1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-04 12:52:15 +00:00
freebsd/sys/opencrypto/crypto.c
2004-05-30 20:27:19 +00:00

1248 lines
31 KiB
C

/* $OpenBSD: crypto.c,v 1.38 2002/06/11 11:14:29 beck Exp $ */
/*
* The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
*
* This code was written by Angelos D. Keromytis in Athens, Greece, in
* February 2000. Network Security Technologies Inc. (NSTI) kindly
* supported the development of this code.
*
* Copyright (c) 2000, 2001 Angelos D. Keromytis
*
* Permission to use, copy, and modify this software with or without fee
* is hereby granted, provided that this entire notice is included in
* all source code copies of any software which is or includes a copy or
* modification of this software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
* PURPOSE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#define CRYPTO_TIMING /* enable timing support */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/eventhandler.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <vm/uma.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/xform.h> /* XXX for M_XDATA */
/*
* Crypto drivers register themselves by allocating a slot in the
* crypto_drivers table with crypto_get_driverid() and then registering
* each algorithm they support with crypto_register() and crypto_kregister().
*/
static struct mtx crypto_drivers_mtx; /* lock on driver table */
#define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx)
#define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx)
static struct cryptocap *crypto_drivers = NULL;
static int crypto_drivers_num = 0;
/*
* There are two queues for crypto requests; one for symmetric (e.g.
* cipher) operations and one for asymmetric (e.g. MOD)operations.
* A single mutex is used to lock access to both queues. We could
* have one per-queue but having one simplifies handling of block/unblock
* operations.
*/
static TAILQ_HEAD(,cryptop) crp_q; /* request queues */
static TAILQ_HEAD(,cryptkop) crp_kq;
static struct mtx crypto_q_mtx;
#define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx)
#define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx)
/*
* There are two queues for processing completed crypto requests; one
* for the symmetric and one for the asymmetric ops. We only need one
* but have two to avoid type futzing (cryptop vs. cryptkop). A single
* mutex is used to lock access to both queues. Note that this lock
* must be separate from the lock on request queues to insure driver
* callbacks don't generate lock order reversals.
*/
static TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queues */
static TAILQ_HEAD(,cryptkop) crp_ret_kq;
static struct mtx crypto_ret_q_mtx;
#define CRYPTO_RETQ_LOCK() mtx_lock(&crypto_ret_q_mtx)
#define CRYPTO_RETQ_UNLOCK() mtx_unlock(&crypto_ret_q_mtx)
static uma_zone_t cryptop_zone;
static uma_zone_t cryptodesc_zone;
int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
&crypto_userasymcrypto, 0,
"Enable/disable user-mode access to asymmetric crypto support");
int crypto_devallowsoft = 0; /* only use hardware crypto for asym */
SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
&crypto_devallowsoft, 0,
"Enable/disable use of software asym crypto support");
MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
static void crypto_proc(void);
static struct proc *cryptoproc;
static void crypto_ret_proc(void);
static struct proc *cryptoretproc;
static void crypto_destroy(void);
static int crypto_invoke(struct cryptop *crp, int hint);
static int crypto_kinvoke(struct cryptkop *krp, int hint);
static struct cryptostats cryptostats;
SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats,
cryptostats, "Crypto system statistics");
#ifdef CRYPTO_TIMING
static int crypto_timing = 0;
SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
&crypto_timing, 0, "Enable/disable crypto timing support");
#endif
static int
crypto_init(void)
{
int error;
mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
MTX_DEF|MTX_QUIET);
TAILQ_INIT(&crp_q);
TAILQ_INIT(&crp_kq);
mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
TAILQ_INIT(&crp_ret_q);
TAILQ_INIT(&crp_ret_kq);
mtx_init(&crypto_ret_q_mtx, "crypto", "crypto return queues", MTX_DEF);
cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop),
0, 0, 0, 0,
UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
cryptodesc_zone = uma_zcreate("cryptodesc", sizeof (struct cryptodesc),
0, 0, 0, 0,
UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
if (cryptodesc_zone == NULL || cryptop_zone == NULL) {
printf("crypto_init: cannot setup crypto zones\n");
error = ENOMEM;
goto bad;
}
crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
crypto_drivers = malloc(crypto_drivers_num *
sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
if (crypto_drivers == NULL) {
printf("crypto_init: cannot setup crypto drivers\n");
error = ENOMEM;
goto bad;
}
error = kthread_create((void (*)(void *)) crypto_proc, NULL,
&cryptoproc, 0, 0, "crypto");
if (error) {
printf("crypto_init: cannot start crypto thread; error %d",
error);
goto bad;
}
error = kthread_create((void (*)(void *)) crypto_ret_proc, NULL,
&cryptoretproc, 0, 0, "crypto returns");
if (error) {
printf("crypto_init: cannot start cryptoret thread; error %d",
error);
goto bad;
}
return 0;
bad:
crypto_destroy();
return error;
}
/*
* Signal a crypto thread to terminate. We use the driver
* table lock to synchronize the sleep/wakeups so that we
* are sure the threads have terminated before we release
* the data structures they use. See crypto_finis below
* for the other half of this song-and-dance.
*/
static void
crypto_terminate(struct proc **pp, void *q)
{
struct proc *p;
mtx_assert(&crypto_drivers_mtx, MA_OWNED);
p = *pp;
*pp = NULL;
if (p) {
wakeup_one(q);
PROC_LOCK(p); /* NB: insure we don't miss wakeup */
CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */
msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
PROC_UNLOCK(p);
CRYPTO_DRIVER_LOCK();
}
}
static void
crypto_destroy(void)
{
/*
* Terminate any crypto threads.
*/
CRYPTO_DRIVER_LOCK();
crypto_terminate(&cryptoproc, &crp_q);
crypto_terminate(&cryptoretproc, &crp_ret_q);
CRYPTO_DRIVER_UNLOCK();
/* XXX flush queues??? */
/*
* Reclaim dynamically allocated resources.
*/
if (crypto_drivers != NULL)
free(crypto_drivers, M_CRYPTO_DATA);
if (cryptodesc_zone != NULL)
uma_zdestroy(cryptodesc_zone);
if (cryptop_zone != NULL)
uma_zdestroy(cryptop_zone);
mtx_destroy(&crypto_q_mtx);
mtx_destroy(&crypto_ret_q_mtx);
mtx_destroy(&crypto_drivers_mtx);
}
/*
* Initialization code, both for static and dynamic loading.
*/
static int
crypto_modevent(module_t mod, int type, void *unused)
{
int error = EINVAL;
switch (type) {
case MOD_LOAD:
error = crypto_init();
if (error == 0 && bootverbose)
printf("crypto: <crypto core>\n");
break;
case MOD_UNLOAD:
/*XXX disallow if active sessions */
error = 0;
crypto_destroy();
return 0;
}
return error;
}
static moduledata_t crypto_mod = {
"crypto",
crypto_modevent,
0
};
MODULE_VERSION(crypto, 1);
DECLARE_MODULE(crypto, crypto_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
/*
* Create a new session.
*/
int
crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
{
struct cryptoini *cr;
u_int32_t hid, lid;
int err = EINVAL;
CRYPTO_DRIVER_LOCK();
if (crypto_drivers == NULL)
goto done;
/*
* The algorithm we use here is pretty stupid; just use the
* first driver that supports all the algorithms we need.
*
* XXX We need more smarts here (in real life too, but that's
* XXX another story altogether).
*/
for (hid = 0; hid < crypto_drivers_num; hid++) {
struct cryptocap *cap = &crypto_drivers[hid];
/*
* If it's not initialized or has remaining sessions
* referencing it, skip.
*/
if (cap->cc_newsession == NULL ||
(cap->cc_flags & CRYPTOCAP_F_CLEANUP))
continue;
/* Hardware required -- ignore software drivers. */
if (hard > 0 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE))
continue;
/* Software required -- ignore hardware drivers. */
if (hard < 0 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
continue;
/* See if all the algorithms are supported. */
for (cr = cri; cr; cr = cr->cri_next)
if (cap->cc_alg[cr->cri_alg] == 0)
break;
if (cr == NULL) {
/* Ok, all algorithms are supported. */
/*
* Can't do everything in one session.
*
* XXX Fix this. We need to inject a "virtual" session layer right
* XXX about here.
*/
/* Call the driver initialization routine. */
lid = hid; /* Pass the driver ID. */
err = (*cap->cc_newsession)(cap->cc_arg, &lid, cri);
if (err == 0) {
/* XXX assert (hid &~ 0xffffff) == 0 */
/* XXX assert (cap->cc_flags &~ 0xff) == 0 */
(*sid) = ((cap->cc_flags & 0xff) << 24) | hid;
(*sid) <<= 32;
(*sid) |= (lid & 0xffffffff);
cap->cc_sessions++;
}
break;
}
}
done:
CRYPTO_DRIVER_UNLOCK();
return err;
}
/*
* Delete an existing session (or a reserved session on an unregistered
* driver).
*/
int
crypto_freesession(u_int64_t sid)
{
u_int32_t hid;
int err;
CRYPTO_DRIVER_LOCK();
if (crypto_drivers == NULL) {
err = EINVAL;
goto done;
}
/* Determine two IDs. */
hid = CRYPTO_SESID2HID(sid);
if (hid >= crypto_drivers_num) {
err = ENOENT;
goto done;
}
if (crypto_drivers[hid].cc_sessions)
crypto_drivers[hid].cc_sessions--;
/* Call the driver cleanup routine, if available. */
if (crypto_drivers[hid].cc_freesession)
err = crypto_drivers[hid].cc_freesession(
crypto_drivers[hid].cc_arg, sid);
else
err = 0;
/*
* If this was the last session of a driver marked as invalid,
* make the entry available for reuse.
*/
if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
crypto_drivers[hid].cc_sessions == 0)
bzero(&crypto_drivers[hid], sizeof(struct cryptocap));
done:
CRYPTO_DRIVER_UNLOCK();
return err;
}
/*
* Return an unused driver id. Used by drivers prior to registering
* support for the algorithms they handle.
*/
int32_t
crypto_get_driverid(u_int32_t flags)
{
struct cryptocap *newdrv;
int i;
CRYPTO_DRIVER_LOCK();
for (i = 0; i < crypto_drivers_num; i++)
if (crypto_drivers[i].cc_process == NULL &&
(crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
crypto_drivers[i].cc_sessions == 0)
break;
/* Out of entries, allocate some more. */
if (i == crypto_drivers_num) {
/* Be careful about wrap-around. */
if (2 * crypto_drivers_num <= crypto_drivers_num) {
CRYPTO_DRIVER_UNLOCK();
printf("crypto: driver count wraparound!\n");
return -1;
}
newdrv = malloc(2 * crypto_drivers_num *
sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
if (newdrv == NULL) {
CRYPTO_DRIVER_UNLOCK();
printf("crypto: no space to expand driver table!\n");
return -1;
}
bcopy(crypto_drivers, newdrv,
crypto_drivers_num * sizeof(struct cryptocap));
crypto_drivers_num *= 2;
free(crypto_drivers, M_CRYPTO_DATA);
crypto_drivers = newdrv;
}
/* NB: state is zero'd on free */
crypto_drivers[i].cc_sessions = 1; /* Mark */
crypto_drivers[i].cc_flags = flags;
if (bootverbose)
printf("crypto: assign driver %u, flags %u\n", i, flags);
CRYPTO_DRIVER_UNLOCK();
return i;
}
static struct cryptocap *
crypto_checkdriver(u_int32_t hid)
{
if (crypto_drivers == NULL)
return NULL;
return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
}
/*
* Register support for a key-related algorithm. This routine
* is called once for each algorithm supported a driver.
*/
int
crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
int (*kprocess)(void*, struct cryptkop *, int),
void *karg)
{
struct cryptocap *cap;
int err;
CRYPTO_DRIVER_LOCK();
cap = crypto_checkdriver(driverid);
if (cap != NULL &&
(CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
/*
* XXX Do some performance testing to determine placing.
* XXX We probably need an auxiliary data structure that
* XXX describes relative performances.
*/
cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
if (bootverbose)
printf("crypto: driver %u registers key alg %u flags %u\n"
, driverid
, kalg
, flags
);
if (cap->cc_kprocess == NULL) {
cap->cc_karg = karg;
cap->cc_kprocess = kprocess;
}
err = 0;
} else
err = EINVAL;
CRYPTO_DRIVER_UNLOCK();
return err;
}
/*
* Register support for a non-key-related algorithm. This routine
* is called once for each such algorithm supported by a driver.
*/
int
crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
u_int32_t flags,
int (*newses)(void*, u_int32_t*, struct cryptoini*),
int (*freeses)(void*, u_int64_t),
int (*process)(void*, struct cryptop *, int),
void *arg)
{
struct cryptocap *cap;
int err;
CRYPTO_DRIVER_LOCK();
cap = crypto_checkdriver(driverid);
/* NB: algorithms are in the range [1..max] */
if (cap != NULL &&
(CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
/*
* XXX Do some performance testing to determine placing.
* XXX We probably need an auxiliary data structure that
* XXX describes relative performances.
*/
cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
cap->cc_max_op_len[alg] = maxoplen;
if (bootverbose)
printf("crypto: driver %u registers alg %u flags %u maxoplen %u\n"
, driverid
, alg
, flags
, maxoplen
);
if (cap->cc_process == NULL) {
cap->cc_arg = arg;
cap->cc_newsession = newses;
cap->cc_process = process;
cap->cc_freesession = freeses;
cap->cc_sessions = 0; /* Unmark */
}
err = 0;
} else
err = EINVAL;
CRYPTO_DRIVER_UNLOCK();
return err;
}
/*
* Unregister a crypto driver. If there are pending sessions using it,
* leave enough information around so that subsequent calls using those
* sessions will correctly detect the driver has been unregistered and
* reroute requests.
*/
int
crypto_unregister(u_int32_t driverid, int alg)
{
int i, err;
u_int32_t ses;
struct cryptocap *cap;
CRYPTO_DRIVER_LOCK();
cap = crypto_checkdriver(driverid);
if (cap != NULL &&
(CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
cap->cc_alg[alg] != 0) {
cap->cc_alg[alg] = 0;
cap->cc_max_op_len[alg] = 0;
/* Was this the last algorithm ? */
for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
if (cap->cc_alg[i] != 0)
break;
if (i == CRYPTO_ALGORITHM_MAX + 1) {
ses = cap->cc_sessions;
bzero(cap, sizeof(struct cryptocap));
if (ses != 0) {
/*
* If there are pending sessions, just mark as invalid.
*/
cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
cap->cc_sessions = ses;
}
}
err = 0;
} else
err = EINVAL;
CRYPTO_DRIVER_UNLOCK();
return err;
}
/*
* Unregister all algorithms associated with a crypto driver.
* If there are pending sessions using it, leave enough information
* around so that subsequent calls using those sessions will
* correctly detect the driver has been unregistered and reroute
* requests.
*/
int
crypto_unregister_all(u_int32_t driverid)
{
int i, err;
u_int32_t ses;
struct cryptocap *cap;
CRYPTO_DRIVER_LOCK();
cap = crypto_checkdriver(driverid);
if (cap != NULL) {
for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
cap->cc_alg[i] = 0;
cap->cc_max_op_len[i] = 0;
}
ses = cap->cc_sessions;
bzero(cap, sizeof(struct cryptocap));
if (ses != 0) {
/*
* If there are pending sessions, just mark as invalid.
*/
cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
cap->cc_sessions = ses;
}
err = 0;
} else
err = EINVAL;
CRYPTO_DRIVER_UNLOCK();
return err;
}
/*
* Clear blockage on a driver. The what parameter indicates whether
* the driver is now ready for cryptop's and/or cryptokop's.
*/
int
crypto_unblock(u_int32_t driverid, int what)
{
struct cryptocap *cap;
int needwakeup, err;
CRYPTO_Q_LOCK();
cap = crypto_checkdriver(driverid);
if (cap != NULL) {
needwakeup = 0;
if (what & CRYPTO_SYMQ) {
needwakeup |= cap->cc_qblocked;
cap->cc_qblocked = 0;
}
if (what & CRYPTO_ASYMQ) {
needwakeup |= cap->cc_kqblocked;
cap->cc_kqblocked = 0;
}
if (needwakeup)
wakeup_one(&crp_q);
err = 0;
} else
err = EINVAL;
CRYPTO_Q_UNLOCK();
return err;
}
/*
* Add a crypto request to a queue, to be processed by the kernel thread.
*/
int
crypto_dispatch(struct cryptop *crp)
{
u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
int result;
cryptostats.cs_ops++;
#ifdef CRYPTO_TIMING
if (crypto_timing)
binuptime(&crp->crp_tstamp);
#endif
CRYPTO_Q_LOCK();
if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
struct cryptocap *cap;
/*
* Caller marked the request to be processed
* immediately; dispatch it directly to the
* driver unless the driver is currently blocked.
*/
cap = crypto_checkdriver(hid);
if (cap && !cap->cc_qblocked) {
result = crypto_invoke(crp, 0);
if (result == ERESTART) {
/*
* The driver ran out of resources, mark the
* driver ``blocked'' for cryptop's and put
* the request on the queue.
*
* XXX ops are placed at the tail so their
* order is preserved but this can place them
* behind batch'd ops.
*/
crypto_drivers[hid].cc_qblocked = 1;
TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
cryptostats.cs_blocks++;
result = 0;
}
} else {
/*
* The driver is blocked, just queue the op until
* it unblocks and the kernel thread gets kicked.
*/
TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
result = 0;
}
} else {
int wasempty;
/*
* Caller marked the request as ``ok to delay'';
* queue it for the dispatch thread. This is desirable
* when the operation is low priority and/or suitable
* for batching.
*/
wasempty = TAILQ_EMPTY(&crp_q);
TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
if (wasempty)
wakeup_one(&crp_q);
result = 0;
}
CRYPTO_Q_UNLOCK();
return result;
}
/*
* Add an asymetric crypto request to a queue,
* to be processed by the kernel thread.
*/
int
crypto_kdispatch(struct cryptkop *krp)
{
struct cryptocap *cap;
int result;
cryptostats.cs_kops++;
CRYPTO_Q_LOCK();
cap = crypto_checkdriver(krp->krp_hid);
if (cap && !cap->cc_kqblocked) {
result = crypto_kinvoke(krp, 0);
if (result == ERESTART) {
/*
* The driver ran out of resources, mark the
* driver ``blocked'' for cryptkop's and put
* the request back in the queue. It would
* best to put the request back where we got
* it but that's hard so for now we put it
* at the front. This should be ok; putting
* it at the end does not work.
*/
crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
cryptostats.cs_kblocks++;
}
} else {
/*
* The driver is blocked, just queue the op until
* it unblocks and the kernel thread gets kicked.
*/
TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
result = 0;
}
CRYPTO_Q_UNLOCK();
return result;
}
/*
* Dispatch an assymetric crypto request to the appropriate crypto devices.
*/
static int
crypto_kinvoke(struct cryptkop *krp, int hint)
{
u_int32_t hid;
int error;
mtx_assert(&crypto_q_mtx, MA_OWNED);
/* Sanity checks. */
if (krp == NULL)
return EINVAL;
if (krp->krp_callback == NULL) {
free(krp, M_XDATA); /* XXX allocated in cryptodev */
return EINVAL;
}
for (hid = 0; hid < crypto_drivers_num; hid++) {
if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
!crypto_devallowsoft)
continue;
if (crypto_drivers[hid].cc_kprocess == NULL)
continue;
if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
CRYPTO_ALG_FLAG_SUPPORTED) == 0)
continue;
break;
}
if (hid < crypto_drivers_num) {
krp->krp_hid = hid;
error = crypto_drivers[hid].cc_kprocess(
crypto_drivers[hid].cc_karg, krp, hint);
} else
error = ENODEV;
if (error) {
krp->krp_status = error;
crypto_kdone(krp);
}
return 0;
}
#ifdef CRYPTO_TIMING
static void
crypto_tstat(struct cryptotstat *ts, struct bintime *bt)
{
struct bintime now, delta;
struct timespec t;
uint64_t u;
binuptime(&now);
u = now.frac;
delta.frac = now.frac - bt->frac;
delta.sec = now.sec - bt->sec;
if (u < delta.frac)
delta.sec--;
bintime2timespec(&delta, &t);
timespecadd(&ts->acc, &t);
if (timespeccmp(&t, &ts->min, <))
ts->min = t;
if (timespeccmp(&t, &ts->max, >))
ts->max = t;
ts->count++;
*bt = now;
}
#endif
/*
* Dispatch a crypto request to the appropriate crypto devices.
*/
static int
crypto_invoke(struct cryptop *crp, int hint)
{
u_int32_t hid;
int (*process)(void*, struct cryptop *, int);
#ifdef CRYPTO_TIMING
if (crypto_timing)
crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
#endif
/* Sanity checks. */
if (crp == NULL)
return EINVAL;
if (crp->crp_callback == NULL) {
crypto_freereq(crp);
return EINVAL;
}
if (crp->crp_desc == NULL) {
crp->crp_etype = EINVAL;
crypto_done(crp);
return 0;
}
hid = CRYPTO_SESID2HID(crp->crp_sid);
if (hid < crypto_drivers_num) {
if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
crypto_freesession(crp->crp_sid);
process = crypto_drivers[hid].cc_process;
} else {
process = NULL;
}
if (process == NULL) {
struct cryptodesc *crd;
u_int64_t nid;
/*
* Driver has unregistered; migrate the session and return
* an error to the caller so they'll resubmit the op.
*/
for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
crp->crp_sid = nid;
crp->crp_etype = EAGAIN;
crypto_done(crp);
return 0;
} else {
/*
* Invoke the driver to process the request.
*/
return (*process)(crypto_drivers[hid].cc_arg, crp, hint);
}
}
/*
* Release a set of crypto descriptors.
*/
void
crypto_freereq(struct cryptop *crp)
{
struct cryptodesc *crd;
if (crp == NULL)
return;
while ((crd = crp->crp_desc) != NULL) {
crp->crp_desc = crd->crd_next;
uma_zfree(cryptodesc_zone, crd);
}
uma_zfree(cryptop_zone, crp);
}
/*
* Acquire a set of crypto descriptors.
*/
struct cryptop *
crypto_getreq(int num)
{
struct cryptodesc *crd;
struct cryptop *crp;
crp = uma_zalloc(cryptop_zone, M_NOWAIT|M_ZERO);
if (crp != NULL) {
while (num--) {
crd = uma_zalloc(cryptodesc_zone, M_NOWAIT|M_ZERO);
if (crd == NULL) {
crypto_freereq(crp);
return NULL;
}
crd->crd_next = crp->crp_desc;
crp->crp_desc = crd;
}
}
return crp;
}
/*
* Invoke the callback on behalf of the driver.
*/
void
crypto_done(struct cryptop *crp)
{
KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
("crypto_done: op already done, flags 0x%x", crp->crp_flags));
crp->crp_flags |= CRYPTO_F_DONE;
if (crp->crp_etype != 0)
cryptostats.cs_errs++;
#ifdef CRYPTO_TIMING
if (crypto_timing)
crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
#endif
/*
* CBIMM means unconditionally do the callback immediately;
* CBIFSYNC means do the callback immediately only if the
* operation was done synchronously. Both are used to avoid
* doing extraneous context switches; the latter is mostly
* used with the software crypto driver.
*/
if ((crp->crp_flags & CRYPTO_F_CBIMM) ||
((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
(CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) {
/*
* Do the callback directly. This is ok when the
* callback routine does very little (e.g. the
* /dev/crypto callback method just does a wakeup).
*/
#ifdef CRYPTO_TIMING
if (crypto_timing) {
/*
* NB: We must copy the timestamp before
* doing the callback as the cryptop is
* likely to be reclaimed.
*/
struct bintime t = crp->crp_tstamp;
crypto_tstat(&cryptostats.cs_cb, &t);
crp->crp_callback(crp);
crypto_tstat(&cryptostats.cs_finis, &t);
} else
#endif
crp->crp_callback(crp);
} else {
int wasempty;
/*
* Normal case; queue the callback for the thread.
*/
CRYPTO_RETQ_LOCK();
wasempty = TAILQ_EMPTY(&crp_ret_q);
TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
if (wasempty)
wakeup_one(&crp_ret_q); /* shared wait channel */
CRYPTO_RETQ_UNLOCK();
}
}
/*
* Invoke the callback on behalf of the driver.
*/
void
crypto_kdone(struct cryptkop *krp)
{
int wasempty;
if (krp->krp_status != 0)
cryptostats.cs_kerrs++;
CRYPTO_RETQ_LOCK();
wasempty = TAILQ_EMPTY(&crp_ret_kq);
TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
if (wasempty)
wakeup_one(&crp_ret_q); /* shared wait channel */
CRYPTO_RETQ_UNLOCK();
}
int
crypto_getfeat(int *featp)
{
int hid, kalg, feat = 0;
if (!crypto_userasymcrypto)
goto out;
CRYPTO_DRIVER_LOCK();
for (hid = 0; hid < crypto_drivers_num; hid++) {
if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
!crypto_devallowsoft) {
continue;
}
if (crypto_drivers[hid].cc_kprocess == NULL)
continue;
for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
if ((crypto_drivers[hid].cc_kalg[kalg] &
CRYPTO_ALG_FLAG_SUPPORTED) != 0)
feat |= 1 << kalg;
}
CRYPTO_DRIVER_UNLOCK();
out:
*featp = feat;
return (0);
}
/*
* Terminate a thread at module unload. The process that
* initiated this is waiting for us to signal that we're gone;
* wake it up and exit. We use the driver table lock to insure
* we don't do the wakeup before they're waiting. There is no
* race here because the waiter sleeps on the proc lock for the
* thread so it gets notified at the right time because of an
* extra wakeup that's done in exit1().
*/
static void
crypto_finis(void *chan)
{
CRYPTO_DRIVER_LOCK();
wakeup_one(chan);
CRYPTO_DRIVER_UNLOCK();
kthread_exit(0);
}
/*
* Crypto thread, dispatches crypto requests.
*/
static void
crypto_proc(void)
{
struct cryptop *crp, *submit;
struct cryptkop *krp;
struct cryptocap *cap;
int result, hint;
CRYPTO_Q_LOCK();
for (;;) {
/*
* Find the first element in the queue that can be
* processed and look-ahead to see if multiple ops
* are ready for the same driver.
*/
submit = NULL;
hint = 0;
TAILQ_FOREACH(crp, &crp_q, crp_next) {
u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
cap = crypto_checkdriver(hid);
if (cap == NULL || cap->cc_process == NULL) {
/* Op needs to be migrated, process it. */
if (submit == NULL)
submit = crp;
break;
}
if (!cap->cc_qblocked) {
if (submit != NULL) {
/*
* We stop on finding another op,
* regardless whether its for the same
* driver or not. We could keep
* searching the queue but it might be
* better to just use a per-driver
* queue instead.
*/
if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
hint = CRYPTO_HINT_MORE;
break;
} else {
submit = crp;
if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
break;
/* keep scanning for more are q'd */
}
}
}
if (submit != NULL) {
TAILQ_REMOVE(&crp_q, submit, crp_next);
result = crypto_invoke(submit, hint);
if (result == ERESTART) {
/*
* The driver ran out of resources, mark the
* driver ``blocked'' for cryptop's and put
* the request back in the queue. It would
* best to put the request back where we got
* it but that's hard so for now we put it
* at the front. This should be ok; putting
* it at the end does not work.
*/
/* XXX validate sid again? */
crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
cryptostats.cs_blocks++;
}
}
/* As above, but for key ops */
TAILQ_FOREACH(krp, &crp_kq, krp_next) {
cap = crypto_checkdriver(krp->krp_hid);
if (cap == NULL || cap->cc_kprocess == NULL) {
/* Op needs to be migrated, process it. */
break;
}
if (!cap->cc_kqblocked)
break;
}
if (krp != NULL) {
TAILQ_REMOVE(&crp_kq, krp, krp_next);
result = crypto_kinvoke(krp, 0);
if (result == ERESTART) {
/*
* The driver ran out of resources, mark the
* driver ``blocked'' for cryptkop's and put
* the request back in the queue. It would
* best to put the request back where we got
* it but that's hard so for now we put it
* at the front. This should be ok; putting
* it at the end does not work.
*/
/* XXX validate sid again? */
crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
cryptostats.cs_kblocks++;
}
}
if (submit == NULL && krp == NULL) {
/*
* Nothing more to be processed. Sleep until we're
* woken because there are more ops to process.
* This happens either by submission or by a driver
* becoming unblocked and notifying us through
* crypto_unblock. Note that when we wakeup we
* start processing each queue again from the
* front. It's not clear that it's important to
* preserve this ordering since ops may finish
* out of order if dispatched to different devices
* and some become blocked while others do not.
*/
msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
if (cryptoproc == NULL)
break;
cryptostats.cs_intrs++;
}
}
CRYPTO_Q_UNLOCK();
crypto_finis(&crp_q);
}
/*
* Crypto returns thread, does callbacks for processed crypto requests.
* Callbacks are done here, rather than in the crypto drivers, because
* callbacks typically are expensive and would slow interrupt handling.
*/
static void
crypto_ret_proc(void)
{
struct cryptop *crpt;
struct cryptkop *krpt;
CRYPTO_RETQ_LOCK();
for (;;) {
/* Harvest return q's for completed ops */
crpt = TAILQ_FIRST(&crp_ret_q);
if (crpt != NULL)
TAILQ_REMOVE(&crp_ret_q, crpt, crp_next);
krpt = TAILQ_FIRST(&crp_ret_kq);
if (krpt != NULL)
TAILQ_REMOVE(&crp_ret_kq, krpt, krp_next);
if (crpt != NULL || krpt != NULL) {
CRYPTO_RETQ_UNLOCK();
/*
* Run callbacks unlocked.
*/
if (crpt != NULL) {
#ifdef CRYPTO_TIMING
if (crypto_timing) {
/*
* NB: We must copy the timestamp before
* doing the callback as the cryptop is
* likely to be reclaimed.
*/
struct bintime t = crpt->crp_tstamp;
crypto_tstat(&cryptostats.cs_cb, &t);
crpt->crp_callback(crpt);
crypto_tstat(&cryptostats.cs_finis, &t);
} else
#endif
crpt->crp_callback(crpt);
}
if (krpt != NULL)
krpt->krp_callback(krpt);
CRYPTO_RETQ_LOCK();
} else {
/*
* Nothing more to be processed. Sleep until we're
* woken because there are more returns to process.
*/
msleep(&crp_ret_q, &crypto_ret_q_mtx, PWAIT,
"crypto_ret_wait", 0);
if (cryptoretproc == NULL)
break;
cryptostats.cs_rets++;
}
}
CRYPTO_RETQ_UNLOCK();
crypto_finis(&crp_ret_q);
}