL (base));
|
||
if (base2)
|
||
use_variable (DECL_RTL (base2));
|
||
}
|
||
|
||
expand_end_loop ();
|
||
expand_end_cond ();
|
||
}
|
||
|
||
/* Make sure to cleanup any partially constructed elements. */
|
||
expand_vec_init_catch_clause (rval, type, maxindex, iterator);
|
||
|
||
if (obey_regdecls)
|
||
{
|
||
use_variable (DECL_RTL (iterator));
|
||
use_variable (DECL_RTL (rval));
|
||
}
|
||
|
||
return rval;
|
||
}
|
||
|
||
/* Free up storage of type TYPE, at address ADDR.
|
||
|
||
TYPE is a POINTER_TYPE and can be ptr_type_node for no special type
|
||
of pointer.
|
||
|
||
VIRTUAL_SIZE is the amount of storage that was allocated, and is
|
||
used as the second argument to operator delete. It can include
|
||
things like padding and magic size cookies. It has virtual in it,
|
||
because if you have a base pointer and you delete through a virtual
|
||
destructor, it should be the size of the dynamic object, not the
|
||
static object, see Free Store 12.5 ANSI C++ WP.
|
||
|
||
This does not call any destructors. */
|
||
|
||
tree
|
||
build_x_delete (addr, which_delete, virtual_size)
|
||
tree addr;
|
||
int which_delete;
|
||
tree virtual_size;
|
||
{
|
||
int use_global_delete = which_delete & 1;
|
||
int use_vec_delete = !!(which_delete & 2);
|
||
enum tree_code code = use_vec_delete ? VEC_DELETE_EXPR : DELETE_EXPR;
|
||
int flags = LOOKUP_NORMAL | (use_global_delete * LOOKUP_GLOBAL);
|
||
|
||
return build_op_delete_call (code, addr, virtual_size, flags, NULL_TREE);
|
||
}
|
||
|
||
/* Generate a call to a destructor. TYPE is the type to cast ADDR to.
|
||
ADDR is an expression which yields the store to be destroyed.
|
||
AUTO_DELETE is nonzero if a call to DELETE should be made or not.
|
||
If in the program, (AUTO_DELETE & 2) is non-zero, we tear down the
|
||
virtual baseclasses.
|
||
If in the program, (AUTO_DELETE & 1) is non-zero, then we deallocate.
|
||
|
||
FLAGS is the logical disjunction of zero or more LOOKUP_
|
||
flags. See cp-tree.h for more info.
|
||
|
||
This function does not delete an object's virtual base classes. */
|
||
|
||
tree
|
||
build_delete (type, addr, auto_delete, flags, use_global_delete)
|
||
tree type, addr;
|
||
tree auto_delete;
|
||
int flags;
|
||
int use_global_delete;
|
||
{
|
||
tree member;
|
||
tree expr;
|
||
tree ref;
|
||
|
||
if (addr == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
|
||
set to `error_mark_node' before it gets properly cleaned up. */
|
||
if (type == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
type = TYPE_MAIN_VARIANT (type);
|
||
|
||
if (TREE_CODE (type) == POINTER_TYPE)
|
||
{
|
||
type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
|
||
if (type != void_type_node && !complete_type_or_else (type, addr))
|
||
return error_mark_node;
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
goto handle_array;
|
||
if (! IS_AGGR_TYPE (type))
|
||
{
|
||
/* Call the builtin operator delete. */
|
||
return build_builtin_delete_call (addr);
|
||
}
|
||
if (TREE_SIDE_EFFECTS (addr))
|
||
addr = save_expr (addr);
|
||
|
||
/* throw away const and volatile on target type of addr */
|
||
addr = convert_force (build_pointer_type (type), addr, 0);
|
||
ref = build_indirect_ref (addr, NULL_PTR);
|
||
}
|
||
else if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
handle_array:
|
||
if (TREE_SIDE_EFFECTS (addr))
|
||
addr = save_expr (addr);
|
||
if (TYPE_DOMAIN (type) == NULL_TREE)
|
||
{
|
||
error ("unknown array size in delete");
|
||
return error_mark_node;
|
||
}
|
||
return build_vec_delete (addr, array_type_nelts (type),
|
||
auto_delete, integer_zero_node,
|
||
use_global_delete);
|
||
}
|
||
else
|
||
{
|
||
/* Don't check PROTECT here; leave that decision to the
|
||
destructor. If the destructor is accessible, call it,
|
||
else report error. */
|
||
addr = build_unary_op (ADDR_EXPR, addr, 0);
|
||
if (TREE_SIDE_EFFECTS (addr))
|
||
addr = save_expr (addr);
|
||
|
||
if (TREE_CONSTANT (addr))
|
||
addr = convert_pointer_to (type, addr);
|
||
else
|
||
addr = convert_force (build_pointer_type (type), addr, 0);
|
||
|
||
ref = build_indirect_ref (addr, NULL_PTR);
|
||
}
|
||
|
||
my_friendly_assert (IS_AGGR_TYPE (type), 220);
|
||
|
||
if (! TYPE_NEEDS_DESTRUCTOR (type))
|
||
{
|
||
if (auto_delete == integer_zero_node)
|
||
return void_zero_node;
|
||
|
||
return build_op_delete_call
|
||
(DELETE_EXPR, addr, c_sizeof_nowarn (type),
|
||
LOOKUP_NORMAL | (use_global_delete * LOOKUP_GLOBAL),
|
||
NULL_TREE);
|
||
}
|
||
|
||
/* Below, we will reverse the order in which these calls are made.
|
||
If we have a destructor, then that destructor will take care
|
||
of the base classes; otherwise, we must do that here. */
|
||
if (TYPE_HAS_DESTRUCTOR (type))
|
||
{
|
||
tree passed_auto_delete;
|
||
tree do_delete = NULL_TREE;
|
||
tree ifexp;
|
||
|
||
if (use_global_delete)
|
||
{
|
||
tree cond = fold (build (BIT_AND_EXPR, integer_type_node,
|
||
auto_delete, integer_one_node));
|
||
tree call = build_builtin_delete_call (addr);
|
||
|
||
cond = fold (build (COND_EXPR, void_type_node, cond,
|
||
call, void_zero_node));
|
||
if (cond != void_zero_node)
|
||
do_delete = cond;
|
||
|
||
passed_auto_delete = fold (build (BIT_AND_EXPR, integer_type_node,
|
||
auto_delete, integer_two_node));
|
||
}
|
||
else
|
||
passed_auto_delete = auto_delete;
|
||
|
||
expr = build_method_call
|
||
(ref, dtor_identifier, build_expr_list (NULL_TREE, passed_auto_delete),
|
||
NULL_TREE, flags);
|
||
|
||
if (do_delete)
|
||
expr = build (COMPOUND_EXPR, void_type_node, expr, do_delete);
|
||
|
||
if (flags & LOOKUP_DESTRUCTOR)
|
||
/* Explicit destructor call; don't check for null pointer. */
|
||
ifexp = integer_one_node;
|
||
else
|
||
/* Handle deleting a null pointer. */
|
||
ifexp = fold (build_binary_op (NE_EXPR, addr, integer_zero_node));
|
||
|
||
if (ifexp != integer_one_node)
|
||
expr = build (COND_EXPR, void_type_node,
|
||
ifexp, expr, void_zero_node);
|
||
|
||
return expr;
|
||
}
|
||
else
|
||
{
|
||
/* We only get here from finish_function for a destructor. */
|
||
tree binfos = BINFO_BASETYPES (TYPE_BINFO (type));
|
||
int i, n_baseclasses = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
tree base_binfo = n_baseclasses > 0 ? TREE_VEC_ELT (binfos, 0) : NULL_TREE;
|
||
tree exprstmt = NULL_TREE;
|
||
tree parent_auto_delete = auto_delete;
|
||
tree cond;
|
||
|
||
/* Set this again before we call anything, as we might get called
|
||
recursively. */
|
||
TYPE_HAS_DESTRUCTOR (type) = 1;
|
||
|
||
/* If we have member delete or vbases, we call delete in
|
||
finish_function. */
|
||
if (auto_delete == integer_zero_node)
|
||
cond = NULL_TREE;
|
||
else if (base_binfo == NULL_TREE
|
||
|| ! TYPE_NEEDS_DESTRUCTOR (BINFO_TYPE (base_binfo)))
|
||
{
|
||
cond = build (COND_EXPR, void_type_node,
|
||
build (BIT_AND_EXPR, integer_type_node, auto_delete, integer_one_node),
|
||
build_builtin_delete_call (addr),
|
||
void_zero_node);
|
||
}
|
||
else
|
||
cond = NULL_TREE;
|
||
|
||
if (cond)
|
||
exprstmt = build_expr_list (NULL_TREE, cond);
|
||
|
||
if (base_binfo
|
||
&& ! TREE_VIA_VIRTUAL (base_binfo)
|
||
&& TYPE_NEEDS_DESTRUCTOR (BINFO_TYPE (base_binfo)))
|
||
{
|
||
tree this_auto_delete;
|
||
|
||
if (BINFO_OFFSET_ZEROP (base_binfo))
|
||
this_auto_delete = parent_auto_delete;
|
||
else
|
||
this_auto_delete = integer_zero_node;
|
||
|
||
expr = build_scoped_method_call
|
||
(ref, base_binfo, dtor_identifier,
|
||
build_expr_list (NULL_TREE, this_auto_delete));
|
||
exprstmt = expr_tree_cons (NULL_TREE, expr, exprstmt);
|
||
}
|
||
|
||
/* Take care of the remaining baseclasses. */
|
||
for (i = 1; i < n_baseclasses; i++)
|
||
{
|
||
base_binfo = TREE_VEC_ELT (binfos, i);
|
||
if (! TYPE_NEEDS_DESTRUCTOR (BINFO_TYPE (base_binfo))
|
||
|| TREE_VIA_VIRTUAL (base_binfo))
|
||
continue;
|
||
|
||
expr = build_scoped_method_call
|
||
(ref, base_binfo, dtor_identifier,
|
||
build_expr_list (NULL_TREE, integer_zero_node));
|
||
|
||
exprstmt = expr_tree_cons (NULL_TREE, expr, exprstmt);
|
||
}
|
||
|
||
for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
|
||
{
|
||
if (TREE_CODE (member) != FIELD_DECL)
|
||
continue;
|
||
if (TYPE_NEEDS_DESTRUCTOR (TREE_TYPE (member)))
|
||
{
|
||
tree this_member = build_component_ref (ref, DECL_NAME (member), NULL_TREE, 0);
|
||
tree this_type = TREE_TYPE (member);
|
||
expr = build_delete (this_type, this_member, integer_two_node, flags, 0);
|
||
exprstmt = expr_tree_cons (NULL_TREE, expr, exprstmt);
|
||
}
|
||
}
|
||
|
||
if (exprstmt)
|
||
return build_compound_expr (exprstmt);
|
||
/* Virtual base classes make this function do nothing. */
|
||
return void_zero_node;
|
||
}
|
||
}
|
||
|
||
/* For type TYPE, delete the virtual baseclass objects of DECL. */
|
||
|
||
tree
|
||
build_vbase_delete (type, decl)
|
||
tree type, decl;
|
||
{
|
||
tree vbases = CLASSTYPE_VBASECLASSES (type);
|
||
tree result = NULL_TREE;
|
||
tree addr = build_unary_op (ADDR_EXPR, decl, 0);
|
||
|
||
my_friendly_assert (addr != error_mark_node, 222);
|
||
|
||
while (vbases)
|
||
{
|
||
tree this_addr = convert_force (build_pointer_type (BINFO_TYPE (vbases)),
|
||
addr, 0);
|
||
result = expr_tree_cons (NULL_TREE,
|
||
build_delete (TREE_TYPE (this_addr), this_addr,
|
||
integer_zero_node,
|
||
LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 0),
|
||
result);
|
||
vbases = TREE_CHAIN (vbases);
|
||
}
|
||
return build_compound_expr (nreverse (result));
|
||
}
|
||
|
||
/* Build a C++ vector delete expression.
|
||
MAXINDEX is the number of elements to be deleted.
|
||
ELT_SIZE is the nominal size of each element in the vector.
|
||
BASE is the expression that should yield the store to be deleted.
|
||
This function expands (or synthesizes) these calls itself.
|
||
AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
|
||
AUTO_DELETE say whether each item in the container should be deallocated.
|
||
|
||
This also calls delete for virtual baseclasses of elements of the vector.
|
||
|
||
Update: MAXINDEX is no longer needed. The size can be extracted from the
|
||
start of the vector for pointers, and from the type for arrays. We still
|
||
use MAXINDEX for arrays because it happens to already have one of the
|
||
values we'd have to extract. (We could use MAXINDEX with pointers to
|
||
confirm the size, and trap if the numbers differ; not clear that it'd
|
||
be worth bothering.) */
|
||
|
||
tree
|
||
build_vec_delete (base, maxindex, auto_delete_vec, auto_delete,
|
||
use_global_delete)
|
||
tree base, maxindex;
|
||
tree auto_delete_vec, auto_delete;
|
||
int use_global_delete;
|
||
{
|
||
tree type;
|
||
|
||
if (TREE_CODE (base) == OFFSET_REF)
|
||
base = resolve_offset_ref (base);
|
||
|
||
type = TREE_TYPE (base);
|
||
|
||
base = stabilize_reference (base);
|
||
|
||
/* Since we can use base many times, save_expr it. */
|
||
if (TREE_SIDE_EFFECTS (base))
|
||
base = save_expr (base);
|
||
|
||
if (TREE_CODE (type) == POINTER_TYPE)
|
||
{
|
||
/* Step back one from start of vector, and read dimension. */
|
||
tree cookie_addr = build (MINUS_EXPR, build_pointer_type (BI_header_type),
|
||
base, BI_header_size);
|
||
tree cookie = build_indirect_ref (cookie_addr, NULL_PTR);
|
||
maxindex = build_component_ref (cookie, nc_nelts_field_id, NULL_TREE, 0);
|
||
do
|
||
type = TREE_TYPE (type);
|
||
while (TREE_CODE (type) == ARRAY_TYPE);
|
||
}
|
||
else if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
/* get the total number of things in the array, maxindex is a bad name */
|
||
maxindex = array_type_nelts_total (type);
|
||
while (TREE_CODE (type) == ARRAY_TYPE)
|
||
type = TREE_TYPE (type);
|
||
base = build_unary_op (ADDR_EXPR, base, 1);
|
||
}
|
||
else
|
||
{
|
||
if (base != error_mark_node)
|
||
error ("type to vector delete is neither pointer or array type");
|
||
return error_mark_node;
|
||
}
|
||
|
||
return build_vec_delete_1 (base, maxindex, type, auto_delete_vec, auto_delete,
|
||
use_global_delete);
|
||
}
|