mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-10 14:02:43 +00:00
b74d3e0c37
potential extreme contention in the kernel for multi-threaded applications on SMP systems. Reported by: kris
5563 lines
137 KiB
C
5563 lines
137 KiB
C
/*-
|
|
* Copyright (C) 2006-2008 Jason Evans <jasone@FreeBSD.org>.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice(s), this list of conditions and the following disclaimer as
|
|
* the first lines of this file unmodified other than the possible
|
|
* addition of one or more copyright notices.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice(s), this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
|
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*******************************************************************************
|
|
*
|
|
* This allocator implementation is designed to provide scalable performance
|
|
* for multi-threaded programs on multi-processor systems. The following
|
|
* features are included for this purpose:
|
|
*
|
|
* + Multiple arenas are used if there are multiple CPUs, which reduces lock
|
|
* contention and cache sloshing.
|
|
*
|
|
* + Thread-specific caching is used if there are multiple threads, which
|
|
* reduces the amount of locking.
|
|
*
|
|
* + Cache line sharing between arenas is avoided for internal data
|
|
* structures.
|
|
*
|
|
* + Memory is managed in chunks and runs (chunks can be split into runs),
|
|
* rather than as individual pages. This provides a constant-time
|
|
* mechanism for associating allocations with particular arenas.
|
|
*
|
|
* Allocation requests are rounded up to the nearest size class, and no record
|
|
* of the original request size is maintained. Allocations are broken into
|
|
* categories according to size class. Assuming runtime defaults, 4 kB pages
|
|
* and a 16 byte quantum on a 32-bit system, the size classes in each category
|
|
* are as follows:
|
|
*
|
|
* |=======================================|
|
|
* | Category | Subcategory | Size |
|
|
* |=======================================|
|
|
* | Small | Tiny | 2 |
|
|
* | | | 4 |
|
|
* | | | 8 |
|
|
* | |------------------+---------|
|
|
* | | Quantum-spaced | 16 |
|
|
* | | | 32 |
|
|
* | | | 48 |
|
|
* | | | ... |
|
|
* | | | 96 |
|
|
* | | | 112 |
|
|
* | | | 128 |
|
|
* | |------------------+---------|
|
|
* | | Cacheline-spaced | 192 |
|
|
* | | | 256 |
|
|
* | | | 320 |
|
|
* | | | 384 |
|
|
* | | | 448 |
|
|
* | | | 512 |
|
|
* | |------------------+---------|
|
|
* | | Sub-page | 760 |
|
|
* | | | 1024 |
|
|
* | | | 1280 |
|
|
* | | | ... |
|
|
* | | | 3328 |
|
|
* | | | 3584 |
|
|
* | | | 3840 |
|
|
* |=======================================|
|
|
* | Large | 4 kB |
|
|
* | | 8 kB |
|
|
* | | 12 kB |
|
|
* | | ... |
|
|
* | | 1012 kB |
|
|
* | | 1016 kB |
|
|
* | | 1020 kB |
|
|
* |=======================================|
|
|
* | Huge | 1 MB |
|
|
* | | 2 MB |
|
|
* | | 3 MB |
|
|
* | | ... |
|
|
* |=======================================|
|
|
*
|
|
* A different mechanism is used for each category:
|
|
*
|
|
* Small : Each size class is segregated into its own set of runs. Each run
|
|
* maintains a bitmap of which regions are free/allocated.
|
|
*
|
|
* Large : Each allocation is backed by a dedicated run. Metadata are stored
|
|
* in the associated arena chunk header maps.
|
|
*
|
|
* Huge : Each allocation is backed by a dedicated contiguous set of chunks.
|
|
* Metadata are stored in a separate red-black tree.
|
|
*
|
|
*******************************************************************************
|
|
*/
|
|
|
|
/*
|
|
* MALLOC_PRODUCTION disables assertions and statistics gathering. It also
|
|
* defaults the A and J runtime options to off. These settings are appropriate
|
|
* for production systems.
|
|
*/
|
|
/* #define MALLOC_PRODUCTION */
|
|
|
|
#ifndef MALLOC_PRODUCTION
|
|
/*
|
|
* MALLOC_DEBUG enables assertions and other sanity checks, and disables
|
|
* inline functions.
|
|
*/
|
|
# define MALLOC_DEBUG
|
|
|
|
/* MALLOC_STATS enables statistics calculation. */
|
|
# define MALLOC_STATS
|
|
#endif
|
|
|
|
/*
|
|
* MALLOC_TINY enables support for tiny objects, which are smaller than one
|
|
* quantum.
|
|
*/
|
|
#define MALLOC_TINY
|
|
|
|
/*
|
|
* MALLOC_MAG enables a magazine-based thread-specific caching layer for small
|
|
* objects. This makes it possible to allocate/deallocate objects without any
|
|
* locking when the cache is in the steady state.
|
|
*/
|
|
#define MALLOC_MAG
|
|
|
|
/*
|
|
* MALLOC_BALANCE enables monitoring of arena lock contention and dynamically
|
|
* re-balances arena load if exponentially averaged contention exceeds a
|
|
* certain threshold.
|
|
*/
|
|
#define MALLOC_BALANCE
|
|
|
|
/*
|
|
* MALLOC_DSS enables use of sbrk(2) to allocate chunks from the data storage
|
|
* segment (DSS). In an ideal world, this functionality would be completely
|
|
* unnecessary, but we are burdened by history and the lack of resource limits
|
|
* for anonymous mapped memory.
|
|
*/
|
|
#define MALLOC_DSS
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "libc_private.h"
|
|
#ifdef MALLOC_DEBUG
|
|
# define _LOCK_DEBUG
|
|
#endif
|
|
#include "spinlock.h"
|
|
#include "namespace.h"
|
|
#include <sys/mman.h>
|
|
#include <sys/param.h>
|
|
#include <sys/stddef.h>
|
|
#include <sys/time.h>
|
|
#include <sys/types.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/ktrace.h> /* Must come after several other sys/ includes. */
|
|
|
|
#include <machine/cpufunc.h>
|
|
#include <machine/param.h>
|
|
#include <machine/vmparam.h>
|
|
|
|
#include <errno.h>
|
|
#include <limits.h>
|
|
#include <pthread.h>
|
|
#include <sched.h>
|
|
#include <stdarg.h>
|
|
#include <stdbool.h>
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <strings.h>
|
|
#include <unistd.h>
|
|
|
|
#include "un-namespace.h"
|
|
|
|
#ifdef MALLOC_DEBUG
|
|
# ifdef NDEBUG
|
|
# undef NDEBUG
|
|
# endif
|
|
#else
|
|
# ifndef NDEBUG
|
|
# define NDEBUG
|
|
# endif
|
|
#endif
|
|
#include <assert.h>
|
|
|
|
#include "rb.h"
|
|
|
|
#ifdef MALLOC_DEBUG
|
|
/* Disable inlining to make debugging easier. */
|
|
# define inline
|
|
#endif
|
|
|
|
/* Size of stack-allocated buffer passed to strerror_r(). */
|
|
#define STRERROR_BUF 64
|
|
|
|
/*
|
|
* Minimum alignment of allocations is 2^QUANTUM_2POW bytes.
|
|
*/
|
|
#ifdef __i386__
|
|
# define QUANTUM_2POW 4
|
|
# define SIZEOF_PTR_2POW 2
|
|
# define CPU_SPINWAIT __asm__ volatile("pause")
|
|
#endif
|
|
#ifdef __ia64__
|
|
# define QUANTUM_2POW 4
|
|
# define SIZEOF_PTR_2POW 3
|
|
#endif
|
|
#ifdef __alpha__
|
|
# define QUANTUM_2POW 4
|
|
# define SIZEOF_PTR_2POW 3
|
|
# define NO_TLS
|
|
#endif
|
|
#ifdef __sparc64__
|
|
# define QUANTUM_2POW 4
|
|
# define SIZEOF_PTR_2POW 3
|
|
# define NO_TLS
|
|
#endif
|
|
#ifdef __amd64__
|
|
# define QUANTUM_2POW 4
|
|
# define SIZEOF_PTR_2POW 3
|
|
# define CPU_SPINWAIT __asm__ volatile("pause")
|
|
#endif
|
|
#ifdef __arm__
|
|
# define QUANTUM_2POW 3
|
|
# define SIZEOF_PTR_2POW 2
|
|
# define NO_TLS
|
|
#endif
|
|
#ifdef __mips__
|
|
# define QUANTUM_2POW 3
|
|
# define SIZEOF_PTR_2POW 2
|
|
# define NO_TLS
|
|
#endif
|
|
#ifdef __powerpc__
|
|
# define QUANTUM_2POW 4
|
|
# define SIZEOF_PTR_2POW 2
|
|
#endif
|
|
|
|
#define QUANTUM ((size_t)(1U << QUANTUM_2POW))
|
|
#define QUANTUM_MASK (QUANTUM - 1)
|
|
|
|
#define SIZEOF_PTR (1U << SIZEOF_PTR_2POW)
|
|
|
|
/* sizeof(int) == (1U << SIZEOF_INT_2POW). */
|
|
#ifndef SIZEOF_INT_2POW
|
|
# define SIZEOF_INT_2POW 2
|
|
#endif
|
|
|
|
/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
|
|
#if (!defined(PIC) && !defined(NO_TLS))
|
|
# define NO_TLS
|
|
#endif
|
|
|
|
#ifdef NO_TLS
|
|
/* MALLOC_MAG requires TLS. */
|
|
# ifdef MALLOC_MAG
|
|
# undef MALLOC_MAG
|
|
# endif
|
|
/* MALLOC_BALANCE requires TLS. */
|
|
# ifdef MALLOC_BALANCE
|
|
# undef MALLOC_BALANCE
|
|
# endif
|
|
#endif
|
|
|
|
/*
|
|
* Size and alignment of memory chunks that are allocated by the OS's virtual
|
|
* memory system.
|
|
*/
|
|
#define CHUNK_2POW_DEFAULT 20
|
|
|
|
/* Maximum number of dirty pages per arena. */
|
|
#define DIRTY_MAX_DEFAULT (1U << 9)
|
|
|
|
/*
|
|
* Maximum size of L1 cache line. This is used to avoid cache line aliasing.
|
|
* In addition, this controls the spacing of cacheline-spaced size classes.
|
|
*/
|
|
#define CACHELINE_2POW 6
|
|
#define CACHELINE ((size_t)(1U << CACHELINE_2POW))
|
|
#define CACHELINE_MASK (CACHELINE - 1)
|
|
|
|
/*
|
|
* Subpages are an artificially designated partitioning of pages. Their only
|
|
* purpose is to support subpage-spaced size classes.
|
|
*
|
|
* There must be at least 4 subpages per page, due to the way size classes are
|
|
* handled.
|
|
*/
|
|
#define SUBPAGE_2POW 8
|
|
#define SUBPAGE ((size_t)(1U << SUBPAGE_2POW))
|
|
#define SUBPAGE_MASK (SUBPAGE - 1)
|
|
|
|
#ifdef MALLOC_TINY
|
|
/* Smallest size class to support. */
|
|
# define TINY_MIN_2POW 1
|
|
#endif
|
|
|
|
/*
|
|
* Maximum size class that is a multiple of the quantum, but not (necessarily)
|
|
* a power of 2. Above this size, allocations are rounded up to the nearest
|
|
* power of 2.
|
|
*/
|
|
#define QSPACE_MAX_2POW_DEFAULT 7
|
|
|
|
/*
|
|
* Maximum size class that is a multiple of the cacheline, but not (necessarily)
|
|
* a power of 2. Above this size, allocations are rounded up to the nearest
|
|
* power of 2.
|
|
*/
|
|
#define CSPACE_MAX_2POW_DEFAULT 9
|
|
|
|
/*
|
|
* RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized
|
|
* as small as possible such that this setting is still honored, without
|
|
* violating other constraints. The goal is to make runs as small as possible
|
|
* without exceeding a per run external fragmentation threshold.
|
|
*
|
|
* We use binary fixed point math for overhead computations, where the binary
|
|
* point is implicitly RUN_BFP bits to the left.
|
|
*
|
|
* Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
|
|
* honored for some/all object sizes, since there is one bit of header overhead
|
|
* per object (plus a constant). This constraint is relaxed (ignored) for runs
|
|
* that are so small that the per-region overhead is greater than:
|
|
*
|
|
* (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
|
|
*/
|
|
#define RUN_BFP 12
|
|
/* \/ Implicit binary fixed point. */
|
|
#define RUN_MAX_OVRHD 0x0000003dU
|
|
#define RUN_MAX_OVRHD_RELAX 0x00001800U
|
|
|
|
/* Put a cap on small object run size. This overrides RUN_MAX_OVRHD. */
|
|
#define RUN_MAX_SMALL (12 * PAGE_SIZE)
|
|
|
|
/*
|
|
* Hyper-threaded CPUs may need a special instruction inside spin loops in
|
|
* order to yield to another virtual CPU. If no such instruction is defined
|
|
* above, make CPU_SPINWAIT a no-op.
|
|
*/
|
|
#ifndef CPU_SPINWAIT
|
|
# define CPU_SPINWAIT
|
|
#endif
|
|
|
|
/*
|
|
* Adaptive spinning must eventually switch to blocking, in order to avoid the
|
|
* potential for priority inversion deadlock. Backing off past a certain point
|
|
* can actually waste time.
|
|
*/
|
|
#define SPIN_LIMIT_2POW 11
|
|
|
|
/*
|
|
* Conversion from spinning to blocking is expensive; we use (1U <<
|
|
* BLOCK_COST_2POW) to estimate how many more times costly blocking is than
|
|
* worst-case spinning.
|
|
*/
|
|
#define BLOCK_COST_2POW 4
|
|
|
|
#ifdef MALLOC_MAG
|
|
/*
|
|
* Default magazine size, in bytes. max_rounds is calculated to make
|
|
* optimal use of the space, leaving just enough room for the magazine
|
|
* header.
|
|
*/
|
|
# define MAG_SIZE_2POW_DEFAULT 9
|
|
#endif
|
|
|
|
#ifdef MALLOC_BALANCE
|
|
/*
|
|
* We use an exponential moving average to track recent lock contention,
|
|
* where the size of the history window is N, and alpha=2/(N+1).
|
|
*
|
|
* Due to integer math rounding, very small values here can cause
|
|
* substantial degradation in accuracy, thus making the moving average decay
|
|
* faster than it would with precise calculation.
|
|
*/
|
|
# define BALANCE_ALPHA_INV_2POW 9
|
|
|
|
/*
|
|
* Threshold value for the exponential moving contention average at which to
|
|
* re-assign a thread.
|
|
*/
|
|
# define BALANCE_THRESHOLD_DEFAULT (1U << (SPIN_LIMIT_2POW-4))
|
|
#endif
|
|
|
|
/******************************************************************************/
|
|
|
|
/*
|
|
* Mutexes based on spinlocks. We can't use normal pthread spinlocks in all
|
|
* places, because they require malloc()ed memory, which causes bootstrapping
|
|
* issues in some cases.
|
|
*/
|
|
typedef struct {
|
|
spinlock_t lock;
|
|
} malloc_mutex_t;
|
|
|
|
/* Set to true once the allocator has been initialized. */
|
|
static bool malloc_initialized = false;
|
|
|
|
/* Used to avoid initialization races. */
|
|
static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
* Statistics data structures.
|
|
*/
|
|
|
|
#ifdef MALLOC_STATS
|
|
|
|
typedef struct malloc_bin_stats_s malloc_bin_stats_t;
|
|
struct malloc_bin_stats_s {
|
|
/*
|
|
* Number of allocation requests that corresponded to the size of this
|
|
* bin.
|
|
*/
|
|
uint64_t nrequests;
|
|
|
|
#ifdef MALLOC_MAG
|
|
/* Number of magazine reloads from this bin. */
|
|
uint64_t nmags;
|
|
#endif
|
|
|
|
/* Total number of runs created for this bin's size class. */
|
|
uint64_t nruns;
|
|
|
|
/*
|
|
* Total number of runs reused by extracting them from the runs tree for
|
|
* this bin's size class.
|
|
*/
|
|
uint64_t reruns;
|
|
|
|
/* High-water mark for this bin. */
|
|
unsigned long highruns;
|
|
|
|
/* Current number of runs in this bin. */
|
|
unsigned long curruns;
|
|
};
|
|
|
|
typedef struct arena_stats_s arena_stats_t;
|
|
struct arena_stats_s {
|
|
/* Number of bytes currently mapped. */
|
|
size_t mapped;
|
|
|
|
/*
|
|
* Total number of purge sweeps, total number of madvise calls made,
|
|
* and total pages purged in order to keep dirty unused memory under
|
|
* control.
|
|
*/
|
|
uint64_t npurge;
|
|
uint64_t nmadvise;
|
|
uint64_t purged;
|
|
|
|
/* Per-size-category statistics. */
|
|
size_t allocated_small;
|
|
uint64_t nmalloc_small;
|
|
uint64_t ndalloc_small;
|
|
|
|
size_t allocated_large;
|
|
uint64_t nmalloc_large;
|
|
uint64_t ndalloc_large;
|
|
|
|
#ifdef MALLOC_BALANCE
|
|
/* Number of times this arena reassigned a thread due to contention. */
|
|
uint64_t nbalance;
|
|
#endif
|
|
};
|
|
|
|
typedef struct chunk_stats_s chunk_stats_t;
|
|
struct chunk_stats_s {
|
|
/* Number of chunks that were allocated. */
|
|
uint64_t nchunks;
|
|
|
|
/* High-water mark for number of chunks allocated. */
|
|
unsigned long highchunks;
|
|
|
|
/*
|
|
* Current number of chunks allocated. This value isn't maintained for
|
|
* any other purpose, so keep track of it in order to be able to set
|
|
* highchunks.
|
|
*/
|
|
unsigned long curchunks;
|
|
};
|
|
|
|
#endif /* #ifdef MALLOC_STATS */
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
* Extent data structures.
|
|
*/
|
|
|
|
/* Tree of extents. */
|
|
typedef struct extent_node_s extent_node_t;
|
|
struct extent_node_s {
|
|
#ifdef MALLOC_DSS
|
|
/* Linkage for the size/address-ordered tree. */
|
|
rb_node(extent_node_t) link_szad;
|
|
#endif
|
|
|
|
/* Linkage for the address-ordered tree. */
|
|
rb_node(extent_node_t) link_ad;
|
|
|
|
/* Pointer to the extent that this tree node is responsible for. */
|
|
void *addr;
|
|
|
|
/* Total region size. */
|
|
size_t size;
|
|
};
|
|
typedef rb_tree(extent_node_t) extent_tree_t;
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
* Arena data structures.
|
|
*/
|
|
|
|
typedef struct arena_s arena_t;
|
|
typedef struct arena_bin_s arena_bin_t;
|
|
|
|
/* Each element of the chunk map corresponds to one page within the chunk. */
|
|
typedef struct arena_chunk_map_s arena_chunk_map_t;
|
|
struct arena_chunk_map_s {
|
|
/*
|
|
* Linkage for run trees. There are two disjoint uses:
|
|
*
|
|
* 1) arena_t's runs_avail tree.
|
|
* 2) arena_run_t conceptually uses this linkage for in-use non-full
|
|
* runs, rather than directly embedding linkage.
|
|
*/
|
|
rb_node(arena_chunk_map_t) link;
|
|
|
|
/*
|
|
* Run address (or size) and various flags are stored together. The bit
|
|
* layout looks like (assuming 32-bit system):
|
|
*
|
|
* ???????? ???????? ????---- ---kdzla
|
|
*
|
|
* ? : Unallocated: Run address for first/last pages, unset for internal
|
|
* pages.
|
|
* Small: Run address.
|
|
* Large: Run size for first page, unset for trailing pages.
|
|
* - : Unused.
|
|
* k : key?
|
|
* d : dirty?
|
|
* z : zeroed?
|
|
* l : large?
|
|
* a : allocated?
|
|
*
|
|
* Following are example bit patterns for the three types of runs.
|
|
*
|
|
* r : run address
|
|
* s : run size
|
|
* x : don't care
|
|
* - : 0
|
|
* [dzla] : bit set
|
|
*
|
|
* Unallocated:
|
|
* ssssssss ssssssss ssss---- --------
|
|
* xxxxxxxx xxxxxxxx xxxx---- ----d---
|
|
* ssssssss ssssssss ssss---- -----z--
|
|
*
|
|
* Small:
|
|
* rrrrrrrr rrrrrrrr rrrr---- -------a
|
|
* rrrrrrrr rrrrrrrr rrrr---- -------a
|
|
* rrrrrrrr rrrrrrrr rrrr---- -------a
|
|
*
|
|
* Large:
|
|
* ssssssss ssssssss ssss---- ------la
|
|
* -------- -------- -------- ------la
|
|
* -------- -------- -------- ------la
|
|
*/
|
|
size_t bits;
|
|
#define CHUNK_MAP_KEY ((size_t)0x10U)
|
|
#define CHUNK_MAP_DIRTY ((size_t)0x08U)
|
|
#define CHUNK_MAP_ZEROED ((size_t)0x04U)
|
|
#define CHUNK_MAP_LARGE ((size_t)0x02U)
|
|
#define CHUNK_MAP_ALLOCATED ((size_t)0x01U)
|
|
};
|
|
typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t;
|
|
typedef rb_tree(arena_chunk_map_t) arena_run_tree_t;
|
|
|
|
/* Arena chunk header. */
|
|
typedef struct arena_chunk_s arena_chunk_t;
|
|
struct arena_chunk_s {
|
|
/* Arena that owns the chunk. */
|
|
arena_t *arena;
|
|
|
|
/* Linkage for the arena's chunks_dirty tree. */
|
|
rb_node(arena_chunk_t) link_dirty;
|
|
|
|
/* Number of dirty pages. */
|
|
size_t ndirty;
|
|
|
|
/* Map of pages within chunk that keeps track of free/large/small. */
|
|
arena_chunk_map_t map[1]; /* Dynamically sized. */
|
|
};
|
|
typedef rb_tree(arena_chunk_t) arena_chunk_tree_t;
|
|
|
|
typedef struct arena_run_s arena_run_t;
|
|
struct arena_run_s {
|
|
#ifdef MALLOC_DEBUG
|
|
uint32_t magic;
|
|
# define ARENA_RUN_MAGIC 0x384adf93
|
|
#endif
|
|
|
|
/* Bin this run is associated with. */
|
|
arena_bin_t *bin;
|
|
|
|
/* Index of first element that might have a free region. */
|
|
unsigned regs_minelm;
|
|
|
|
/* Number of free regions in run. */
|
|
unsigned nfree;
|
|
|
|
/* Bitmask of in-use regions (0: in use, 1: free). */
|
|
unsigned regs_mask[1]; /* Dynamically sized. */
|
|
};
|
|
|
|
struct arena_bin_s {
|
|
/*
|
|
* Current run being used to service allocations of this bin's size
|
|
* class.
|
|
*/
|
|
arena_run_t *runcur;
|
|
|
|
/*
|
|
* Tree of non-full runs. This tree is used when looking for an
|
|
* existing run when runcur is no longer usable. We choose the
|
|
* non-full run that is lowest in memory; this policy tends to keep
|
|
* objects packed well, and it can also help reduce the number of
|
|
* almost-empty chunks.
|
|
*/
|
|
arena_run_tree_t runs;
|
|
|
|
/* Size of regions in a run for this bin's size class. */
|
|
size_t reg_size;
|
|
|
|
/* Total size of a run for this bin's size class. */
|
|
size_t run_size;
|
|
|
|
/* Total number of regions in a run for this bin's size class. */
|
|
uint32_t nregs;
|
|
|
|
/* Number of elements in a run's regs_mask for this bin's size class. */
|
|
uint32_t regs_mask_nelms;
|
|
|
|
/* Offset of first region in a run for this bin's size class. */
|
|
uint32_t reg0_offset;
|
|
|
|
#ifdef MALLOC_STATS
|
|
/* Bin statistics. */
|
|
malloc_bin_stats_t stats;
|
|
#endif
|
|
};
|
|
|
|
struct arena_s {
|
|
#ifdef MALLOC_DEBUG
|
|
uint32_t magic;
|
|
# define ARENA_MAGIC 0x947d3d24
|
|
#endif
|
|
|
|
/* All operations on this arena require that lock be locked. */
|
|
pthread_mutex_t lock;
|
|
|
|
#ifdef MALLOC_STATS
|
|
arena_stats_t stats;
|
|
#endif
|
|
|
|
/* Tree of dirty-page-containing chunks this arena manages. */
|
|
arena_chunk_tree_t chunks_dirty;
|
|
|
|
/*
|
|
* In order to avoid rapid chunk allocation/deallocation when an arena
|
|
* oscillates right on the cusp of needing a new chunk, cache the most
|
|
* recently freed chunk. The spare is left in the arena's chunk trees
|
|
* until it is deleted.
|
|
*
|
|
* There is one spare chunk per arena, rather than one spare total, in
|
|
* order to avoid interactions between multiple threads that could make
|
|
* a single spare inadequate.
|
|
*/
|
|
arena_chunk_t *spare;
|
|
|
|
/*
|
|
* Current count of pages within unused runs that are potentially
|
|
* dirty, and for which madvise(... MADV_FREE) has not been called. By
|
|
* tracking this, we can institute a limit on how much dirty unused
|
|
* memory is mapped for each arena.
|
|
*/
|
|
size_t ndirty;
|
|
|
|
/*
|
|
* Size/address-ordered tree of this arena's available runs. This tree
|
|
* is used for first-best-fit run allocation.
|
|
*/
|
|
arena_avail_tree_t runs_avail;
|
|
|
|
#ifdef MALLOC_BALANCE
|
|
/*
|
|
* The arena load balancing machinery needs to keep track of how much
|
|
* lock contention there is. This value is exponentially averaged.
|
|
*/
|
|
uint32_t contention;
|
|
#endif
|
|
|
|
/*
|
|
* bins is used to store rings of free regions of the following sizes,
|
|
* assuming a 16-byte quantum, 4kB page size, and default
|
|
* MALLOC_OPTIONS.
|
|
*
|
|
* bins[i] | size |
|
|
* --------+------+
|
|
* 0 | 2 |
|
|
* 1 | 4 |
|
|
* 2 | 8 |
|
|
* --------+------+
|
|
* 3 | 16 |
|
|
* 4 | 32 |
|
|
* 5 | 48 |
|
|
* 6 | 64 |
|
|
* : :
|
|
* : :
|
|
* 33 | 496 |
|
|
* 34 | 512 |
|
|
* --------+------+
|
|
* 35 | 1024 |
|
|
* 36 | 2048 |
|
|
* --------+------+
|
|
*/
|
|
arena_bin_t bins[1]; /* Dynamically sized. */
|
|
};
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
* Magazine data structures.
|
|
*/
|
|
|
|
#ifdef MALLOC_MAG
|
|
typedef struct mag_s mag_t;
|
|
struct mag_s {
|
|
size_t binind; /* Index of associated bin. */
|
|
size_t nrounds;
|
|
void *rounds[1]; /* Dynamically sized. */
|
|
};
|
|
|
|
/*
|
|
* Magazines are lazily allocated, but once created, they remain until the
|
|
* associated mag_rack is destroyed.
|
|
*/
|
|
typedef struct bin_mags_s bin_mags_t;
|
|
struct bin_mags_s {
|
|
mag_t *curmag;
|
|
mag_t *sparemag;
|
|
};
|
|
|
|
typedef struct mag_rack_s mag_rack_t;
|
|
struct mag_rack_s {
|
|
bin_mags_t bin_mags[1]; /* Dynamically sized. */
|
|
};
|
|
#endif
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
* Data.
|
|
*/
|
|
|
|
/* Number of CPUs. */
|
|
static unsigned ncpus;
|
|
|
|
/* Various bin-related settings. */
|
|
#ifdef MALLOC_TINY /* Number of (2^n)-spaced tiny bins. */
|
|
# define ntbins ((unsigned)(QUANTUM_2POW - TINY_MIN_2POW))
|
|
#else
|
|
# define ntbins 0
|
|
#endif
|
|
static unsigned nqbins; /* Number of quantum-spaced bins. */
|
|
static unsigned ncbins; /* Number of cacheline-spaced bins. */
|
|
static unsigned nsbins; /* Number of subpage-spaced bins. */
|
|
static unsigned nbins;
|
|
#ifdef MALLOC_TINY
|
|
# define tspace_max ((size_t)(QUANTUM >> 1))
|
|
#endif
|
|
#define qspace_min QUANTUM
|
|
static size_t qspace_max;
|
|
static size_t cspace_min;
|
|
static size_t cspace_max;
|
|
static size_t sspace_min;
|
|
static size_t sspace_max;
|
|
#define bin_maxclass sspace_max
|
|
|
|
static uint8_t const *size2bin;
|
|
/*
|
|
* const_size2bin is a static constant lookup table that in the common case can
|
|
* be used as-is for size2bin. For dynamically linked programs, this avoids
|
|
* a page of memory overhead per process.
|
|
*/
|
|
#define S2B_1(i) i,
|
|
#define S2B_2(i) S2B_1(i) S2B_1(i)
|
|
#define S2B_4(i) S2B_2(i) S2B_2(i)
|
|
#define S2B_8(i) S2B_4(i) S2B_4(i)
|
|
#define S2B_16(i) S2B_8(i) S2B_8(i)
|
|
#define S2B_32(i) S2B_16(i) S2B_16(i)
|
|
#define S2B_64(i) S2B_32(i) S2B_32(i)
|
|
#define S2B_128(i) S2B_64(i) S2B_64(i)
|
|
#define S2B_256(i) S2B_128(i) S2B_128(i)
|
|
static const uint8_t const_size2bin[PAGE_SIZE - 255] = {
|
|
S2B_1(0xffU) /* 0 */
|
|
#if (QUANTUM_2POW == 4)
|
|
/* 64-bit system ************************/
|
|
# ifdef MALLOC_TINY
|
|
S2B_2(0) /* 2 */
|
|
S2B_2(1) /* 4 */
|
|
S2B_4(2) /* 8 */
|
|
S2B_8(3) /* 16 */
|
|
# define S2B_QMIN 3
|
|
# else
|
|
S2B_16(0) /* 16 */
|
|
# define S2B_QMIN 0
|
|
# endif
|
|
S2B_16(S2B_QMIN + 1) /* 32 */
|
|
S2B_16(S2B_QMIN + 2) /* 48 */
|
|
S2B_16(S2B_QMIN + 3) /* 64 */
|
|
S2B_16(S2B_QMIN + 4) /* 80 */
|
|
S2B_16(S2B_QMIN + 5) /* 96 */
|
|
S2B_16(S2B_QMIN + 6) /* 112 */
|
|
S2B_16(S2B_QMIN + 7) /* 128 */
|
|
# define S2B_CMIN (S2B_QMIN + 8)
|
|
#else
|
|
/* 32-bit system ************************/
|
|
# ifdef MALLOC_TINY
|
|
S2B_2(0) /* 2 */
|
|
S2B_2(1) /* 4 */
|
|
S2B_4(2) /* 8 */
|
|
# define S2B_QMIN 2
|
|
# else
|
|
S2B_8(0) /* 8 */
|
|
# define S2B_QMIN 0
|
|
# endif
|
|
S2B_8(S2B_QMIN + 1) /* 16 */
|
|
S2B_8(S2B_QMIN + 2) /* 24 */
|
|
S2B_8(S2B_QMIN + 3) /* 32 */
|
|
S2B_8(S2B_QMIN + 4) /* 40 */
|
|
S2B_8(S2B_QMIN + 5) /* 48 */
|
|
S2B_8(S2B_QMIN + 6) /* 56 */
|
|
S2B_8(S2B_QMIN + 7) /* 64 */
|
|
S2B_8(S2B_QMIN + 8) /* 72 */
|
|
S2B_8(S2B_QMIN + 9) /* 80 */
|
|
S2B_8(S2B_QMIN + 10) /* 88 */
|
|
S2B_8(S2B_QMIN + 11) /* 96 */
|
|
S2B_8(S2B_QMIN + 12) /* 104 */
|
|
S2B_8(S2B_QMIN + 13) /* 112 */
|
|
S2B_8(S2B_QMIN + 14) /* 120 */
|
|
S2B_8(S2B_QMIN + 15) /* 128 */
|
|
# define S2B_CMIN (S2B_QMIN + 16)
|
|
#endif
|
|
/****************************************/
|
|
S2B_64(S2B_CMIN + 0) /* 192 */
|
|
S2B_64(S2B_CMIN + 1) /* 256 */
|
|
S2B_64(S2B_CMIN + 2) /* 320 */
|
|
S2B_64(S2B_CMIN + 3) /* 384 */
|
|
S2B_64(S2B_CMIN + 4) /* 448 */
|
|
S2B_64(S2B_CMIN + 5) /* 512 */
|
|
# define S2B_SMIN (S2B_CMIN + 6)
|
|
S2B_256(S2B_SMIN + 0) /* 768 */
|
|
S2B_256(S2B_SMIN + 1) /* 1024 */
|
|
S2B_256(S2B_SMIN + 2) /* 1280 */
|
|
S2B_256(S2B_SMIN + 3) /* 1536 */
|
|
S2B_256(S2B_SMIN + 4) /* 1792 */
|
|
S2B_256(S2B_SMIN + 5) /* 2048 */
|
|
S2B_256(S2B_SMIN + 6) /* 2304 */
|
|
S2B_256(S2B_SMIN + 7) /* 2560 */
|
|
S2B_256(S2B_SMIN + 8) /* 2816 */
|
|
S2B_256(S2B_SMIN + 9) /* 3072 */
|
|
S2B_256(S2B_SMIN + 10) /* 3328 */
|
|
S2B_256(S2B_SMIN + 11) /* 3584 */
|
|
S2B_256(S2B_SMIN + 12) /* 3840 */
|
|
#if (PAGE_SHIFT == 13)
|
|
S2B_256(S2B_SMIN + 13) /* 4096 */
|
|
S2B_256(S2B_SMIN + 14) /* 4352 */
|
|
S2B_256(S2B_SMIN + 15) /* 4608 */
|
|
S2B_256(S2B_SMIN + 16) /* 4864 */
|
|
S2B_256(S2B_SMIN + 17) /* 5120 */
|
|
S2B_256(S2B_SMIN + 18) /* 5376 */
|
|
S2B_256(S2B_SMIN + 19) /* 5632 */
|
|
S2B_256(S2B_SMIN + 20) /* 5888 */
|
|
S2B_256(S2B_SMIN + 21) /* 6144 */
|
|
S2B_256(S2B_SMIN + 22) /* 6400 */
|
|
S2B_256(S2B_SMIN + 23) /* 6656 */
|
|
S2B_256(S2B_SMIN + 24) /* 6912 */
|
|
S2B_256(S2B_SMIN + 25) /* 7168 */
|
|
S2B_256(S2B_SMIN + 26) /* 7424 */
|
|
S2B_256(S2B_SMIN + 27) /* 7680 */
|
|
S2B_256(S2B_SMIN + 28) /* 7936 */
|
|
#endif
|
|
};
|
|
#undef S2B_1
|
|
#undef S2B_2
|
|
#undef S2B_4
|
|
#undef S2B_8
|
|
#undef S2B_16
|
|
#undef S2B_32
|
|
#undef S2B_64
|
|
#undef S2B_128
|
|
#undef S2B_256
|
|
#undef S2B_QMIN
|
|
#undef S2B_CMIN
|
|
#undef S2B_SMIN
|
|
|
|
#ifdef MALLOC_MAG
|
|
static size_t max_rounds;
|
|
#endif
|
|
|
|
/* Various chunk-related settings. */
|
|
static size_t chunksize;
|
|
static size_t chunksize_mask; /* (chunksize - 1). */
|
|
static size_t chunk_npages;
|
|
static size_t arena_chunk_header_npages;
|
|
static size_t arena_maxclass; /* Max size class for arenas. */
|
|
|
|
/********/
|
|
/*
|
|
* Chunks.
|
|
*/
|
|
|
|
/* Protects chunk-related data structures. */
|
|
static malloc_mutex_t huge_mtx;
|
|
|
|
/* Tree of chunks that are stand-alone huge allocations. */
|
|
static extent_tree_t huge;
|
|
|
|
#ifdef MALLOC_DSS
|
|
/*
|
|
* Protects sbrk() calls. This avoids malloc races among threads, though it
|
|
* does not protect against races with threads that call sbrk() directly.
|
|
*/
|
|
static malloc_mutex_t dss_mtx;
|
|
/* Base address of the DSS. */
|
|
static void *dss_base;
|
|
/* Current end of the DSS, or ((void *)-1) if the DSS is exhausted. */
|
|
static void *dss_prev;
|
|
/* Current upper limit on DSS addresses. */
|
|
static void *dss_max;
|
|
|
|
/*
|
|
* Trees of chunks that were previously allocated (trees differ only in node
|
|
* ordering). These are used when allocating chunks, in an attempt to re-use
|
|
* address space. Depending on function, different tree orderings are needed,
|
|
* which is why there are two trees with the same contents.
|
|
*/
|
|
static extent_tree_t dss_chunks_szad;
|
|
static extent_tree_t dss_chunks_ad;
|
|
#endif
|
|
|
|
#ifdef MALLOC_STATS
|
|
/* Huge allocation statistics. */
|
|
static uint64_t huge_nmalloc;
|
|
static uint64_t huge_ndalloc;
|
|
static size_t huge_allocated;
|
|
#endif
|
|
|
|
/****************************/
|
|
/*
|
|
* base (internal allocation).
|
|
*/
|
|
|
|
/*
|
|
* Current pages that are being used for internal memory allocations. These
|
|
* pages are carved up in cacheline-size quanta, so that there is no chance of
|
|
* false cache line sharing.
|
|
*/
|
|
static void *base_pages;
|
|
static void *base_next_addr;
|
|
static void *base_past_addr; /* Addr immediately past base_pages. */
|
|
static extent_node_t *base_nodes;
|
|
static malloc_mutex_t base_mtx;
|
|
#ifdef MALLOC_STATS
|
|
static size_t base_mapped;
|
|
#endif
|
|
|
|
/********/
|
|
/*
|
|
* Arenas.
|
|
*/
|
|
|
|
/*
|
|
* Arenas that are used to service external requests. Not all elements of the
|
|
* arenas array are necessarily used; arenas are created lazily as needed.
|
|
*/
|
|
static arena_t **arenas;
|
|
static unsigned narenas;
|
|
#ifndef NO_TLS
|
|
# ifdef MALLOC_BALANCE
|
|
static unsigned narenas_2pow;
|
|
# else
|
|
static unsigned next_arena;
|
|
# endif
|
|
#endif
|
|
static pthread_mutex_t arenas_lock; /* Protects arenas initialization. */
|
|
|
|
#ifndef NO_TLS
|
|
/*
|
|
* Map of pthread_self() --> arenas[???], used for selecting an arena to use
|
|
* for allocations.
|
|
*/
|
|
static __thread arena_t *arenas_map;
|
|
#endif
|
|
|
|
#ifdef MALLOC_MAG
|
|
/*
|
|
* Map of thread-specific magazine racks, used for thread-specific object
|
|
* caching.
|
|
*/
|
|
static __thread mag_rack_t *mag_rack;
|
|
#endif
|
|
|
|
#ifdef MALLOC_STATS
|
|
/* Chunk statistics. */
|
|
static chunk_stats_t stats_chunks;
|
|
#endif
|
|
|
|
/*******************************/
|
|
/*
|
|
* Runtime configuration options.
|
|
*/
|
|
const char *_malloc_options;
|
|
|
|
#ifndef MALLOC_PRODUCTION
|
|
static bool opt_abort = true;
|
|
static bool opt_junk = true;
|
|
#else
|
|
static bool opt_abort = false;
|
|
static bool opt_junk = false;
|
|
#endif
|
|
#ifdef MALLOC_DSS
|
|
static bool opt_dss = true;
|
|
static bool opt_mmap = true;
|
|
#endif
|
|
#ifdef MALLOC_MAG
|
|
static bool opt_mag = true;
|
|
static size_t opt_mag_size_2pow = MAG_SIZE_2POW_DEFAULT;
|
|
#endif
|
|
static size_t opt_dirty_max = DIRTY_MAX_DEFAULT;
|
|
#ifdef MALLOC_BALANCE
|
|
static uint64_t opt_balance_threshold = BALANCE_THRESHOLD_DEFAULT;
|
|
#endif
|
|
static bool opt_print_stats = false;
|
|
static size_t opt_qspace_max_2pow = QSPACE_MAX_2POW_DEFAULT;
|
|
static size_t opt_cspace_max_2pow = CSPACE_MAX_2POW_DEFAULT;
|
|
static size_t opt_chunk_2pow = CHUNK_2POW_DEFAULT;
|
|
static bool opt_utrace = false;
|
|
static bool opt_sysv = false;
|
|
static bool opt_xmalloc = false;
|
|
static bool opt_zero = false;
|
|
static int opt_narenas_lshift = 0;
|
|
|
|
typedef struct {
|
|
void *p;
|
|
size_t s;
|
|
void *r;
|
|
} malloc_utrace_t;
|
|
|
|
#define UTRACE(a, b, c) \
|
|
if (opt_utrace) { \
|
|
malloc_utrace_t ut; \
|
|
ut.p = (a); \
|
|
ut.s = (b); \
|
|
ut.r = (c); \
|
|
utrace(&ut, sizeof(ut)); \
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
* Begin function prototypes for non-inline static functions.
|
|
*/
|
|
|
|
static void malloc_mutex_init(malloc_mutex_t *mutex);
|
|
static bool malloc_spin_init(pthread_mutex_t *lock);
|
|
static void wrtmessage(const char *p1, const char *p2, const char *p3,
|
|
const char *p4);
|
|
#ifdef MALLOC_STATS
|
|
static void malloc_printf(const char *format, ...);
|
|
#endif
|
|
static char *umax2s(uintmax_t x, char *s);
|
|
#ifdef MALLOC_DSS
|
|
static bool base_pages_alloc_dss(size_t minsize);
|
|
#endif
|
|
static bool base_pages_alloc_mmap(size_t minsize);
|
|
static bool base_pages_alloc(size_t minsize);
|
|
static void *base_alloc(size_t size);
|
|
static void *base_calloc(size_t number, size_t size);
|
|
static extent_node_t *base_node_alloc(void);
|
|
static void base_node_dealloc(extent_node_t *node);
|
|
#ifdef MALLOC_STATS
|
|
static void stats_print(arena_t *arena);
|
|
#endif
|
|
static void *pages_map(void *addr, size_t size);
|
|
static void pages_unmap(void *addr, size_t size);
|
|
#ifdef MALLOC_DSS
|
|
static void *chunk_alloc_dss(size_t size);
|
|
static void *chunk_recycle_dss(size_t size, bool zero);
|
|
#endif
|
|
static void *chunk_alloc_mmap(size_t size);
|
|
static void *chunk_alloc(size_t size, bool zero);
|
|
#ifdef MALLOC_DSS
|
|
static extent_node_t *chunk_dealloc_dss_record(void *chunk, size_t size);
|
|
static bool chunk_dealloc_dss(void *chunk, size_t size);
|
|
#endif
|
|
static void chunk_dealloc_mmap(void *chunk, size_t size);
|
|
static void chunk_dealloc(void *chunk, size_t size);
|
|
#ifndef NO_TLS
|
|
static arena_t *choose_arena_hard(void);
|
|
#endif
|
|
static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size,
|
|
bool large, bool zero);
|
|
static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
|
|
static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
|
|
static arena_run_t *arena_run_alloc(arena_t *arena, size_t size, bool large,
|
|
bool zero);
|
|
static void arena_purge(arena_t *arena);
|
|
static void arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty);
|
|
static void arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk,
|
|
arena_run_t *run, size_t oldsize, size_t newsize);
|
|
static void arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk,
|
|
arena_run_t *run, size_t oldsize, size_t newsize, bool dirty);
|
|
static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
|
|
static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
|
|
static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
|
|
#ifdef MALLOC_BALANCE
|
|
static void arena_lock_balance_hard(arena_t *arena);
|
|
#endif
|
|
#ifdef MALLOC_MAG
|
|
static void mag_load(mag_t *mag);
|
|
#endif
|
|
static void *arena_malloc_large(arena_t *arena, size_t size, bool zero);
|
|
static void *arena_palloc(arena_t *arena, size_t alignment, size_t size,
|
|
size_t alloc_size);
|
|
static size_t arena_salloc(const void *ptr);
|
|
#ifdef MALLOC_MAG
|
|
static void mag_unload(mag_t *mag);
|
|
#endif
|
|
static void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk,
|
|
void *ptr);
|
|
static void arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk,
|
|
void *ptr, size_t size, size_t oldsize);
|
|
static bool arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk,
|
|
void *ptr, size_t size, size_t oldsize);
|
|
static bool arena_ralloc_large(void *ptr, size_t size, size_t oldsize);
|
|
static void *arena_ralloc(void *ptr, size_t size, size_t oldsize);
|
|
static bool arena_new(arena_t *arena);
|
|
static arena_t *arenas_extend(unsigned ind);
|
|
#ifdef MALLOC_MAG
|
|
static mag_t *mag_create(arena_t *arena, size_t binind);
|
|
static void mag_destroy(mag_t *mag);
|
|
static mag_rack_t *mag_rack_create(arena_t *arena);
|
|
static void mag_rack_destroy(mag_rack_t *rack);
|
|
#endif
|
|
static void *huge_malloc(size_t size, bool zero);
|
|
static void *huge_palloc(size_t alignment, size_t size);
|
|
static void *huge_ralloc(void *ptr, size_t size, size_t oldsize);
|
|
static void huge_dalloc(void *ptr);
|
|
static void malloc_print_stats(void);
|
|
#ifdef MALLOC_DEBUG
|
|
static void size2bin_validate(void);
|
|
#endif
|
|
static bool size2bin_init(void);
|
|
static bool size2bin_init_hard(void);
|
|
static bool malloc_init_hard(void);
|
|
|
|
/*
|
|
* End function prototypes.
|
|
*/
|
|
/******************************************************************************/
|
|
/*
|
|
* Begin mutex. We can't use normal pthread mutexes in all places, because
|
|
* they require malloc()ed memory, which causes bootstrapping issues in some
|
|
* cases.
|
|
*/
|
|
|
|
static void
|
|
malloc_mutex_init(malloc_mutex_t *mutex)
|
|
{
|
|
static const spinlock_t lock = _SPINLOCK_INITIALIZER;
|
|
|
|
mutex->lock = lock;
|
|
}
|
|
|
|
static inline void
|
|
malloc_mutex_lock(malloc_mutex_t *mutex)
|
|
{
|
|
|
|
if (__isthreaded)
|
|
_SPINLOCK(&mutex->lock);
|
|
}
|
|
|
|
static inline void
|
|
malloc_mutex_unlock(malloc_mutex_t *mutex)
|
|
{
|
|
|
|
if (__isthreaded)
|
|
_SPINUNLOCK(&mutex->lock);
|
|
}
|
|
|
|
/*
|
|
* End mutex.
|
|
*/
|
|
/******************************************************************************/
|
|
/*
|
|
* Begin spin lock. Spin locks here are actually adaptive mutexes that block
|
|
* after a period of spinning, because unbounded spinning would allow for
|
|
* priority inversion.
|
|
*/
|
|
|
|
/*
|
|
* We use an unpublished interface to initialize pthread mutexes with an
|
|
* allocation callback, in order to avoid infinite recursion.
|
|
*/
|
|
int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex,
|
|
void *(calloc_cb)(size_t, size_t));
|
|
|
|
__weak_reference(_pthread_mutex_init_calloc_cb_stub,
|
|
_pthread_mutex_init_calloc_cb);
|
|
|
|
int
|
|
_pthread_mutex_init_calloc_cb_stub(pthread_mutex_t *mutex,
|
|
void *(calloc_cb)(size_t, size_t))
|
|
{
|
|
|
|
return (0);
|
|
}
|
|
|
|
static bool
|
|
malloc_spin_init(pthread_mutex_t *lock)
|
|
{
|
|
|
|
if (_pthread_mutex_init_calloc_cb(lock, base_calloc) != 0)
|
|
return (true);
|
|
|
|
return (false);
|
|
}
|
|
|
|
static inline unsigned
|
|
malloc_spin_lock(pthread_mutex_t *lock)
|
|
{
|
|
unsigned ret = 0;
|
|
|
|
if (__isthreaded) {
|
|
if (_pthread_mutex_trylock(lock) != 0) {
|
|
unsigned i;
|
|
volatile unsigned j;
|
|
|
|
/* Exponentially back off. */
|
|
for (i = 1; i <= SPIN_LIMIT_2POW; i++) {
|
|
for (j = 0; j < (1U << i); j++) {
|
|
ret++;
|
|
CPU_SPINWAIT;
|
|
}
|
|
|
|
if (_pthread_mutex_trylock(lock) == 0)
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Spinning failed. Block until the lock becomes
|
|
* available, in order to avoid indefinite priority
|
|
* inversion.
|
|
*/
|
|
_pthread_mutex_lock(lock);
|
|
assert((ret << BLOCK_COST_2POW) != 0);
|
|
return (ret << BLOCK_COST_2POW);
|
|
}
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static inline void
|
|
malloc_spin_unlock(pthread_mutex_t *lock)
|
|
{
|
|
|
|
if (__isthreaded)
|
|
_pthread_mutex_unlock(lock);
|
|
}
|
|
|
|
/*
|
|
* End spin lock.
|
|
*/
|
|
/******************************************************************************/
|
|
/*
|
|
* Begin Utility functions/macros.
|
|
*/
|
|
|
|
/* Return the chunk address for allocation address a. */
|
|
#define CHUNK_ADDR2BASE(a) \
|
|
((void *)((uintptr_t)(a) & ~chunksize_mask))
|
|
|
|
/* Return the chunk offset of address a. */
|
|
#define CHUNK_ADDR2OFFSET(a) \
|
|
((size_t)((uintptr_t)(a) & chunksize_mask))
|
|
|
|
/* Return the smallest chunk multiple that is >= s. */
|
|
#define CHUNK_CEILING(s) \
|
|
(((s) + chunksize_mask) & ~chunksize_mask)
|
|
|
|
/* Return the smallest quantum multiple that is >= a. */
|
|
#define QUANTUM_CEILING(a) \
|
|
(((a) + QUANTUM_MASK) & ~QUANTUM_MASK)
|
|
|
|
/* Return the smallest cacheline multiple that is >= s. */
|
|
#define CACHELINE_CEILING(s) \
|
|
(((s) + CACHELINE_MASK) & ~CACHELINE_MASK)
|
|
|
|
/* Return the smallest subpage multiple that is >= s. */
|
|
#define SUBPAGE_CEILING(s) \
|
|
(((s) + SUBPAGE_MASK) & ~SUBPAGE_MASK)
|
|
|
|
/* Return the smallest PAGE_SIZE multiple that is >= s. */
|
|
#define PAGE_CEILING(s) \
|
|
(((s) + PAGE_MASK) & ~PAGE_MASK)
|
|
|
|
#ifdef MALLOC_TINY
|
|
/* Compute the smallest power of 2 that is >= x. */
|
|
static inline size_t
|
|
pow2_ceil(size_t x)
|
|
{
|
|
|
|
x--;
|
|
x |= x >> 1;
|
|
x |= x >> 2;
|
|
x |= x >> 4;
|
|
x |= x >> 8;
|
|
x |= x >> 16;
|
|
#if (SIZEOF_PTR == 8)
|
|
x |= x >> 32;
|
|
#endif
|
|
x++;
|
|
return (x);
|
|
}
|
|
#endif
|
|
|
|
#ifdef MALLOC_BALANCE
|
|
/*
|
|
* Use a simple linear congruential pseudo-random number generator:
|
|
*
|
|
* prn(y) = (a*x + c) % m
|
|
*
|
|
* where the following constants ensure maximal period:
|
|
*
|
|
* a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4.
|
|
* c == Odd number (relatively prime to 2^n).
|
|
* m == 2^32
|
|
*
|
|
* See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints.
|
|
*
|
|
* This choice of m has the disadvantage that the quality of the bits is
|
|
* proportional to bit position. For example. the lowest bit has a cycle of 2,
|
|
* the next has a cycle of 4, etc. For this reason, we prefer to use the upper
|
|
* bits.
|
|
*/
|
|
# define PRN_DEFINE(suffix, var, a, c) \
|
|
static inline void \
|
|
sprn_##suffix(uint32_t seed) \
|
|
{ \
|
|
var = seed; \
|
|
} \
|
|
\
|
|
static inline uint32_t \
|
|
prn_##suffix(uint32_t lg_range) \
|
|
{ \
|
|
uint32_t ret, x; \
|
|
\
|
|
assert(lg_range > 0); \
|
|
assert(lg_range <= 32); \
|
|
\
|
|
x = (var * (a)) + (c); \
|
|
var = x; \
|
|
ret = x >> (32 - lg_range); \
|
|
\
|
|
return (ret); \
|
|
}
|
|
# define SPRN(suffix, seed) sprn_##suffix(seed)
|
|
# define PRN(suffix, lg_range) prn_##suffix(lg_range)
|
|
#endif
|
|
|
|
#ifdef MALLOC_BALANCE
|
|
/* Define the PRNG used for arena assignment. */
|
|
static __thread uint32_t balance_x;
|
|
PRN_DEFINE(balance, balance_x, 1297, 1301)
|
|
#endif
|
|
|
|
static void
|
|
wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
|
|
{
|
|
|
|
_write(STDERR_FILENO, p1, strlen(p1));
|
|
_write(STDERR_FILENO, p2, strlen(p2));
|
|
_write(STDERR_FILENO, p3, strlen(p3));
|
|
_write(STDERR_FILENO, p4, strlen(p4));
|
|
}
|
|
|
|
void (*_malloc_message)(const char *p1, const char *p2, const char *p3,
|
|
const char *p4) = wrtmessage;
|
|
|
|
#ifdef MALLOC_STATS
|
|
/*
|
|
* Print to stderr in such a way as to (hopefully) avoid memory allocation.
|
|
*/
|
|
static void
|
|
malloc_printf(const char *format, ...)
|
|
{
|
|
char buf[4096];
|
|
va_list ap;
|
|
|
|
va_start(ap, format);
|
|
vsnprintf(buf, sizeof(buf), format, ap);
|
|
va_end(ap);
|
|
_malloc_message(buf, "", "", "");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* We don't want to depend on vsnprintf() for production builds, since that can
|
|
* cause unnecessary bloat for static binaries. umax2s() provides minimal
|
|
* integer printing functionality, so that malloc_printf() use can be limited to
|
|
* MALLOC_STATS code.
|
|
*/
|
|
#define UMAX2S_BUFSIZE 21
|
|
static char *
|
|
umax2s(uintmax_t x, char *s)
|
|
{
|
|
unsigned i;
|
|
|
|
/* Make sure UMAX2S_BUFSIZE is large enough. */
|
|
assert(sizeof(uintmax_t) <= 8);
|
|
|
|
i = UMAX2S_BUFSIZE - 1;
|
|
s[i] = '\0';
|
|
do {
|
|
i--;
|
|
s[i] = "0123456789"[x % 10];
|
|
x /= 10;
|
|
} while (x > 0);
|
|
|
|
return (&s[i]);
|
|
}
|
|
|
|
/******************************************************************************/
|
|
|
|
#ifdef MALLOC_DSS
|
|
static bool
|
|
base_pages_alloc_dss(size_t minsize)
|
|
{
|
|
|
|
/*
|
|
* Do special DSS allocation here, since base allocations don't need to
|
|
* be chunk-aligned.
|
|
*/
|
|
malloc_mutex_lock(&dss_mtx);
|
|
if (dss_prev != (void *)-1) {
|
|
intptr_t incr;
|
|
size_t csize = CHUNK_CEILING(minsize);
|
|
|
|
do {
|
|
/* Get the current end of the DSS. */
|
|
dss_max = sbrk(0);
|
|
|
|
/*
|
|
* Calculate how much padding is necessary to
|
|
* chunk-align the end of the DSS. Don't worry about
|
|
* dss_max not being chunk-aligned though.
|
|
*/
|
|
incr = (intptr_t)chunksize
|
|
- (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
|
|
assert(incr >= 0);
|
|
if ((size_t)incr < minsize)
|
|
incr += csize;
|
|
|
|
dss_prev = sbrk(incr);
|
|
if (dss_prev == dss_max) {
|
|
/* Success. */
|
|
dss_max = (void *)((intptr_t)dss_prev + incr);
|
|
base_pages = dss_prev;
|
|
base_next_addr = base_pages;
|
|
base_past_addr = dss_max;
|
|
#ifdef MALLOC_STATS
|
|
base_mapped += incr;
|
|
#endif
|
|
malloc_mutex_unlock(&dss_mtx);
|
|
return (false);
|
|
}
|
|
} while (dss_prev != (void *)-1);
|
|
}
|
|
malloc_mutex_unlock(&dss_mtx);
|
|
|
|
return (true);
|
|
}
|
|
#endif
|
|
|
|
static bool
|
|
base_pages_alloc_mmap(size_t minsize)
|
|
{
|
|
size_t csize;
|
|
|
|
assert(minsize != 0);
|
|
csize = PAGE_CEILING(minsize);
|
|
base_pages = pages_map(NULL, csize);
|
|
if (base_pages == NULL)
|
|
return (true);
|
|
base_next_addr = base_pages;
|
|
base_past_addr = (void *)((uintptr_t)base_pages + csize);
|
|
#ifdef MALLOC_STATS
|
|
base_mapped += csize;
|
|
#endif
|
|
|
|
return (false);
|
|
}
|
|
|
|
static bool
|
|
base_pages_alloc(size_t minsize)
|
|
{
|
|
|
|
#ifdef MALLOC_DSS
|
|
if (opt_mmap && minsize != 0)
|
|
#endif
|
|
{
|
|
if (base_pages_alloc_mmap(minsize) == false)
|
|
return (false);
|
|
}
|
|
|
|
#ifdef MALLOC_DSS
|
|
if (opt_dss) {
|
|
if (base_pages_alloc_dss(minsize) == false)
|
|
return (false);
|
|
}
|
|
|
|
#endif
|
|
|
|
return (true);
|
|
}
|
|
|
|
static void *
|
|
base_alloc(size_t size)
|
|
{
|
|
void *ret;
|
|
size_t csize;
|
|
|
|
/* Round size up to nearest multiple of the cacheline size. */
|
|
csize = CACHELINE_CEILING(size);
|
|
|
|
malloc_mutex_lock(&base_mtx);
|
|
/* Make sure there's enough space for the allocation. */
|
|
if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
|
|
if (base_pages_alloc(csize)) {
|
|
malloc_mutex_unlock(&base_mtx);
|
|
return (NULL);
|
|
}
|
|
}
|
|
/* Allocate. */
|
|
ret = base_next_addr;
|
|
base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
|
|
malloc_mutex_unlock(&base_mtx);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static void *
|
|
base_calloc(size_t number, size_t size)
|
|
{
|
|
void *ret;
|
|
|
|
ret = base_alloc(number * size);
|
|
memset(ret, 0, number * size);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static extent_node_t *
|
|
base_node_alloc(void)
|
|
{
|
|
extent_node_t *ret;
|
|
|
|
malloc_mutex_lock(&base_mtx);
|
|
if (base_nodes != NULL) {
|
|
ret = base_nodes;
|
|
base_nodes = *(extent_node_t **)ret;
|
|
malloc_mutex_unlock(&base_mtx);
|
|
} else {
|
|
malloc_mutex_unlock(&base_mtx);
|
|
ret = (extent_node_t *)base_alloc(sizeof(extent_node_t));
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static void
|
|
base_node_dealloc(extent_node_t *node)
|
|
{
|
|
|
|
malloc_mutex_lock(&base_mtx);
|
|
*(extent_node_t **)node = base_nodes;
|
|
base_nodes = node;
|
|
malloc_mutex_unlock(&base_mtx);
|
|
}
|
|
|
|
/******************************************************************************/
|
|
|
|
#ifdef MALLOC_STATS
|
|
static void
|
|
stats_print(arena_t *arena)
|
|
{
|
|
unsigned i, gap_start;
|
|
|
|
malloc_printf("dirty: %zu page%s dirty, %llu sweep%s,"
|
|
" %llu madvise%s, %llu page%s purged\n",
|
|
arena->ndirty, arena->ndirty == 1 ? "" : "s",
|
|
arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s",
|
|
arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s",
|
|
arena->stats.purged, arena->stats.purged == 1 ? "" : "s");
|
|
|
|
malloc_printf(" allocated nmalloc ndalloc\n");
|
|
malloc_printf("small: %12zu %12llu %12llu\n",
|
|
arena->stats.allocated_small, arena->stats.nmalloc_small,
|
|
arena->stats.ndalloc_small);
|
|
malloc_printf("large: %12zu %12llu %12llu\n",
|
|
arena->stats.allocated_large, arena->stats.nmalloc_large,
|
|
arena->stats.ndalloc_large);
|
|
malloc_printf("total: %12zu %12llu %12llu\n",
|
|
arena->stats.allocated_small + arena->stats.allocated_large,
|
|
arena->stats.nmalloc_small + arena->stats.nmalloc_large,
|
|
arena->stats.ndalloc_small + arena->stats.ndalloc_large);
|
|
malloc_printf("mapped: %12zu\n", arena->stats.mapped);
|
|
|
|
#ifdef MALLOC_MAG
|
|
if (__isthreaded && opt_mag) {
|
|
malloc_printf("bins: bin size regs pgs mags "
|
|
"newruns reruns maxruns curruns\n");
|
|
} else {
|
|
#endif
|
|
malloc_printf("bins: bin size regs pgs requests "
|
|
"newruns reruns maxruns curruns\n");
|
|
#ifdef MALLOC_MAG
|
|
}
|
|
#endif
|
|
for (i = 0, gap_start = UINT_MAX; i < nbins; i++) {
|
|
if (arena->bins[i].stats.nruns == 0) {
|
|
if (gap_start == UINT_MAX)
|
|
gap_start = i;
|
|
} else {
|
|
if (gap_start != UINT_MAX) {
|
|
if (i > gap_start + 1) {
|
|
/* Gap of more than one size class. */
|
|
malloc_printf("[%u..%u]\n",
|
|
gap_start, i - 1);
|
|
} else {
|
|
/* Gap of one size class. */
|
|
malloc_printf("[%u]\n", gap_start);
|
|
}
|
|
gap_start = UINT_MAX;
|
|
}
|
|
malloc_printf(
|
|
"%13u %1s %4u %4u %3u %9llu %9llu"
|
|
" %9llu %7lu %7lu\n",
|
|
i,
|
|
i < ntbins ? "T" : i < ntbins + nqbins ? "Q" :
|
|
i < ntbins + nqbins + ncbins ? "C" : "S",
|
|
arena->bins[i].reg_size,
|
|
arena->bins[i].nregs,
|
|
arena->bins[i].run_size >> PAGE_SHIFT,
|
|
#ifdef MALLOC_MAG
|
|
(__isthreaded && opt_mag) ?
|
|
arena->bins[i].stats.nmags :
|
|
#endif
|
|
arena->bins[i].stats.nrequests,
|
|
arena->bins[i].stats.nruns,
|
|
arena->bins[i].stats.reruns,
|
|
arena->bins[i].stats.highruns,
|
|
arena->bins[i].stats.curruns);
|
|
}
|
|
}
|
|
if (gap_start != UINT_MAX) {
|
|
if (i > gap_start + 1) {
|
|
/* Gap of more than one size class. */
|
|
malloc_printf("[%u..%u]\n", gap_start, i - 1);
|
|
} else {
|
|
/* Gap of one size class. */
|
|
malloc_printf("[%u]\n", gap_start);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* End Utility functions/macros.
|
|
*/
|
|
/******************************************************************************/
|
|
/*
|
|
* Begin extent tree code.
|
|
*/
|
|
|
|
#ifdef MALLOC_DSS
|
|
static inline int
|
|
extent_szad_comp(extent_node_t *a, extent_node_t *b)
|
|
{
|
|
int ret;
|
|
size_t a_size = a->size;
|
|
size_t b_size = b->size;
|
|
|
|
ret = (a_size > b_size) - (a_size < b_size);
|
|
if (ret == 0) {
|
|
uintptr_t a_addr = (uintptr_t)a->addr;
|
|
uintptr_t b_addr = (uintptr_t)b->addr;
|
|
|
|
ret = (a_addr > b_addr) - (a_addr < b_addr);
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/* Wrap red-black tree macros in functions. */
|
|
rb_wrap(__unused static, extent_tree_szad_, extent_tree_t, extent_node_t,
|
|
link_szad, extent_szad_comp)
|
|
#endif
|
|
|
|
static inline int
|
|
extent_ad_comp(extent_node_t *a, extent_node_t *b)
|
|
{
|
|
uintptr_t a_addr = (uintptr_t)a->addr;
|
|
uintptr_t b_addr = (uintptr_t)b->addr;
|
|
|
|
return ((a_addr > b_addr) - (a_addr < b_addr));
|
|
}
|
|
|
|
/* Wrap red-black tree macros in functions. */
|
|
rb_wrap(__unused static, extent_tree_ad_, extent_tree_t, extent_node_t, link_ad,
|
|
extent_ad_comp)
|
|
|
|
/*
|
|
* End extent tree code.
|
|
*/
|
|
/******************************************************************************/
|
|
/*
|
|
* Begin chunk management functions.
|
|
*/
|
|
|
|
static void *
|
|
pages_map(void *addr, size_t size)
|
|
{
|
|
void *ret;
|
|
|
|
/*
|
|
* We don't use MAP_FIXED here, because it can cause the *replacement*
|
|
* of existing mappings, and we only want to create new mappings.
|
|
*/
|
|
ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON,
|
|
-1, 0);
|
|
assert(ret != NULL);
|
|
|
|
if (ret == MAP_FAILED)
|
|
ret = NULL;
|
|
else if (addr != NULL && ret != addr) {
|
|
/*
|
|
* We succeeded in mapping memory, but not in the right place.
|
|
*/
|
|
if (munmap(ret, size) == -1) {
|
|
char buf[STRERROR_BUF];
|
|
|
|
strerror_r(errno, buf, sizeof(buf));
|
|
_malloc_message(_getprogname(),
|
|
": (malloc) Error in munmap(): ", buf, "\n");
|
|
if (opt_abort)
|
|
abort();
|
|
}
|
|
ret = NULL;
|
|
}
|
|
|
|
assert(ret == NULL || (addr == NULL && ret != addr)
|
|
|| (addr != NULL && ret == addr));
|
|
return (ret);
|
|
}
|
|
|
|
static void
|
|
pages_unmap(void *addr, size_t size)
|
|
{
|
|
|
|
if (munmap(addr, size) == -1) {
|
|
char buf[STRERROR_BUF];
|
|
|
|
strerror_r(errno, buf, sizeof(buf));
|
|
_malloc_message(_getprogname(),
|
|
": (malloc) Error in munmap(): ", buf, "\n");
|
|
if (opt_abort)
|
|
abort();
|
|
}
|
|
}
|
|
|
|
#ifdef MALLOC_DSS
|
|
static void *
|
|
chunk_alloc_dss(size_t size)
|
|
{
|
|
|
|
/*
|
|
* sbrk() uses a signed increment argument, so take care not to
|
|
* interpret a huge allocation request as a negative increment.
|
|
*/
|
|
if ((intptr_t)size < 0)
|
|
return (NULL);
|
|
|
|
malloc_mutex_lock(&dss_mtx);
|
|
if (dss_prev != (void *)-1) {
|
|
intptr_t incr;
|
|
|
|
/*
|
|
* The loop is necessary to recover from races with other
|
|
* threads that are using the DSS for something other than
|
|
* malloc.
|
|
*/
|
|
do {
|
|
void *ret;
|
|
|
|
/* Get the current end of the DSS. */
|
|
dss_max = sbrk(0);
|
|
|
|
/*
|
|
* Calculate how much padding is necessary to
|
|
* chunk-align the end of the DSS.
|
|
*/
|
|
incr = (intptr_t)size
|
|
- (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
|
|
if (incr == (intptr_t)size)
|
|
ret = dss_max;
|
|
else {
|
|
ret = (void *)((intptr_t)dss_max + incr);
|
|
incr += size;
|
|
}
|
|
|
|
dss_prev = sbrk(incr);
|
|
if (dss_prev == dss_max) {
|
|
/* Success. */
|
|
dss_max = (void *)((intptr_t)dss_prev + incr);
|
|
malloc_mutex_unlock(&dss_mtx);
|
|
return (ret);
|
|
}
|
|
} while (dss_prev != (void *)-1);
|
|
}
|
|
malloc_mutex_unlock(&dss_mtx);
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static void *
|
|
chunk_recycle_dss(size_t size, bool zero)
|
|
{
|
|
extent_node_t *node, key;
|
|
|
|
key.addr = NULL;
|
|
key.size = size;
|
|
malloc_mutex_lock(&dss_mtx);
|
|
node = extent_tree_szad_nsearch(&dss_chunks_szad, &key);
|
|
if (node != NULL) {
|
|
void *ret = node->addr;
|
|
|
|
/* Remove node from the tree. */
|
|
extent_tree_szad_remove(&dss_chunks_szad, node);
|
|
if (node->size == size) {
|
|
extent_tree_ad_remove(&dss_chunks_ad, node);
|
|
base_node_dealloc(node);
|
|
} else {
|
|
/*
|
|
* Insert the remainder of node's address range as a
|
|
* smaller chunk. Its position within dss_chunks_ad
|
|
* does not change.
|
|
*/
|
|
assert(node->size > size);
|
|
node->addr = (void *)((uintptr_t)node->addr + size);
|
|
node->size -= size;
|
|
extent_tree_szad_insert(&dss_chunks_szad, node);
|
|
}
|
|
malloc_mutex_unlock(&dss_mtx);
|
|
|
|
if (zero)
|
|
memset(ret, 0, size);
|
|
return (ret);
|
|
}
|
|
malloc_mutex_unlock(&dss_mtx);
|
|
|
|
return (NULL);
|
|
}
|
|
#endif
|
|
|
|
static void *
|
|
chunk_alloc_mmap(size_t size)
|
|
{
|
|
void *ret;
|
|
size_t offset;
|
|
|
|
/*
|
|
* Ideally, there would be a way to specify alignment to mmap() (like
|
|
* NetBSD has), but in the absence of such a feature, we have to work
|
|
* hard to efficiently create aligned mappings. The reliable, but
|
|
* expensive method is to create a mapping that is over-sized, then
|
|
* trim the excess. However, that always results in at least one call
|
|
* to pages_unmap().
|
|
*
|
|
* A more optimistic approach is to try mapping precisely the right
|
|
* amount, then try to append another mapping if alignment is off. In
|
|
* practice, this works out well as long as the application is not
|
|
* interleaving mappings via direct mmap() calls. If we do run into a
|
|
* situation where there is an interleaved mapping and we are unable to
|
|
* extend an unaligned mapping, our best option is to momentarily
|
|
* revert to the reliable-but-expensive method. This will tend to
|
|
* leave a gap in the memory map that is too small to cause later
|
|
* problems for the optimistic method.
|
|
*/
|
|
|
|
ret = pages_map(NULL, size);
|
|
if (ret == NULL)
|
|
return (NULL);
|
|
|
|
offset = CHUNK_ADDR2OFFSET(ret);
|
|
if (offset != 0) {
|
|
/* Try to extend chunk boundary. */
|
|
if (pages_map((void *)((uintptr_t)ret + size),
|
|
chunksize - offset) == NULL) {
|
|
/*
|
|
* Extension failed. Clean up, then revert to the
|
|
* reliable-but-expensive method.
|
|
*/
|
|
pages_unmap(ret, size);
|
|
|
|
/* Beware size_t wrap-around. */
|
|
if (size + chunksize <= size)
|
|
return NULL;
|
|
|
|
ret = pages_map(NULL, size + chunksize);
|
|
if (ret == NULL)
|
|
return (NULL);
|
|
|
|
/* Clean up unneeded leading/trailing space. */
|
|
offset = CHUNK_ADDR2OFFSET(ret);
|
|
if (offset != 0) {
|
|
/* Leading space. */
|
|
pages_unmap(ret, chunksize - offset);
|
|
|
|
ret = (void *)((uintptr_t)ret +
|
|
(chunksize - offset));
|
|
|
|
/* Trailing space. */
|
|
pages_unmap((void *)((uintptr_t)ret + size),
|
|
offset);
|
|
} else {
|
|
/* Trailing space only. */
|
|
pages_unmap((void *)((uintptr_t)ret + size),
|
|
chunksize);
|
|
}
|
|
} else {
|
|
/* Clean up unneeded leading space. */
|
|
pages_unmap(ret, chunksize - offset);
|
|
ret = (void *)((uintptr_t)ret + (chunksize - offset));
|
|
}
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static void *
|
|
chunk_alloc(size_t size, bool zero)
|
|
{
|
|
void *ret;
|
|
|
|
assert(size != 0);
|
|
assert((size & chunksize_mask) == 0);
|
|
|
|
#ifdef MALLOC_DSS
|
|
if (opt_mmap)
|
|
#endif
|
|
{
|
|
ret = chunk_alloc_mmap(size);
|
|
if (ret != NULL)
|
|
goto RETURN;
|
|
}
|
|
|
|
#ifdef MALLOC_DSS
|
|
if (opt_dss) {
|
|
ret = chunk_recycle_dss(size, zero);
|
|
if (ret != NULL) {
|
|
goto RETURN;
|
|
}
|
|
|
|
ret = chunk_alloc_dss(size);
|
|
if (ret != NULL)
|
|
goto RETURN;
|
|
}
|
|
#endif
|
|
|
|
/* All strategies for allocation failed. */
|
|
ret = NULL;
|
|
RETURN:
|
|
#ifdef MALLOC_STATS
|
|
if (ret != NULL) {
|
|
stats_chunks.nchunks += (size / chunksize);
|
|
stats_chunks.curchunks += (size / chunksize);
|
|
}
|
|
if (stats_chunks.curchunks > stats_chunks.highchunks)
|
|
stats_chunks.highchunks = stats_chunks.curchunks;
|
|
#endif
|
|
|
|
assert(CHUNK_ADDR2BASE(ret) == ret);
|
|
return (ret);
|
|
}
|
|
|
|
#ifdef MALLOC_DSS
|
|
static extent_node_t *
|
|
chunk_dealloc_dss_record(void *chunk, size_t size)
|
|
{
|
|
extent_node_t *node, *prev, key;
|
|
|
|
key.addr = (void *)((uintptr_t)chunk + size);
|
|
node = extent_tree_ad_nsearch(&dss_chunks_ad, &key);
|
|
/* Try to coalesce forward. */
|
|
if (node != NULL && node->addr == key.addr) {
|
|
/*
|
|
* Coalesce chunk with the following address range. This does
|
|
* not change the position within dss_chunks_ad, so only
|
|
* remove/insert from/into dss_chunks_szad.
|
|
*/
|
|
extent_tree_szad_remove(&dss_chunks_szad, node);
|
|
node->addr = chunk;
|
|
node->size += size;
|
|
extent_tree_szad_insert(&dss_chunks_szad, node);
|
|
} else {
|
|
/*
|
|
* Coalescing forward failed, so insert a new node. Drop
|
|
* dss_mtx during node allocation, since it is possible that a
|
|
* new base chunk will be allocated.
|
|
*/
|
|
malloc_mutex_unlock(&dss_mtx);
|
|
node = base_node_alloc();
|
|
malloc_mutex_lock(&dss_mtx);
|
|
if (node == NULL)
|
|
return (NULL);
|
|
node->addr = chunk;
|
|
node->size = size;
|
|
extent_tree_ad_insert(&dss_chunks_ad, node);
|
|
extent_tree_szad_insert(&dss_chunks_szad, node);
|
|
}
|
|
|
|
/* Try to coalesce backward. */
|
|
prev = extent_tree_ad_prev(&dss_chunks_ad, node);
|
|
if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) ==
|
|
chunk) {
|
|
/*
|
|
* Coalesce chunk with the previous address range. This does
|
|
* not change the position within dss_chunks_ad, so only
|
|
* remove/insert node from/into dss_chunks_szad.
|
|
*/
|
|
extent_tree_szad_remove(&dss_chunks_szad, prev);
|
|
extent_tree_ad_remove(&dss_chunks_ad, prev);
|
|
|
|
extent_tree_szad_remove(&dss_chunks_szad, node);
|
|
node->addr = prev->addr;
|
|
node->size += prev->size;
|
|
extent_tree_szad_insert(&dss_chunks_szad, node);
|
|
|
|
base_node_dealloc(prev);
|
|
}
|
|
|
|
return (node);
|
|
}
|
|
|
|
static bool
|
|
chunk_dealloc_dss(void *chunk, size_t size)
|
|
{
|
|
|
|
malloc_mutex_lock(&dss_mtx);
|
|
if ((uintptr_t)chunk >= (uintptr_t)dss_base
|
|
&& (uintptr_t)chunk < (uintptr_t)dss_max) {
|
|
extent_node_t *node;
|
|
|
|
/* Try to coalesce with other unused chunks. */
|
|
node = chunk_dealloc_dss_record(chunk, size);
|
|
if (node != NULL) {
|
|
chunk = node->addr;
|
|
size = node->size;
|
|
}
|
|
|
|
/* Get the current end of the DSS. */
|
|
dss_max = sbrk(0);
|
|
|
|
/*
|
|
* Try to shrink the DSS if this chunk is at the end of the
|
|
* DSS. The sbrk() call here is subject to a race condition
|
|
* with threads that use brk(2) or sbrk(2) directly, but the
|
|
* alternative would be to leak memory for the sake of poorly
|
|
* designed multi-threaded programs.
|
|
*/
|
|
if ((void *)((uintptr_t)chunk + size) == dss_max
|
|
&& (dss_prev = sbrk(-(intptr_t)size)) == dss_max) {
|
|
/* Success. */
|
|
dss_max = (void *)((intptr_t)dss_prev - (intptr_t)size);
|
|
|
|
if (node != NULL) {
|
|
extent_tree_szad_remove(&dss_chunks_szad, node);
|
|
extent_tree_ad_remove(&dss_chunks_ad, node);
|
|
base_node_dealloc(node);
|
|
}
|
|
malloc_mutex_unlock(&dss_mtx);
|
|
} else {
|
|
malloc_mutex_unlock(&dss_mtx);
|
|
madvise(chunk, size, MADV_FREE);
|
|
}
|
|
|
|
return (false);
|
|
}
|
|
malloc_mutex_unlock(&dss_mtx);
|
|
|
|
return (true);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
chunk_dealloc_mmap(void *chunk, size_t size)
|
|
{
|
|
|
|
pages_unmap(chunk, size);
|
|
}
|
|
|
|
static void
|
|
chunk_dealloc(void *chunk, size_t size)
|
|
{
|
|
|
|
assert(chunk != NULL);
|
|
assert(CHUNK_ADDR2BASE(chunk) == chunk);
|
|
assert(size != 0);
|
|
assert((size & chunksize_mask) == 0);
|
|
|
|
#ifdef MALLOC_STATS
|
|
stats_chunks.curchunks -= (size / chunksize);
|
|
#endif
|
|
|
|
#ifdef MALLOC_DSS
|
|
if (opt_dss) {
|
|
if (chunk_dealloc_dss(chunk, size) == false)
|
|
return;
|
|
}
|
|
|
|
if (opt_mmap)
|
|
#endif
|
|
chunk_dealloc_mmap(chunk, size);
|
|
}
|
|
|
|
/*
|
|
* End chunk management functions.
|
|
*/
|
|
/******************************************************************************/
|
|
/*
|
|
* Begin arena.
|
|
*/
|
|
|
|
/*
|
|
* Choose an arena based on a per-thread value (fast-path code, calls slow-path
|
|
* code if necessary).
|
|
*/
|
|
static inline arena_t *
|
|
choose_arena(void)
|
|
{
|
|
arena_t *ret;
|
|
|
|
/*
|
|
* We can only use TLS if this is a PIC library, since for the static
|
|
* library version, libc's malloc is used by TLS allocation, which
|
|
* introduces a bootstrapping issue.
|
|
*/
|
|
#ifndef NO_TLS
|
|
if (__isthreaded == false) {
|
|
/* Avoid the overhead of TLS for single-threaded operation. */
|
|
return (arenas[0]);
|
|
}
|
|
|
|
ret = arenas_map;
|
|
if (ret == NULL) {
|
|
ret = choose_arena_hard();
|
|
assert(ret != NULL);
|
|
}
|
|
#else
|
|
if (__isthreaded && narenas > 1) {
|
|
unsigned long ind;
|
|
|
|
/*
|
|
* Hash _pthread_self() to one of the arenas. There is a prime
|
|
* number of arenas, so this has a reasonable chance of
|
|
* working. Even so, the hashing can be easily thwarted by
|
|
* inconvenient _pthread_self() values. Without specific
|
|
* knowledge of how _pthread_self() calculates values, we can't
|
|
* easily do much better than this.
|
|
*/
|
|
ind = (unsigned long) _pthread_self() % narenas;
|
|
|
|
/*
|
|
* Optimistially assume that arenas[ind] has been initialized.
|
|
* At worst, we find out that some other thread has already
|
|
* done so, after acquiring the lock in preparation. Note that
|
|
* this lazy locking also has the effect of lazily forcing
|
|
* cache coherency; without the lock acquisition, there's no
|
|
* guarantee that modification of arenas[ind] by another thread
|
|
* would be seen on this CPU for an arbitrary amount of time.
|
|
*
|
|
* In general, this approach to modifying a synchronized value
|
|
* isn't a good idea, but in this case we only ever modify the
|
|
* value once, so things work out well.
|
|
*/
|
|
ret = arenas[ind];
|
|
if (ret == NULL) {
|
|
/*
|
|
* Avoid races with another thread that may have already
|
|
* initialized arenas[ind].
|
|
*/
|
|
malloc_spin_lock(&arenas_lock);
|
|
if (arenas[ind] == NULL)
|
|
ret = arenas_extend((unsigned)ind);
|
|
else
|
|
ret = arenas[ind];
|
|
malloc_spin_unlock(&arenas_lock);
|
|
}
|
|
} else
|
|
ret = arenas[0];
|
|
#endif
|
|
|
|
assert(ret != NULL);
|
|
return (ret);
|
|
}
|
|
|
|
#ifndef NO_TLS
|
|
/*
|
|
* Choose an arena based on a per-thread value (slow-path code only, called
|
|
* only by choose_arena()).
|
|
*/
|
|
static arena_t *
|
|
choose_arena_hard(void)
|
|
{
|
|
arena_t *ret;
|
|
|
|
assert(__isthreaded);
|
|
|
|
#ifdef MALLOC_BALANCE
|
|
/* Seed the PRNG used for arena load balancing. */
|
|
SPRN(balance, (uint32_t)(uintptr_t)(_pthread_self()));
|
|
#endif
|
|
|
|
if (narenas > 1) {
|
|
#ifdef MALLOC_BALANCE
|
|
unsigned ind;
|
|
|
|
ind = PRN(balance, narenas_2pow);
|
|
if ((ret = arenas[ind]) == NULL) {
|
|
malloc_spin_lock(&arenas_lock);
|
|
if ((ret = arenas[ind]) == NULL)
|
|
ret = arenas_extend(ind);
|
|
malloc_spin_unlock(&arenas_lock);
|
|
}
|
|
#else
|
|
malloc_spin_lock(&arenas_lock);
|
|
if ((ret = arenas[next_arena]) == NULL)
|
|
ret = arenas_extend(next_arena);
|
|
next_arena = (next_arena + 1) % narenas;
|
|
malloc_spin_unlock(&arenas_lock);
|
|
#endif
|
|
} else
|
|
ret = arenas[0];
|
|
|
|
arenas_map = ret;
|
|
|
|
return (ret);
|
|
}
|
|
#endif
|
|
|
|
static inline int
|
|
arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
|
|
{
|
|
uintptr_t a_chunk = (uintptr_t)a;
|
|
uintptr_t b_chunk = (uintptr_t)b;
|
|
|
|
assert(a != NULL);
|
|
assert(b != NULL);
|
|
|
|
return ((a_chunk > b_chunk) - (a_chunk < b_chunk));
|
|
}
|
|
|
|
/* Wrap red-black tree macros in functions. */
|
|
rb_wrap(__unused static, arena_chunk_tree_dirty_, arena_chunk_tree_t,
|
|
arena_chunk_t, link_dirty, arena_chunk_comp)
|
|
|
|
static inline int
|
|
arena_run_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
|
|
{
|
|
uintptr_t a_mapelm = (uintptr_t)a;
|
|
uintptr_t b_mapelm = (uintptr_t)b;
|
|
|
|
assert(a != NULL);
|
|
assert(b != NULL);
|
|
|
|
return ((a_mapelm > b_mapelm) - (a_mapelm < b_mapelm));
|
|
}
|
|
|
|
/* Wrap red-black tree macros in functions. */
|
|
rb_wrap(__unused static, arena_run_tree_, arena_run_tree_t, arena_chunk_map_t,
|
|
link, arena_run_comp)
|
|
|
|
static inline int
|
|
arena_avail_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
|
|
{
|
|
int ret;
|
|
size_t a_size = a->bits & ~PAGE_MASK;
|
|
size_t b_size = b->bits & ~PAGE_MASK;
|
|
|
|
ret = (a_size > b_size) - (a_size < b_size);
|
|
if (ret == 0) {
|
|
uintptr_t a_mapelm, b_mapelm;
|
|
|
|
if ((a->bits & CHUNK_MAP_KEY) == 0)
|
|
a_mapelm = (uintptr_t)a;
|
|
else {
|
|
/*
|
|
* Treat keys as though they are lower than anything
|
|
* else.
|
|
*/
|
|
a_mapelm = 0;
|
|
}
|
|
b_mapelm = (uintptr_t)b;
|
|
|
|
ret = (a_mapelm > b_mapelm) - (a_mapelm < b_mapelm);
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/* Wrap red-black tree macros in functions. */
|
|
rb_wrap(__unused static, arena_avail_tree_, arena_avail_tree_t,
|
|
arena_chunk_map_t, link, arena_avail_comp)
|
|
|
|
static inline void *
|
|
arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
|
|
{
|
|
void *ret;
|
|
unsigned i, mask, bit, regind;
|
|
|
|
assert(run->magic == ARENA_RUN_MAGIC);
|
|
assert(run->regs_minelm < bin->regs_mask_nelms);
|
|
|
|
/*
|
|
* Move the first check outside the loop, so that run->regs_minelm can
|
|
* be updated unconditionally, without the possibility of updating it
|
|
* multiple times.
|
|
*/
|
|
i = run->regs_minelm;
|
|
mask = run->regs_mask[i];
|
|
if (mask != 0) {
|
|
/* Usable allocation found. */
|
|
bit = ffs((int)mask) - 1;
|
|
|
|
regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
|
|
assert(regind < bin->nregs);
|
|
ret = (void *)(((uintptr_t)run) + bin->reg0_offset
|
|
+ (bin->reg_size * regind));
|
|
|
|
/* Clear bit. */
|
|
mask ^= (1U << bit);
|
|
run->regs_mask[i] = mask;
|
|
|
|
return (ret);
|
|
}
|
|
|
|
for (i++; i < bin->regs_mask_nelms; i++) {
|
|
mask = run->regs_mask[i];
|
|
if (mask != 0) {
|
|
/* Usable allocation found. */
|
|
bit = ffs((int)mask) - 1;
|
|
|
|
regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
|
|
assert(regind < bin->nregs);
|
|
ret = (void *)(((uintptr_t)run) + bin->reg0_offset
|
|
+ (bin->reg_size * regind));
|
|
|
|
/* Clear bit. */
|
|
mask ^= (1U << bit);
|
|
run->regs_mask[i] = mask;
|
|
|
|
/*
|
|
* Make a note that nothing before this element
|
|
* contains a free region.
|
|
*/
|
|
run->regs_minelm = i; /* Low payoff: + (mask == 0); */
|
|
|
|
return (ret);
|
|
}
|
|
}
|
|
/* Not reached. */
|
|
assert(0);
|
|
return (NULL);
|
|
}
|
|
|
|
static inline void
|
|
arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
|
|
{
|
|
unsigned diff, regind, elm, bit;
|
|
|
|
assert(run->magic == ARENA_RUN_MAGIC);
|
|
|
|
/*
|
|
* Avoid doing division with a variable divisor if possible. Using
|
|
* actual division here can reduce allocator throughput by over 20%!
|
|
*/
|
|
diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
|
|
if ((size & (size - 1)) == 0) {
|
|
/*
|
|
* log2_table allows fast division of a power of two in the
|
|
* [1..128] range.
|
|
*
|
|
* (x / divisor) becomes (x >> log2_table[divisor - 1]).
|
|
*/
|
|
static const unsigned char log2_table[] = {
|
|
0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
|
|
};
|
|
|
|
if (size <= 128)
|
|
regind = (diff >> log2_table[size - 1]);
|
|
else if (size <= 32768)
|
|
regind = diff >> (8 + log2_table[(size >> 8) - 1]);
|
|
else
|
|
regind = diff / size;
|
|
} else if (size < qspace_max) {
|
|
/*
|
|
* To divide by a number D that is not a power of two we
|
|
* multiply by (2^21 / D) and then right shift by 21 positions.
|
|
*
|
|
* X / D
|
|
*
|
|
* becomes
|
|
*
|
|
* (X * qsize_invs[(D >> QUANTUM_2POW) - 3])
|
|
* >> SIZE_INV_SHIFT
|
|
*
|
|
* We can omit the first three elements, because we never
|
|
* divide by 0, and QUANTUM and 2*QUANTUM are both powers of
|
|
* two, which are handled above.
|
|
*/
|
|
#define SIZE_INV_SHIFT 21
|
|
#define QSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << QUANTUM_2POW)) + 1)
|
|
static const unsigned qsize_invs[] = {
|
|
QSIZE_INV(3),
|
|
QSIZE_INV(4), QSIZE_INV(5), QSIZE_INV(6), QSIZE_INV(7)
|
|
#if (QUANTUM_2POW < 4)
|
|
,
|
|
QSIZE_INV(8), QSIZE_INV(9), QSIZE_INV(10), QSIZE_INV(11),
|
|
QSIZE_INV(12),QSIZE_INV(13), QSIZE_INV(14), QSIZE_INV(15)
|
|
#endif
|
|
};
|
|
assert(QUANTUM * (((sizeof(qsize_invs)) / sizeof(unsigned)) + 3)
|
|
>= (1U << QSPACE_MAX_2POW_DEFAULT));
|
|
|
|
if (size <= (((sizeof(qsize_invs) / sizeof(unsigned)) + 2) <<
|
|
QUANTUM_2POW)) {
|
|
regind = qsize_invs[(size >> QUANTUM_2POW) - 3] * diff;
|
|
regind >>= SIZE_INV_SHIFT;
|
|
} else
|
|
regind = diff / size;
|
|
#undef QSIZE_INV
|
|
} else if (size < cspace_max) {
|
|
#define CSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << CACHELINE_2POW)) + 1)
|
|
static const unsigned csize_invs[] = {
|
|
CSIZE_INV(3),
|
|
CSIZE_INV(4), CSIZE_INV(5), CSIZE_INV(6), CSIZE_INV(7)
|
|
};
|
|
assert(CACHELINE * (((sizeof(csize_invs)) / sizeof(unsigned)) +
|
|
3) >= (1U << CSPACE_MAX_2POW_DEFAULT));
|
|
|
|
if (size <= (((sizeof(csize_invs) / sizeof(unsigned)) + 2) <<
|
|
CACHELINE_2POW)) {
|
|
regind = csize_invs[(size >> CACHELINE_2POW) - 3] *
|
|
diff;
|
|
regind >>= SIZE_INV_SHIFT;
|
|
} else
|
|
regind = diff / size;
|
|
#undef CSIZE_INV
|
|
} else {
|
|
#define SSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << SUBPAGE_2POW)) + 1)
|
|
static const unsigned ssize_invs[] = {
|
|
SSIZE_INV(3),
|
|
SSIZE_INV(4), SSIZE_INV(5), SSIZE_INV(6), SSIZE_INV(7),
|
|
SSIZE_INV(8), SSIZE_INV(9), SSIZE_INV(10), SSIZE_INV(11),
|
|
SSIZE_INV(12), SSIZE_INV(13), SSIZE_INV(14), SSIZE_INV(15)
|
|
#if (PAGE_SHIFT == 13)
|
|
,
|
|
SSIZE_INV(16), SSIZE_INV(17), SSIZE_INV(18), SSIZE_INV(19),
|
|
SSIZE_INV(20), SSIZE_INV(21), SSIZE_INV(22), SSIZE_INV(23),
|
|
SSIZE_INV(24), SSIZE_INV(25), SSIZE_INV(26), SSIZE_INV(27),
|
|
SSIZE_INV(28), SSIZE_INV(29), SSIZE_INV(29), SSIZE_INV(30)
|
|
#endif
|
|
};
|
|
assert(SUBPAGE * (((sizeof(ssize_invs)) / sizeof(unsigned)) + 3)
|
|
>= PAGE_SIZE);
|
|
|
|
if (size < (((sizeof(ssize_invs) / sizeof(unsigned)) + 2) <<
|
|
SUBPAGE_2POW)) {
|
|
regind = ssize_invs[(size >> SUBPAGE_2POW) - 3] * diff;
|
|
regind >>= SIZE_INV_SHIFT;
|
|
} else
|
|
regind = diff / size;
|
|
#undef SSIZE_INV
|
|
}
|
|
#undef SIZE_INV_SHIFT
|
|
assert(diff == regind * size);
|
|
assert(regind < bin->nregs);
|
|
|
|
elm = regind >> (SIZEOF_INT_2POW + 3);
|
|
if (elm < run->regs_minelm)
|
|
run->regs_minelm = elm;
|
|
bit = regind - (elm << (SIZEOF_INT_2POW + 3));
|
|
assert((run->regs_mask[elm] & (1U << bit)) == 0);
|
|
run->regs_mask[elm] |= (1U << bit);
|
|
}
|
|
|
|
static void
|
|
arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool large,
|
|
bool zero)
|
|
{
|
|
arena_chunk_t *chunk;
|
|
size_t old_ndirty, run_ind, total_pages, need_pages, rem_pages, i;
|
|
|
|
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
|
|
old_ndirty = chunk->ndirty;
|
|
run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
|
|
>> PAGE_SHIFT);
|
|
total_pages = (chunk->map[run_ind].bits & ~PAGE_MASK) >>
|
|
PAGE_SHIFT;
|
|
need_pages = (size >> PAGE_SHIFT);
|
|
assert(need_pages > 0);
|
|
assert(need_pages <= total_pages);
|
|
rem_pages = total_pages - need_pages;
|
|
|
|
arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind]);
|
|
|
|
/* Keep track of trailing unused pages for later use. */
|
|
if (rem_pages > 0) {
|
|
chunk->map[run_ind+need_pages].bits = (rem_pages <<
|
|
PAGE_SHIFT) | (chunk->map[run_ind+need_pages].bits &
|
|
PAGE_MASK);
|
|
chunk->map[run_ind+total_pages-1].bits = (rem_pages <<
|
|
PAGE_SHIFT) | (chunk->map[run_ind+total_pages-1].bits &
|
|
PAGE_MASK);
|
|
arena_avail_tree_insert(&arena->runs_avail,
|
|
&chunk->map[run_ind+need_pages]);
|
|
}
|
|
|
|
for (i = 0; i < need_pages; i++) {
|
|
/* Zero if necessary. */
|
|
if (zero) {
|
|
if ((chunk->map[run_ind + i].bits & CHUNK_MAP_ZEROED)
|
|
== 0) {
|
|
memset((void *)((uintptr_t)chunk + ((run_ind
|
|
+ i) << PAGE_SHIFT)), 0, PAGE_SIZE);
|
|
/* CHUNK_MAP_ZEROED is cleared below. */
|
|
}
|
|
}
|
|
|
|
/* Update dirty page accounting. */
|
|
if (chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) {
|
|
chunk->ndirty--;
|
|
arena->ndirty--;
|
|
/* CHUNK_MAP_DIRTY is cleared below. */
|
|
}
|
|
|
|
/* Initialize the chunk map. */
|
|
if (large) {
|
|
chunk->map[run_ind + i].bits = CHUNK_MAP_LARGE
|
|
| CHUNK_MAP_ALLOCATED;
|
|
} else {
|
|
chunk->map[run_ind + i].bits = (size_t)run
|
|
| CHUNK_MAP_ALLOCATED;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the run size only in the first element for large runs. This is
|
|
* primarily a debugging aid, since the lack of size info for trailing
|
|
* pages only matters if the application tries to operate on an
|
|
* interior pointer.
|
|
*/
|
|
if (large)
|
|
chunk->map[run_ind].bits |= size;
|
|
|
|
if (chunk->ndirty == 0 && old_ndirty > 0)
|
|
arena_chunk_tree_dirty_remove(&arena->chunks_dirty, chunk);
|
|
}
|
|
|
|
static arena_chunk_t *
|
|
arena_chunk_alloc(arena_t *arena)
|
|
{
|
|
arena_chunk_t *chunk;
|
|
size_t i;
|
|
|
|
if (arena->spare != NULL) {
|
|
chunk = arena->spare;
|
|
arena->spare = NULL;
|
|
} else {
|
|
chunk = (arena_chunk_t *)chunk_alloc(chunksize, true);
|
|
if (chunk == NULL)
|
|
return (NULL);
|
|
#ifdef MALLOC_STATS
|
|
arena->stats.mapped += chunksize;
|
|
#endif
|
|
|
|
chunk->arena = arena;
|
|
|
|
/*
|
|
* Claim that no pages are in use, since the header is merely
|
|
* overhead.
|
|
*/
|
|
chunk->ndirty = 0;
|
|
|
|
/*
|
|
* Initialize the map to contain one maximal free untouched run.
|
|
*/
|
|
for (i = 0; i < arena_chunk_header_npages; i++)
|
|
chunk->map[i].bits = 0;
|
|
chunk->map[i].bits = arena_maxclass | CHUNK_MAP_ZEROED;
|
|
for (i++; i < chunk_npages-1; i++) {
|
|
chunk->map[i].bits = CHUNK_MAP_ZEROED;
|
|
}
|
|
chunk->map[chunk_npages-1].bits = arena_maxclass |
|
|
CHUNK_MAP_ZEROED;
|
|
}
|
|
|
|
/* Insert the run into the runs_avail tree. */
|
|
arena_avail_tree_insert(&arena->runs_avail,
|
|
&chunk->map[arena_chunk_header_npages]);
|
|
|
|
return (chunk);
|
|
}
|
|
|
|
static void
|
|
arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
|
|
{
|
|
|
|
if (arena->spare != NULL) {
|
|
if (arena->spare->ndirty > 0) {
|
|
arena_chunk_tree_dirty_remove(
|
|
&chunk->arena->chunks_dirty, arena->spare);
|
|
arena->ndirty -= arena->spare->ndirty;
|
|
}
|
|
chunk_dealloc((void *)arena->spare, chunksize);
|
|
#ifdef MALLOC_STATS
|
|
arena->stats.mapped -= chunksize;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Remove run from runs_avail, regardless of whether this chunk
|
|
* will be cached, so that the arena does not use it. Dirty page
|
|
* flushing only uses the chunks_dirty tree, so leaving this chunk in
|
|
* the chunks_* trees is sufficient for that purpose.
|
|
*/
|
|
arena_avail_tree_remove(&arena->runs_avail,
|
|
&chunk->map[arena_chunk_header_npages]);
|
|
|
|
arena->spare = chunk;
|
|
}
|
|
|
|
static arena_run_t *
|
|
arena_run_alloc(arena_t *arena, size_t size, bool large, bool zero)
|
|
{
|
|
arena_chunk_t *chunk;
|
|
arena_run_t *run;
|
|
arena_chunk_map_t *mapelm, key;
|
|
|
|
assert(size <= arena_maxclass);
|
|
assert((size & PAGE_MASK) == 0);
|
|
|
|
/* Search the arena's chunks for the lowest best fit. */
|
|
key.bits = size | CHUNK_MAP_KEY;
|
|
mapelm = arena_avail_tree_nsearch(&arena->runs_avail, &key);
|
|
if (mapelm != NULL) {
|
|
arena_chunk_t *run_chunk = CHUNK_ADDR2BASE(mapelm);
|
|
size_t pageind = ((uintptr_t)mapelm - (uintptr_t)run_chunk->map)
|
|
/ sizeof(arena_chunk_map_t);
|
|
|
|
run = (arena_run_t *)((uintptr_t)run_chunk + (pageind
|
|
<< PAGE_SHIFT));
|
|
arena_run_split(arena, run, size, large, zero);
|
|
return (run);
|
|
}
|
|
|
|
/*
|
|
* No usable runs. Create a new chunk from which to allocate the run.
|
|
*/
|
|
chunk = arena_chunk_alloc(arena);
|
|
if (chunk == NULL)
|
|
return (NULL);
|
|
run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
|
|
PAGE_SHIFT));
|
|
/* Update page map. */
|
|
arena_run_split(arena, run, size, large, zero);
|
|
return (run);
|
|
}
|
|
|
|
static void
|
|
arena_purge(arena_t *arena)
|
|
{
|
|
arena_chunk_t *chunk;
|
|
size_t i, npages;
|
|
#ifdef MALLOC_DEBUG
|
|
size_t ndirty = 0;
|
|
|
|
rb_foreach_begin(arena_chunk_t, link_dirty, &arena->chunks_dirty,
|
|
chunk) {
|
|
ndirty += chunk->ndirty;
|
|
} rb_foreach_end(arena_chunk_t, link_dirty, &arena->chunks_dirty, chunk)
|
|
assert(ndirty == arena->ndirty);
|
|
#endif
|
|
assert(arena->ndirty > opt_dirty_max);
|
|
|
|
#ifdef MALLOC_STATS
|
|
arena->stats.npurge++;
|
|
#endif
|
|
|
|
/*
|
|
* Iterate downward through chunks until enough dirty memory has been
|
|
* purged. Terminate as soon as possible in order to minimize the
|
|
* number of system calls, even if a chunk has only been partially
|
|
* purged.
|
|
*/
|
|
while (arena->ndirty > (opt_dirty_max >> 1)) {
|
|
chunk = arena_chunk_tree_dirty_last(&arena->chunks_dirty);
|
|
assert(chunk != NULL);
|
|
|
|
for (i = chunk_npages - 1; chunk->ndirty > 0; i--) {
|
|
assert(i >= arena_chunk_header_npages);
|
|
|
|
if (chunk->map[i].bits & CHUNK_MAP_DIRTY) {
|
|
chunk->map[i].bits ^= CHUNK_MAP_DIRTY;
|
|
/* Find adjacent dirty run(s). */
|
|
for (npages = 1; i > arena_chunk_header_npages
|
|
&& (chunk->map[i - 1].bits &
|
|
CHUNK_MAP_DIRTY); npages++) {
|
|
i--;
|
|
chunk->map[i].bits ^= CHUNK_MAP_DIRTY;
|
|
}
|
|
chunk->ndirty -= npages;
|
|
arena->ndirty -= npages;
|
|
|
|
madvise((void *)((uintptr_t)chunk + (i <<
|
|
PAGE_SHIFT)), (npages << PAGE_SHIFT),
|
|
MADV_FREE);
|
|
#ifdef MALLOC_STATS
|
|
arena->stats.nmadvise++;
|
|
arena->stats.purged += npages;
|
|
#endif
|
|
if (arena->ndirty <= (opt_dirty_max >> 1))
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (chunk->ndirty == 0) {
|
|
arena_chunk_tree_dirty_remove(&arena->chunks_dirty,
|
|
chunk);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty)
|
|
{
|
|
arena_chunk_t *chunk;
|
|
size_t size, run_ind, run_pages;
|
|
|
|
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
|
|
run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk)
|
|
>> PAGE_SHIFT);
|
|
assert(run_ind >= arena_chunk_header_npages);
|
|
assert(run_ind < chunk_npages);
|
|
if ((chunk->map[run_ind].bits & CHUNK_MAP_LARGE) != 0)
|
|
size = chunk->map[run_ind].bits & ~PAGE_MASK;
|
|
else
|
|
size = run->bin->run_size;
|
|
run_pages = (size >> PAGE_SHIFT);
|
|
|
|
/* Mark pages as unallocated in the chunk map. */
|
|
if (dirty) {
|
|
size_t i;
|
|
|
|
for (i = 0; i < run_pages; i++) {
|
|
assert((chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY)
|
|
== 0);
|
|
chunk->map[run_ind + i].bits = CHUNK_MAP_DIRTY;
|
|
}
|
|
|
|
if (chunk->ndirty == 0) {
|
|
arena_chunk_tree_dirty_insert(&arena->chunks_dirty,
|
|
chunk);
|
|
}
|
|
chunk->ndirty += run_pages;
|
|
arena->ndirty += run_pages;
|
|
} else {
|
|
size_t i;
|
|
|
|
for (i = 0; i < run_pages; i++) {
|
|
chunk->map[run_ind + i].bits &= ~(CHUNK_MAP_LARGE |
|
|
CHUNK_MAP_ALLOCATED);
|
|
}
|
|
}
|
|
chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
|
|
PAGE_MASK);
|
|
chunk->map[run_ind+run_pages-1].bits = size |
|
|
(chunk->map[run_ind+run_pages-1].bits & PAGE_MASK);
|
|
|
|
/* Try to coalesce forward. */
|
|
if (run_ind + run_pages < chunk_npages &&
|
|
(chunk->map[run_ind+run_pages].bits & CHUNK_MAP_ALLOCATED) == 0) {
|
|
size_t nrun_size = chunk->map[run_ind+run_pages].bits &
|
|
~PAGE_MASK;
|
|
|
|
/*
|
|
* Remove successor from runs_avail; the coalesced run is
|
|
* inserted later.
|
|
*/
|
|
arena_avail_tree_remove(&arena->runs_avail,
|
|
&chunk->map[run_ind+run_pages]);
|
|
|
|
size += nrun_size;
|
|
run_pages = size >> PAGE_SHIFT;
|
|
|
|
assert((chunk->map[run_ind+run_pages-1].bits & ~PAGE_MASK)
|
|
== nrun_size);
|
|
chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
|
|
PAGE_MASK);
|
|
chunk->map[run_ind+run_pages-1].bits = size |
|
|
(chunk->map[run_ind+run_pages-1].bits & PAGE_MASK);
|
|
}
|
|
|
|
/* Try to coalesce backward. */
|
|
if (run_ind > arena_chunk_header_npages && (chunk->map[run_ind-1].bits &
|
|
CHUNK_MAP_ALLOCATED) == 0) {
|
|
size_t prun_size = chunk->map[run_ind-1].bits & ~PAGE_MASK;
|
|
|
|
run_ind -= prun_size >> PAGE_SHIFT;
|
|
|
|
/*
|
|
* Remove predecessor from runs_avail; the coalesced run is
|
|
* inserted later.
|
|
*/
|
|
arena_avail_tree_remove(&arena->runs_avail,
|
|
&chunk->map[run_ind]);
|
|
|
|
size += prun_size;
|
|
run_pages = size >> PAGE_SHIFT;
|
|
|
|
assert((chunk->map[run_ind].bits & ~PAGE_MASK) ==
|
|
prun_size);
|
|
chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
|
|
PAGE_MASK);
|
|
chunk->map[run_ind+run_pages-1].bits = size |
|
|
(chunk->map[run_ind+run_pages-1].bits & PAGE_MASK);
|
|
}
|
|
|
|
/* Insert into runs_avail, now that coalescing is complete. */
|
|
arena_avail_tree_insert(&arena->runs_avail, &chunk->map[run_ind]);
|
|
|
|
/* Deallocate chunk if it is now completely unused. */
|
|
if ((chunk->map[arena_chunk_header_npages].bits & (~PAGE_MASK |
|
|
CHUNK_MAP_ALLOCATED)) == arena_maxclass)
|
|
arena_chunk_dealloc(arena, chunk);
|
|
|
|
/* Enforce opt_dirty_max. */
|
|
if (arena->ndirty > opt_dirty_max)
|
|
arena_purge(arena);
|
|
}
|
|
|
|
static void
|
|
arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
|
|
size_t oldsize, size_t newsize)
|
|
{
|
|
size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> PAGE_SHIFT;
|
|
size_t head_npages = (oldsize - newsize) >> PAGE_SHIFT;
|
|
|
|
assert(oldsize > newsize);
|
|
|
|
/*
|
|
* Update the chunk map so that arena_run_dalloc() can treat the
|
|
* leading run as separately allocated.
|
|
*/
|
|
chunk->map[pageind].bits = (oldsize - newsize) | CHUNK_MAP_LARGE |
|
|
CHUNK_MAP_ALLOCATED;
|
|
chunk->map[pageind+head_npages].bits = newsize | CHUNK_MAP_LARGE |
|
|
CHUNK_MAP_ALLOCATED;
|
|
|
|
arena_run_dalloc(arena, run, false);
|
|
}
|
|
|
|
static void
|
|
arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
|
|
size_t oldsize, size_t newsize, bool dirty)
|
|
{
|
|
size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> PAGE_SHIFT;
|
|
size_t npages = newsize >> PAGE_SHIFT;
|
|
|
|
assert(oldsize > newsize);
|
|
|
|
/*
|
|
* Update the chunk map so that arena_run_dalloc() can treat the
|
|
* trailing run as separately allocated.
|
|
*/
|
|
chunk->map[pageind].bits = newsize | CHUNK_MAP_LARGE |
|
|
CHUNK_MAP_ALLOCATED;
|
|
chunk->map[pageind+npages].bits = (oldsize - newsize) | CHUNK_MAP_LARGE
|
|
| CHUNK_MAP_ALLOCATED;
|
|
|
|
arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)run + newsize),
|
|
dirty);
|
|
}
|
|
|
|
static arena_run_t *
|
|
arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
|
|
{
|
|
arena_chunk_map_t *mapelm;
|
|
arena_run_t *run;
|
|
unsigned i, remainder;
|
|
|
|
/* Look for a usable run. */
|
|
mapelm = arena_run_tree_first(&bin->runs);
|
|
if (mapelm != NULL) {
|
|
/* run is guaranteed to have available space. */
|
|
arena_run_tree_remove(&bin->runs, mapelm);
|
|
run = (arena_run_t *)(mapelm->bits & ~PAGE_MASK);
|
|
#ifdef MALLOC_STATS
|
|
bin->stats.reruns++;
|
|
#endif
|
|
return (run);
|
|
}
|
|
/* No existing runs have any space available. */
|
|
|
|
/* Allocate a new run. */
|
|
run = arena_run_alloc(arena, bin->run_size, false, false);
|
|
if (run == NULL)
|
|
return (NULL);
|
|
|
|
/* Initialize run internals. */
|
|
run->bin = bin;
|
|
|
|
for (i = 0; i < bin->regs_mask_nelms - 1; i++)
|
|
run->regs_mask[i] = UINT_MAX;
|
|
remainder = bin->nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1);
|
|
if (remainder == 0)
|
|
run->regs_mask[i] = UINT_MAX;
|
|
else {
|
|
/* The last element has spare bits that need to be unset. */
|
|
run->regs_mask[i] = (UINT_MAX >> ((1U << (SIZEOF_INT_2POW + 3))
|
|
- remainder));
|
|
}
|
|
|
|
run->regs_minelm = 0;
|
|
|
|
run->nfree = bin->nregs;
|
|
#ifdef MALLOC_DEBUG
|
|
run->magic = ARENA_RUN_MAGIC;
|
|
#endif
|
|
|
|
#ifdef MALLOC_STATS
|
|
bin->stats.nruns++;
|
|
bin->stats.curruns++;
|
|
if (bin->stats.curruns > bin->stats.highruns)
|
|
bin->stats.highruns = bin->stats.curruns;
|
|
#endif
|
|
return (run);
|
|
}
|
|
|
|
/* bin->runcur must have space available before this function is called. */
|
|
static inline void *
|
|
arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
|
|
{
|
|
void *ret;
|
|
|
|
assert(run->magic == ARENA_RUN_MAGIC);
|
|
assert(run->nfree > 0);
|
|
|
|
ret = arena_run_reg_alloc(run, bin);
|
|
assert(ret != NULL);
|
|
run->nfree--;
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
|
|
static void *
|
|
arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
|
|
{
|
|
|
|
bin->runcur = arena_bin_nonfull_run_get(arena, bin);
|
|
if (bin->runcur == NULL)
|
|
return (NULL);
|
|
assert(bin->runcur->magic == ARENA_RUN_MAGIC);
|
|
assert(bin->runcur->nfree > 0);
|
|
|
|
return (arena_bin_malloc_easy(arena, bin, bin->runcur));
|
|
}
|
|
|
|
/*
|
|
* Calculate bin->run_size such that it meets the following constraints:
|
|
*
|
|
* *) bin->run_size >= min_run_size
|
|
* *) bin->run_size <= arena_maxclass
|
|
* *) bin->run_size <= RUN_MAX_SMALL
|
|
* *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
|
|
*
|
|
* bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
|
|
* also calculated here, since these settings are all interdependent.
|
|
*/
|
|
static size_t
|
|
arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
|
|
{
|
|
size_t try_run_size, good_run_size;
|
|
unsigned good_nregs, good_mask_nelms, good_reg0_offset;
|
|
unsigned try_nregs, try_mask_nelms, try_reg0_offset;
|
|
|
|
assert(min_run_size >= PAGE_SIZE);
|
|
assert(min_run_size <= arena_maxclass);
|
|
assert(min_run_size <= RUN_MAX_SMALL);
|
|
|
|
/*
|
|
* Calculate known-valid settings before entering the run_size
|
|
* expansion loop, so that the first part of the loop always copies
|
|
* valid settings.
|
|
*
|
|
* The do..while loop iteratively reduces the number of regions until
|
|
* the run header and the regions no longer overlap. A closed formula
|
|
* would be quite messy, since there is an interdependency between the
|
|
* header's mask length and the number of regions.
|
|
*/
|
|
try_run_size = min_run_size;
|
|
try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size)
|
|
+ 1; /* Counter-act try_nregs-- in loop. */
|
|
do {
|
|
try_nregs--;
|
|
try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
|
|
((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
|
|
try_reg0_offset = try_run_size - (try_nregs * bin->reg_size);
|
|
} while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
|
|
> try_reg0_offset);
|
|
|
|
/* run_size expansion loop. */
|
|
do {
|
|
/*
|
|
* Copy valid settings before trying more aggressive settings.
|
|
*/
|
|
good_run_size = try_run_size;
|
|
good_nregs = try_nregs;
|
|
good_mask_nelms = try_mask_nelms;
|
|
good_reg0_offset = try_reg0_offset;
|
|
|
|
/* Try more aggressive settings. */
|
|
try_run_size += PAGE_SIZE;
|
|
try_nregs = ((try_run_size - sizeof(arena_run_t)) /
|
|
bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */
|
|
do {
|
|
try_nregs--;
|
|
try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
|
|
((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ?
|
|
1 : 0);
|
|
try_reg0_offset = try_run_size - (try_nregs *
|
|
bin->reg_size);
|
|
} while (sizeof(arena_run_t) + (sizeof(unsigned) *
|
|
(try_mask_nelms - 1)) > try_reg0_offset);
|
|
} while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
|
|
&& RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
|
|
&& (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size);
|
|
|
|
assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
|
|
<= good_reg0_offset);
|
|
assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
|
|
|
|
/* Copy final settings. */
|
|
bin->run_size = good_run_size;
|
|
bin->nregs = good_nregs;
|
|
bin->regs_mask_nelms = good_mask_nelms;
|
|
bin->reg0_offset = good_reg0_offset;
|
|
|
|
return (good_run_size);
|
|
}
|
|
|
|
#ifdef MALLOC_BALANCE
|
|
static inline void
|
|
arena_lock_balance(arena_t *arena)
|
|
{
|
|
unsigned contention;
|
|
|
|
contention = malloc_spin_lock(&arena->lock);
|
|
if (narenas > 1) {
|
|
/*
|
|
* Calculate the exponentially averaged contention for this
|
|
* arena. Due to integer math always rounding down, this value
|
|
* decays somewhat faster than normal.
|
|
*/
|
|
arena->contention = (((uint64_t)arena->contention
|
|
* (uint64_t)((1U << BALANCE_ALPHA_INV_2POW)-1))
|
|
+ (uint64_t)contention) >> BALANCE_ALPHA_INV_2POW;
|
|
if (arena->contention >= opt_balance_threshold)
|
|
arena_lock_balance_hard(arena);
|
|
}
|
|
}
|
|
|
|
static void
|
|
arena_lock_balance_hard(arena_t *arena)
|
|
{
|
|
uint32_t ind;
|
|
|
|
arena->contention = 0;
|
|
#ifdef MALLOC_STATS
|
|
arena->stats.nbalance++;
|
|
#endif
|
|
ind = PRN(balance, narenas_2pow);
|
|
if (arenas[ind] != NULL)
|
|
arenas_map = arenas[ind];
|
|
else {
|
|
malloc_spin_lock(&arenas_lock);
|
|
if (arenas[ind] != NULL)
|
|
arenas_map = arenas[ind];
|
|
else
|
|
arenas_map = arenas_extend(ind);
|
|
malloc_spin_unlock(&arenas_lock);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef MALLOC_MAG
|
|
static inline void *
|
|
mag_alloc(mag_t *mag)
|
|
{
|
|
|
|
if (mag->nrounds == 0)
|
|
return (NULL);
|
|
mag->nrounds--;
|
|
|
|
return (mag->rounds[mag->nrounds]);
|
|
}
|
|
|
|
static void
|
|
mag_load(mag_t *mag)
|
|
{
|
|
arena_t *arena;
|
|
arena_bin_t *bin;
|
|
arena_run_t *run;
|
|
void *round;
|
|
size_t i;
|
|
|
|
arena = choose_arena();
|
|
bin = &arena->bins[mag->binind];
|
|
#ifdef MALLOC_BALANCE
|
|
arena_lock_balance(arena);
|
|
#else
|
|
malloc_spin_lock(&arena->lock);
|
|
#endif
|
|
for (i = mag->nrounds; i < max_rounds; i++) {
|
|
if ((run = bin->runcur) != NULL && run->nfree > 0)
|
|
round = arena_bin_malloc_easy(arena, bin, run);
|
|
else
|
|
round = arena_bin_malloc_hard(arena, bin);
|
|
if (round == NULL)
|
|
break;
|
|
mag->rounds[i] = round;
|
|
}
|
|
#ifdef MALLOC_STATS
|
|
bin->stats.nmags++;
|
|
arena->stats.nmalloc_small += (i - mag->nrounds);
|
|
arena->stats.allocated_small += (i - mag->nrounds) * bin->reg_size;
|
|
#endif
|
|
malloc_spin_unlock(&arena->lock);
|
|
mag->nrounds = i;
|
|
}
|
|
|
|
static inline void *
|
|
mag_rack_alloc(mag_rack_t *rack, size_t size, bool zero)
|
|
{
|
|
void *ret;
|
|
bin_mags_t *bin_mags;
|
|
mag_t *mag;
|
|
size_t binind;
|
|
|
|
binind = size2bin[size];
|
|
assert(binind < nbins);
|
|
bin_mags = &rack->bin_mags[binind];
|
|
|
|
mag = bin_mags->curmag;
|
|
if (mag == NULL) {
|
|
/* Create an initial magazine for this size class. */
|
|
assert(bin_mags->sparemag == NULL);
|
|
mag = mag_create(choose_arena(), binind);
|
|
if (mag == NULL)
|
|
return (NULL);
|
|
bin_mags->curmag = mag;
|
|
mag_load(mag);
|
|
}
|
|
|
|
ret = mag_alloc(mag);
|
|
if (ret == NULL) {
|
|
if (bin_mags->sparemag != NULL) {
|
|
if (bin_mags->sparemag->nrounds > 0) {
|
|
/* Swap magazines. */
|
|
bin_mags->curmag = bin_mags->sparemag;
|
|
bin_mags->sparemag = mag;
|
|
mag = bin_mags->curmag;
|
|
} else {
|
|
/* Reload the current magazine. */
|
|
mag_load(mag);
|
|
}
|
|
} else {
|
|
/* Create a second magazine. */
|
|
mag = mag_create(choose_arena(), binind);
|
|
if (mag == NULL)
|
|
return (NULL);
|
|
mag_load(mag);
|
|
bin_mags->sparemag = bin_mags->curmag;
|
|
bin_mags->curmag = mag;
|
|
}
|
|
ret = mag_alloc(mag);
|
|
if (ret == NULL)
|
|
return (NULL);
|
|
}
|
|
|
|
if (zero == false) {
|
|
if (opt_junk)
|
|
memset(ret, 0xa5, size);
|
|
else if (opt_zero)
|
|
memset(ret, 0, size);
|
|
} else
|
|
memset(ret, 0, size);
|
|
|
|
return (ret);
|
|
}
|
|
#endif
|
|
|
|
static inline void *
|
|
arena_malloc_small(arena_t *arena, size_t size, bool zero)
|
|
{
|
|
void *ret;
|
|
arena_bin_t *bin;
|
|
arena_run_t *run;
|
|
size_t binind;
|
|
|
|
binind = size2bin[size];
|
|
assert(binind < nbins);
|
|
bin = &arena->bins[binind];
|
|
size = bin->reg_size;
|
|
|
|
#ifdef MALLOC_BALANCE
|
|
arena_lock_balance(arena);
|
|
#else
|
|
malloc_spin_lock(&arena->lock);
|
|
#endif
|
|
if ((run = bin->runcur) != NULL && run->nfree > 0)
|
|
ret = arena_bin_malloc_easy(arena, bin, run);
|
|
else
|
|
ret = arena_bin_malloc_hard(arena, bin);
|
|
|
|
if (ret == NULL) {
|
|
malloc_spin_unlock(&arena->lock);
|
|
return (NULL);
|
|
}
|
|
|
|
#ifdef MALLOC_STATS
|
|
bin->stats.nrequests++;
|
|
arena->stats.nmalloc_small++;
|
|
arena->stats.allocated_small += size;
|
|
#endif
|
|
malloc_spin_unlock(&arena->lock);
|
|
|
|
if (zero == false) {
|
|
if (opt_junk)
|
|
memset(ret, 0xa5, size);
|
|
else if (opt_zero)
|
|
memset(ret, 0, size);
|
|
} else
|
|
memset(ret, 0, size);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static void *
|
|
arena_malloc_large(arena_t *arena, size_t size, bool zero)
|
|
{
|
|
void *ret;
|
|
|
|
/* Large allocation. */
|
|
size = PAGE_CEILING(size);
|
|
#ifdef MALLOC_BALANCE
|
|
arena_lock_balance(arena);
|
|
#else
|
|
malloc_spin_lock(&arena->lock);
|
|
#endif
|
|
ret = (void *)arena_run_alloc(arena, size, true, zero);
|
|
if (ret == NULL) {
|
|
malloc_spin_unlock(&arena->lock);
|
|
return (NULL);
|
|
}
|
|
#ifdef MALLOC_STATS
|
|
arena->stats.nmalloc_large++;
|
|
arena->stats.allocated_large += size;
|
|
#endif
|
|
malloc_spin_unlock(&arena->lock);
|
|
|
|
if (zero == false) {
|
|
if (opt_junk)
|
|
memset(ret, 0xa5, size);
|
|
else if (opt_zero)
|
|
memset(ret, 0, size);
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static inline void *
|
|
arena_malloc(arena_t *arena, size_t size, bool zero)
|
|
{
|
|
|
|
assert(arena != NULL);
|
|
assert(arena->magic == ARENA_MAGIC);
|
|
assert(size != 0);
|
|
assert(QUANTUM_CEILING(size) <= arena_maxclass);
|
|
|
|
if (size <= bin_maxclass) {
|
|
#ifdef MALLOC_MAG
|
|
if (__isthreaded && opt_mag) {
|
|
mag_rack_t *rack = mag_rack;
|
|
if (rack == NULL) {
|
|
rack = mag_rack_create(arena);
|
|
if (rack == NULL)
|
|
return (NULL);
|
|
mag_rack = rack;
|
|
}
|
|
return (mag_rack_alloc(rack, size, zero));
|
|
} else
|
|
#endif
|
|
return (arena_malloc_small(arena, size, zero));
|
|
} else
|
|
return (arena_malloc_large(arena, size, zero));
|
|
}
|
|
|
|
static inline void *
|
|
imalloc(size_t size)
|
|
{
|
|
|
|
assert(size != 0);
|
|
|
|
if (size <= arena_maxclass)
|
|
return (arena_malloc(choose_arena(), size, false));
|
|
else
|
|
return (huge_malloc(size, false));
|
|
}
|
|
|
|
static inline void *
|
|
icalloc(size_t size)
|
|
{
|
|
|
|
if (size <= arena_maxclass)
|
|
return (arena_malloc(choose_arena(), size, true));
|
|
else
|
|
return (huge_malloc(size, true));
|
|
}
|
|
|
|
/* Only handles large allocations that require more than page alignment. */
|
|
static void *
|
|
arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
|
|
{
|
|
void *ret;
|
|
size_t offset;
|
|
arena_chunk_t *chunk;
|
|
|
|
assert((size & PAGE_MASK) == 0);
|
|
assert((alignment & PAGE_MASK) == 0);
|
|
|
|
#ifdef MALLOC_BALANCE
|
|
arena_lock_balance(arena);
|
|
#else
|
|
malloc_spin_lock(&arena->lock);
|
|
#endif
|
|
ret = (void *)arena_run_alloc(arena, alloc_size, true, false);
|
|
if (ret == NULL) {
|
|
malloc_spin_unlock(&arena->lock);
|
|
return (NULL);
|
|
}
|
|
|
|
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
|
|
|
|
offset = (uintptr_t)ret & (alignment - 1);
|
|
assert((offset & PAGE_MASK) == 0);
|
|
assert(offset < alloc_size);
|
|
if (offset == 0)
|
|
arena_run_trim_tail(arena, chunk, ret, alloc_size, size, false);
|
|
else {
|
|
size_t leadsize, trailsize;
|
|
|
|
leadsize = alignment - offset;
|
|
if (leadsize > 0) {
|
|
arena_run_trim_head(arena, chunk, ret, alloc_size,
|
|
alloc_size - leadsize);
|
|
ret = (void *)((uintptr_t)ret + leadsize);
|
|
}
|
|
|
|
trailsize = alloc_size - leadsize - size;
|
|
if (trailsize != 0) {
|
|
/* Trim trailing space. */
|
|
assert(trailsize < alloc_size);
|
|
arena_run_trim_tail(arena, chunk, ret, size + trailsize,
|
|
size, false);
|
|
}
|
|
}
|
|
|
|
#ifdef MALLOC_STATS
|
|
arena->stats.nmalloc_large++;
|
|
arena->stats.allocated_large += size;
|
|
#endif
|
|
malloc_spin_unlock(&arena->lock);
|
|
|
|
if (opt_junk)
|
|
memset(ret, 0xa5, size);
|
|
else if (opt_zero)
|
|
memset(ret, 0, size);
|
|
return (ret);
|
|
}
|
|
|
|
static inline void *
|
|
ipalloc(size_t alignment, size_t size)
|
|
{
|
|
void *ret;
|
|
size_t ceil_size;
|
|
|
|
/*
|
|
* Round size up to the nearest multiple of alignment.
|
|
*
|
|
* This done, we can take advantage of the fact that for each small
|
|
* size class, every object is aligned at the smallest power of two
|
|
* that is non-zero in the base two representation of the size. For
|
|
* example:
|
|
*
|
|
* Size | Base 2 | Minimum alignment
|
|
* -----+----------+------------------
|
|
* 96 | 1100000 | 32
|
|
* 144 | 10100000 | 32
|
|
* 192 | 11000000 | 64
|
|
*
|
|
* Depending on runtime settings, it is possible that arena_malloc()
|
|
* will further round up to a power of two, but that never causes
|
|
* correctness issues.
|
|
*/
|
|
ceil_size = (size + (alignment - 1)) & (-alignment);
|
|
/*
|
|
* (ceil_size < size) protects against the combination of maximal
|
|
* alignment and size greater than maximal alignment.
|
|
*/
|
|
if (ceil_size < size) {
|
|
/* size_t overflow. */
|
|
return (NULL);
|
|
}
|
|
|
|
if (ceil_size <= PAGE_SIZE || (alignment <= PAGE_SIZE
|
|
&& ceil_size <= arena_maxclass))
|
|
ret = arena_malloc(choose_arena(), ceil_size, false);
|
|
else {
|
|
size_t run_size;
|
|
|
|
/*
|
|
* We can't achieve subpage alignment, so round up alignment
|
|
* permanently; it makes later calculations simpler.
|
|
*/
|
|
alignment = PAGE_CEILING(alignment);
|
|
ceil_size = PAGE_CEILING(size);
|
|
/*
|
|
* (ceil_size < size) protects against very large sizes within
|
|
* PAGE_SIZE of SIZE_T_MAX.
|
|
*
|
|
* (ceil_size + alignment < ceil_size) protects against the
|
|
* combination of maximal alignment and ceil_size large enough
|
|
* to cause overflow. This is similar to the first overflow
|
|
* check above, but it needs to be repeated due to the new
|
|
* ceil_size value, which may now be *equal* to maximal
|
|
* alignment, whereas before we only detected overflow if the
|
|
* original size was *greater* than maximal alignment.
|
|
*/
|
|
if (ceil_size < size || ceil_size + alignment < ceil_size) {
|
|
/* size_t overflow. */
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Calculate the size of the over-size run that arena_palloc()
|
|
* would need to allocate in order to guarantee the alignment.
|
|
*/
|
|
if (ceil_size >= alignment)
|
|
run_size = ceil_size + alignment - PAGE_SIZE;
|
|
else {
|
|
/*
|
|
* It is possible that (alignment << 1) will cause
|
|
* overflow, but it doesn't matter because we also
|
|
* subtract PAGE_SIZE, which in the case of overflow
|
|
* leaves us with a very large run_size. That causes
|
|
* the first conditional below to fail, which means
|
|
* that the bogus run_size value never gets used for
|
|
* anything important.
|
|
*/
|
|
run_size = (alignment << 1) - PAGE_SIZE;
|
|
}
|
|
|
|
if (run_size <= arena_maxclass) {
|
|
ret = arena_palloc(choose_arena(), alignment, ceil_size,
|
|
run_size);
|
|
} else if (alignment <= chunksize)
|
|
ret = huge_malloc(ceil_size, false);
|
|
else
|
|
ret = huge_palloc(alignment, ceil_size);
|
|
}
|
|
|
|
assert(((uintptr_t)ret & (alignment - 1)) == 0);
|
|
return (ret);
|
|
}
|
|
|
|
/* Return the size of the allocation pointed to by ptr. */
|
|
static size_t
|
|
arena_salloc(const void *ptr)
|
|
{
|
|
size_t ret;
|
|
arena_chunk_t *chunk;
|
|
size_t pageind, mapbits;
|
|
|
|
assert(ptr != NULL);
|
|
assert(CHUNK_ADDR2BASE(ptr) != ptr);
|
|
|
|
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
|
|
pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT);
|
|
mapbits = chunk->map[pageind].bits;
|
|
assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
|
|
if ((mapbits & CHUNK_MAP_LARGE) == 0) {
|
|
arena_run_t *run = (arena_run_t *)(mapbits & ~PAGE_MASK);
|
|
assert(run->magic == ARENA_RUN_MAGIC);
|
|
ret = run->bin->reg_size;
|
|
} else {
|
|
ret = mapbits & ~PAGE_MASK;
|
|
assert(ret != 0);
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static inline size_t
|
|
isalloc(const void *ptr)
|
|
{
|
|
size_t ret;
|
|
arena_chunk_t *chunk;
|
|
|
|
assert(ptr != NULL);
|
|
|
|
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
|
|
if (chunk != ptr) {
|
|
/* Region. */
|
|
assert(chunk->arena->magic == ARENA_MAGIC);
|
|
|
|
ret = arena_salloc(ptr);
|
|
} else {
|
|
extent_node_t *node, key;
|
|
|
|
/* Chunk (huge allocation). */
|
|
|
|
malloc_mutex_lock(&huge_mtx);
|
|
|
|
/* Extract from tree of huge allocations. */
|
|
key.addr = __DECONST(void *, ptr);
|
|
node = extent_tree_ad_search(&huge, &key);
|
|
assert(node != NULL);
|
|
|
|
ret = node->size;
|
|
|
|
malloc_mutex_unlock(&huge_mtx);
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static inline void
|
|
arena_dalloc_small(arena_t *arena, arena_chunk_t *chunk, void *ptr,
|
|
arena_chunk_map_t *mapelm)
|
|
{
|
|
arena_run_t *run;
|
|
arena_bin_t *bin;
|
|
size_t size;
|
|
|
|
run = (arena_run_t *)(mapelm->bits & ~PAGE_MASK);
|
|
assert(run->magic == ARENA_RUN_MAGIC);
|
|
bin = run->bin;
|
|
size = bin->reg_size;
|
|
|
|
if (opt_junk)
|
|
memset(ptr, 0x5a, size);
|
|
|
|
arena_run_reg_dalloc(run, bin, ptr, size);
|
|
run->nfree++;
|
|
|
|
if (run->nfree == bin->nregs) {
|
|
/* Deallocate run. */
|
|
if (run == bin->runcur)
|
|
bin->runcur = NULL;
|
|
else if (bin->nregs != 1) {
|
|
size_t run_pageind = (((uintptr_t)run -
|
|
(uintptr_t)chunk)) >> PAGE_SHIFT;
|
|
arena_chunk_map_t *run_mapelm =
|
|
&chunk->map[run_pageind];
|
|
/*
|
|
* This block's conditional is necessary because if the
|
|
* run only contains one region, then it never gets
|
|
* inserted into the non-full runs tree.
|
|
*/
|
|
arena_run_tree_remove(&bin->runs, run_mapelm);
|
|
}
|
|
#ifdef MALLOC_DEBUG
|
|
run->magic = 0;
|
|
#endif
|
|
arena_run_dalloc(arena, run, true);
|
|
#ifdef MALLOC_STATS
|
|
bin->stats.curruns--;
|
|
#endif
|
|
} else if (run->nfree == 1 && run != bin->runcur) {
|
|
/*
|
|
* Make sure that bin->runcur always refers to the lowest
|
|
* non-full run, if one exists.
|
|
*/
|
|
if (bin->runcur == NULL)
|
|
bin->runcur = run;
|
|
else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
|
|
/* Switch runcur. */
|
|
if (bin->runcur->nfree > 0) {
|
|
arena_chunk_t *runcur_chunk =
|
|
CHUNK_ADDR2BASE(bin->runcur);
|
|
size_t runcur_pageind =
|
|
(((uintptr_t)bin->runcur -
|
|
(uintptr_t)runcur_chunk)) >> PAGE_SHIFT;
|
|
arena_chunk_map_t *runcur_mapelm =
|
|
&runcur_chunk->map[runcur_pageind];
|
|
|
|
/* Insert runcur. */
|
|
arena_run_tree_insert(&bin->runs,
|
|
runcur_mapelm);
|
|
}
|
|
bin->runcur = run;
|
|
} else {
|
|
size_t run_pageind = (((uintptr_t)run -
|
|
(uintptr_t)chunk)) >> PAGE_SHIFT;
|
|
arena_chunk_map_t *run_mapelm =
|
|
&chunk->map[run_pageind];
|
|
|
|
assert(arena_run_tree_search(&bin->runs, run_mapelm) ==
|
|
NULL);
|
|
arena_run_tree_insert(&bin->runs, run_mapelm);
|
|
}
|
|
}
|
|
#ifdef MALLOC_STATS
|
|
arena->stats.allocated_small -= size;
|
|
arena->stats.ndalloc_small++;
|
|
#endif
|
|
}
|
|
|
|
#ifdef MALLOC_MAG
|
|
static void
|
|
mag_unload(mag_t *mag)
|
|
{
|
|
arena_chunk_t *chunk;
|
|
arena_t *arena;
|
|
void *round;
|
|
size_t i, ndeferred, nrounds;
|
|
|
|
for (ndeferred = mag->nrounds; ndeferred > 0;) {
|
|
nrounds = ndeferred;
|
|
/* Lock the arena associated with the first round. */
|
|
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(mag->rounds[0]);
|
|
arena = chunk->arena;
|
|
#ifdef MALLOC_BALANCE
|
|
arena_lock_balance(arena);
|
|
#else
|
|
malloc_spin_lock(&arena->lock);
|
|
#endif
|
|
/* Deallocate every round that belongs to the locked arena. */
|
|
for (i = ndeferred = 0; i < nrounds; i++) {
|
|
round = mag->rounds[i];
|
|
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(round);
|
|
if (chunk->arena == arena) {
|
|
size_t pageind = (((uintptr_t)round -
|
|
(uintptr_t)chunk) >> PAGE_SHIFT);
|
|
arena_chunk_map_t *mapelm =
|
|
&chunk->map[pageind];
|
|
arena_dalloc_small(arena, chunk, round, mapelm);
|
|
} else {
|
|
/*
|
|
* This round was allocated via a different
|
|
* arena than the one that is currently locked.
|
|
* Stash the round, so that it can be handled
|
|
* in a future pass.
|
|
*/
|
|
mag->rounds[ndeferred] = round;
|
|
ndeferred++;
|
|
}
|
|
}
|
|
malloc_spin_unlock(&arena->lock);
|
|
}
|
|
|
|
mag->nrounds = 0;
|
|
}
|
|
|
|
static inline void
|
|
mag_rack_dalloc(mag_rack_t *rack, void *ptr)
|
|
{
|
|
arena_t *arena;
|
|
arena_chunk_t *chunk;
|
|
arena_run_t *run;
|
|
arena_bin_t *bin;
|
|
bin_mags_t *bin_mags;
|
|
mag_t *mag;
|
|
size_t pageind, binind;
|
|
arena_chunk_map_t *mapelm;
|
|
|
|
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
|
|
arena = chunk->arena;
|
|
pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT);
|
|
mapelm = &chunk->map[pageind];
|
|
run = (arena_run_t *)(mapelm->bits & ~PAGE_MASK);
|
|
assert(run->magic == ARENA_RUN_MAGIC);
|
|
bin = run->bin;
|
|
binind = ((uintptr_t)bin - (uintptr_t)&arena->bins) /
|
|
sizeof(arena_bin_t);
|
|
assert(binind < nbins);
|
|
|
|
if (opt_junk)
|
|
memset(ptr, 0x5a, arena->bins[binind].reg_size);
|
|
|
|
bin_mags = &rack->bin_mags[binind];
|
|
mag = bin_mags->curmag;
|
|
if (mag == NULL) {
|
|
/* Create an initial magazine for this size class. */
|
|
assert(bin_mags->sparemag == NULL);
|
|
mag = mag_create(choose_arena(), binind);
|
|
if (mag == NULL) {
|
|
malloc_spin_lock(&arena->lock);
|
|
arena_dalloc_small(arena, chunk, ptr, mapelm);
|
|
malloc_spin_unlock(&arena->lock);
|
|
return;
|
|
}
|
|
bin_mags->curmag = mag;
|
|
}
|
|
|
|
if (mag->nrounds == max_rounds) {
|
|
if (bin_mags->sparemag != NULL) {
|
|
if (bin_mags->sparemag->nrounds < max_rounds) {
|
|
/* Swap magazines. */
|
|
bin_mags->curmag = bin_mags->sparemag;
|
|
bin_mags->sparemag = mag;
|
|
mag = bin_mags->curmag;
|
|
} else {
|
|
/* Unload the current magazine. */
|
|
mag_unload(mag);
|
|
}
|
|
} else {
|
|
/* Create a second magazine. */
|
|
mag = mag_create(choose_arena(), binind);
|
|
if (mag == NULL) {
|
|
mag = rack->bin_mags[binind].curmag;
|
|
mag_unload(mag);
|
|
} else {
|
|
bin_mags->sparemag = bin_mags->curmag;
|
|
bin_mags->curmag = mag;
|
|
}
|
|
}
|
|
assert(mag->nrounds < max_rounds);
|
|
}
|
|
mag->rounds[mag->nrounds] = ptr;
|
|
mag->nrounds++;
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr)
|
|
{
|
|
/* Large allocation. */
|
|
malloc_spin_lock(&arena->lock);
|
|
|
|
#ifndef MALLOC_STATS
|
|
if (opt_junk)
|
|
#endif
|
|
{
|
|
size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >>
|
|
PAGE_SHIFT;
|
|
size_t size = chunk->map[pageind].bits & ~PAGE_MASK;
|
|
|
|
#ifdef MALLOC_STATS
|
|
if (opt_junk)
|
|
#endif
|
|
memset(ptr, 0x5a, size);
|
|
#ifdef MALLOC_STATS
|
|
arena->stats.allocated_large -= size;
|
|
#endif
|
|
}
|
|
#ifdef MALLOC_STATS
|
|
arena->stats.ndalloc_large++;
|
|
#endif
|
|
|
|
arena_run_dalloc(arena, (arena_run_t *)ptr, true);
|
|
malloc_spin_unlock(&arena->lock);
|
|
}
|
|
|
|
static inline void
|
|
arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
|
|
{
|
|
size_t pageind;
|
|
arena_chunk_map_t *mapelm;
|
|
|
|
assert(arena != NULL);
|
|
assert(arena->magic == ARENA_MAGIC);
|
|
assert(chunk->arena == arena);
|
|
assert(ptr != NULL);
|
|
assert(CHUNK_ADDR2BASE(ptr) != ptr);
|
|
|
|
pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT);
|
|
mapelm = &chunk->map[pageind];
|
|
assert((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0);
|
|
if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) {
|
|
/* Small allocation. */
|
|
#ifdef MALLOC_MAG
|
|
if (__isthreaded && opt_mag) {
|
|
mag_rack_t *rack = mag_rack;
|
|
if (rack == NULL) {
|
|
rack = mag_rack_create(arena);
|
|
if (rack == NULL) {
|
|
malloc_spin_lock(&arena->lock);
|
|
arena_dalloc_small(arena, chunk, ptr,
|
|
mapelm);
|
|
malloc_spin_unlock(&arena->lock);
|
|
}
|
|
mag_rack = rack;
|
|
}
|
|
mag_rack_dalloc(rack, ptr);
|
|
} else {
|
|
#endif
|
|
malloc_spin_lock(&arena->lock);
|
|
arena_dalloc_small(arena, chunk, ptr, mapelm);
|
|
malloc_spin_unlock(&arena->lock);
|
|
#ifdef MALLOC_MAG
|
|
}
|
|
#endif
|
|
} else
|
|
arena_dalloc_large(arena, chunk, ptr);
|
|
}
|
|
|
|
static inline void
|
|
idalloc(void *ptr)
|
|
{
|
|
arena_chunk_t *chunk;
|
|
|
|
assert(ptr != NULL);
|
|
|
|
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
|
|
if (chunk != ptr)
|
|
arena_dalloc(chunk->arena, chunk, ptr);
|
|
else
|
|
huge_dalloc(ptr);
|
|
}
|
|
|
|
static void
|
|
arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr,
|
|
size_t size, size_t oldsize)
|
|
{
|
|
|
|
assert(size < oldsize);
|
|
|
|
/*
|
|
* Shrink the run, and make trailing pages available for other
|
|
* allocations.
|
|
*/
|
|
#ifdef MALLOC_BALANCE
|
|
arena_lock_balance(arena);
|
|
#else
|
|
malloc_spin_lock(&arena->lock);
|
|
#endif
|
|
arena_run_trim_tail(arena, chunk, (arena_run_t *)ptr, oldsize, size,
|
|
true);
|
|
#ifdef MALLOC_STATS
|
|
arena->stats.allocated_large -= oldsize - size;
|
|
#endif
|
|
malloc_spin_unlock(&arena->lock);
|
|
}
|
|
|
|
static bool
|
|
arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr,
|
|
size_t size, size_t oldsize)
|
|
{
|
|
size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT;
|
|
size_t npages = oldsize >> PAGE_SHIFT;
|
|
|
|
assert(oldsize == (chunk->map[pageind].bits & ~PAGE_MASK));
|
|
|
|
/* Try to extend the run. */
|
|
assert(size > oldsize);
|
|
#ifdef MALLOC_BALANCE
|
|
arena_lock_balance(arena);
|
|
#else
|
|
malloc_spin_lock(&arena->lock);
|
|
#endif
|
|
if (pageind + npages < chunk_npages && (chunk->map[pageind+npages].bits
|
|
& CHUNK_MAP_ALLOCATED) == 0 && (chunk->map[pageind+npages].bits &
|
|
~PAGE_MASK) >= size - oldsize) {
|
|
/*
|
|
* The next run is available and sufficiently large. Split the
|
|
* following run, then merge the first part with the existing
|
|
* allocation.
|
|
*/
|
|
arena_run_split(arena, (arena_run_t *)((uintptr_t)chunk +
|
|
((pageind+npages) << PAGE_SHIFT)), size - oldsize, true,
|
|
false);
|
|
|
|
chunk->map[pageind].bits = size | CHUNK_MAP_LARGE |
|
|
CHUNK_MAP_ALLOCATED;
|
|
chunk->map[pageind+npages].bits = CHUNK_MAP_LARGE |
|
|
CHUNK_MAP_ALLOCATED;
|
|
|
|
#ifdef MALLOC_STATS
|
|
arena->stats.allocated_large += size - oldsize;
|
|
#endif
|
|
malloc_spin_unlock(&arena->lock);
|
|
return (false);
|
|
}
|
|
malloc_spin_unlock(&arena->lock);
|
|
|
|
return (true);
|
|
}
|
|
|
|
/*
|
|
* Try to resize a large allocation, in order to avoid copying. This will
|
|
* always fail if growing an object, and the following run is already in use.
|
|
*/
|
|
static bool
|
|
arena_ralloc_large(void *ptr, size_t size, size_t oldsize)
|
|
{
|
|
size_t psize;
|
|
|
|
psize = PAGE_CEILING(size);
|
|
if (psize == oldsize) {
|
|
/* Same size class. */
|
|
if (opt_junk && size < oldsize) {
|
|
memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize -
|
|
size);
|
|
}
|
|
return (false);
|
|
} else {
|
|
arena_chunk_t *chunk;
|
|
arena_t *arena;
|
|
|
|
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
|
|
arena = chunk->arena;
|
|
assert(arena->magic == ARENA_MAGIC);
|
|
|
|
if (psize < oldsize) {
|
|
/* Fill before shrinking in order avoid a race. */
|
|
if (opt_junk) {
|
|
memset((void *)((uintptr_t)ptr + size), 0x5a,
|
|
oldsize - size);
|
|
}
|
|
arena_ralloc_large_shrink(arena, chunk, ptr, psize,
|
|
oldsize);
|
|
return (false);
|
|
} else {
|
|
bool ret = arena_ralloc_large_grow(arena, chunk, ptr,
|
|
psize, oldsize);
|
|
if (ret == false && opt_zero) {
|
|
memset((void *)((uintptr_t)ptr + oldsize), 0,
|
|
size - oldsize);
|
|
}
|
|
return (ret);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void *
|
|
arena_ralloc(void *ptr, size_t size, size_t oldsize)
|
|
{
|
|
void *ret;
|
|
size_t copysize;
|
|
|
|
/* Try to avoid moving the allocation. */
|
|
if (size <= bin_maxclass) {
|
|
if (oldsize <= bin_maxclass && size2bin[size] ==
|
|
size2bin[oldsize])
|
|
goto IN_PLACE;
|
|
} else {
|
|
if (oldsize > bin_maxclass && oldsize <= arena_maxclass) {
|
|
assert(size > bin_maxclass);
|
|
if (arena_ralloc_large(ptr, size, oldsize) == false)
|
|
return (ptr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we get here, then size and oldsize are different enough that we
|
|
* need to move the object. In that case, fall back to allocating new
|
|
* space and copying.
|
|
*/
|
|
ret = arena_malloc(choose_arena(), size, false);
|
|
if (ret == NULL)
|
|
return (NULL);
|
|
|
|
/* Junk/zero-filling were already done by arena_malloc(). */
|
|
copysize = (size < oldsize) ? size : oldsize;
|
|
memcpy(ret, ptr, copysize);
|
|
idalloc(ptr);
|
|
return (ret);
|
|
IN_PLACE:
|
|
if (opt_junk && size < oldsize)
|
|
memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
|
|
else if (opt_zero && size > oldsize)
|
|
memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
|
|
return (ptr);
|
|
}
|
|
|
|
static inline void *
|
|
iralloc(void *ptr, size_t size)
|
|
{
|
|
size_t oldsize;
|
|
|
|
assert(ptr != NULL);
|
|
assert(size != 0);
|
|
|
|
oldsize = isalloc(ptr);
|
|
|
|
if (size <= arena_maxclass)
|
|
return (arena_ralloc(ptr, size, oldsize));
|
|
else
|
|
return (huge_ralloc(ptr, size, oldsize));
|
|
}
|
|
|
|
static bool
|
|
arena_new(arena_t *arena)
|
|
{
|
|
unsigned i;
|
|
arena_bin_t *bin;
|
|
size_t prev_run_size;
|
|
|
|
if (malloc_spin_init(&arena->lock))
|
|
return (true);
|
|
|
|
#ifdef MALLOC_STATS
|
|
memset(&arena->stats, 0, sizeof(arena_stats_t));
|
|
#endif
|
|
|
|
/* Initialize chunks. */
|
|
arena_chunk_tree_dirty_new(&arena->chunks_dirty);
|
|
arena->spare = NULL;
|
|
|
|
arena->ndirty = 0;
|
|
|
|
arena_avail_tree_new(&arena->runs_avail);
|
|
|
|
#ifdef MALLOC_BALANCE
|
|
arena->contention = 0;
|
|
#endif
|
|
|
|
/* Initialize bins. */
|
|
prev_run_size = PAGE_SIZE;
|
|
|
|
i = 0;
|
|
#ifdef MALLOC_TINY
|
|
/* (2^n)-spaced tiny bins. */
|
|
for (; i < ntbins; i++) {
|
|
bin = &arena->bins[i];
|
|
bin->runcur = NULL;
|
|
arena_run_tree_new(&bin->runs);
|
|
|
|
bin->reg_size = (1U << (TINY_MIN_2POW + i));
|
|
|
|
prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
|
|
|
|
#ifdef MALLOC_STATS
|
|
memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/* Quantum-spaced bins. */
|
|
for (; i < ntbins + nqbins; i++) {
|
|
bin = &arena->bins[i];
|
|
bin->runcur = NULL;
|
|
arena_run_tree_new(&bin->runs);
|
|
|
|
bin->reg_size = (i - ntbins + 1) << QUANTUM_2POW;
|
|
|
|
prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
|
|
|
|
#ifdef MALLOC_STATS
|
|
memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
|
|
#endif
|
|
}
|
|
|
|
/* Cacheline-spaced bins. */
|
|
for (; i < ntbins + nqbins + ncbins; i++) {
|
|
bin = &arena->bins[i];
|
|
bin->runcur = NULL;
|
|
arena_run_tree_new(&bin->runs);
|
|
|
|
bin->reg_size = cspace_min + ((i - (ntbins + nqbins)) <<
|
|
CACHELINE_2POW);
|
|
|
|
prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
|
|
|
|
#ifdef MALLOC_STATS
|
|
memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
|
|
#endif
|
|
}
|
|
|
|
/* Subpage-spaced bins. */
|
|
for (; i < nbins; i++) {
|
|
bin = &arena->bins[i];
|
|
bin->runcur = NULL;
|
|
arena_run_tree_new(&bin->runs);
|
|
|
|
bin->reg_size = sspace_min + ((i - (ntbins + nqbins + ncbins))
|
|
<< SUBPAGE_2POW);
|
|
|
|
prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
|
|
|
|
#ifdef MALLOC_STATS
|
|
memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
|
|
#endif
|
|
}
|
|
|
|
#ifdef MALLOC_DEBUG
|
|
arena->magic = ARENA_MAGIC;
|
|
#endif
|
|
|
|
return (false);
|
|
}
|
|
|
|
/* Create a new arena and insert it into the arenas array at index ind. */
|
|
static arena_t *
|
|
arenas_extend(unsigned ind)
|
|
{
|
|
arena_t *ret;
|
|
|
|
/* Allocate enough space for trailing bins. */
|
|
ret = (arena_t *)base_alloc(sizeof(arena_t)
|
|
+ (sizeof(arena_bin_t) * (nbins - 1)));
|
|
if (ret != NULL && arena_new(ret) == false) {
|
|
arenas[ind] = ret;
|
|
return (ret);
|
|
}
|
|
/* Only reached if there is an OOM error. */
|
|
|
|
/*
|
|
* OOM here is quite inconvenient to propagate, since dealing with it
|
|
* would require a check for failure in the fast path. Instead, punt
|
|
* by using arenas[0]. In practice, this is an extremely unlikely
|
|
* failure.
|
|
*/
|
|
_malloc_message(_getprogname(),
|
|
": (malloc) Error initializing arena\n", "", "");
|
|
if (opt_abort)
|
|
abort();
|
|
|
|
return (arenas[0]);
|
|
}
|
|
|
|
#ifdef MALLOC_MAG
|
|
static mag_t *
|
|
mag_create(arena_t *arena, size_t binind)
|
|
{
|
|
mag_t *ret;
|
|
|
|
if (sizeof(mag_t) + (sizeof(void *) * (max_rounds - 1)) <=
|
|
bin_maxclass) {
|
|
ret = arena_malloc_small(arena, sizeof(mag_t) + (sizeof(void *)
|
|
* (max_rounds - 1)), false);
|
|
} else {
|
|
ret = imalloc(sizeof(mag_t) + (sizeof(void *) * (max_rounds -
|
|
1)));
|
|
}
|
|
if (ret == NULL)
|
|
return (NULL);
|
|
ret->binind = binind;
|
|
ret->nrounds = 0;
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static void
|
|
mag_destroy(mag_t *mag)
|
|
{
|
|
arena_t *arena;
|
|
arena_chunk_t *chunk;
|
|
size_t pageind;
|
|
arena_chunk_map_t *mapelm;
|
|
|
|
chunk = CHUNK_ADDR2BASE(mag);
|
|
arena = chunk->arena;
|
|
pageind = (((uintptr_t)mag - (uintptr_t)chunk) >> PAGE_SHIFT);
|
|
mapelm = &chunk->map[pageind];
|
|
|
|
assert(mag->nrounds == 0);
|
|
if (sizeof(mag_t) + (sizeof(void *) * (max_rounds - 1)) <=
|
|
bin_maxclass) {
|
|
malloc_spin_lock(&arena->lock);
|
|
arena_dalloc_small(arena, chunk, mag, mapelm);
|
|
malloc_spin_unlock(&arena->lock);
|
|
} else
|
|
idalloc(mag);
|
|
}
|
|
|
|
static mag_rack_t *
|
|
mag_rack_create(arena_t *arena)
|
|
{
|
|
|
|
assert(sizeof(mag_rack_t) + (sizeof(bin_mags_t *) * (nbins - 1)) <=
|
|
bin_maxclass);
|
|
return (arena_malloc_small(arena, sizeof(mag_rack_t) +
|
|
(sizeof(bin_mags_t) * (nbins - 1)), true));
|
|
}
|
|
|
|
static void
|
|
mag_rack_destroy(mag_rack_t *rack)
|
|
{
|
|
arena_t *arena;
|
|
arena_chunk_t *chunk;
|
|
bin_mags_t *bin_mags;
|
|
size_t i, pageind;
|
|
arena_chunk_map_t *mapelm;
|
|
|
|
for (i = 0; i < nbins; i++) {
|
|
bin_mags = &rack->bin_mags[i];
|
|
if (bin_mags->curmag != NULL) {
|
|
assert(bin_mags->curmag->binind == i);
|
|
mag_unload(bin_mags->curmag);
|
|
mag_destroy(bin_mags->curmag);
|
|
}
|
|
if (bin_mags->sparemag != NULL) {
|
|
assert(bin_mags->sparemag->binind == i);
|
|
mag_unload(bin_mags->sparemag);
|
|
mag_destroy(bin_mags->sparemag);
|
|
}
|
|
}
|
|
|
|
chunk = CHUNK_ADDR2BASE(rack);
|
|
arena = chunk->arena;
|
|
pageind = (((uintptr_t)rack - (uintptr_t)chunk) >> PAGE_SHIFT);
|
|
mapelm = &chunk->map[pageind];
|
|
|
|
malloc_spin_lock(&arena->lock);
|
|
arena_dalloc_small(arena, chunk, rack, mapelm);
|
|
malloc_spin_unlock(&arena->lock);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* End arena.
|
|
*/
|
|
/******************************************************************************/
|
|
/*
|
|
* Begin general internal functions.
|
|
*/
|
|
|
|
static void *
|
|
huge_malloc(size_t size, bool zero)
|
|
{
|
|
void *ret;
|
|
size_t csize;
|
|
extent_node_t *node;
|
|
|
|
/* Allocate one or more contiguous chunks for this request. */
|
|
|
|
csize = CHUNK_CEILING(size);
|
|
if (csize == 0) {
|
|
/* size is large enough to cause size_t wrap-around. */
|
|
return (NULL);
|
|
}
|
|
|
|
/* Allocate an extent node with which to track the chunk. */
|
|
node = base_node_alloc();
|
|
if (node == NULL)
|
|
return (NULL);
|
|
|
|
ret = chunk_alloc(csize, zero);
|
|
if (ret == NULL) {
|
|
base_node_dealloc(node);
|
|
return (NULL);
|
|
}
|
|
|
|
/* Insert node into huge. */
|
|
node->addr = ret;
|
|
node->size = csize;
|
|
|
|
malloc_mutex_lock(&huge_mtx);
|
|
extent_tree_ad_insert(&huge, node);
|
|
#ifdef MALLOC_STATS
|
|
huge_nmalloc++;
|
|
huge_allocated += csize;
|
|
#endif
|
|
malloc_mutex_unlock(&huge_mtx);
|
|
|
|
if (zero == false) {
|
|
if (opt_junk)
|
|
memset(ret, 0xa5, csize);
|
|
else if (opt_zero)
|
|
memset(ret, 0, csize);
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/* Only handles large allocations that require more than chunk alignment. */
|
|
static void *
|
|
huge_palloc(size_t alignment, size_t size)
|
|
{
|
|
void *ret;
|
|
size_t alloc_size, chunk_size, offset;
|
|
extent_node_t *node;
|
|
|
|
/*
|
|
* This allocation requires alignment that is even larger than chunk
|
|
* alignment. This means that huge_malloc() isn't good enough.
|
|
*
|
|
* Allocate almost twice as many chunks as are demanded by the size or
|
|
* alignment, in order to assure the alignment can be achieved, then
|
|
* unmap leading and trailing chunks.
|
|
*/
|
|
assert(alignment >= chunksize);
|
|
|
|
chunk_size = CHUNK_CEILING(size);
|
|
|
|
if (size >= alignment)
|
|
alloc_size = chunk_size + alignment - chunksize;
|
|
else
|
|
alloc_size = (alignment << 1) - chunksize;
|
|
|
|
/* Allocate an extent node with which to track the chunk. */
|
|
node = base_node_alloc();
|
|
if (node == NULL)
|
|
return (NULL);
|
|
|
|
ret = chunk_alloc(alloc_size, false);
|
|
if (ret == NULL) {
|
|
base_node_dealloc(node);
|
|
return (NULL);
|
|
}
|
|
|
|
offset = (uintptr_t)ret & (alignment - 1);
|
|
assert((offset & chunksize_mask) == 0);
|
|
assert(offset < alloc_size);
|
|
if (offset == 0) {
|
|
/* Trim trailing space. */
|
|
chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
|
|
- chunk_size);
|
|
} else {
|
|
size_t trailsize;
|
|
|
|
/* Trim leading space. */
|
|
chunk_dealloc(ret, alignment - offset);
|
|
|
|
ret = (void *)((uintptr_t)ret + (alignment - offset));
|
|
|
|
trailsize = alloc_size - (alignment - offset) - chunk_size;
|
|
if (trailsize != 0) {
|
|
/* Trim trailing space. */
|
|
assert(trailsize < alloc_size);
|
|
chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
|
|
trailsize);
|
|
}
|
|
}
|
|
|
|
/* Insert node into huge. */
|
|
node->addr = ret;
|
|
node->size = chunk_size;
|
|
|
|
malloc_mutex_lock(&huge_mtx);
|
|
extent_tree_ad_insert(&huge, node);
|
|
#ifdef MALLOC_STATS
|
|
huge_nmalloc++;
|
|
huge_allocated += chunk_size;
|
|
#endif
|
|
malloc_mutex_unlock(&huge_mtx);
|
|
|
|
if (opt_junk)
|
|
memset(ret, 0xa5, chunk_size);
|
|
else if (opt_zero)
|
|
memset(ret, 0, chunk_size);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static void *
|
|
huge_ralloc(void *ptr, size_t size, size_t oldsize)
|
|
{
|
|
void *ret;
|
|
size_t copysize;
|
|
|
|
/* Avoid moving the allocation if the size class would not change. */
|
|
if (oldsize > arena_maxclass &&
|
|
CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
|
|
if (opt_junk && size < oldsize) {
|
|
memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
|
|
- size);
|
|
} else if (opt_zero && size > oldsize) {
|
|
memset((void *)((uintptr_t)ptr + oldsize), 0, size
|
|
- oldsize);
|
|
}
|
|
return (ptr);
|
|
}
|
|
|
|
/*
|
|
* If we get here, then size and oldsize are different enough that we
|
|
* need to use a different size class. In that case, fall back to
|
|
* allocating new space and copying.
|
|
*/
|
|
ret = huge_malloc(size, false);
|
|
if (ret == NULL)
|
|
return (NULL);
|
|
|
|
copysize = (size < oldsize) ? size : oldsize;
|
|
memcpy(ret, ptr, copysize);
|
|
idalloc(ptr);
|
|
return (ret);
|
|
}
|
|
|
|
static void
|
|
huge_dalloc(void *ptr)
|
|
{
|
|
extent_node_t *node, key;
|
|
|
|
malloc_mutex_lock(&huge_mtx);
|
|
|
|
/* Extract from tree of huge allocations. */
|
|
key.addr = ptr;
|
|
node = extent_tree_ad_search(&huge, &key);
|
|
assert(node != NULL);
|
|
assert(node->addr == ptr);
|
|
extent_tree_ad_remove(&huge, node);
|
|
|
|
#ifdef MALLOC_STATS
|
|
huge_ndalloc++;
|
|
huge_allocated -= node->size;
|
|
#endif
|
|
|
|
malloc_mutex_unlock(&huge_mtx);
|
|
|
|
/* Unmap chunk. */
|
|
#ifdef MALLOC_DSS
|
|
if (opt_dss && opt_junk)
|
|
memset(node->addr, 0x5a, node->size);
|
|
#endif
|
|
chunk_dealloc(node->addr, node->size);
|
|
|
|
base_node_dealloc(node);
|
|
}
|
|
|
|
static void
|
|
malloc_print_stats(void)
|
|
{
|
|
|
|
if (opt_print_stats) {
|
|
char s[UMAX2S_BUFSIZE];
|
|
_malloc_message("___ Begin malloc statistics ___\n", "", "",
|
|
"");
|
|
_malloc_message("Assertions ",
|
|
#ifdef NDEBUG
|
|
"disabled",
|
|
#else
|
|
"enabled",
|
|
#endif
|
|
"\n", "");
|
|
_malloc_message("Boolean MALLOC_OPTIONS: ",
|
|
opt_abort ? "A" : "a", "", "");
|
|
#ifdef MALLOC_DSS
|
|
_malloc_message(opt_dss ? "D" : "d", "", "", "");
|
|
#endif
|
|
#ifdef MALLOC_MAG
|
|
_malloc_message(opt_mag ? "G" : "g", "", "", "");
|
|
#endif
|
|
_malloc_message(opt_junk ? "J" : "j", "", "", "");
|
|
#ifdef MALLOC_DSS
|
|
_malloc_message(opt_mmap ? "M" : "m", "", "", "");
|
|
#endif
|
|
_malloc_message(opt_utrace ? "PU" : "Pu",
|
|
opt_sysv ? "V" : "v",
|
|
opt_xmalloc ? "X" : "x",
|
|
opt_zero ? "Z\n" : "z\n");
|
|
|
|
_malloc_message("CPUs: ", umax2s(ncpus, s), "\n", "");
|
|
_malloc_message("Max arenas: ", umax2s(narenas, s), "\n", "");
|
|
#ifdef MALLOC_BALANCE
|
|
_malloc_message("Arena balance threshold: ",
|
|
umax2s(opt_balance_threshold, s), "\n", "");
|
|
#endif
|
|
_malloc_message("Pointer size: ", umax2s(sizeof(void *), s),
|
|
"\n", "");
|
|
_malloc_message("Quantum size: ", umax2s(QUANTUM, s), "\n", "");
|
|
_malloc_message("Cacheline size (assumed): ", umax2s(CACHELINE,
|
|
s), "\n", "");
|
|
#ifdef MALLOC_TINY
|
|
_malloc_message("Tiny 2^n-spaced sizes: [", umax2s((1U <<
|
|
TINY_MIN_2POW), s), "..", "");
|
|
_malloc_message(umax2s((qspace_min >> 1), s), "]\n", "", "");
|
|
#endif
|
|
_malloc_message("Quantum-spaced sizes: [", umax2s(qspace_min,
|
|
s), "..", "");
|
|
_malloc_message(umax2s(qspace_max, s), "]\n", "", "");
|
|
_malloc_message("Cacheline-spaced sizes: [", umax2s(cspace_min,
|
|
s), "..", "");
|
|
_malloc_message(umax2s(cspace_max, s), "]\n", "", "");
|
|
_malloc_message("Subpage-spaced sizes: [", umax2s(sspace_min,
|
|
s), "..", "");
|
|
_malloc_message(umax2s(sspace_max, s), "]\n", "", "");
|
|
#ifdef MALLOC_MAG
|
|
_malloc_message("Rounds per magazine: ", umax2s(max_rounds, s),
|
|
"\n", "");
|
|
#endif
|
|
_malloc_message("Max dirty pages per arena: ",
|
|
umax2s(opt_dirty_max, s), "\n", "");
|
|
|
|
_malloc_message("Chunk size: ", umax2s(chunksize, s), "", "");
|
|
_malloc_message(" (2^", umax2s(opt_chunk_2pow, s), ")\n", "");
|
|
|
|
#ifdef MALLOC_STATS
|
|
{
|
|
size_t allocated, mapped;
|
|
#ifdef MALLOC_BALANCE
|
|
uint64_t nbalance = 0;
|
|
#endif
|
|
unsigned i;
|
|
arena_t *arena;
|
|
|
|
/* Calculate and print allocated/mapped stats. */
|
|
|
|
/* arenas. */
|
|
for (i = 0, allocated = 0; i < narenas; i++) {
|
|
if (arenas[i] != NULL) {
|
|
malloc_spin_lock(&arenas[i]->lock);
|
|
allocated +=
|
|
arenas[i]->stats.allocated_small;
|
|
allocated +=
|
|
arenas[i]->stats.allocated_large;
|
|
#ifdef MALLOC_BALANCE
|
|
nbalance += arenas[i]->stats.nbalance;
|
|
#endif
|
|
malloc_spin_unlock(&arenas[i]->lock);
|
|
}
|
|
}
|
|
|
|
/* huge/base. */
|
|
malloc_mutex_lock(&huge_mtx);
|
|
allocated += huge_allocated;
|
|
mapped = stats_chunks.curchunks * chunksize;
|
|
malloc_mutex_unlock(&huge_mtx);
|
|
|
|
malloc_mutex_lock(&base_mtx);
|
|
mapped += base_mapped;
|
|
malloc_mutex_unlock(&base_mtx);
|
|
|
|
malloc_printf("Allocated: %zu, mapped: %zu\n",
|
|
allocated, mapped);
|
|
|
|
#ifdef MALLOC_BALANCE
|
|
malloc_printf("Arena balance reassignments: %llu\n",
|
|
nbalance);
|
|
#endif
|
|
|
|
/* Print chunk stats. */
|
|
{
|
|
chunk_stats_t chunks_stats;
|
|
|
|
malloc_mutex_lock(&huge_mtx);
|
|
chunks_stats = stats_chunks;
|
|
malloc_mutex_unlock(&huge_mtx);
|
|
|
|
malloc_printf("chunks: nchunks "
|
|
"highchunks curchunks\n");
|
|
malloc_printf(" %13llu%13lu%13lu\n",
|
|
chunks_stats.nchunks,
|
|
chunks_stats.highchunks,
|
|
chunks_stats.curchunks);
|
|
}
|
|
|
|
/* Print chunk stats. */
|
|
malloc_printf(
|
|
"huge: nmalloc ndalloc allocated\n");
|
|
malloc_printf(" %12llu %12llu %12zu\n",
|
|
huge_nmalloc, huge_ndalloc, huge_allocated);
|
|
|
|
/* Print stats for each arena. */
|
|
for (i = 0; i < narenas; i++) {
|
|
arena = arenas[i];
|
|
if (arena != NULL) {
|
|
malloc_printf(
|
|
"\narenas[%u]:\n", i);
|
|
malloc_spin_lock(&arena->lock);
|
|
stats_print(arena);
|
|
malloc_spin_unlock(&arena->lock);
|
|
}
|
|
}
|
|
}
|
|
#endif /* #ifdef MALLOC_STATS */
|
|
_malloc_message("--- End malloc statistics ---\n", "", "", "");
|
|
}
|
|
}
|
|
|
|
#ifdef MALLOC_DEBUG
|
|
static void
|
|
size2bin_validate(void)
|
|
{
|
|
size_t i, size, binind;
|
|
|
|
assert(size2bin[0] == 0xffU);
|
|
i = 1;
|
|
# ifdef MALLOC_TINY
|
|
/* Tiny. */
|
|
for (; i < (1U << TINY_MIN_2POW); i++) {
|
|
size = pow2_ceil(1U << TINY_MIN_2POW);
|
|
binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
|
|
assert(size2bin[i] == binind);
|
|
}
|
|
for (; i < qspace_min; i++) {
|
|
size = pow2_ceil(i);
|
|
binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
|
|
assert(size2bin[i] == binind);
|
|
}
|
|
# endif
|
|
/* Quantum-spaced. */
|
|
for (; i <= qspace_max; i++) {
|
|
size = QUANTUM_CEILING(i);
|
|
binind = ntbins + (size >> QUANTUM_2POW) - 1;
|
|
assert(size2bin[i] == binind);
|
|
}
|
|
/* Cacheline-spaced. */
|
|
for (; i <= cspace_max; i++) {
|
|
size = CACHELINE_CEILING(i);
|
|
binind = ntbins + nqbins + ((size - cspace_min) >>
|
|
CACHELINE_2POW);
|
|
assert(size2bin[i] == binind);
|
|
}
|
|
/* Sub-page. */
|
|
for (; i <= sspace_max; i++) {
|
|
size = SUBPAGE_CEILING(i);
|
|
binind = ntbins + nqbins + ncbins + ((size - sspace_min)
|
|
>> SUBPAGE_2POW);
|
|
assert(size2bin[i] == binind);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static bool
|
|
size2bin_init(void)
|
|
{
|
|
|
|
if (opt_qspace_max_2pow != QSPACE_MAX_2POW_DEFAULT
|
|
|| opt_cspace_max_2pow != CSPACE_MAX_2POW_DEFAULT)
|
|
return (size2bin_init_hard());
|
|
|
|
size2bin = const_size2bin;
|
|
#ifdef MALLOC_DEBUG
|
|
assert(sizeof(const_size2bin) == bin_maxclass + 1);
|
|
size2bin_validate();
|
|
#endif
|
|
return (false);
|
|
}
|
|
|
|
static bool
|
|
size2bin_init_hard(void)
|
|
{
|
|
size_t i, size, binind;
|
|
uint8_t *custom_size2bin;
|
|
|
|
assert(opt_qspace_max_2pow != QSPACE_MAX_2POW_DEFAULT
|
|
|| opt_cspace_max_2pow != CSPACE_MAX_2POW_DEFAULT);
|
|
|
|
custom_size2bin = (uint8_t *)base_alloc(bin_maxclass + 1);
|
|
if (custom_size2bin == NULL)
|
|
return (true);
|
|
|
|
custom_size2bin[0] = 0xffU;
|
|
i = 1;
|
|
#ifdef MALLOC_TINY
|
|
/* Tiny. */
|
|
for (; i < (1U << TINY_MIN_2POW); i++) {
|
|
size = pow2_ceil(1U << TINY_MIN_2POW);
|
|
binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
|
|
custom_size2bin[i] = binind;
|
|
}
|
|
for (; i < qspace_min; i++) {
|
|
size = pow2_ceil(i);
|
|
binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
|
|
custom_size2bin[i] = binind;
|
|
}
|
|
#endif
|
|
/* Quantum-spaced. */
|
|
for (; i <= qspace_max; i++) {
|
|
size = QUANTUM_CEILING(i);
|
|
binind = ntbins + (size >> QUANTUM_2POW) - 1;
|
|
custom_size2bin[i] = binind;
|
|
}
|
|
/* Cacheline-spaced. */
|
|
for (; i <= cspace_max; i++) {
|
|
size = CACHELINE_CEILING(i);
|
|
binind = ntbins + nqbins + ((size - cspace_min) >>
|
|
CACHELINE_2POW);
|
|
custom_size2bin[i] = binind;
|
|
}
|
|
/* Sub-page. */
|
|
for (; i <= sspace_max; i++) {
|
|
size = SUBPAGE_CEILING(i);
|
|
binind = ntbins + nqbins + ncbins + ((size - sspace_min) >>
|
|
SUBPAGE_2POW);
|
|
custom_size2bin[i] = binind;
|
|
}
|
|
|
|
size2bin = custom_size2bin;
|
|
#ifdef MALLOC_DEBUG
|
|
size2bin_validate();
|
|
#endif
|
|
return (false);
|
|
}
|
|
|
|
/*
|
|
* FreeBSD's pthreads implementation calls malloc(3), so the malloc
|
|
* implementation has to take pains to avoid infinite recursion during
|
|
* initialization.
|
|
*/
|
|
static inline bool
|
|
malloc_init(void)
|
|
{
|
|
|
|
if (malloc_initialized == false)
|
|
return (malloc_init_hard());
|
|
|
|
return (false);
|
|
}
|
|
|
|
static bool
|
|
malloc_init_hard(void)
|
|
{
|
|
unsigned i;
|
|
int linklen;
|
|
char buf[PATH_MAX + 1];
|
|
const char *opts;
|
|
|
|
malloc_mutex_lock(&init_lock);
|
|
if (malloc_initialized) {
|
|
/*
|
|
* Another thread initialized the allocator before this one
|
|
* acquired init_lock.
|
|
*/
|
|
malloc_mutex_unlock(&init_lock);
|
|
return (false);
|
|
}
|
|
|
|
/* Get number of CPUs. */
|
|
{
|
|
int mib[2];
|
|
size_t len;
|
|
|
|
mib[0] = CTL_HW;
|
|
mib[1] = HW_NCPU;
|
|
len = sizeof(ncpus);
|
|
if (sysctl(mib, 2, &ncpus, &len, (void *) 0, 0) == -1) {
|
|
/* Error. */
|
|
ncpus = 1;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
unsigned j;
|
|
|
|
/* Get runtime configuration. */
|
|
switch (i) {
|
|
case 0:
|
|
if ((linklen = readlink("/etc/malloc.conf", buf,
|
|
sizeof(buf) - 1)) != -1) {
|
|
/*
|
|
* Use the contents of the "/etc/malloc.conf"
|
|
* symbolic link's name.
|
|
*/
|
|
buf[linklen] = '\0';
|
|
opts = buf;
|
|
} else {
|
|
/* No configuration specified. */
|
|
buf[0] = '\0';
|
|
opts = buf;
|
|
}
|
|
break;
|
|
case 1:
|
|
if (issetugid() == 0 && (opts =
|
|
getenv("MALLOC_OPTIONS")) != NULL) {
|
|
/*
|
|
* Do nothing; opts is already initialized to
|
|
* the value of the MALLOC_OPTIONS environment
|
|
* variable.
|
|
*/
|
|
} else {
|
|
/* No configuration specified. */
|
|
buf[0] = '\0';
|
|
opts = buf;
|
|
}
|
|
break;
|
|
case 2:
|
|
if (_malloc_options != NULL) {
|
|
/*
|
|
* Use options that were compiled into the
|
|
* program.
|
|
*/
|
|
opts = _malloc_options;
|
|
} else {
|
|
/* No configuration specified. */
|
|
buf[0] = '\0';
|
|
opts = buf;
|
|
}
|
|
break;
|
|
default:
|
|
/* NOTREACHED */
|
|
assert(false);
|
|
}
|
|
|
|
for (j = 0; opts[j] != '\0'; j++) {
|
|
unsigned k, nreps;
|
|
bool nseen;
|
|
|
|
/* Parse repetition count, if any. */
|
|
for (nreps = 0, nseen = false;; j++, nseen = true) {
|
|
switch (opts[j]) {
|
|
case '0': case '1': case '2': case '3':
|
|
case '4': case '5': case '6': case '7':
|
|
case '8': case '9':
|
|
nreps *= 10;
|
|
nreps += opts[j] - '0';
|
|
break;
|
|
default:
|
|
goto MALLOC_OUT;
|
|
}
|
|
}
|
|
MALLOC_OUT:
|
|
if (nseen == false)
|
|
nreps = 1;
|
|
|
|
for (k = 0; k < nreps; k++) {
|
|
switch (opts[j]) {
|
|
case 'a':
|
|
opt_abort = false;
|
|
break;
|
|
case 'A':
|
|
opt_abort = true;
|
|
break;
|
|
case 'b':
|
|
#ifdef MALLOC_BALANCE
|
|
opt_balance_threshold >>= 1;
|
|
#endif
|
|
break;
|
|
case 'B':
|
|
#ifdef MALLOC_BALANCE
|
|
if (opt_balance_threshold == 0)
|
|
opt_balance_threshold = 1;
|
|
else if ((opt_balance_threshold << 1)
|
|
> opt_balance_threshold)
|
|
opt_balance_threshold <<= 1;
|
|
#endif
|
|
break;
|
|
case 'c':
|
|
if (opt_cspace_max_2pow - 1 >
|
|
opt_qspace_max_2pow &&
|
|
opt_cspace_max_2pow >
|
|
CACHELINE_2POW)
|
|
opt_cspace_max_2pow--;
|
|
break;
|
|
case 'C':
|
|
if (opt_cspace_max_2pow < PAGE_SHIFT
|
|
- 1)
|
|
opt_cspace_max_2pow++;
|
|
break;
|
|
case 'd':
|
|
#ifdef MALLOC_DSS
|
|
opt_dss = false;
|
|
#endif
|
|
break;
|
|
case 'D':
|
|
#ifdef MALLOC_DSS
|
|
opt_dss = true;
|
|
#endif
|
|
break;
|
|
case 'f':
|
|
opt_dirty_max >>= 1;
|
|
break;
|
|
case 'F':
|
|
if (opt_dirty_max == 0)
|
|
opt_dirty_max = 1;
|
|
else if ((opt_dirty_max << 1) != 0)
|
|
opt_dirty_max <<= 1;
|
|
break;
|
|
#ifdef MALLOC_MAG
|
|
case 'g':
|
|
opt_mag = false;
|
|
break;
|
|
case 'G':
|
|
opt_mag = true;
|
|
break;
|
|
#endif
|
|
case 'j':
|
|
opt_junk = false;
|
|
break;
|
|
case 'J':
|
|
opt_junk = true;
|
|
break;
|
|
case 'k':
|
|
/*
|
|
* Chunks always require at least one
|
|
* header page, so chunks can never be
|
|
* smaller than two pages.
|
|
*/
|
|
if (opt_chunk_2pow > PAGE_SHIFT + 1)
|
|
opt_chunk_2pow--;
|
|
break;
|
|
case 'K':
|
|
if (opt_chunk_2pow + 1 <
|
|
(sizeof(size_t) << 3))
|
|
opt_chunk_2pow++;
|
|
break;
|
|
case 'm':
|
|
#ifdef MALLOC_DSS
|
|
opt_mmap = false;
|
|
#endif
|
|
break;
|
|
case 'M':
|
|
#ifdef MALLOC_DSS
|
|
opt_mmap = true;
|
|
#endif
|
|
break;
|
|
case 'n':
|
|
opt_narenas_lshift--;
|
|
break;
|
|
case 'N':
|
|
opt_narenas_lshift++;
|
|
break;
|
|
case 'p':
|
|
opt_print_stats = false;
|
|
break;
|
|
case 'P':
|
|
opt_print_stats = true;
|
|
break;
|
|
case 'q':
|
|
if (opt_qspace_max_2pow > QUANTUM_2POW)
|
|
opt_qspace_max_2pow--;
|
|
break;
|
|
case 'Q':
|
|
if (opt_qspace_max_2pow + 1 <
|
|
opt_cspace_max_2pow)
|
|
opt_qspace_max_2pow++;
|
|
break;
|
|
#ifdef MALLOC_MAG
|
|
case 'R':
|
|
if (opt_mag_size_2pow + 1 < (8U <<
|
|
SIZEOF_PTR_2POW))
|
|
opt_mag_size_2pow++;
|
|
break;
|
|
case 'r':
|
|
/*
|
|
* Make sure there's always at least
|
|
* one round per magazine.
|
|
*/
|
|
if ((1U << (opt_mag_size_2pow-1)) >=
|
|
sizeof(mag_t))
|
|
opt_mag_size_2pow--;
|
|
break;
|
|
#endif
|
|
case 'u':
|
|
opt_utrace = false;
|
|
break;
|
|
case 'U':
|
|
opt_utrace = true;
|
|
break;
|
|
case 'v':
|
|
opt_sysv = false;
|
|
break;
|
|
case 'V':
|
|
opt_sysv = true;
|
|
break;
|
|
case 'x':
|
|
opt_xmalloc = false;
|
|
break;
|
|
case 'X':
|
|
opt_xmalloc = true;
|
|
break;
|
|
case 'z':
|
|
opt_zero = false;
|
|
break;
|
|
case 'Z':
|
|
opt_zero = true;
|
|
break;
|
|
default: {
|
|
char cbuf[2];
|
|
|
|
cbuf[0] = opts[j];
|
|
cbuf[1] = '\0';
|
|
_malloc_message(_getprogname(),
|
|
": (malloc) Unsupported character "
|
|
"in malloc options: '", cbuf,
|
|
"'\n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef MALLOC_DSS
|
|
/* Make sure that there is some method for acquiring memory. */
|
|
if (opt_dss == false && opt_mmap == false)
|
|
opt_mmap = true;
|
|
#endif
|
|
|
|
/* Take care to call atexit() only once. */
|
|
if (opt_print_stats) {
|
|
/* Print statistics at exit. */
|
|
atexit(malloc_print_stats);
|
|
}
|
|
|
|
#ifdef MALLOC_MAG
|
|
/*
|
|
* Calculate the actual number of rounds per magazine, taking into
|
|
* account header overhead.
|
|
*/
|
|
max_rounds = (1LLU << (opt_mag_size_2pow - SIZEOF_PTR_2POW)) -
|
|
(sizeof(mag_t) >> SIZEOF_PTR_2POW) + 1;
|
|
#endif
|
|
|
|
/* Set variables according to the value of opt_[qc]space_max_2pow. */
|
|
qspace_max = (1U << opt_qspace_max_2pow);
|
|
cspace_min = CACHELINE_CEILING(qspace_max);
|
|
if (cspace_min == qspace_max)
|
|
cspace_min += CACHELINE;
|
|
cspace_max = (1U << opt_cspace_max_2pow);
|
|
sspace_min = SUBPAGE_CEILING(cspace_max);
|
|
if (sspace_min == cspace_max)
|
|
sspace_min += SUBPAGE;
|
|
assert(sspace_min < PAGE_SIZE);
|
|
sspace_max = PAGE_SIZE - SUBPAGE;
|
|
|
|
#ifdef MALLOC_TINY
|
|
assert(QUANTUM_2POW >= TINY_MIN_2POW);
|
|
#endif
|
|
assert(ntbins <= QUANTUM_2POW);
|
|
nqbins = qspace_max >> QUANTUM_2POW;
|
|
ncbins = ((cspace_max - cspace_min) >> CACHELINE_2POW) + 1;
|
|
nsbins = ((sspace_max - sspace_min) >> SUBPAGE_2POW) + 1;
|
|
nbins = ntbins + nqbins + ncbins + nsbins;
|
|
|
|
if (size2bin_init()) {
|
|
malloc_mutex_unlock(&init_lock);
|
|
return (true);
|
|
}
|
|
|
|
/* Set variables according to the value of opt_chunk_2pow. */
|
|
chunksize = (1LU << opt_chunk_2pow);
|
|
chunksize_mask = chunksize - 1;
|
|
chunk_npages = (chunksize >> PAGE_SHIFT);
|
|
{
|
|
size_t header_size;
|
|
|
|
/*
|
|
* Compute the header size such that it is large enough to
|
|
* contain the page map.
|
|
*/
|
|
header_size = sizeof(arena_chunk_t) +
|
|
(sizeof(arena_chunk_map_t) * (chunk_npages - 1));
|
|
arena_chunk_header_npages = (header_size >> PAGE_SHIFT) +
|
|
((header_size & PAGE_MASK) != 0);
|
|
}
|
|
arena_maxclass = chunksize - (arena_chunk_header_npages <<
|
|
PAGE_SHIFT);
|
|
|
|
UTRACE(0, 0, 0);
|
|
|
|
#ifdef MALLOC_STATS
|
|
memset(&stats_chunks, 0, sizeof(chunk_stats_t));
|
|
#endif
|
|
|
|
/* Various sanity checks that regard configuration. */
|
|
assert(chunksize >= PAGE_SIZE);
|
|
|
|
/* Initialize chunks data. */
|
|
malloc_mutex_init(&huge_mtx);
|
|
extent_tree_ad_new(&huge);
|
|
#ifdef MALLOC_DSS
|
|
malloc_mutex_init(&dss_mtx);
|
|
dss_base = sbrk(0);
|
|
dss_prev = dss_base;
|
|
dss_max = dss_base;
|
|
extent_tree_szad_new(&dss_chunks_szad);
|
|
extent_tree_ad_new(&dss_chunks_ad);
|
|
#endif
|
|
#ifdef MALLOC_STATS
|
|
huge_nmalloc = 0;
|
|
huge_ndalloc = 0;
|
|
huge_allocated = 0;
|
|
#endif
|
|
|
|
/* Initialize base allocation data structures. */
|
|
#ifdef MALLOC_STATS
|
|
base_mapped = 0;
|
|
#endif
|
|
#ifdef MALLOC_DSS
|
|
/*
|
|
* Allocate a base chunk here, since it doesn't actually have to be
|
|
* chunk-aligned. Doing this before allocating any other chunks allows
|
|
* the use of space that would otherwise be wasted.
|
|
*/
|
|
if (opt_dss)
|
|
base_pages_alloc(0);
|
|
#endif
|
|
base_nodes = NULL;
|
|
malloc_mutex_init(&base_mtx);
|
|
|
|
if (ncpus > 1) {
|
|
/*
|
|
* For SMP systems, create twice as many arenas as there are
|
|
* CPUs by default.
|
|
*/
|
|
opt_narenas_lshift++;
|
|
}
|
|
|
|
/* Determine how many arenas to use. */
|
|
narenas = ncpus;
|
|
if (opt_narenas_lshift > 0) {
|
|
if ((narenas << opt_narenas_lshift) > narenas)
|
|
narenas <<= opt_narenas_lshift;
|
|
/*
|
|
* Make sure not to exceed the limits of what base_alloc() can
|
|
* handle.
|
|
*/
|
|
if (narenas * sizeof(arena_t *) > chunksize)
|
|
narenas = chunksize / sizeof(arena_t *);
|
|
} else if (opt_narenas_lshift < 0) {
|
|
if ((narenas >> -opt_narenas_lshift) < narenas)
|
|
narenas >>= -opt_narenas_lshift;
|
|
/* Make sure there is at least one arena. */
|
|
if (narenas == 0)
|
|
narenas = 1;
|
|
}
|
|
#ifdef MALLOC_BALANCE
|
|
assert(narenas != 0);
|
|
for (narenas_2pow = 0;
|
|
(narenas >> (narenas_2pow + 1)) != 0;
|
|
narenas_2pow++);
|
|
#endif
|
|
|
|
#ifdef NO_TLS
|
|
if (narenas > 1) {
|
|
static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19,
|
|
23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
|
|
89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
|
|
151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
|
|
223, 227, 229, 233, 239, 241, 251, 257, 263};
|
|
unsigned nprimes, parenas;
|
|
|
|
/*
|
|
* Pick a prime number of hash arenas that is more than narenas
|
|
* so that direct hashing of pthread_self() pointers tends to
|
|
* spread allocations evenly among the arenas.
|
|
*/
|
|
assert((narenas & 1) == 0); /* narenas must be even. */
|
|
nprimes = (sizeof(primes) >> SIZEOF_INT_2POW);
|
|
parenas = primes[nprimes - 1]; /* In case not enough primes. */
|
|
for (i = 1; i < nprimes; i++) {
|
|
if (primes[i] > narenas) {
|
|
parenas = primes[i];
|
|
break;
|
|
}
|
|
}
|
|
narenas = parenas;
|
|
}
|
|
#endif
|
|
|
|
#ifndef NO_TLS
|
|
# ifndef MALLOC_BALANCE
|
|
next_arena = 0;
|
|
# endif
|
|
#endif
|
|
|
|
/* Allocate and initialize arenas. */
|
|
arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
|
|
if (arenas == NULL) {
|
|
malloc_mutex_unlock(&init_lock);
|
|
return (true);
|
|
}
|
|
/*
|
|
* Zero the array. In practice, this should always be pre-zeroed,
|
|
* since it was just mmap()ed, but let's be sure.
|
|
*/
|
|
memset(arenas, 0, sizeof(arena_t *) * narenas);
|
|
|
|
/*
|
|
* Initialize one arena here. The rest are lazily created in
|
|
* choose_arena_hard().
|
|
*/
|
|
arenas_extend(0);
|
|
if (arenas[0] == NULL) {
|
|
malloc_mutex_unlock(&init_lock);
|
|
return (true);
|
|
}
|
|
#ifndef NO_TLS
|
|
/*
|
|
* Assign the initial arena to the initial thread, in order to avoid
|
|
* spurious creation of an extra arena if the application switches to
|
|
* threaded mode.
|
|
*/
|
|
arenas_map = arenas[0];
|
|
#endif
|
|
/*
|
|
* Seed here for the initial thread, since choose_arena_hard() is only
|
|
* called for other threads. The seed value doesn't really matter.
|
|
*/
|
|
#ifdef MALLOC_BALANCE
|
|
SPRN(balance, 42);
|
|
#endif
|
|
|
|
malloc_spin_init(&arenas_lock);
|
|
|
|
malloc_initialized = true;
|
|
malloc_mutex_unlock(&init_lock);
|
|
return (false);
|
|
}
|
|
|
|
/*
|
|
* End general internal functions.
|
|
*/
|
|
/******************************************************************************/
|
|
/*
|
|
* Begin malloc(3)-compatible functions.
|
|
*/
|
|
|
|
void *
|
|
malloc(size_t size)
|
|
{
|
|
void *ret;
|
|
|
|
if (malloc_init()) {
|
|
ret = NULL;
|
|
goto RETURN;
|
|
}
|
|
|
|
if (size == 0) {
|
|
if (opt_sysv == false)
|
|
size = 1;
|
|
else {
|
|
ret = NULL;
|
|
goto RETURN;
|
|
}
|
|
}
|
|
|
|
ret = imalloc(size);
|
|
|
|
RETURN:
|
|
if (ret == NULL) {
|
|
if (opt_xmalloc) {
|
|
_malloc_message(_getprogname(),
|
|
": (malloc) Error in malloc(): out of memory\n", "",
|
|
"");
|
|
abort();
|
|
}
|
|
errno = ENOMEM;
|
|
}
|
|
|
|
UTRACE(0, size, ret);
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
posix_memalign(void **memptr, size_t alignment, size_t size)
|
|
{
|
|
int ret;
|
|
void *result;
|
|
|
|
if (malloc_init())
|
|
result = NULL;
|
|
else {
|
|
/* Make sure that alignment is a large enough power of 2. */
|
|
if (((alignment - 1) & alignment) != 0
|
|
|| alignment < sizeof(void *)) {
|
|
if (opt_xmalloc) {
|
|
_malloc_message(_getprogname(),
|
|
": (malloc) Error in posix_memalign(): "
|
|
"invalid alignment\n", "", "");
|
|
abort();
|
|
}
|
|
result = NULL;
|
|
ret = EINVAL;
|
|
goto RETURN;
|
|
}
|
|
|
|
result = ipalloc(alignment, size);
|
|
}
|
|
|
|
if (result == NULL) {
|
|
if (opt_xmalloc) {
|
|
_malloc_message(_getprogname(),
|
|
": (malloc) Error in posix_memalign(): out of memory\n",
|
|
"", "");
|
|
abort();
|
|
}
|
|
ret = ENOMEM;
|
|
goto RETURN;
|
|
}
|
|
|
|
*memptr = result;
|
|
ret = 0;
|
|
|
|
RETURN:
|
|
UTRACE(0, size, result);
|
|
return (ret);
|
|
}
|
|
|
|
void *
|
|
calloc(size_t num, size_t size)
|
|
{
|
|
void *ret;
|
|
size_t num_size;
|
|
|
|
if (malloc_init()) {
|
|
num_size = 0;
|
|
ret = NULL;
|
|
goto RETURN;
|
|
}
|
|
|
|
num_size = num * size;
|
|
if (num_size == 0) {
|
|
if ((opt_sysv == false) && ((num == 0) || (size == 0)))
|
|
num_size = 1;
|
|
else {
|
|
ret = NULL;
|
|
goto RETURN;
|
|
}
|
|
/*
|
|
* Try to avoid division here. We know that it isn't possible to
|
|
* overflow during multiplication if neither operand uses any of the
|
|
* most significant half of the bits in a size_t.
|
|
*/
|
|
} else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
|
|
&& (num_size / size != num)) {
|
|
/* size_t overflow. */
|
|
ret = NULL;
|
|
goto RETURN;
|
|
}
|
|
|
|
ret = icalloc(num_size);
|
|
|
|
RETURN:
|
|
if (ret == NULL) {
|
|
if (opt_xmalloc) {
|
|
_malloc_message(_getprogname(),
|
|
": (malloc) Error in calloc(): out of memory\n", "",
|
|
"");
|
|
abort();
|
|
}
|
|
errno = ENOMEM;
|
|
}
|
|
|
|
UTRACE(0, num_size, ret);
|
|
return (ret);
|
|
}
|
|
|
|
void *
|
|
realloc(void *ptr, size_t size)
|
|
{
|
|
void *ret;
|
|
|
|
if (size == 0) {
|
|
if (opt_sysv == false)
|
|
size = 1;
|
|
else {
|
|
if (ptr != NULL)
|
|
idalloc(ptr);
|
|
ret = NULL;
|
|
goto RETURN;
|
|
}
|
|
}
|
|
|
|
if (ptr != NULL) {
|
|
assert(malloc_initialized);
|
|
|
|
ret = iralloc(ptr, size);
|
|
|
|
if (ret == NULL) {
|
|
if (opt_xmalloc) {
|
|
_malloc_message(_getprogname(),
|
|
": (malloc) Error in realloc(): out of "
|
|
"memory\n", "", "");
|
|
abort();
|
|
}
|
|
errno = ENOMEM;
|
|
}
|
|
} else {
|
|
if (malloc_init())
|
|
ret = NULL;
|
|
else
|
|
ret = imalloc(size);
|
|
|
|
if (ret == NULL) {
|
|
if (opt_xmalloc) {
|
|
_malloc_message(_getprogname(),
|
|
": (malloc) Error in realloc(): out of "
|
|
"memory\n", "", "");
|
|
abort();
|
|
}
|
|
errno = ENOMEM;
|
|
}
|
|
}
|
|
|
|
RETURN:
|
|
UTRACE(ptr, size, ret);
|
|
return (ret);
|
|
}
|
|
|
|
void
|
|
free(void *ptr)
|
|
{
|
|
|
|
UTRACE(ptr, 0, 0);
|
|
if (ptr != NULL) {
|
|
assert(malloc_initialized);
|
|
|
|
idalloc(ptr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* End malloc(3)-compatible functions.
|
|
*/
|
|
/******************************************************************************/
|
|
/*
|
|
* Begin non-standard functions.
|
|
*/
|
|
|
|
size_t
|
|
malloc_usable_size(const void *ptr)
|
|
{
|
|
|
|
assert(ptr != NULL);
|
|
|
|
return (isalloc(ptr));
|
|
}
|
|
|
|
/*
|
|
* End non-standard functions.
|
|
*/
|
|
/******************************************************************************/
|
|
/*
|
|
* Begin library-private functions.
|
|
*/
|
|
|
|
/******************************************************************************/
|
|
/*
|
|
* Begin thread cache.
|
|
*/
|
|
|
|
/*
|
|
* We provide an unpublished interface in order to receive notifications from
|
|
* the pthreads library whenever a thread exits. This allows us to clean up
|
|
* thread caches.
|
|
*/
|
|
void
|
|
_malloc_thread_cleanup(void)
|
|
{
|
|
|
|
#ifdef MALLOC_MAG
|
|
if (mag_rack != NULL) {
|
|
assert(mag_rack != (void *)-1);
|
|
mag_rack_destroy(mag_rack);
|
|
#ifdef MALLOC_DEBUG
|
|
mag_rack = (void *)-1;
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* The following functions are used by threading libraries for protection of
|
|
* malloc during fork(). These functions are only called if the program is
|
|
* running in threaded mode, so there is no need to check whether the program
|
|
* is threaded here.
|
|
*/
|
|
|
|
void
|
|
_malloc_prefork(void)
|
|
{
|
|
unsigned i;
|
|
|
|
/* Acquire all mutexes in a safe order. */
|
|
|
|
malloc_spin_lock(&arenas_lock);
|
|
for (i = 0; i < narenas; i++) {
|
|
if (arenas[i] != NULL)
|
|
malloc_spin_lock(&arenas[i]->lock);
|
|
}
|
|
malloc_spin_unlock(&arenas_lock);
|
|
|
|
malloc_mutex_lock(&base_mtx);
|
|
|
|
malloc_mutex_lock(&huge_mtx);
|
|
|
|
#ifdef MALLOC_DSS
|
|
malloc_mutex_lock(&dss_mtx);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
_malloc_postfork(void)
|
|
{
|
|
unsigned i;
|
|
|
|
/* Release all mutexes, now that fork() has completed. */
|
|
|
|
#ifdef MALLOC_DSS
|
|
malloc_mutex_unlock(&dss_mtx);
|
|
#endif
|
|
|
|
malloc_mutex_unlock(&huge_mtx);
|
|
|
|
malloc_mutex_unlock(&base_mtx);
|
|
|
|
malloc_spin_lock(&arenas_lock);
|
|
for (i = 0; i < narenas; i++) {
|
|
if (arenas[i] != NULL)
|
|
malloc_spin_unlock(&arenas[i]->lock);
|
|
}
|
|
malloc_spin_unlock(&arenas_lock);
|
|
}
|
|
|
|
/*
|
|
* End library-private functions.
|
|
*/
|
|
/******************************************************************************/
|