1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-19 10:53:58 +00:00
freebsd/sys/contrib/octeon-sdk/cvmx-nand.c
Juli Mallett 219d14fe5f Import the Cavium Simple Executive from the Cavium Octeon SDK. The Simple
Executive is a library that can be used by standalone applications and kernels
to abstract access to Octeon SoC and board-specific hardware and facilities.
The FreeBSD port to Octeon will be updated to use this where possible.
2010-07-20 07:19:43 +00:00

1720 lines
65 KiB
C

/***********************license start***************
* Copyright (c) 2003-2008 Cavium Networks (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* * Neither the name of Cavium Networks nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS
* OR WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH
* RESPECT TO THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY
* REPRESENTATION OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT
* DEFECTS, AND CAVIUM SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES
* OF TITLE, MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR
* PURPOSE, LACK OF VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET
* POSSESSION OR CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT
* OF USE OR PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
*
*
* For any questions regarding licensing please contact marketing@caviumnetworks.com
*
***********************license end**************************************/
/**
* @file
*
* Interface to the NAND flash controller.
* See cvmx-nand.h for usage documentation and notes.
*
* <hr>$Revision: 35726 $<hr>
*/
#include "cvmx.h"
#include "cvmx-nand.h"
#include "cvmx-swap.h"
#include "cvmx-bootmem.h"
#define NAND_COMMAND_READ_ID 0x90
#define NAND_COMMAND_READ_PARAM_PAGE 0xec
#define NAND_COMMAND_RESET 0xff
#define NAND_COMMAND_STATUS 0x70
#define NAND_COMMAND_READ 0x00
#define NAND_COMMAND_READ_FIN 0x30
#define NAND_COMMAND_ERASE 0x60
#define NAND_COMMAND_ERASE_FIN 0xd0
#define NAND_COMMAND_PROGRAM 0x80
#define NAND_COMMAND_PROGRAM_FIN 0x10
#define NAND_TIMEOUT_USECS 1000000
#define CVMX_NAND_ROUNDUP(_Dividend, _Divisor) (((_Dividend)+(_Divisor-1))/(_Divisor))
#undef min
#define min(X, Y) \
({ typeof (X) __x = (X), __y = (Y); \
(__x < __y) ? __x : __y; })
#undef max
#define max(X, Y) \
({ typeof (X) __x = (X), __y = (Y); \
(__x > __y) ? __x : __y; })
/* Structure to store the parameters that we care about that
** describe the ONFI speed modes. This is used to configure
** the flash timing to match what is reported in the
** parameter page of the ONFI flash chip. */
typedef struct
{
int twp;
int twh;
int twc;
int tclh;
int tals;
} onfi_speed_mode_desc_t;
static const onfi_speed_mode_desc_t onfi_speed_modes[] =
{
{50,30,100,20,50}, /* Mode 0 */
{25,15, 45,10,25}, /* Mode 1 */
{17,15, 35,10,15}, /* Mode 2 */
{15,10, 30, 5,10}, /* Mode 3 */
{12,10, 25, 5,10}, /* Mode 4, requires EDO timings */
{10, 7, 20, 5,10}, /* Mode 5, requries EDO timings */
};
/**
* Structure used to store data about the NAND devices hooked
* to the bootbus.
*/
typedef struct
{
int page_size;
int oob_size;
int pages_per_block;
int blocks;
int tim_mult;
int tim_par[8];
int clen[4];
int alen[4];
int rdn[4];
int wrn[2];
int onfi_timing;
} cvmx_nand_state_t;
/**
* Array indexed by bootbus chip select with information
* about NAND devices.
*/
#if defined(CVMX_BUILD_FOR_UBOOT) && CONFIG_OCTEON_NAND_STAGE2
/* For u-boot nand boot we need to play some tricks to be able
** to use this early in boot. We put them in a special section that is merged
** with the text segment. (Using the text segment directly results in an assembler warning.)
*/
#define USE_DATA_IN_TEXT
#endif
#ifdef USE_DATA_IN_TEXT
static uint8_t cvmx_nand_buffer[4096] __attribute__((aligned(8))) __attribute__ ((section (".data_in_text")));
static cvmx_nand_state_t cvmx_nand_state[8] __attribute__ ((section (".data_in_text")));
static cvmx_nand_initialize_flags_t cvmx_nand_flags __attribute__ ((section (".data_in_text")));
static int debug_indent __attribute__ ((section (".data_in_text")));
#else
static CVMX_SHARED cvmx_nand_state_t cvmx_nand_state[8];
static CVMX_SHARED cvmx_nand_initialize_flags_t cvmx_nand_flags;
static CVMX_SHARED uint8_t *cvmx_nand_buffer = NULL;
static int debug_indent = 0;
#endif
static CVMX_SHARED const char *cvmx_nand_opcode_labels[] =
{
"NOP", /* 0 */
"Timing", /* 1 */
"Wait", /* 2 */
"Chip Enable / Disable", /* 3 */
"CLE", /* 4 */
"ALE", /* 5 */
"6 - Unknown", /* 6 */
"7 - Unknown", /* 7 */
"Write", /* 8 */
"Read", /* 9 */
"Read EDO", /* 10 */
"Wait Status", /* 11 */
"12 - Unknown", /* 12 */
"13 - Unknown", /* 13 */
"14 - Unknown", /* 14 */
"Bus Aquire / Release" /* 15 */
};
#define ULL unsigned long long
/* This macro logs out whenever a function is called if debugging is on */
#define CVMX_NAND_LOG_CALLED() \
if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) \
cvmx_dprintf("%*s%s: called\n", 2*debug_indent++, "", __FUNCTION__);
/* This macro logs out each function parameter if debugging is on */
#define CVMX_NAND_LOG_PARAM(format, param) \
if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) \
cvmx_dprintf("%*s%s: param %s = " format "\n", 2*debug_indent, "", __FUNCTION__, #param, param);
/* This macro logs out when a function returns a value */
#define CVMX_NAND_RETURN(v) \
do { \
typeof(v) r = v; \
if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) \
cvmx_dprintf("%*s%s: returned %s(%d)\n", 2*--debug_indent, "", __FUNCTION__, #v, r); \
return r; \
} while (0);
/* This macro logs out when a function doesn't return a value */
#define CVMX_NAND_RETURN_NOTHING() \
do { \
if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) \
cvmx_dprintf("%*s%s: returned\n", 2*--debug_indent, "", __FUNCTION__); \
return; \
} while (0);
/* Compute the CRC for the ONFI parameter page. Adapted from sample code
** in the specification.
*/
static uint16_t __onfi_parameter_crc_compute(uint8_t *data)
{
const int order = 16; // Order of the CRC-16
unsigned long i, j, c, bit;
unsigned long crc = 0x4F4E; // Initialize the shift register with 0x4F4E
unsigned long crcmask = ((((unsigned long)1<<(order-1))-1)<<1)|1;
unsigned long crchighbit = (unsigned long)1<<(order-1);
for (i = 0; i < 254; i++)
{
c = (unsigned long)data[i];
for (j = 0x80; j; j >>= 1) {
bit = crc & crchighbit;
crc <<= 1;
if (c & j)
bit ^= crchighbit;
if (bit)
crc ^= 0x8005;
}
crc &= crcmask;
}
return(crc);
}
/**
* Validate the ONFI parameter page and return a pointer to
* the config values.
*
* @param param_page Pointer to the raw NAND data returned after a parameter page read. It will
* contain at least 4 copies of the parameter structure.
*
* @return Pointer to a validated paramter page, or NULL if one couldn't be found.
*/
static cvmx_nand_onfi_param_page_t *__cvmx_nand_onfi_process(cvmx_nand_onfi_param_page_t param_page[4])
{
int index;
for (index=0; index<4; index++)
{
uint16_t crc = __onfi_parameter_crc_compute((void *)&param_page[index]);
if (crc == cvmx_le16_to_cpu(param_page[index].crc))
break;
if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
cvmx_dprintf("%s: Paramter page %d is corrupt. (Expected CRC: 0x%04x, computed: 0x%04x)\n",
__FUNCTION__, index, cvmx_le16_to_cpu(param_page[index].crc), crc);
}
if (index == 4)
{
if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
cvmx_dprintf("%s: All parameter pages fail CRC check. Checking to see if any look sane.\n", __FUNCTION__);
if (!memcmp(param_page, param_page + 1, 256))
{
/* First and second copies match, now check some values */
if (param_page[0].pages_per_block != 0 && param_page[0].pages_per_block != 0xFFFFFFFF
&& param_page[0].page_data_bytes != 0 && param_page[0].page_data_bytes != 0xFFFFFFFF
&& param_page[0].page_spare_bytes != 0 && param_page[0].page_spare_bytes != 0xFFFF
&& param_page[0].blocks_per_lun != 0 && param_page[0].blocks_per_lun != 0xFFFFFFFF
&& param_page[0].timing_mode != 0 && param_page[0].timing_mode != 0xFFFF)
{
/* Looks like we have enough values to use */
if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
cvmx_dprintf("%s: Page 0 looks sane, using even though CRC fails.\n", __FUNCTION__);
index = 0;
}
}
}
if (index == 4)
{
cvmx_dprintf("%s: No valid ONFI parameter pages found.\n", __FUNCTION__);
return NULL;
}
if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
{
cvmx_dprintf("%*sONFI Information\n", 2*debug_indent, "");
debug_indent++;
cvmx_dprintf("%*sonfi = %c%c%c%c\n", 2*debug_indent, "", param_page[index].onfi[0], param_page[index].onfi[1],
param_page[index].onfi[2], param_page[index].onfi[3]);
cvmx_dprintf("%*srevision_number = 0x%x\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].revision_number));
cvmx_dprintf("%*sfeatures = 0x%x\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].features));
cvmx_dprintf("%*soptional_commands = 0x%x\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].optional_commands));
cvmx_dprintf("%*smanufacturer = %12.12s\n", 2*debug_indent, "", param_page[index].manufacturer);
cvmx_dprintf("%*smodel = %20.20s\n", 2*debug_indent, "", param_page[index].model);
cvmx_dprintf("%*sjedec_id = 0x%x\n", 2*debug_indent, "", param_page[index].jedec_id);
cvmx_dprintf("%*sdate_code = 0x%x\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].date_code));
cvmx_dprintf("%*spage_data_bytes = %u\n", 2*debug_indent, "", (int)cvmx_le32_to_cpu(param_page[index].page_data_bytes));
cvmx_dprintf("%*spage_spare_bytes = %u\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].page_spare_bytes));
cvmx_dprintf("%*spartial_page_data_bytes = %u\n", 2*debug_indent, "", (int)cvmx_le32_to_cpu(param_page[index].partial_page_data_bytes));
cvmx_dprintf("%*spartial_page_spare_bytes = %u\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].partial_page_spare_bytes));
cvmx_dprintf("%*spages_per_block = %u\n", 2*debug_indent, "", (int)cvmx_le32_to_cpu(param_page[index].pages_per_block));
cvmx_dprintf("%*sblocks_per_lun = %u\n", 2*debug_indent, "", (int)cvmx_le32_to_cpu(param_page[index].blocks_per_lun));
cvmx_dprintf("%*snumber_lun = %u\n", 2*debug_indent, "", param_page[index].number_lun);
cvmx_dprintf("%*saddress_cycles = 0x%x\n", 2*debug_indent, "", param_page[index].address_cycles);
cvmx_dprintf("%*sbits_per_cell = %u\n", 2*debug_indent, "", param_page[index].bits_per_cell);
cvmx_dprintf("%*sbad_block_per_lun = %u\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].bad_block_per_lun));
cvmx_dprintf("%*sblock_endurance = %u\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].block_endurance));
cvmx_dprintf("%*sgood_blocks = %u\n", 2*debug_indent, "", param_page[index].good_blocks);
cvmx_dprintf("%*sgood_block_endurance = %u\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].good_block_endurance));
cvmx_dprintf("%*sprograms_per_page = %u\n", 2*debug_indent, "", param_page[index].programs_per_page);
cvmx_dprintf("%*spartial_program_attrib = 0x%x\n", 2*debug_indent, "", param_page[index].partial_program_attrib);
cvmx_dprintf("%*sbits_ecc = %u\n", 2*debug_indent, "", param_page[index].bits_ecc);
cvmx_dprintf("%*sinterleaved_address_bits = 0x%x\n", 2*debug_indent, "", param_page[index].interleaved_address_bits);
cvmx_dprintf("%*sinterleaved_attrib = 0x%x\n", 2*debug_indent, "", param_page[index].interleaved_attrib);
cvmx_dprintf("%*spin_capacitance = %u\n", 2*debug_indent, "", param_page[index].pin_capacitance);
cvmx_dprintf("%*stiming_mode = 0x%x\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].timing_mode));
cvmx_dprintf("%*scache_timing_mode = 0x%x\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].cache_timing_mode));
cvmx_dprintf("%*st_prog = %d us\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].t_prog));
cvmx_dprintf("%*st_bers = %u us\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].t_bers));
cvmx_dprintf("%*st_r = %u us\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].t_r));
cvmx_dprintf("%*st_ccs = %u ns\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].t_ccs));
cvmx_dprintf("%*svendor_revision = 0x%x\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].vendor_revision));
//uint8_t vendor_specific[88]; /**< Byte 166-253: Vendor specific */
cvmx_dprintf("%*scrc = 0x%x\n", 2*debug_indent, "", param_page[index].crc);
debug_indent--;
}
return param_page + index;
}
void __set_onfi_timing_mode(int *tim_par, int clocks_us, int mode)
{
const onfi_speed_mode_desc_t *mp = &onfi_speed_modes[mode]; /* use shorter name to fill in timing array */
int margin;
int pulse_adjust;
if (mode > 5)
{
cvmx_dprintf("%s: invalid ONFI timing mode: %d\n", __FUNCTION__, mode);
return;
}
/* Adjust the read/write pulse duty cycle to make it more even. The cycle time
** requirement is longer than the sum of the high low times, so we exend both the high
** and low times to meet the cycle time requirement.
*/
pulse_adjust = ((mp->twc - mp->twh - mp->twp)/2 + 1) * clocks_us;
/* Add a small margin to all timings. */
margin = 2 * clocks_us;
/* Update timing parameters based on supported mode */
tim_par[1] = CVMX_NAND_ROUNDUP(mp->twp * clocks_us + margin + pulse_adjust, 1000); /* Twp, WE# pulse width */
tim_par[2] = CVMX_NAND_ROUNDUP(max(mp->twh, mp->twc - mp->twp) * clocks_us + margin + pulse_adjust, 1000); /* Tw, WE# pulse width high */
tim_par[3] = CVMX_NAND_ROUNDUP(mp->tclh * clocks_us + margin, 1000); /* Tclh, CLE hold time */
tim_par[4] = CVMX_NAND_ROUNDUP(mp->tals * clocks_us + margin, 1000); /* Tals, ALE setup time */
tim_par[5] = tim_par[3]; /* Talh, ALE hold time */
tim_par[6] = tim_par[1]; /* Trp, RE# pulse width*/
tim_par[7] = tim_par[2]; /* Treh, RE# high hold time */
}
/**
* Called to initialize the NAND controller for use. Note that
* you must be running out of L2 or memory and not NAND before
* calling this function.
*
* @param flags Optional initialization flags
* @param active_chips
* Each bit in this parameter represents a chip select that might
* contain NAND flash. Any chip select present in this bitmask may
* be connected to NAND. It is normally safe to pass 0xff here and
* let the API probe all 8 chip selects.
*
* @return Zero on success, a negative cvmx_nand_status_t error code on failure
*/
cvmx_nand_status_t cvmx_nand_initialize(cvmx_nand_initialize_flags_t flags, int active_chips)
{
int chip;
int start_chip;
int stop_chip;
uint64_t clocks_us;
cvmx_ndf_misc_t ndf_misc;
cvmx_nand_flags = flags;
CVMX_NAND_LOG_CALLED();
CVMX_NAND_LOG_PARAM("0x%x", flags);
memset(&cvmx_nand_state, 0, sizeof(cvmx_nand_state));
#ifndef USE_DATA_IN_TEXT
if (!cvmx_nand_buffer)
cvmx_nand_buffer = cvmx_bootmem_alloc(4096, 128);
#endif
if (!cvmx_nand_buffer)
CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
/* Disable boot mode and reset the fifo */
ndf_misc.u64 = cvmx_read_csr(CVMX_NDF_MISC);
ndf_misc.s.rd_cmd = 0;
ndf_misc.s.bt_dma = 0;
ndf_misc.s.bt_dis = 1;
ndf_misc.s.ex_dis = 0;
ndf_misc.s.rst_ff = 1;
cvmx_write_csr(CVMX_NDF_MISC, ndf_misc.u64);
cvmx_read_csr(CVMX_NDF_MISC);
/* Bring the fifo out of reset */
cvmx_wait_usec(1);
ndf_misc.s.rst_ff = 0;
cvmx_write_csr(CVMX_NDF_MISC, ndf_misc.u64);
cvmx_read_csr(CVMX_NDF_MISC);
cvmx_wait_usec(1);
/* Clear the ECC counter */
//cvmx_write_csr(CVMX_NDF_ECC_CNT, cvmx_read_csr(CVMX_NDF_ECC_CNT));
/* Clear the interrupt state */
cvmx_write_csr(CVMX_NDF_INT, cvmx_read_csr(CVMX_NDF_INT));
cvmx_write_csr(CVMX_NDF_INT_EN, 0);
cvmx_write_csr(CVMX_MIO_NDF_DMA_INT, cvmx_read_csr(CVMX_MIO_NDF_DMA_INT));
cvmx_write_csr(CVMX_MIO_NDF_DMA_INT_EN, 0);
if (cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DONT_PROBE)
CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
/* The simulator crashes if you access non existant devices. Assume
only chip select 1 is connected to NAND */
if (cvmx_sysinfo_get()->board_type == CVMX_BOARD_TYPE_SIM)
{
start_chip = 1;
stop_chip = 2;
}
else
{
start_chip = 0;
stop_chip = 8;
}
/* Figure out how many clocks are in one microsecond, rounding up */
clocks_us = CVMX_NAND_ROUNDUP(cvmx_sysinfo_get()->cpu_clock_hz, 1000000);
/* Probe and see what NAND flash we can find */
for (chip=start_chip; chip<stop_chip; chip++)
{
cvmx_mio_boot_reg_cfgx_t mio_boot_reg_cfg;
cvmx_nand_onfi_param_page_t *onfi_param_page;
/* Skip chip selects that the caller didn't supply in the active chip bits */
if (((1<<chip) & active_chips) == 0)
continue;
mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(chip));
/* Enabled regions can't be connected to NAND flash */
if (mio_boot_reg_cfg.s.en)
continue;
/* Start out with some sane, but slow, defaults */
cvmx_nand_state[chip].page_size = 0;
cvmx_nand_state[chip].oob_size = 64;
cvmx_nand_state[chip].pages_per_block = 64;
cvmx_nand_state[chip].blocks = 100;
cvmx_nand_state[chip].tim_mult = 0; /* Don't use a multiplier. Values are in cycles */
/* Set timing mode to ONFI mode 0 for initial accesses */
__set_onfi_timing_mode(cvmx_nand_state[chip].tim_par, clocks_us, 0);
/* Put the index of which timing parameter to use. The indexes are into the tim_par
** which match the indexes of the 8 timing parameters that the hardware supports.
** Index 0 is not software controlled, and is fixed by hardware. */
cvmx_nand_state[chip].clen[0] = 0; /* Command doesn't need to be held before WE */
cvmx_nand_state[chip].clen[1] = 1; /* Twp, WE# pulse width */
cvmx_nand_state[chip].clen[2] = 3; /* Tclh, CLE hold time */
cvmx_nand_state[chip].clen[3] = 1;
cvmx_nand_state[chip].alen[0] = 4; /* Tals, ALE setup time */
cvmx_nand_state[chip].alen[1] = 1; /* Twp, WE# pulse width */
cvmx_nand_state[chip].alen[2] = 2; /* Twh, WE# pulse width high */
cvmx_nand_state[chip].alen[3] = 5; /* Talh, ALE hold time */
cvmx_nand_state[chip].rdn[0] = 0;
cvmx_nand_state[chip].rdn[1] = 6; /* Trp, RE# pulse width*/
cvmx_nand_state[chip].rdn[2] = 7; /* Treh, RE# high hold time */
cvmx_nand_state[chip].rdn[3] = 0;
cvmx_nand_state[chip].wrn[0] = 1; /* Twp, WE# pulse width */
cvmx_nand_state[chip].wrn[1] = 2; /* Twh, WE# pulse width high */
/* Probe and see if we get an answer */
memset(cvmx_nand_buffer, 0xff, 8);
if (cvmx_nand_read_id(chip, 0x0, cvmx_ptr_to_phys(cvmx_nand_buffer), 8) < 4)
{
if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
cvmx_dprintf("%s: Failed to probe chip %d\n", __FUNCTION__, chip);
continue;
}
if (*(uint32_t*)cvmx_nand_buffer == 0xffffffff)
{
if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
cvmx_dprintf("%s: Probe returned nothing for chip %d\n", __FUNCTION__, chip);
continue;
}
if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
cvmx_dprintf("%s: NAND chip %d has ID 0x%08llx\n", __FUNCTION__, chip, (unsigned long long int)*(uint64_t*)cvmx_nand_buffer);
if (cvmx_nand_read_id(chip, 0x20, cvmx_ptr_to_phys(cvmx_nand_buffer), 4) < 4)
{
if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
cvmx_dprintf("%s: Failed to probe chip %d\n", __FUNCTION__, chip);
continue;
}
if (!((cvmx_nand_buffer[0] == 'O') && (cvmx_nand_buffer[1] == 'N') &&
(cvmx_nand_buffer[2] == 'F') && (cvmx_nand_buffer[3] == 'I')))
{
/* FIXME: This is where non ONFI NAND devices need to be handled */
if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
cvmx_dprintf("%s: Chip %d doesn't support ONFI, skipping\n", __FUNCTION__, chip);
continue;
}
cvmx_nand_read_param_page(chip, cvmx_ptr_to_phys(cvmx_nand_buffer), 1024);
onfi_param_page = __cvmx_nand_onfi_process((cvmx_nand_onfi_param_page_t *)cvmx_nand_buffer);
if (onfi_param_page)
{
/* ONFI NAND parts are described by a parameter page. Here we extract the configuration values
** from the parameter page that we need to access the chip. */
cvmx_nand_state[chip].page_size = cvmx_le32_to_cpu(onfi_param_page->page_data_bytes);
cvmx_nand_state[chip].oob_size = cvmx_le16_to_cpu(onfi_param_page->page_spare_bytes);
cvmx_nand_state[chip].pages_per_block = cvmx_le32_to_cpu(onfi_param_page->pages_per_block);
cvmx_nand_state[chip].blocks = cvmx_le32_to_cpu(onfi_param_page->blocks_per_lun) * onfi_param_page->number_lun;
if (cvmx_le16_to_cpu(onfi_param_page->timing_mode) <= 0x3f)
{
int mode_mask = cvmx_le16_to_cpu(onfi_param_page->timing_mode);
int mode = 0;
int i;
for (i = 0; i < 6;i++)
{
if (mode_mask & (1 << i))
mode = i;
}
cvmx_nand_state[chip].onfi_timing = mode;
}
else
{
cvmx_dprintf("%s: Invalid timing mode (%d) in ONFI parameter page, ignoring\n", __FUNCTION__, cvmx_nand_state[chip].onfi_timing);
cvmx_nand_state[chip].onfi_timing = 0;
}
if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
cvmx_dprintf("%s: Using ONFI timing mode: %d\n", __FUNCTION__, cvmx_nand_state[chip].onfi_timing);
__set_onfi_timing_mode(cvmx_nand_state[chip].tim_par, clocks_us, cvmx_nand_state[chip].onfi_timing);
}
else
{
/* We did not find a valid parameter page in the FLASH part. This means that the part
** does not provide the parameter page that ONFI requires. In this case, hard coded defaults
** can be used, but they _must_ be updated to match the flash used.
*/
/* Enable this code to force a configuration for NAND chip that doesn't have a proper parameter page.
** ONFI requires a parameter page, so this should not be needed for compliant chips */
/* The default values below are for the Numonyx NAND08GW3B2CN6E part */
#define NAND_SIZE_BITS (8*1024*1024*1024ULL)
cvmx_nand_state[chip].page_size = 2048; /* NAND page size in bytes */
cvmx_nand_state[chip].oob_size = 64; /* NAND OOB (spare) size in bytes (per page) */
cvmx_nand_state[chip].pages_per_block = 64;
cvmx_nand_state[chip].blocks = (NAND_SIZE_BITS)/(8ULL*cvmx_nand_state[chip].page_size*cvmx_nand_state[chip].pages_per_block);
cvmx_nand_state[chip].onfi_timing = 2;
cvmx_dprintf("%s: WARNING: No valid ONFI parameter page found, using fixed defaults.\n", __FUNCTION__);
cvmx_dprintf("%s: Defaults: page size: %d, OOB size: %d, pages per block %d, part size: %d MBytes, timing mode: %d\n",
__FUNCTION__, cvmx_nand_state[chip].page_size, cvmx_nand_state[chip].oob_size, cvmx_nand_state[chip].pages_per_block,
(int)(NAND_SIZE_BITS/(8*1024*1024)), cvmx_nand_state[chip].onfi_timing);
__set_onfi_timing_mode(cvmx_nand_state[chip].tim_par, clocks_us, cvmx_nand_state[chip].onfi_timing);
}
}
CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
}
/**
* Call to shutdown the NAND controller after all transactions
* are done. In most setups this will never be called.
*
* @return Zero on success, a negative cvmx_nand_status_t error code on failure
*/
cvmx_nand_status_t cvmx_nand_shutdown(void)
{
CVMX_NAND_LOG_CALLED();
memset(&cvmx_nand_state, 0, sizeof(cvmx_nand_state));
CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
}
/**
* Returns a bitmask representing the chip selects that are
* connected to NAND chips. This can be called after the
* initialize to determine the actual number of NAND chips
* found. Each bit in the response coresponds to a chip select.
*
* @return Zero if no NAND chips were found. Otherwise a bit is set for
* each chip select (1<<chip).
*/
int cvmx_nand_get_active_chips(void)
{
int chip;
int result = 0;
for (chip=0; chip<8; chip++)
{
if (cvmx_nand_state[chip].page_size)
result |= 1<<chip;
}
return result;
}
/**
* Override the timing parameters for a NAND chip
*
* @param chip Chip select to override
* @param tim_mult
* @param tim_par
* @param clen
* @param alen
* @param rdn
* @param wrn
*
* @return Zero on success, a negative cvmx_nand_status_t error code on failure
*/
cvmx_nand_status_t cvmx_nand_set_timing(int chip, int tim_mult, int tim_par[8], int clen[4], int alen[4], int rdn[4], int wrn[2])
{
int i;
CVMX_NAND_LOG_CALLED();
if ((chip < 0) || (chip > 7))
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
if (!cvmx_nand_state[chip].page_size)
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
cvmx_nand_state[chip].tim_mult = tim_mult;
for (i=0;i<8;i++)
cvmx_nand_state[chip].tim_par[i] = tim_par[i];
for (i=0;i<4;i++)
cvmx_nand_state[chip].clen[i] = clen[i];
for (i=0;i<4;i++)
cvmx_nand_state[chip].alen[i] = alen[i];
for (i=0;i<4;i++)
cvmx_nand_state[chip].rdn[i] = rdn[i];
for (i=0;i<2;i++)
cvmx_nand_state[chip].wrn[i] = wrn[i];
CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
}
/**
* @INTERNAL
* Get the number of free bytes in the NAND command queue
*
* @return Number of bytes in queue
*/
static inline int __cvmx_nand_get_free_cmd_bytes(void)
{
cvmx_ndf_misc_t ndf_misc;
CVMX_NAND_LOG_CALLED();
ndf_misc.u64 = cvmx_read_csr(CVMX_NDF_MISC);
CVMX_NAND_RETURN((int)ndf_misc.s.fr_byt);
}
/**
* Submit a command to the NAND command queue. Generally this
* will not be used directly. Instead most programs will use the other
* higher level NAND functions.
*
* @param cmd Command to submit
*
* @return Zero on success, a negative cvmx_nand_status_t error code on failure
*/
cvmx_nand_status_t cvmx_nand_submit(cvmx_nand_cmd_t cmd)
{
CVMX_NAND_LOG_CALLED();
CVMX_NAND_LOG_PARAM("0x%llx", (ULL)cmd.u64[0]);
CVMX_NAND_LOG_PARAM("0x%llx", (ULL)cmd.u64[1]);
CVMX_NAND_LOG_PARAM("%s", cvmx_nand_opcode_labels[cmd.s.op_code]);
switch (cmd.s.op_code)
{
/* All these commands fit in one 64bit word */
case 0: /* NOP */
case 1: /* Timing */
case 2: /* WAIT */
case 3: /* Chip Enable/Disable */
case 4: /* CLE */
case 8: /* Write */
case 9: /* Read */
case 10: /* Read EDO */
case 15: /* Bus Aquire/Release */
if (__cvmx_nand_get_free_cmd_bytes() < 8)
CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
cvmx_write_csr(CVMX_NDF_CMD, cmd.u64[1]);
CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
case 5: /* ALE commands take either one or two 64bit words */
if (cmd.ale.adr_byte_num < 5)
{
if (__cvmx_nand_get_free_cmd_bytes() < 8)
CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
cvmx_write_csr(CVMX_NDF_CMD, cmd.u64[1]);
CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
}
else
{
if (__cvmx_nand_get_free_cmd_bytes() < 16)
CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
cvmx_write_csr(CVMX_NDF_CMD, cmd.u64[1]);
cvmx_write_csr(CVMX_NDF_CMD, cmd.u64[0]);
CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
}
case 11: /* Wait status commands take two 64bit words */
if (__cvmx_nand_get_free_cmd_bytes() < 16)
CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
cvmx_write_csr(CVMX_NDF_CMD, cmd.u64[1]);
cvmx_write_csr(CVMX_NDF_CMD, cmd.u64[0]);
CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
default:
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
}
}
/**
* @INTERNAL
* Get the number of bits required to encode the column bits. This
* does not include padding to align on a byte boundary.
*
* @param chip NAND chip to get data for
*
* @return Number of column bits
*/
static inline int __cvmx_nand_get_column_bits(int chip)
{
return cvmx_pop(cvmx_nand_state[chip].page_size - 1);
}
/**
* @INTERNAL
* Get the number of bits required to encode the row bits. This
* does not include padding to align on a byte boundary.
*
* @param chip NAND chip to get data for
*
* @return Number of row bits
*/
static inline int __cvmx_nand_get_row_bits(int chip)
{
return cvmx_pop(cvmx_nand_state[chip].blocks-1) + cvmx_pop(cvmx_nand_state[chip].pages_per_block-1);
}
/**
* @INTERNAL
* Get the number of address cycles required for this NAND part.
* This include column bits, padding, page bits, and block bits.
*
* @param chip NAND chip to get data for
*
* @return Number of address cycles on the bus
*/
static inline int __cvmx_nand_get_address_cycles(int chip)
{
int address_bits = ((__cvmx_nand_get_column_bits(chip) + 7) >> 3) << 3;
address_bits += ((__cvmx_nand_get_row_bits(chip) + 7) >> 3) << 3;
return (address_bits + 7) >> 3;
}
/**
* @INTERNAL
* Build the set of command common to most transactions
* @param chip NAND chip to program
* @param cmd_data NAND comamnd for CLE cycle 1
* @param num_address_cycles
* Number of address cycles to put on the bus
* @param nand_address
* Data to be put on the bus. It is translated according to
* the rules in the file information section.
*
* @param cmd_data2 If non zero, adds a second CLE cycle used by a number of NAND
* transactions.
*
* @return Zero on success, a negative cvmx_nand_status_t error code on failure
*/
static inline cvmx_nand_status_t __cvmx_nand_build_pre_cmd(int chip, int cmd_data, int num_address_cycles, uint64_t nand_address, int cmd_data2)
{
cvmx_nand_status_t result;
cvmx_nand_cmd_t cmd;
CVMX_NAND_LOG_CALLED();
/* Send timing parameters */
memset(&cmd, 0, sizeof(cmd));
cmd.set_tm_par.one = 1;
cmd.set_tm_par.tim_mult = cvmx_nand_state[chip].tim_mult;
/* tim_par[0] unused */
cmd.set_tm_par.tim_par1 = cvmx_nand_state[chip].tim_par[1];
cmd.set_tm_par.tim_par2 = cvmx_nand_state[chip].tim_par[2];
cmd.set_tm_par.tim_par3 = cvmx_nand_state[chip].tim_par[3];
cmd.set_tm_par.tim_par4 = cvmx_nand_state[chip].tim_par[4];
cmd.set_tm_par.tim_par5 = cvmx_nand_state[chip].tim_par[5];
cmd.set_tm_par.tim_par6 = cvmx_nand_state[chip].tim_par[6];
cmd.set_tm_par.tim_par7 = cvmx_nand_state[chip].tim_par[7];
result = cvmx_nand_submit(cmd);
if (result)
CVMX_NAND_RETURN(result);
/* Send bus select */
memset(&cmd, 0, sizeof(cmd));
cmd.bus_acq.fifteen = 15;
cmd.bus_acq.one = 1;
result = cvmx_nand_submit(cmd);
if (result)
CVMX_NAND_RETURN(result);
/* Send chip select */
memset(&cmd, 0, sizeof(cmd));
cmd.chip_en.chip = chip;
cmd.chip_en.one = 1;
cmd.chip_en.three = 3;
cmd.chip_en.width = (cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_16BIT) ? 2 : 1;
result = cvmx_nand_submit(cmd);
if (result)
CVMX_NAND_RETURN(result);
/* Send wait, fixed time
** This meets chip enable to command latch enable timing.
** This is tCS - tCLS from the ONFI spec.
** Use tWP as a proxy, as this is adequate for
** all ONFI 1.0 timing modes. */
memset(&cmd, 0, sizeof(cmd));
cmd.wait.two = 2;
cmd.wait.n = 1;
if (cvmx_nand_submit(cmd))
CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
/* Send CLE */
memset(&cmd, 0, sizeof(cmd));
cmd.cle.cmd_data = cmd_data;
cmd.cle.clen1 = cvmx_nand_state[chip].clen[0];
cmd.cle.clen2 = cvmx_nand_state[chip].clen[1];
cmd.cle.clen3 = cvmx_nand_state[chip].clen[2];
cmd.cle.four = 4;
result = cvmx_nand_submit(cmd);
if (result)
CVMX_NAND_RETURN(result);
/* Send ALE */
if (num_address_cycles)
{
memset(&cmd, 0, sizeof(cmd));
cmd.ale.adr_byte_num = num_address_cycles;
if (num_address_cycles < __cvmx_nand_get_address_cycles(chip))
{
cmd.ale.adr_bytes_l = nand_address;
cmd.ale.adr_bytes_h = nand_address >> 32;
}
else
{
int column_bits = __cvmx_nand_get_column_bits(chip);
int column_shift = ((column_bits + 7) >> 3) << 3;
int column = nand_address & (cvmx_nand_state[chip].page_size-1);
int row = nand_address >> column_bits;
cmd.ale.adr_bytes_l = column + (row << column_shift);
cmd.ale.adr_bytes_h = row >> (32 - column_shift);
}
cmd.ale.alen1 = cvmx_nand_state[chip].alen[0];
cmd.ale.alen2 = cvmx_nand_state[chip].alen[1];
cmd.ale.alen3 = cvmx_nand_state[chip].alen[2];
cmd.ale.alen4 = cvmx_nand_state[chip].alen[3];
cmd.ale.five = 5;
result = cvmx_nand_submit(cmd);
if (result)
CVMX_NAND_RETURN(result);
}
/* Send CLE 2 */
if (cmd_data2)
{
memset(&cmd, 0, sizeof(cmd));
cmd.cle.cmd_data = cmd_data2;
cmd.cle.clen1 = cvmx_nand_state[chip].clen[0];
cmd.cle.clen2 = cvmx_nand_state[chip].clen[1];
cmd.cle.clen3 = cvmx_nand_state[chip].clen[2];
cmd.cle.four = 4;
result = cvmx_nand_submit(cmd);
if (result)
CVMX_NAND_RETURN(result);
}
CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
}
/**
* @INTERNAL
* Build the set of command common to most transactions
* @return Zero on success, a negative cvmx_nand_status_t error code on failure
*/
static inline cvmx_nand_status_t __cvmx_nand_build_post_cmd(void)
{
cvmx_nand_status_t result;
cvmx_nand_cmd_t cmd;
CVMX_NAND_LOG_CALLED();
/* Send chip deselect */
memset(&cmd, 0, sizeof(cmd));
cmd.chip_dis.three = 3;
result = cvmx_nand_submit(cmd);
if (result)
CVMX_NAND_RETURN(result);
/* Send bus release */
memset(&cmd, 0, sizeof(cmd));
cmd.bus_rel.fifteen = 15;
result = cvmx_nand_submit(cmd);
if (result)
CVMX_NAND_RETURN(result);
/* Ring the doorbell */
cvmx_write_csr(CVMX_NDF_DRBELL, 1);
CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
}
/**
* @INTERNAL
* Setup the NAND DMA engine for a transfer
*
* @param chip Chip select for NAND flash
* @param is_write Non zero if this is a write
* @param buffer_address
* Physical memory address to DMA to/from
* @param buffer_length
* Length of the DMA in bytes
*/
static inline void __cvmx_nand_setup_dma(int chip, int is_write, uint64_t buffer_address, int buffer_length)
{
cvmx_mio_ndf_dma_cfg_t ndf_dma_cfg;
CVMX_NAND_LOG_CALLED();
CVMX_NAND_LOG_PARAM("%d", chip);
CVMX_NAND_LOG_PARAM("%d", is_write);
CVMX_NAND_LOG_PARAM("0x%llx", (ULL)buffer_address);
CVMX_NAND_LOG_PARAM("%d", buffer_length);
ndf_dma_cfg.u64 = 0;
ndf_dma_cfg.s.en = 1;
ndf_dma_cfg.s.rw = is_write; /* One means DMA reads from memory and writes to flash */
ndf_dma_cfg.s.clr = 0;
ndf_dma_cfg.s.size = ((buffer_length + 7) >> 3) - 1;
ndf_dma_cfg.s.adr = buffer_address;
CVMX_SYNCWS;
cvmx_write_csr(CVMX_MIO_NDF_DMA_CFG, ndf_dma_cfg.u64);
CVMX_NAND_RETURN_NOTHING();
}
/**
* Dump a buffer out in hex for debug
*
* @param buffer_address
* Starting physical address
* @param buffer_length
* Number of bytes to display
*/
static void __cvmx_nand_hex_dump(uint64_t buffer_address, int buffer_length)
{
uint8_t *buffer = cvmx_phys_to_ptr(buffer_address);
int offset = 0;
while (offset < buffer_length)
{
int i;
cvmx_dprintf("%*s%04x:", 2*debug_indent, "", offset);
for (i=0; i<32; i++)
{
if ((i&3) == 0)
cvmx_dprintf(" ");
if (offset+i < buffer_length)
cvmx_dprintf("%02x", 0xff & buffer[offset+i]);
else
cvmx_dprintf(" ");
}
cvmx_dprintf("\n");
offset += 32;
}
}
/**
* @INTERNAL
* Perform a low level NAND read command
*
* @param chip Chip to read from
* @param nand_command1
* First command cycle value
* @param address_cycles
* Number of address cycles after comand 1
* @param nand_address
* NAND address to use for address cycles
* @param nand_command2
* NAND comamnd cycle 2 if not zero
* @param buffer_address
* Physical address to DMA into
* @param buffer_length
* Length of the transfer in bytes
*
* @return Number of bytes transfered or a negative error code
*/
static inline int __cvmx_nand_low_level_read(int chip, int nand_command1, int address_cycles, uint64_t nand_address, int nand_command2, uint64_t buffer_address, int buffer_length)
{
cvmx_nand_cmd_t cmd;
cvmx_mio_ndf_dma_cfg_t ndf_dma_cfg;
int bytes;
CVMX_NAND_LOG_CALLED();
CVMX_NAND_LOG_PARAM("%d", chip);
CVMX_NAND_LOG_PARAM("0x%x", nand_command1);
CVMX_NAND_LOG_PARAM("%d", address_cycles);
CVMX_NAND_LOG_PARAM("0x%llx", (ULL)nand_address);
CVMX_NAND_LOG_PARAM("0x%x", nand_command2);
CVMX_NAND_LOG_PARAM("0x%llx", (ULL)buffer_address);
CVMX_NAND_LOG_PARAM("%d", buffer_length);
if ((chip < 0) || (chip > 7))
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
if (!buffer_address)
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
if (buffer_address & 7)
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
if (!buffer_length)
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
/* Build the command and address cycles */
if (__cvmx_nand_build_pre_cmd(chip, nand_command1, address_cycles, nand_address, nand_command2))
CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
/* Send WAIT. This waits for some time, then
** waits for busy to be de-asserted. */
memset(&cmd, 0, sizeof(cmd));
cmd.wait.two = 2;
cmd.wait.r_b=1;
cmd.wait.n = 1;
if (cvmx_nand_submit(cmd))
CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
/* Wait for tRR after busy de-asserts.
** Use 2* tALS as proxy. This is overkill in
** the slow modes, but not bad in the faster ones. */
cmd.wait.r_b=0;
cmd.wait.n=4;
if (cvmx_nand_submit(cmd))
CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
if (cvmx_nand_submit(cmd))
CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
/* Send READ */
memset(&cmd, 0, sizeof(cmd));
cmd.rd.data_bytes = buffer_length;
if (cvmx_nand_state[chip].onfi_timing >= 4)
cmd.rd.nine = 10; /* READ_EDO command is required for ONFI timing modes 4 and 5 */
else
cmd.rd.nine = 9;
cmd.rd.rdn1 = cvmx_nand_state[chip].rdn[0];
cmd.rd.rdn2 = cvmx_nand_state[chip].rdn[1];
cmd.rd.rdn3 = cvmx_nand_state[chip].rdn[2];
cmd.rd.rdn4 = cvmx_nand_state[chip].rdn[3];
if (cvmx_nand_submit(cmd))
CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
__cvmx_nand_setup_dma(chip, 0, buffer_address, buffer_length);
if (__cvmx_nand_build_post_cmd())
CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
/* Wait for the DMA to complete */
if (CVMX_WAIT_FOR_FIELD64(CVMX_MIO_NDF_DMA_CFG, cvmx_mio_ndf_dma_cfg_t, en, ==, 0, NAND_TIMEOUT_USECS))
CVMX_NAND_RETURN(CVMX_NAND_TIMEOUT);
/* Return the number of bytes transfered */
ndf_dma_cfg.u64 = cvmx_read_csr(CVMX_MIO_NDF_DMA_CFG);
bytes = ndf_dma_cfg.s.adr - buffer_address;
if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
__cvmx_nand_hex_dump(buffer_address, bytes);
CVMX_NAND_RETURN(bytes);
}
/**
* Read a page from NAND. If the buffer has room, the out of band
* data will be included.
*
* @param chip Chip select for NAND flash
* @param nand_address
* Location in NAND to read. See description in file comment
* @param buffer_address
* Physical address to store the result at
* @param buffer_length
* Number of bytes to read
*
* @return Bytes read on success, a negative cvmx_nand_status_t error code on failure
*/
int cvmx_nand_page_read(int chip, uint64_t nand_address, uint64_t buffer_address, int buffer_length)
{
int bytes;
CVMX_NAND_LOG_CALLED();
CVMX_NAND_LOG_PARAM("%d", chip);
CVMX_NAND_LOG_PARAM("0x%llx", (ULL)nand_address);
CVMX_NAND_LOG_PARAM("0x%llx", (ULL)buffer_address);
CVMX_NAND_LOG_PARAM("%d", buffer_length);
if ((chip < 0) || (chip > 7))
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
if (!cvmx_nand_state[chip].page_size)
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
if (!buffer_address)
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
if (buffer_address & 7)
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
if (!buffer_length)
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
bytes = __cvmx_nand_low_level_read(chip, NAND_COMMAND_READ, __cvmx_nand_get_address_cycles(chip), nand_address, NAND_COMMAND_READ_FIN, buffer_address, buffer_length);
CVMX_NAND_RETURN(bytes);
}
/**
* Write a page to NAND. The buffer must contain the entire page
* including the out of band data.
*
* @param chip Chip select for NAND flash
* @param nand_address
* Location in NAND to write. See description in file comment
* @param buffer_address
* Physical address to read the data from
*
* @return Zero on success, a negative cvmx_nand_status_t error code on failure
*/
cvmx_nand_status_t cvmx_nand_page_write(int chip, uint64_t nand_address, uint64_t buffer_address)
{
cvmx_nand_cmd_t cmd;
int buffer_length;
CVMX_NAND_LOG_CALLED();
CVMX_NAND_LOG_PARAM("%d", chip);
CVMX_NAND_LOG_PARAM("0x%llx", (ULL)nand_address);
CVMX_NAND_LOG_PARAM("0x%llx", (ULL)buffer_address);
if ((chip < 0) || (chip > 7))
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
if (!cvmx_nand_state[chip].page_size)
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
if (!buffer_address)
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
if (buffer_address & 7)
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
buffer_length = cvmx_nand_state[chip].page_size + cvmx_nand_state[chip].oob_size;
/* Build the command and address cycles */
if (__cvmx_nand_build_pre_cmd(chip, NAND_COMMAND_PROGRAM, __cvmx_nand_get_address_cycles(chip), nand_address, 0))
CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
/* Send WRITE */
memset(&cmd, 0, sizeof(cmd));
cmd.wr.data_bytes = buffer_length;
cmd.wr.eight = 8;
cmd.wr.wrn1 = cvmx_nand_state[chip].wrn[0];
cmd.wr.wrn2 = cvmx_nand_state[chip].wrn[1];
if (cvmx_nand_submit(cmd))
CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
/* Send WRITE command */
memset(&cmd, 0, sizeof(cmd));
cmd.cle.cmd_data = NAND_COMMAND_PROGRAM_FIN;
cmd.cle.clen1 = cvmx_nand_state[chip].clen[0];
cmd.cle.clen2 = cvmx_nand_state[chip].clen[1];
cmd.cle.clen3 = cvmx_nand_state[chip].clen[2];
cmd.cle.four = 4;
if (cvmx_nand_submit(cmd))
CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
__cvmx_nand_setup_dma(chip, 1, buffer_address, buffer_length);
/* WAIT for R_B to signal program is complete */
memset(&cmd, 0, sizeof(cmd));
cmd.wait.two = 2;
cmd.wait.r_b=1;
cmd.wait.n = 1;
if (cvmx_nand_submit(cmd))
CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
if (__cvmx_nand_build_post_cmd())
CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
/* Wait for the DMA to complete */
if (CVMX_WAIT_FOR_FIELD64(CVMX_MIO_NDF_DMA_CFG, cvmx_mio_ndf_dma_cfg_t, en, ==, 0, NAND_TIMEOUT_USECS))
CVMX_NAND_RETURN(CVMX_NAND_TIMEOUT);
CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
}
/**
* Erase a NAND block. A single block contains multiple pages.
*
* @param chip Chip select for NAND flash
* @param nand_address
* Location in NAND to erase. See description in file comment
*
* @return Zero on success, a negative cvmx_nand_status_t error code on failure
*/
cvmx_nand_status_t cvmx_nand_block_erase(int chip, uint64_t nand_address)
{
cvmx_nand_cmd_t cmd;
CVMX_NAND_LOG_CALLED();
CVMX_NAND_LOG_PARAM("%d", chip);
CVMX_NAND_LOG_PARAM("0x%llx", (ULL)nand_address);
if ((chip < 0) || (chip > 7))
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
if (!cvmx_nand_state[chip].page_size)
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
/* Build the command and address cycles */
if (__cvmx_nand_build_pre_cmd(chip, NAND_COMMAND_ERASE,
(__cvmx_nand_get_row_bits(chip)+7) >> 3,
nand_address >> __cvmx_nand_get_column_bits(chip),
NAND_COMMAND_ERASE_FIN))
CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
/* WAIT for R_B to signal erase is complete */
memset(&cmd, 0, sizeof(cmd));
cmd.wait.two = 2;
cmd.wait.r_b=1;
cmd.wait.n = 1;
if (cvmx_nand_submit(cmd))
CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
if (__cvmx_nand_build_post_cmd())
CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
/* Wait for the command queue to be idle, which means the wait is done */
if (CVMX_WAIT_FOR_FIELD64(CVMX_NDF_ST_REG, cvmx_ndf_st_reg_t, exe_idle, ==, 1, NAND_TIMEOUT_USECS))
CVMX_NAND_RETURN(CVMX_NAND_TIMEOUT);
CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
}
/**
* Read the NAND ID information
*
* @param chip Chip select for NAND flash
* @param nand_address
* NAND address to read ID from. Usually this is either 0x0 or 0x20.
* @param buffer_address
* Physical address to store data in
* @param buffer_length
* Length of the buffer. Usually this is 4 bytes
*
* @return Bytes read on success, a negative cvmx_nand_status_t error code on failure
*/
int cvmx_nand_read_id(int chip, uint64_t nand_address, uint64_t buffer_address, int buffer_length)
{
int bytes;
CVMX_NAND_LOG_CALLED();
CVMX_NAND_LOG_PARAM("%d", chip);
CVMX_NAND_LOG_PARAM("0x%llx", (ULL)nand_address);
CVMX_NAND_LOG_PARAM("0x%llx", (ULL)buffer_address);
CVMX_NAND_LOG_PARAM("%d", buffer_length);
if ((chip < 0) || (chip > 7))
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
if (!buffer_address)
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
if (buffer_address & 7)
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
if (!buffer_length)
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
bytes = __cvmx_nand_low_level_read(chip, NAND_COMMAND_READ_ID, 1, nand_address, 0, buffer_address, buffer_length);
CVMX_NAND_RETURN(bytes);
}
/**
* Read the NAND parameter page
*
* @param chip Chip select for NAND flash
* @param buffer_address
* Physical address to store data in
* @param buffer_length
* Length of the buffer. Usually this is 4 bytes
*
* @return Bytes read on success, a negative cvmx_nand_status_t error code on failure
*/
int cvmx_nand_read_param_page(int chip, uint64_t buffer_address, int buffer_length)
{
int bytes;
CVMX_NAND_LOG_CALLED();
CVMX_NAND_LOG_PARAM("%d", chip);
CVMX_NAND_LOG_PARAM("0x%llx", (ULL)buffer_address);
CVMX_NAND_LOG_PARAM("%d", buffer_length);
if ((chip < 0) || (chip > 7))
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
if (!buffer_address)
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
if (buffer_address & 7)
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
if (!buffer_length)
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
bytes = __cvmx_nand_low_level_read(chip, NAND_COMMAND_READ_PARAM_PAGE, 1, 0x0, 0, buffer_address, buffer_length);
CVMX_NAND_RETURN(bytes);
}
/**
* Get the status of the NAND flash
*
* @param chip Chip select for NAND flash
*
* @return NAND status or a negative cvmx_nand_status_t error code on failure
*/
int cvmx_nand_get_status(int chip)
{
int status;
CVMX_NAND_LOG_CALLED();
CVMX_NAND_LOG_PARAM("%d", chip);
if ((chip < 0) || (chip > 7))
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
*(uint8_t*)cvmx_nand_buffer = 0xff;
status = __cvmx_nand_low_level_read(chip, NAND_COMMAND_STATUS, 0, 0, 0, cvmx_ptr_to_phys(cvmx_nand_buffer), (cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_16BIT) ? 2 : 1);
if (status > 0)
status = *(uint8_t*)cvmx_nand_buffer;
CVMX_NAND_RETURN(status);
}
/**
* Get the page size, excluding out of band data. This function
* will return zero for chip selects not connected to NAND.
*
* @param chip Chip select for NAND flash
*
* @return Page size in bytes or a negative cvmx_nand_status_t error code on failure
*/
int cvmx_nand_get_page_size(int chip)
{
CVMX_NAND_LOG_CALLED();
CVMX_NAND_LOG_PARAM("%d", chip);
if ((chip < 0) || (chip > 7))
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
CVMX_NAND_RETURN(cvmx_nand_state[chip].page_size);
}
/**
* Get the OOB size.
*
* @param chip Chip select for NAND flash
*
* @return OOB in bytes or a negative cvmx_nand_status_t error code on failure
*/
int cvmx_nand_get_oob_size(int chip)
{
CVMX_NAND_LOG_CALLED();
CVMX_NAND_LOG_PARAM("%d", chip);
if ((chip < 0) || (chip > 7))
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
CVMX_NAND_RETURN(cvmx_nand_state[chip].oob_size);
}
/**
* Get the number of pages per NAND block
*
* @param chip Chip select for NAND flash
*
* @return Number of pages in each block or a negative cvmx_nand_status_t error
* code on failure
*/
int cvmx_nand_get_pages_per_block(int chip)
{
CVMX_NAND_LOG_CALLED();
CVMX_NAND_LOG_PARAM("%d", chip);
if ((chip < 0) || (chip > 7))
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
CVMX_NAND_RETURN(cvmx_nand_state[chip].pages_per_block);
}
/**
* Get the number of blocks in the NAND flash
*
* @param chip Chip select for NAND flash
*
* @return Number of blocks or a negative cvmx_nand_status_t error code on failure
*/
int cvmx_nand_get_blocks(int chip)
{
CVMX_NAND_LOG_CALLED();
CVMX_NAND_LOG_PARAM("%d", chip);
if ((chip < 0) || (chip > 7))
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
CVMX_NAND_RETURN(cvmx_nand_state[chip].blocks);
}
/**
* Reset the NAND flash
*
* @param chip Chip select for NAND flash
*
* @return Zero on success, a negative cvmx_nand_status_t error code on failure
*/
cvmx_nand_status_t cvmx_nand_reset(int chip)
{
cvmx_nand_cmd_t cmd;
CVMX_NAND_LOG_CALLED();
CVMX_NAND_LOG_PARAM("%d", chip);
if ((chip < 0) || (chip > 7))
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
if (!cvmx_nand_state[chip].page_size)
CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
if (__cvmx_nand_build_pre_cmd(chip, NAND_COMMAND_RESET, 0, 0, 0))
CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
/* WAIT for R_B to signal reset is complete */
memset(&cmd, 0, sizeof(cmd));
cmd.wait.two = 2;
cmd.wait.r_b=1;
cmd.wait.n = 1;
if (cvmx_nand_submit(cmd))
CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
if (__cvmx_nand_build_post_cmd())
CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
}
/**
* This function computes the Octeon specific ECC data used by the NAND boot
* feature.
*
* @param block pointer to 256 bytes of data
* @param eccp pointer to where 8 bytes of ECC data will be stored
*/
void cvmx_nand_compute_boot_ecc(unsigned char *block, unsigned char *eccp)
{
unsigned char pd0, pd1, pd2;
int i, j;
pd0 = pd1 = pd2 = 0;
for (i = 0; i < 256; i++) /* PD0<0> */
pd0 ^= (block[i] ^ (block[i] >> 2) ^ (block[i] >> 4) ^ (block[i] >> 6)) & 1;
for (i = 0; i < 256; i++) /* PD0<1> */
pd0 ^= ((block[i] ^ (block[i] >> 1) ^ (block[i] >> 4) ^ (block[i] >> 5)) & 1) << 1;
for (i = 0; i < 256; i++) /* PD0<2> */
pd0 ^= ((block[i] ^ (block[i] >> 1) ^ (block[i] >> 2) ^ (block[i] >> 3)) & 1) << 2;
for (i = 0; i < 128; i++) /* PD0<3> */
pd0 ^= ((block[2*i] ^ (block[2*i] >> 1) ^ (block[2*i] >> 2) ^
(block[2*i] >> 3) ^ (block[2*i] >> 4) ^ (block[2*i] >> 5) ^
(block[2*i] >> 6) ^ (block[2*i] >> 7)) & 1) << 3;
for (i = 0; i < 64; i++) /* PD0<4> */
for (j = 0; j < 2; j++)
pd0 ^= ((block[4*i+j] ^ (block[4*i+j] >> 1) ^ (block[4*i+j] >> 2) ^
(block[4*i+j] >> 3) ^ (block[4*i+j] >> 4) ^ (block[4*i+j] >> 5) ^
(block[4*i+j] >> 6) ^ (block[4*i+j] >> 7)) & 1) << 4;
for (i = 0; i < 32; i++) /* PD0<5> */
for (j = 0; j < 4; j++)
pd0 ^= ((block[8*i+j] ^ (block[8*i+j] >> 1) ^ (block[8*i+j] >> 2) ^
(block[8*i+j] >> 3) ^ (block[8*i+j] >> 4) ^ (block[8*i+j] >> 5) ^
(block[8*i+j] >> 6) ^ (block[8*i+j] >> 7)) & 1) << 5;
for (i = 0; i < 16; i++) /* PD0<6> */
for (j = 0; j < 8; j++)
pd0 ^= ((block[16*i+j] ^ (block[16*i+j] >> 1) ^ (block[16*i+j] >> 2) ^
(block[16*i+j] >> 3) ^ (block[16*i+j] >> 4) ^ (block[16*i+j] >> 5) ^
(block[16*i+j] >> 6) ^ (block[16*i+j] >> 7)) & 1) << 6;
for (i = 0; i < 8; i++) /* PD0<7> */
for (j = 0; j < 16; j++)
pd0 ^= ((block[32*i+j] ^ (block[32*i+j] >> 1) ^ (block[32*i+j] >> 2) ^
(block[32*i+j] >> 3) ^ (block[32*i+j] >> 4) ^ (block[32*i+j] >> 5) ^
(block[32*i+j] >> 6) ^ (block[32*i+j] >> 7)) & 1) << 7;
for (i = 0; i < 4; i++) /* PD1<0> */
for (j = 0; j < 32; j++)
pd1 ^= ((block[64*i+j] ^ (block[64*i+j] >> 1) ^ (block[64*i+j] >> 2) ^
(block[64*i+j] >> 3) ^ (block[64*i+j] >> 4) ^ (block[64*i+j] >> 5) ^
(block[64*i+j] >> 6) ^ (block[64*i+j] >> 7)) & 1) << 0;
for (i = 0; i < 2; i++) /* PD1<1> */
for (j = 0; j < 64; j++)
pd1 ^= ((block[128*i+j] ^ (block[128*i+j] >> 1) ^ (block[128*i+j] >> 2) ^
(block[128*i+j] >> 3) ^ (block[128*i+j] >> 4) ^ (block[128*i+j] >> 5) ^
(block[128*i+j] >> 6) ^ (block[128*i+j] >> 7)) & 1) << 1;
for (i = 0; i < 128; i++) /* PD1<2> */
pd1 ^= ((block[i] ^ (block[i] >> 1) ^ (block[i] >> 2) ^
(block[i] >> 3) ^ (block[i] >> 4) ^ (block[i] >> 5) ^
(block[i] >> 6) ^ (block[i] >> 7)) & 1) << 2;
/* PD1<3> */
/* PD1<4> */
for (i = 0; i < 256; i++) /* PD1<5> */
pd1 ^= (((block[i] >> 1) ^ (block[i] >> 3) ^ (block[i] >> 5) ^ (block[i] >> 7)) & 1) << 5;
for (i = 0; i < 256; i++) /* PD1<6> */
pd1 ^= (((block[i] >> 2) ^ (block[i] >> 3) ^ (block[i] >> 6) ^ (block[i] >> 7)) & 1) << 6;
for (i = 0; i < 256; i++) /* PD1<7> */
pd1 ^= (((block[i] >> 4) ^ (block[i] >> 5) ^ (block[i] >> 6) ^ (block[i] >> 7)) & 1) << 7;
for (i = 0; i < 128; i++) /* PD2<0> */
pd2 ^= ((block[2*i+1] ^ (block[2*i+1] >> 1) ^ (block[2*i+1] >> 2) ^
(block[2*i+1] >> 3) ^ (block[2*i+1] >> 4) ^ (block[2*i+1] >> 5) ^
(block[2*i+1] >> 6) ^ (block[2*i+1] >> 7)) & 1) << 0;
for (i = 0; i < 64; i++) /* PD2<1> */
for (j = 2; j < 4; j++)
pd2 ^= ((block[4*i+j] ^ (block[4*i+j] >> 1) ^ (block[4*i+j] >> 2) ^
(block[4*i+j] >> 3) ^ (block[4*i+j] >> 4) ^ (block[4*i+j] >> 5) ^
(block[4*i+j] >> 6) ^ (block[4*i+j] >> 7)) & 1) << 1;
for (i = 0; i < 32; i++) /* PD2<2> */
for (j = 4; j < 8; j++)
pd2 ^= ((block[8*i+j] ^ (block[8*i+j] >> 1) ^ (block[8*i+j] >> 2) ^
(block[8*i+j] >> 3) ^ (block[8*i+j] >> 4) ^ (block[8*i+j] >> 5) ^
(block[8*i+j] >> 6) ^ (block[8*i+j] >> 7)) & 1) << 2;
for (i = 0; i < 16; i++) /* PD2<3> */
for (j = 8; j < 16; j++)
pd2 ^= ((block[16*i+j] ^ (block[16*i+j] >> 1) ^ (block[16*i+j] >> 2) ^
(block[16*i+j] >> 3) ^ (block[16*i+j] >> 4) ^ (block[16*i+j] >> 5) ^
(block[16*i+j] >> 6) ^ (block[16*i+j] >> 7)) & 1) << 3;
for (i = 0; i < 8; i++) /* PD2<4> */
for (j = 16; j < 32; j++)
pd2 ^= ((block[32*i+j] ^ (block[32*i+j] >> 1) ^ (block[32*i+j] >> 2) ^
(block[32*i+j] >> 3) ^ (block[32*i+j] >> 4) ^ (block[32*i+j] >> 5) ^
(block[32*i+j] >> 6) ^ (block[32*i+j] >> 7)) & 1) << 4;
for (i = 0; i < 4; i++) /* PD2<5> */
for (j = 32; j < 64; j++)
pd2 ^= ((block[64*i+j] ^ (block[64*i+j] >> 1) ^ (block[64*i+j] >> 2) ^
(block[64*i+j] >> 3) ^ (block[64*i+j] >> 4) ^ (block[64*i+j] >> 5) ^
(block[64*i+j] >> 6) ^ (block[64*i+j] >> 7)) & 1) << 5;
for (i = 0; i < 2; i++) /* PD2<6> */
for (j = 64; j < 128; j++)
pd2 ^= ((block[128*i+j] ^ (block[128*i+j] >> 1) ^ (block[128*i+j] >> 2) ^
(block[128*i+j] >> 3) ^ (block[128*i+j] >> 4) ^ (block[128*i+j] >> 5) ^
(block[128*i+j] >> 6) ^ (block[128*i+j] >> 7)) & 1) << 6;
for (i = 128; i < 256; i++) /* PD2<7> */
pd2 ^= ((block[i] ^ (block[i] >> 1) ^ (block[i] >> 2) ^
(block[i] >> 3) ^ (block[i] >> 4) ^ (block[i] >> 5) ^
(block[i] >> 6) ^ (block[i] >> 7)) & 1) << 7;
eccp[0] = pd0;
eccp[1] = pd1;
eccp[2] = pd2;
}
/**
* Check an Octeon ECC block, fixing errors if possible
*
* @param block Pointer to block to check
*
* @return Zero if block has no errors, one if errors were corrected, two
* if the errors could not be corrected.
*/
int cvmx_nand_correct_boot_ecc(uint8_t *block)
{
unsigned char pd0, pd1, pd2;
int i, j;
unsigned char xorpd0, xorpd1, xorpd2;
int xor_num;
unsigned int check;
asm volatile ("pref 0,0(%0);pref 0,128(%0);pref 0,256(%0)\n" :: "r" (block));
pd0 = pd1 = pd2 = 0;
for (i = 0; i < 256; i++) /* PD0<0> */
pd0 ^= (block[i] ^ (block[i] >> 2) ^ (block[i] >> 4) ^ (block[i] >> 6)) & 1;
for (i = 0; i < 256; i++) /* PD0<1> */
pd0 ^= ((block[i] ^ (block[i] >> 1) ^ (block[i] >> 4) ^ (block[i] >> 5)) & 1) << 1;
for (i = 0; i < 256; i++) /* PD0<2> */
pd0 ^= ((block[i] ^ (block[i] >> 1) ^ (block[i] >> 2) ^ (block[i] >> 3)) & 1) << 2;
for (i = 0; i < 128; i++) /* PD0<3> */
pd0 ^= ((block[2*i] ^ (block[2*i] >> 1) ^ (block[2*i] >> 2) ^
(block[2*i] >> 3) ^ (block[2*i] >> 4) ^ (block[2*i] >> 5) ^
(block[2*i] >> 6) ^ (block[2*i] >> 7)) & 1) << 3;
for (i = 0; i < 64; i++) /* PD0<4> */
for (j = 0; j < 2; j++)
pd0 ^= ((block[4*i+j] ^ (block[4*i+j] >> 1) ^ (block[4*i+j] >> 2) ^
(block[4*i+j] >> 3) ^ (block[4*i+j] >> 4) ^ (block[4*i+j] >> 5) ^
(block[4*i+j] >> 6) ^ (block[4*i+j] >> 7)) & 1) << 4;
for (i = 0; i < 32; i++) /* PD0<5> */
for (j = 0; j < 4; j++)
pd0 ^= ((block[8*i+j] ^ (block[8*i+j] >> 1) ^ (block[8*i+j] >> 2) ^
(block[8*i+j] >> 3) ^ (block[8*i+j] >> 4) ^ (block[8*i+j] >> 5) ^
(block[8*i+j] >> 6) ^ (block[8*i+j] >> 7)) & 1) << 5;
for (i = 0; i < 16; i++) /* PD0<6> */
for (j = 0; j < 8; j++)
pd0 ^= ((block[16*i+j] ^ (block[16*i+j] >> 1) ^ (block[16*i+j] >> 2) ^
(block[16*i+j] >> 3) ^ (block[16*i+j] >> 4) ^ (block[16*i+j] >> 5) ^
(block[16*i+j] >> 6) ^ (block[16*i+j] >> 7)) & 1) << 6;
for (i = 0; i < 8; i++) /* PD0<7> */
for (j = 0; j < 16; j++)
pd0 ^= ((block[32*i+j] ^ (block[32*i+j] >> 1) ^ (block[32*i+j] >> 2) ^
(block[32*i+j] >> 3) ^ (block[32*i+j] >> 4) ^ (block[32*i+j] >> 5) ^
(block[32*i+j] >> 6) ^ (block[32*i+j] >> 7)) & 1) << 7;
for (i = 0; i < 4; i++) /* PD1<0> */
for (j = 0; j < 32; j++)
pd1 ^= ((block[64*i+j] ^ (block[64*i+j] >> 1) ^ (block[64*i+j] >> 2) ^
(block[64*i+j] >> 3) ^ (block[64*i+j] >> 4) ^ (block[64*i+j] >> 5) ^
(block[64*i+j] >> 6) ^ (block[64*i+j] >> 7)) & 1) << 0;
for (i = 0; i < 2; i++) /* PD1<1> */
for (j = 0; j < 64; j++)
pd1 ^= ((block[128*i+j] ^ (block[128*i+j] >> 1) ^ (block[128*i+j] >> 2) ^
(block[128*i+j] >> 3) ^ (block[128*i+j] >> 4) ^ (block[128*i+j] >> 5) ^
(block[128*i+j] >> 6) ^ (block[128*i+j] >> 7)) & 1) << 1;
for (i = 0; i < 128; i++) /* PD1<2> */
pd1 ^= ((block[i] ^ (block[i] >> 1) ^ (block[i] >> 2) ^
(block[i] >> 3) ^ (block[i] >> 4) ^ (block[i] >> 5) ^
(block[i] >> 6) ^ (block[i] >> 7)) & 1) << 2;
/* PD1<3> */
/* PD1<4> */
for (i = 0; i < 256; i++) /* PD1<5> */
pd1 ^= (((block[i] >> 1) ^ (block[i] >> 3) ^ (block[i] >> 5) ^ (block[i] >> 7)) & 1) << 5;
for (i = 0; i < 256; i++) /* PD1<6> */
pd1 ^= (((block[i] >> 2) ^ (block[i] >> 3) ^ (block[i] >> 6) ^ (block[i] >> 7)) & 1) << 6;
for (i = 0; i < 256; i++) /* PD1<7> */
pd1 ^= (((block[i] >> 4) ^ (block[i] >> 5) ^ (block[i] >> 6) ^ (block[i] >> 7)) & 1) << 7;
for (i = 0; i < 128; i++) /* PD2<0> */
pd2 ^= ((block[2*i+1] ^ (block[2*i+1] >> 1) ^ (block[2*i+1] >> 2) ^
(block[2*i+1] >> 3) ^ (block[2*i+1] >> 4) ^ (block[2*i+1] >> 5) ^
(block[2*i+1] >> 6) ^ (block[2*i+1] >> 7)) & 1) << 0;
for (i = 0; i < 64; i++) /* PD2<1> */
for (j = 2; j < 4; j++)
pd2 ^= ((block[4*i+j] ^ (block[4*i+j] >> 1) ^ (block[4*i+j] >> 2) ^
(block[4*i+j] >> 3) ^ (block[4*i+j] >> 4) ^ (block[4*i+j] >> 5) ^
(block[4*i+j] >> 6) ^ (block[4*i+j] >> 7)) & 1) << 1;
for (i = 0; i < 32; i++) /* PD2<2> */
for (j = 4; j < 8; j++)
pd2 ^= ((block[8*i+j] ^ (block[8*i+j] >> 1) ^ (block[8*i+j] >> 2) ^
(block[8*i+j] >> 3) ^ (block[8*i+j] >> 4) ^ (block[8*i+j] >> 5) ^
(block[8*i+j] >> 6) ^ (block[8*i+j] >> 7)) & 1) << 2;
for (i = 0; i < 16; i++) /* PD2<3> */
for (j = 8; j < 16; j++)
pd2 ^= ((block[16*i+j] ^ (block[16*i+j] >> 1) ^ (block[16*i+j] >> 2) ^
(block[16*i+j] >> 3) ^ (block[16*i+j] >> 4) ^ (block[16*i+j] >> 5) ^
(block[16*i+j] >> 6) ^ (block[16*i+j] >> 7)) & 1) << 3;
for (i = 0; i < 8; i++) /* PD2<4> */
for (j = 16; j < 32; j++)
pd2 ^= ((block[32*i+j] ^ (block[32*i+j] >> 1) ^ (block[32*i+j] >> 2) ^
(block[32*i+j] >> 3) ^ (block[32*i+j] >> 4) ^ (block[32*i+j] >> 5) ^
(block[32*i+j] >> 6) ^ (block[32*i+j] >> 7)) & 1) << 4;
for (i = 0; i < 4; i++) /* PD2<5> */
for (j = 32; j < 64; j++)
pd2 ^= ((block[64*i+j] ^ (block[64*i+j] >> 1) ^ (block[64*i+j] >> 2) ^
(block[64*i+j] >> 3) ^ (block[64*i+j] >> 4) ^ (block[64*i+j] >> 5) ^
(block[64*i+j] >> 6) ^ (block[64*i+j] >> 7)) & 1) << 5;
for (i = 0; i < 2; i++) /* PD2<6> */
for (j = 64; j < 128; j++)
pd2 ^= ((block[128*i+j] ^ (block[128*i+j] >> 1) ^ (block[128*i+j] >> 2) ^
(block[128*i+j] >> 3) ^ (block[128*i+j] >> 4) ^ (block[128*i+j] >> 5) ^
(block[128*i+j] >> 6) ^ (block[128*i+j] >> 7)) & 1) << 6;
for (i = 128; i < 256; i++) /* PD2<7> */
pd2 ^= ((block[i] ^ (block[i] >> 1) ^ (block[i] >> 2) ^
(block[i] >> 3) ^ (block[i] >> 4) ^ (block[i] >> 5) ^
(block[i] >> 6) ^ (block[i] >> 7)) & 1) << 7;
xorpd0 = pd0 ^ block[256];
xorpd1 = pd1 ^ block[257];
xorpd2 = pd2 ^ block[258];
xor_num = __builtin_popcount((xorpd0 << 16) | (xorpd1 << 8) | xorpd2);
check = (((xorpd1 & 7) << 8) | xorpd0) ^ ((xorpd2 << 3) | (xorpd1 >> 5));
if (xor_num == 0)
return 0;
else if ((xor_num > 1) && (check != 0x7FF))
return 2;
if (check == 0x7FF)
{
/* Correct the error */
block[xorpd2] ^= 1 << (xorpd1 >> 5);
}
return 1;
}