1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-17 15:27:36 +00:00
freebsd/sys/vm/vm_init.c
John Baldwin 5bd65606f4 Adjust some variables (mostly related to the buffer cache) that hold
address space sizes to be longs instead of ints.  Specifically, the follow
values are now longs: runningbufspace, bufspace, maxbufspace,
bufmallocspace, maxbufmallocspace, lobufspace, hibufspace, lorunningspace,
hirunningspace, maxswzone, maxbcache, and maxpipekva.  Previously, a
relatively small number (~ 44000) of buffers set in kern.nbuf would result
in integer overflows resulting either in hangs or bogus values of
hidirtybuffers and lodirtybuffers.  Now one has to overflow a long to see
such problems.  There was a check for a nbuf setting that would cause
overflows in the auto-tuning of nbuf.  I've changed it to always check and
cap nbuf but warn if a user-supplied tunable would cause overflow.

Note that this changes the ABI of several sysctls that are used by things
like top(1), etc., so any MFC would probably require a some gross shims
to allow for that.

MFC after:	1 month
2009-03-09 19:35:20 +00:00

212 lines
6.5 KiB
C

/*-
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_init.c 8.1 (Berkeley) 6/11/93
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* Initialize the Virtual Memory subsystem.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/selinfo.h>
#include <sys/pipe.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_pager.h>
#include <vm/vm_extern.h>
long physmem;
static int exec_map_entries = 16;
TUNABLE_INT("vm.exec_map_entries", &exec_map_entries);
SYSCTL_INT(_vm, OID_AUTO, exec_map_entries, CTLFLAG_RD, &exec_map_entries, 0,
"Maximum number of simultaneous execs");
/*
* System initialization
*/
static void vm_mem_init(void *);
SYSINIT(vm_mem, SI_SUB_VM, SI_ORDER_FIRST, vm_mem_init, NULL);
/*
* vm_init initializes the virtual memory system.
* This is done only by the first cpu up.
*
* The start and end address of physical memory is passed in.
*/
/* ARGSUSED*/
static void
vm_mem_init(dummy)
void *dummy;
{
/*
* Initializes resident memory structures. From here on, all physical
* memory is accounted for, and we use only virtual addresses.
*/
vm_set_page_size();
virtual_avail = vm_page_startup(virtual_avail);
/*
* Initialize other VM packages
*/
vm_object_init();
vm_map_startup();
kmem_init(virtual_avail, virtual_end);
pmap_init();
vm_pager_init();
}
void
vm_ksubmap_init(struct kva_md_info *kmi)
{
vm_offset_t firstaddr;
caddr_t v;
vm_size_t size = 0;
long physmem_est;
vm_offset_t minaddr;
vm_offset_t maxaddr;
vm_map_t clean_map;
/*
* Allocate space for system data structures.
* The first available kernel virtual address is in "v".
* As pages of kernel virtual memory are allocated, "v" is incremented.
* As pages of memory are allocated and cleared,
* "firstaddr" is incremented.
* An index into the kernel page table corresponding to the
* virtual memory address maintained in "v" is kept in "mapaddr".
*/
/*
* Make two passes. The first pass calculates how much memory is
* needed and allocates it. The second pass assigns virtual
* addresses to the various data structures.
*/
firstaddr = 0;
again:
v = (caddr_t)firstaddr;
v = kern_timeout_callwheel_alloc(v);
/*
* Discount the physical memory larger than the size of kernel_map
* to avoid eating up all of KVA space.
*/
physmem_est = lmin(physmem, btoc(kernel_map->max_offset -
kernel_map->min_offset));
v = kern_vfs_bio_buffer_alloc(v, physmem_est);
/*
* End of first pass, size has been calculated so allocate memory
*/
if (firstaddr == 0) {
size = (vm_size_t)v;
firstaddr = kmem_alloc(kernel_map, round_page(size));
if (firstaddr == 0)
panic("startup: no room for tables");
goto again;
}
/*
* End of second pass, addresses have been assigned
*/
if ((vm_size_t)((char *)v - firstaddr) != size)
panic("startup: table size inconsistency");
clean_map = kmem_suballoc(kernel_map, &kmi->clean_sva, &kmi->clean_eva,
(long)nbuf * BKVASIZE + (long)nswbuf * MAXPHYS, FALSE);
buffer_map = kmem_suballoc(clean_map, &kmi->buffer_sva,
&kmi->buffer_eva, (long)nbuf * BKVASIZE, FALSE);
buffer_map->system_map = 1;
pager_map = kmem_suballoc(clean_map, &kmi->pager_sva, &kmi->pager_eva,
(long)nswbuf * MAXPHYS, FALSE);
pager_map->system_map = 1;
exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
exec_map_entries * (ARG_MAX + (PAGE_SIZE * 3)), FALSE);
pipe_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr, maxpipekva,
FALSE);
/*
* XXX: Mbuf system machine-specific initializations should
* go here, if anywhere.
*/
/*
* Initialize the callouts we just allocated.
*/
kern_timeout_callwheel_init();
}