mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-24 11:29:10 +00:00
a4cd5630b0
non-i386, non-unix, and generatable files have been trimmed, but can easily be added in later if needed. gcc-2.7.2.1 will follow shortly, it's a very small delta to this and it's handy to have both available for reference for such little cost. The freebsd-specific changes will then be committed, and once the dust has settled, the bmakefiles will be committed to use this code.
1982 lines
55 KiB
C
1982 lines
55 KiB
C
/* Subroutines used by or related to instruction recognition.
|
||
Copyright (C) 1987, 88, 91, 92, 93, 1994 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
|
||
#include "config.h"
|
||
#include "rtl.h"
|
||
#include <stdio.h>
|
||
#include "insn-config.h"
|
||
#include "insn-attr.h"
|
||
#include "insn-flags.h"
|
||
#include "insn-codes.h"
|
||
#include "recog.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "flags.h"
|
||
#include "real.h"
|
||
|
||
#ifndef STACK_PUSH_CODE
|
||
#ifdef STACK_GROWS_DOWNWARD
|
||
#define STACK_PUSH_CODE PRE_DEC
|
||
#else
|
||
#define STACK_PUSH_CODE PRE_INC
|
||
#endif
|
||
#endif
|
||
|
||
/* Import from final.c: */
|
||
extern rtx alter_subreg ();
|
||
|
||
int strict_memory_address_p ();
|
||
int memory_address_p ();
|
||
|
||
/* Nonzero means allow operands to be volatile.
|
||
This should be 0 if you are generating rtl, such as if you are calling
|
||
the functions in optabs.c and expmed.c (most of the time).
|
||
This should be 1 if all valid insns need to be recognized,
|
||
such as in regclass.c and final.c and reload.c.
|
||
|
||
init_recog and init_recog_no_volatile are responsible for setting this. */
|
||
|
||
int volatile_ok;
|
||
|
||
/* On return from `constrain_operands', indicate which alternative
|
||
was satisfied. */
|
||
|
||
int which_alternative;
|
||
|
||
/* Nonzero after end of reload pass.
|
||
Set to 1 or 0 by toplev.c.
|
||
Controls the significance of (SUBREG (MEM)). */
|
||
|
||
int reload_completed;
|
||
|
||
/* Initialize data used by the function `recog'.
|
||
This must be called once in the compilation of a function
|
||
before any insn recognition may be done in the function. */
|
||
|
||
void
|
||
init_recog_no_volatile ()
|
||
{
|
||
volatile_ok = 0;
|
||
}
|
||
|
||
void
|
||
init_recog ()
|
||
{
|
||
volatile_ok = 1;
|
||
}
|
||
|
||
/* Try recognizing the instruction INSN,
|
||
and return the code number that results.
|
||
Remember the code so that repeated calls do not
|
||
need to spend the time for actual rerecognition.
|
||
|
||
This function is the normal interface to instruction recognition.
|
||
The automatically-generated function `recog' is normally called
|
||
through this one. (The only exception is in combine.c.) */
|
||
|
||
int
|
||
recog_memoized (insn)
|
||
rtx insn;
|
||
{
|
||
if (INSN_CODE (insn) < 0)
|
||
INSN_CODE (insn) = recog (PATTERN (insn), insn, NULL_PTR);
|
||
return INSN_CODE (insn);
|
||
}
|
||
|
||
/* Check that X is an insn-body for an `asm' with operands
|
||
and that the operands mentioned in it are legitimate. */
|
||
|
||
int
|
||
check_asm_operands (x)
|
||
rtx x;
|
||
{
|
||
int noperands = asm_noperands (x);
|
||
rtx *operands;
|
||
int i;
|
||
|
||
if (noperands < 0)
|
||
return 0;
|
||
if (noperands == 0)
|
||
return 1;
|
||
|
||
operands = (rtx *) alloca (noperands * sizeof (rtx));
|
||
decode_asm_operands (x, operands, NULL_PTR, NULL_PTR, NULL_PTR);
|
||
|
||
for (i = 0; i < noperands; i++)
|
||
if (!general_operand (operands[i], VOIDmode))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Static data for the next two routines.
|
||
|
||
The maximum number of changes supported is defined as the maximum
|
||
number of operands times 5. This allows for repeated substitutions
|
||
inside complex indexed address, or, alternatively, changes in up
|
||
to 5 insns. */
|
||
|
||
#define MAX_CHANGE_LOCS (MAX_RECOG_OPERANDS * 5)
|
||
|
||
static rtx change_objects[MAX_CHANGE_LOCS];
|
||
static int change_old_codes[MAX_CHANGE_LOCS];
|
||
static rtx *change_locs[MAX_CHANGE_LOCS];
|
||
static rtx change_olds[MAX_CHANGE_LOCS];
|
||
|
||
static int num_changes = 0;
|
||
|
||
/* Validate a proposed change to OBJECT. LOC is the location in the rtl for
|
||
at which NEW will be placed. If OBJECT is zero, no validation is done,
|
||
the change is simply made.
|
||
|
||
Two types of objects are supported: If OBJECT is a MEM, memory_address_p
|
||
will be called with the address and mode as parameters. If OBJECT is
|
||
an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
|
||
the change in place.
|
||
|
||
IN_GROUP is non-zero if this is part of a group of changes that must be
|
||
performed as a group. In that case, the changes will be stored. The
|
||
function `apply_change_group' will validate and apply the changes.
|
||
|
||
If IN_GROUP is zero, this is a single change. Try to recognize the insn
|
||
or validate the memory reference with the change applied. If the result
|
||
is not valid for the machine, suppress the change and return zero.
|
||
Otherwise, perform the change and return 1. */
|
||
|
||
int
|
||
validate_change (object, loc, new, in_group)
|
||
rtx object;
|
||
rtx *loc;
|
||
rtx new;
|
||
int in_group;
|
||
{
|
||
rtx old = *loc;
|
||
|
||
if (old == new || rtx_equal_p (old, new))
|
||
return 1;
|
||
|
||
if (num_changes >= MAX_CHANGE_LOCS
|
||
|| (in_group == 0 && num_changes != 0))
|
||
abort ();
|
||
|
||
*loc = new;
|
||
|
||
/* Save the information describing this change. */
|
||
change_objects[num_changes] = object;
|
||
change_locs[num_changes] = loc;
|
||
change_olds[num_changes] = old;
|
||
|
||
if (object && GET_CODE (object) != MEM)
|
||
{
|
||
/* Set INSN_CODE to force rerecognition of insn. Save old code in
|
||
case invalid. */
|
||
change_old_codes[num_changes] = INSN_CODE (object);
|
||
INSN_CODE (object) = -1;
|
||
}
|
||
|
||
num_changes++;
|
||
|
||
/* If we are making a group of changes, return 1. Otherwise, validate the
|
||
change group we made. */
|
||
|
||
if (in_group)
|
||
return 1;
|
||
else
|
||
return apply_change_group ();
|
||
}
|
||
|
||
/* Apply a group of changes previously issued with `validate_change'.
|
||
Return 1 if all changes are valid, zero otherwise. */
|
||
|
||
int
|
||
apply_change_group ()
|
||
{
|
||
int i;
|
||
|
||
/* The changes have been applied and all INSN_CODEs have been reset to force
|
||
rerecognition.
|
||
|
||
The changes are valid if we aren't given an object, or if we are
|
||
given a MEM and it still is a valid address, or if this is in insn
|
||
and it is recognized. In the latter case, if reload has completed,
|
||
we also require that the operands meet the constraints for
|
||
the insn. We do not allow modifying an ASM_OPERANDS after reload
|
||
has completed because verifying the constraints is too difficult. */
|
||
|
||
for (i = 0; i < num_changes; i++)
|
||
{
|
||
rtx object = change_objects[i];
|
||
|
||
if (object == 0)
|
||
continue;
|
||
|
||
if (GET_CODE (object) == MEM)
|
||
{
|
||
if (! memory_address_p (GET_MODE (object), XEXP (object, 0)))
|
||
break;
|
||
}
|
||
else if ((recog_memoized (object) < 0
|
||
&& (asm_noperands (PATTERN (object)) < 0
|
||
|| ! check_asm_operands (PATTERN (object))
|
||
|| reload_completed))
|
||
|| (reload_completed
|
||
&& (insn_extract (object),
|
||
! constrain_operands (INSN_CODE (object), 1))))
|
||
{
|
||
rtx pat = PATTERN (object);
|
||
|
||
/* Perhaps we couldn't recognize the insn because there were
|
||
extra CLOBBERs at the end. If so, try to re-recognize
|
||
without the last CLOBBER (later iterations will cause each of
|
||
them to be eliminated, in turn). But don't do this if we
|
||
have an ASM_OPERAND. */
|
||
if (GET_CODE (pat) == PARALLEL
|
||
&& GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
|
||
&& asm_noperands (PATTERN (object)) < 0)
|
||
{
|
||
rtx newpat;
|
||
|
||
if (XVECLEN (pat, 0) == 2)
|
||
newpat = XVECEXP (pat, 0, 0);
|
||
else
|
||
{
|
||
int j;
|
||
|
||
newpat = gen_rtx (PARALLEL, VOIDmode,
|
||
gen_rtvec (XVECLEN (pat, 0) - 1));
|
||
for (j = 0; j < XVECLEN (newpat, 0); j++)
|
||
XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
|
||
}
|
||
|
||
/* Add a new change to this group to replace the pattern
|
||
with this new pattern. Then consider this change
|
||
as having succeeded. The change we added will
|
||
cause the entire call to fail if things remain invalid.
|
||
|
||
Note that this can lose if a later change than the one
|
||
we are processing specified &XVECEXP (PATTERN (object), 0, X)
|
||
but this shouldn't occur. */
|
||
|
||
validate_change (object, &PATTERN (object), newpat, 1);
|
||
}
|
||
else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
|
||
/* If this insn is a CLOBBER or USE, it is always valid, but is
|
||
never recognized. */
|
||
continue;
|
||
else
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (i == num_changes)
|
||
{
|
||
num_changes = 0;
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
cancel_changes (0);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return the number of changes so far in the current group. */
|
||
|
||
int
|
||
num_validated_changes ()
|
||
{
|
||
return num_changes;
|
||
}
|
||
|
||
/* Retract the changes numbered NUM and up. */
|
||
|
||
void
|
||
cancel_changes (num)
|
||
int num;
|
||
{
|
||
int i;
|
||
|
||
/* Back out all the changes. Do this in the opposite order in which
|
||
they were made. */
|
||
for (i = num_changes - 1; i >= num; i--)
|
||
{
|
||
*change_locs[i] = change_olds[i];
|
||
if (change_objects[i] && GET_CODE (change_objects[i]) != MEM)
|
||
INSN_CODE (change_objects[i]) = change_old_codes[i];
|
||
}
|
||
num_changes = num;
|
||
}
|
||
|
||
/* Replace every occurrence of FROM in X with TO. Mark each change with
|
||
validate_change passing OBJECT. */
|
||
|
||
static void
|
||
validate_replace_rtx_1 (loc, from, to, object)
|
||
rtx *loc;
|
||
rtx from, to, object;
|
||
{
|
||
register int i, j;
|
||
register char *fmt;
|
||
register rtx x = *loc;
|
||
enum rtx_code code = GET_CODE (x);
|
||
|
||
/* X matches FROM if it is the same rtx or they are both referring to the
|
||
same register in the same mode. Avoid calling rtx_equal_p unless the
|
||
operands look similar. */
|
||
|
||
if (x == from
|
||
|| (GET_CODE (x) == REG && GET_CODE (from) == REG
|
||
&& GET_MODE (x) == GET_MODE (from)
|
||
&& REGNO (x) == REGNO (from))
|
||
|| (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
|
||
&& rtx_equal_p (x, from)))
|
||
{
|
||
validate_change (object, loc, to, 1);
|
||
return;
|
||
}
|
||
|
||
/* For commutative or comparison operations, try replacing each argument
|
||
separately and seeing if we made any changes. If so, put a constant
|
||
argument last.*/
|
||
if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
|
||
{
|
||
int prev_changes = num_changes;
|
||
|
||
validate_replace_rtx_1 (&XEXP (x, 0), from, to, object);
|
||
validate_replace_rtx_1 (&XEXP (x, 1), from, to, object);
|
||
if (prev_changes != num_changes && CONSTANT_P (XEXP (x, 0)))
|
||
{
|
||
validate_change (object, loc,
|
||
gen_rtx (GET_RTX_CLASS (code) == 'c' ? code
|
||
: swap_condition (code),
|
||
GET_MODE (x), XEXP (x, 1), XEXP (x, 0)),
|
||
1);
|
||
x = *loc;
|
||
code = GET_CODE (x);
|
||
}
|
||
}
|
||
|
||
switch (code)
|
||
{
|
||
case PLUS:
|
||
/* If we have have a PLUS whose second operand is now a CONST_INT, use
|
||
plus_constant to try to simplify it. */
|
||
if (GET_CODE (XEXP (x, 1)) == CONST_INT && XEXP (x, 1) == to)
|
||
validate_change (object, loc,
|
||
plus_constant (XEXP (x, 0), INTVAL (XEXP (x, 1))), 1);
|
||
return;
|
||
|
||
case ZERO_EXTEND:
|
||
case SIGN_EXTEND:
|
||
/* In these cases, the operation to be performed depends on the mode
|
||
of the operand. If we are replacing the operand with a VOIDmode
|
||
constant, we lose the information. So try to simplify the operation
|
||
in that case. If it fails, substitute in something that we know
|
||
won't be recognized. */
|
||
if (GET_MODE (to) == VOIDmode
|
||
&& (XEXP (x, 0) == from
|
||
|| (GET_CODE (XEXP (x, 0)) == REG && GET_CODE (from) == REG
|
||
&& GET_MODE (XEXP (x, 0)) == GET_MODE (from)
|
||
&& REGNO (XEXP (x, 0)) == REGNO (from))))
|
||
{
|
||
rtx new = simplify_unary_operation (code, GET_MODE (x), to,
|
||
GET_MODE (from));
|
||
if (new == 0)
|
||
new = gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
|
||
|
||
validate_change (object, loc, new, 1);
|
||
return;
|
||
}
|
||
break;
|
||
|
||
case SUBREG:
|
||
/* If we have a SUBREG of a register that we are replacing and we are
|
||
replacing it with a MEM, make a new MEM and try replacing the
|
||
SUBREG with it. Don't do this if the MEM has a mode-dependent address
|
||
or if we would be widening it. */
|
||
|
||
if (SUBREG_REG (x) == from
|
||
&& GET_CODE (from) == REG
|
||
&& GET_CODE (to) == MEM
|
||
&& ! mode_dependent_address_p (XEXP (to, 0))
|
||
&& ! MEM_VOLATILE_P (to)
|
||
&& GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (GET_MODE (to)))
|
||
{
|
||
int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
|
||
enum machine_mode mode = GET_MODE (x);
|
||
rtx new;
|
||
|
||
if (BYTES_BIG_ENDIAN)
|
||
offset += (MIN (UNITS_PER_WORD,
|
||
GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
|
||
- MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
|
||
|
||
new = gen_rtx (MEM, mode, plus_constant (XEXP (to, 0), offset));
|
||
MEM_VOLATILE_P (new) = MEM_VOLATILE_P (to);
|
||
RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (to);
|
||
MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (to);
|
||
validate_change (object, loc, new, 1);
|
||
return;
|
||
}
|
||
break;
|
||
|
||
case ZERO_EXTRACT:
|
||
case SIGN_EXTRACT:
|
||
/* If we are replacing a register with memory, try to change the memory
|
||
to be the mode required for memory in extract operations (this isn't
|
||
likely to be an insertion operation; if it was, nothing bad will
|
||
happen, we might just fail in some cases). */
|
||
|
||
if (XEXP (x, 0) == from && GET_CODE (from) == REG && GET_CODE (to) == MEM
|
||
&& GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& GET_CODE (XEXP (x, 2)) == CONST_INT
|
||
&& ! mode_dependent_address_p (XEXP (to, 0))
|
||
&& ! MEM_VOLATILE_P (to))
|
||
{
|
||
enum machine_mode wanted_mode = VOIDmode;
|
||
enum machine_mode is_mode = GET_MODE (to);
|
||
int width = INTVAL (XEXP (x, 1));
|
||
int pos = INTVAL (XEXP (x, 2));
|
||
|
||
#ifdef HAVE_extzv
|
||
if (code == ZERO_EXTRACT)
|
||
wanted_mode = insn_operand_mode[(int) CODE_FOR_extzv][1];
|
||
#endif
|
||
#ifdef HAVE_extv
|
||
if (code == SIGN_EXTRACT)
|
||
wanted_mode = insn_operand_mode[(int) CODE_FOR_extv][1];
|
||
#endif
|
||
|
||
/* If we have a narrower mode, we can do something. */
|
||
if (wanted_mode != VOIDmode
|
||
&& GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
|
||
{
|
||
int offset = pos / BITS_PER_UNIT;
|
||
rtx newmem;
|
||
|
||
/* If the bytes and bits are counted differently, we
|
||
must adjust the offset. */
|
||
if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
|
||
offset = (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode)
|
||
- offset);
|
||
|
||
pos %= GET_MODE_BITSIZE (wanted_mode);
|
||
|
||
newmem = gen_rtx (MEM, wanted_mode,
|
||
plus_constant (XEXP (to, 0), offset));
|
||
RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (to);
|
||
MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (to);
|
||
MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (to);
|
||
|
||
validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
|
||
validate_change (object, &XEXP (x, 0), newmem, 1);
|
||
}
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
validate_replace_rtx_1 (&XEXP (x, i), from, to, object);
|
||
else if (fmt[i] == 'E')
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object);
|
||
}
|
||
}
|
||
|
||
/* Try replacing every occurrence of FROM in INSN with TO. After all
|
||
changes have been made, validate by seeing if INSN is still valid. */
|
||
|
||
int
|
||
validate_replace_rtx (from, to, insn)
|
||
rtx from, to, insn;
|
||
{
|
||
validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
|
||
return apply_change_group ();
|
||
}
|
||
|
||
#ifdef HAVE_cc0
|
||
/* Return 1 if the insn using CC0 set by INSN does not contain
|
||
any ordered tests applied to the condition codes.
|
||
EQ and NE tests do not count. */
|
||
|
||
int
|
||
next_insn_tests_no_inequality (insn)
|
||
rtx insn;
|
||
{
|
||
register rtx next = next_cc0_user (insn);
|
||
|
||
/* If there is no next insn, we have to take the conservative choice. */
|
||
if (next == 0)
|
||
return 0;
|
||
|
||
return ((GET_CODE (next) == JUMP_INSN
|
||
|| GET_CODE (next) == INSN
|
||
|| GET_CODE (next) == CALL_INSN)
|
||
&& ! inequality_comparisons_p (PATTERN (next)));
|
||
}
|
||
|
||
#if 0 /* This is useless since the insn that sets the cc's
|
||
must be followed immediately by the use of them. */
|
||
/* Return 1 if the CC value set up by INSN is not used. */
|
||
|
||
int
|
||
next_insns_test_no_inequality (insn)
|
||
rtx insn;
|
||
{
|
||
register rtx next = NEXT_INSN (insn);
|
||
|
||
for (; next != 0; next = NEXT_INSN (next))
|
||
{
|
||
if (GET_CODE (next) == CODE_LABEL
|
||
|| GET_CODE (next) == BARRIER)
|
||
return 1;
|
||
if (GET_CODE (next) == NOTE)
|
||
continue;
|
||
if (inequality_comparisons_p (PATTERN (next)))
|
||
return 0;
|
||
if (sets_cc0_p (PATTERN (next)) == 1)
|
||
return 1;
|
||
if (! reg_mentioned_p (cc0_rtx, PATTERN (next)))
|
||
return 1;
|
||
}
|
||
return 1;
|
||
}
|
||
#endif
|
||
#endif
|
||
|
||
/* This is used by find_single_use to locate an rtx that contains exactly one
|
||
use of DEST, which is typically either a REG or CC0. It returns a
|
||
pointer to the innermost rtx expression containing DEST. Appearances of
|
||
DEST that are being used to totally replace it are not counted. */
|
||
|
||
static rtx *
|
||
find_single_use_1 (dest, loc)
|
||
rtx dest;
|
||
rtx *loc;
|
||
{
|
||
rtx x = *loc;
|
||
enum rtx_code code = GET_CODE (x);
|
||
rtx *result = 0;
|
||
rtx *this_result;
|
||
int i;
|
||
char *fmt;
|
||
|
||
switch (code)
|
||
{
|
||
case CONST_INT:
|
||
case CONST:
|
||
case LABEL_REF:
|
||
case SYMBOL_REF:
|
||
case CONST_DOUBLE:
|
||
case CLOBBER:
|
||
return 0;
|
||
|
||
case SET:
|
||
/* If the destination is anything other than CC0, PC, a REG or a SUBREG
|
||
of a REG that occupies all of the REG, the insn uses DEST if
|
||
it is mentioned in the destination or the source. Otherwise, we
|
||
need just check the source. */
|
||
if (GET_CODE (SET_DEST (x)) != CC0
|
||
&& GET_CODE (SET_DEST (x)) != PC
|
||
&& GET_CODE (SET_DEST (x)) != REG
|
||
&& ! (GET_CODE (SET_DEST (x)) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
|
||
&& (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
|
||
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
|
||
== ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
|
||
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
|
||
break;
|
||
|
||
return find_single_use_1 (dest, &SET_SRC (x));
|
||
|
||
case MEM:
|
||
case SUBREG:
|
||
return find_single_use_1 (dest, &XEXP (x, 0));
|
||
}
|
||
|
||
/* If it wasn't one of the common cases above, check each expression and
|
||
vector of this code. Look for a unique usage of DEST. */
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
{
|
||
if (dest == XEXP (x, i)
|
||
|| (GET_CODE (dest) == REG && GET_CODE (XEXP (x, i)) == REG
|
||
&& REGNO (dest) == REGNO (XEXP (x, i))))
|
||
this_result = loc;
|
||
else
|
||
this_result = find_single_use_1 (dest, &XEXP (x, i));
|
||
|
||
if (result == 0)
|
||
result = this_result;
|
||
else if (this_result)
|
||
/* Duplicate usage. */
|
||
return 0;
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
{
|
||
if (XVECEXP (x, i, j) == dest
|
||
|| (GET_CODE (dest) == REG
|
||
&& GET_CODE (XVECEXP (x, i, j)) == REG
|
||
&& REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
|
||
this_result = loc;
|
||
else
|
||
this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
|
||
|
||
if (result == 0)
|
||
result = this_result;
|
||
else if (this_result)
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* See if DEST, produced in INSN, is used only a single time in the
|
||
sequel. If so, return a pointer to the innermost rtx expression in which
|
||
it is used.
|
||
|
||
If PLOC is non-zero, *PLOC is set to the insn containing the single use.
|
||
|
||
This routine will return usually zero either before flow is called (because
|
||
there will be no LOG_LINKS notes) or after reload (because the REG_DEAD
|
||
note can't be trusted).
|
||
|
||
If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
|
||
care about REG_DEAD notes or LOG_LINKS.
|
||
|
||
Otherwise, we find the single use by finding an insn that has a
|
||
LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
|
||
only referenced once in that insn, we know that it must be the first
|
||
and last insn referencing DEST. */
|
||
|
||
rtx *
|
||
find_single_use (dest, insn, ploc)
|
||
rtx dest;
|
||
rtx insn;
|
||
rtx *ploc;
|
||
{
|
||
rtx next;
|
||
rtx *result;
|
||
rtx link;
|
||
|
||
#ifdef HAVE_cc0
|
||
if (dest == cc0_rtx)
|
||
{
|
||
next = NEXT_INSN (insn);
|
||
if (next == 0
|
||
|| (GET_CODE (next) != INSN && GET_CODE (next) != JUMP_INSN))
|
||
return 0;
|
||
|
||
result = find_single_use_1 (dest, &PATTERN (next));
|
||
if (result && ploc)
|
||
*ploc = next;
|
||
return result;
|
||
}
|
||
#endif
|
||
|
||
if (reload_completed || reload_in_progress || GET_CODE (dest) != REG)
|
||
return 0;
|
||
|
||
for (next = next_nonnote_insn (insn);
|
||
next != 0 && GET_CODE (next) != CODE_LABEL;
|
||
next = next_nonnote_insn (next))
|
||
if (GET_RTX_CLASS (GET_CODE (next)) == 'i' && dead_or_set_p (next, dest))
|
||
{
|
||
for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
|
||
if (XEXP (link, 0) == insn)
|
||
break;
|
||
|
||
if (link)
|
||
{
|
||
result = find_single_use_1 (dest, &PATTERN (next));
|
||
if (ploc)
|
||
*ploc = next;
|
||
return result;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if OP is a valid general operand for machine mode MODE.
|
||
This is either a register reference, a memory reference,
|
||
or a constant. In the case of a memory reference, the address
|
||
is checked for general validity for the target machine.
|
||
|
||
Register and memory references must have mode MODE in order to be valid,
|
||
but some constants have no machine mode and are valid for any mode.
|
||
|
||
If MODE is VOIDmode, OP is checked for validity for whatever mode
|
||
it has.
|
||
|
||
The main use of this function is as a predicate in match_operand
|
||
expressions in the machine description.
|
||
|
||
For an explanation of this function's behavior for registers of
|
||
class NO_REGS, see the comment for `register_operand'. */
|
||
|
||
int
|
||
general_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
register enum rtx_code code = GET_CODE (op);
|
||
int mode_altering_drug = 0;
|
||
|
||
if (mode == VOIDmode)
|
||
mode = GET_MODE (op);
|
||
|
||
/* Don't accept CONST_INT or anything similar
|
||
if the caller wants something floating. */
|
||
if (GET_MODE (op) == VOIDmode && mode != VOIDmode
|
||
&& GET_MODE_CLASS (mode) != MODE_INT
|
||
&& GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
|
||
return 0;
|
||
|
||
if (CONSTANT_P (op))
|
||
return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode)
|
||
#ifdef LEGITIMATE_PIC_OPERAND_P
|
||
&& (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
|
||
#endif
|
||
&& LEGITIMATE_CONSTANT_P (op));
|
||
|
||
/* Except for certain constants with VOIDmode, already checked for,
|
||
OP's mode must match MODE if MODE specifies a mode. */
|
||
|
||
if (GET_MODE (op) != mode)
|
||
return 0;
|
||
|
||
if (code == SUBREG)
|
||
{
|
||
#ifdef INSN_SCHEDULING
|
||
/* On machines that have insn scheduling, we want all memory
|
||
reference to be explicit, so outlaw paradoxical SUBREGs. */
|
||
if (GET_CODE (SUBREG_REG (op)) == MEM
|
||
&& GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
|
||
return 0;
|
||
#endif
|
||
|
||
op = SUBREG_REG (op);
|
||
code = GET_CODE (op);
|
||
#if 0
|
||
/* No longer needed, since (SUBREG (MEM...))
|
||
will load the MEM into a reload reg in the MEM's own mode. */
|
||
mode_altering_drug = 1;
|
||
#endif
|
||
}
|
||
|
||
if (code == REG)
|
||
/* A register whose class is NO_REGS is not a general operand. */
|
||
return (REGNO (op) >= FIRST_PSEUDO_REGISTER
|
||
|| REGNO_REG_CLASS (REGNO (op)) != NO_REGS);
|
||
|
||
if (code == MEM)
|
||
{
|
||
register rtx y = XEXP (op, 0);
|
||
if (! volatile_ok && MEM_VOLATILE_P (op))
|
||
return 0;
|
||
/* Use the mem's mode, since it will be reloaded thus. */
|
||
mode = GET_MODE (op);
|
||
GO_IF_LEGITIMATE_ADDRESS (mode, y, win);
|
||
}
|
||
return 0;
|
||
|
||
win:
|
||
if (mode_altering_drug)
|
||
return ! mode_dependent_address_p (XEXP (op, 0));
|
||
return 1;
|
||
}
|
||
|
||
/* Return 1 if OP is a valid memory address for a memory reference
|
||
of mode MODE.
|
||
|
||
The main use of this function is as a predicate in match_operand
|
||
expressions in the machine description. */
|
||
|
||
int
|
||
address_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return memory_address_p (mode, op);
|
||
}
|
||
|
||
/* Return 1 if OP is a register reference of mode MODE.
|
||
If MODE is VOIDmode, accept a register in any mode.
|
||
|
||
The main use of this function is as a predicate in match_operand
|
||
expressions in the machine description.
|
||
|
||
As a special exception, registers whose class is NO_REGS are
|
||
not accepted by `register_operand'. The reason for this change
|
||
is to allow the representation of special architecture artifacts
|
||
(such as a condition code register) without extending the rtl
|
||
definitions. Since registers of class NO_REGS cannot be used
|
||
as registers in any case where register classes are examined,
|
||
it is most consistent to keep this function from accepting them. */
|
||
|
||
int
|
||
register_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_MODE (op) != mode && mode != VOIDmode)
|
||
return 0;
|
||
|
||
if (GET_CODE (op) == SUBREG)
|
||
{
|
||
/* Before reload, we can allow (SUBREG (MEM...)) as a register operand
|
||
because it is guaranteed to be reloaded into one.
|
||
Just make sure the MEM is valid in itself.
|
||
(Ideally, (SUBREG (MEM)...) should not exist after reload,
|
||
but currently it does result from (SUBREG (REG)...) where the
|
||
reg went on the stack.) */
|
||
if (! reload_completed && GET_CODE (SUBREG_REG (op)) == MEM)
|
||
return general_operand (op, mode);
|
||
|
||
#ifdef CLASS_CANNOT_CHANGE_SIZE
|
||
if (GET_CODE (SUBREG_REG (op)) == REG
|
||
&& REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
|
||
REGNO (SUBREG_REG (op)))
|
||
&& (GET_MODE_SIZE (mode)
|
||
!= GET_MODE_SIZE (GET_MODE (SUBREG_REG (op)))))
|
||
return 0;
|
||
#endif
|
||
|
||
op = SUBREG_REG (op);
|
||
}
|
||
|
||
/* We don't consider registers whose class is NO_REGS
|
||
to be a register operand. */
|
||
return (GET_CODE (op) == REG
|
||
&& (REGNO (op) >= FIRST_PSEUDO_REGISTER
|
||
|| REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
|
||
}
|
||
|
||
/* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
|
||
or a hard register. */
|
||
|
||
int
|
||
scratch_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (GET_MODE (op) == mode
|
||
&& (GET_CODE (op) == SCRATCH
|
||
|| (GET_CODE (op) == REG
|
||
&& REGNO (op) < FIRST_PSEUDO_REGISTER)));
|
||
}
|
||
|
||
/* Return 1 if OP is a valid immediate operand for mode MODE.
|
||
|
||
The main use of this function is as a predicate in match_operand
|
||
expressions in the machine description. */
|
||
|
||
int
|
||
immediate_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
/* Don't accept CONST_INT or anything similar
|
||
if the caller wants something floating. */
|
||
if (GET_MODE (op) == VOIDmode && mode != VOIDmode
|
||
&& GET_MODE_CLASS (mode) != MODE_INT
|
||
&& GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
|
||
return 0;
|
||
|
||
return (CONSTANT_P (op)
|
||
&& (GET_MODE (op) == mode || mode == VOIDmode
|
||
|| GET_MODE (op) == VOIDmode)
|
||
#ifdef LEGITIMATE_PIC_OPERAND_P
|
||
&& (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
|
||
#endif
|
||
&& LEGITIMATE_CONSTANT_P (op));
|
||
}
|
||
|
||
/* Returns 1 if OP is an operand that is a CONST_INT. */
|
||
|
||
int
|
||
const_int_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return GET_CODE (op) == CONST_INT;
|
||
}
|
||
|
||
/* Returns 1 if OP is an operand that is a constant integer or constant
|
||
floating-point number. */
|
||
|
||
int
|
||
const_double_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
/* Don't accept CONST_INT or anything similar
|
||
if the caller wants something floating. */
|
||
if (GET_MODE (op) == VOIDmode && mode != VOIDmode
|
||
&& GET_MODE_CLASS (mode) != MODE_INT
|
||
&& GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
|
||
return 0;
|
||
|
||
return ((GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT)
|
||
&& (mode == VOIDmode || GET_MODE (op) == mode
|
||
|| GET_MODE (op) == VOIDmode));
|
||
}
|
||
|
||
/* Return 1 if OP is a general operand that is not an immediate operand. */
|
||
|
||
int
|
||
nonimmediate_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (general_operand (op, mode) && ! CONSTANT_P (op));
|
||
}
|
||
|
||
/* Return 1 if OP is a register reference or immediate value of mode MODE. */
|
||
|
||
int
|
||
nonmemory_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (CONSTANT_P (op))
|
||
{
|
||
/* Don't accept CONST_INT or anything similar
|
||
if the caller wants something floating. */
|
||
if (GET_MODE (op) == VOIDmode && mode != VOIDmode
|
||
&& GET_MODE_CLASS (mode) != MODE_INT
|
||
&& GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
|
||
return 0;
|
||
|
||
return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode)
|
||
#ifdef LEGITIMATE_PIC_OPERAND_P
|
||
&& (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
|
||
#endif
|
||
&& LEGITIMATE_CONSTANT_P (op));
|
||
}
|
||
|
||
if (GET_MODE (op) != mode && mode != VOIDmode)
|
||
return 0;
|
||
|
||
if (GET_CODE (op) == SUBREG)
|
||
{
|
||
/* Before reload, we can allow (SUBREG (MEM...)) as a register operand
|
||
because it is guaranteed to be reloaded into one.
|
||
Just make sure the MEM is valid in itself.
|
||
(Ideally, (SUBREG (MEM)...) should not exist after reload,
|
||
but currently it does result from (SUBREG (REG)...) where the
|
||
reg went on the stack.) */
|
||
if (! reload_completed && GET_CODE (SUBREG_REG (op)) == MEM)
|
||
return general_operand (op, mode);
|
||
op = SUBREG_REG (op);
|
||
}
|
||
|
||
/* We don't consider registers whose class is NO_REGS
|
||
to be a register operand. */
|
||
return (GET_CODE (op) == REG
|
||
&& (REGNO (op) >= FIRST_PSEUDO_REGISTER
|
||
|| REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
|
||
}
|
||
|
||
/* Return 1 if OP is a valid operand that stands for pushing a
|
||
value of mode MODE onto the stack.
|
||
|
||
The main use of this function is as a predicate in match_operand
|
||
expressions in the machine description. */
|
||
|
||
int
|
||
push_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) != MEM)
|
||
return 0;
|
||
|
||
if (GET_MODE (op) != mode)
|
||
return 0;
|
||
|
||
op = XEXP (op, 0);
|
||
|
||
if (GET_CODE (op) != STACK_PUSH_CODE)
|
||
return 0;
|
||
|
||
return XEXP (op, 0) == stack_pointer_rtx;
|
||
}
|
||
|
||
/* Return 1 if ADDR is a valid memory address for mode MODE. */
|
||
|
||
int
|
||
memory_address_p (mode, addr)
|
||
enum machine_mode mode;
|
||
register rtx addr;
|
||
{
|
||
GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
|
||
return 0;
|
||
|
||
win:
|
||
return 1;
|
||
}
|
||
|
||
/* Return 1 if OP is a valid memory reference with mode MODE,
|
||
including a valid address.
|
||
|
||
The main use of this function is as a predicate in match_operand
|
||
expressions in the machine description. */
|
||
|
||
int
|
||
memory_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
rtx inner;
|
||
|
||
if (! reload_completed)
|
||
/* Note that no SUBREG is a memory operand before end of reload pass,
|
||
because (SUBREG (MEM...)) forces reloading into a register. */
|
||
return GET_CODE (op) == MEM && general_operand (op, mode);
|
||
|
||
if (mode != VOIDmode && GET_MODE (op) != mode)
|
||
return 0;
|
||
|
||
inner = op;
|
||
if (GET_CODE (inner) == SUBREG)
|
||
inner = SUBREG_REG (inner);
|
||
|
||
return (GET_CODE (inner) == MEM && general_operand (op, mode));
|
||
}
|
||
|
||
/* Return 1 if OP is a valid indirect memory reference with mode MODE;
|
||
that is, a memory reference whose address is a general_operand. */
|
||
|
||
int
|
||
indirect_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
/* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
|
||
if (! reload_completed
|
||
&& GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == MEM)
|
||
{
|
||
register int offset = SUBREG_WORD (op) * UNITS_PER_WORD;
|
||
rtx inner = SUBREG_REG (op);
|
||
|
||
if (BYTES_BIG_ENDIAN)
|
||
offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (op)))
|
||
- MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (inner))));
|
||
|
||
if (mode != VOIDmode && GET_MODE (op) != mode)
|
||
return 0;
|
||
|
||
/* The only way that we can have a general_operand as the resulting
|
||
address is if OFFSET is zero and the address already is an operand
|
||
or if the address is (plus Y (const_int -OFFSET)) and Y is an
|
||
operand. */
|
||
|
||
return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
|
||
|| (GET_CODE (XEXP (inner, 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (inner, 0), 1)) == CONST_INT
|
||
&& INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
|
||
&& general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
|
||
}
|
||
|
||
return (GET_CODE (op) == MEM
|
||
&& memory_operand (op, mode)
|
||
&& general_operand (XEXP (op, 0), Pmode));
|
||
}
|
||
|
||
/* Return 1 if this is a comparison operator. This allows the use of
|
||
MATCH_OPERATOR to recognize all the branch insns. */
|
||
|
||
int
|
||
comparison_operator (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return ((mode == VOIDmode || GET_MODE (op) == mode)
|
||
&& GET_RTX_CLASS (GET_CODE (op)) == '<');
|
||
}
|
||
|
||
/* If BODY is an insn body that uses ASM_OPERANDS,
|
||
return the number of operands (both input and output) in the insn.
|
||
Otherwise return -1. */
|
||
|
||
int
|
||
asm_noperands (body)
|
||
rtx body;
|
||
{
|
||
if (GET_CODE (body) == ASM_OPERANDS)
|
||
/* No output operands: return number of input operands. */
|
||
return ASM_OPERANDS_INPUT_LENGTH (body);
|
||
if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
|
||
/* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
|
||
return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body)) + 1;
|
||
else if (GET_CODE (body) == PARALLEL
|
||
&& GET_CODE (XVECEXP (body, 0, 0)) == SET
|
||
&& GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
|
||
{
|
||
/* Multiple output operands, or 1 output plus some clobbers:
|
||
body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
|
||
int i;
|
||
int n_sets;
|
||
|
||
/* Count backwards through CLOBBERs to determine number of SETs. */
|
||
for (i = XVECLEN (body, 0); i > 0; i--)
|
||
{
|
||
if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
|
||
break;
|
||
if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
|
||
return -1;
|
||
}
|
||
|
||
/* N_SETS is now number of output operands. */
|
||
n_sets = i;
|
||
|
||
/* Verify that all the SETs we have
|
||
came from a single original asm_operands insn
|
||
(so that invalid combinations are blocked). */
|
||
for (i = 0; i < n_sets; i++)
|
||
{
|
||
rtx elt = XVECEXP (body, 0, i);
|
||
if (GET_CODE (elt) != SET)
|
||
return -1;
|
||
if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
|
||
return -1;
|
||
/* If these ASM_OPERANDS rtx's came from different original insns
|
||
then they aren't allowed together. */
|
||
if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
|
||
!= ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body, 0, 0))))
|
||
return -1;
|
||
}
|
||
return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)))
|
||
+ n_sets);
|
||
}
|
||
else if (GET_CODE (body) == PARALLEL
|
||
&& GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
|
||
{
|
||
/* 0 outputs, but some clobbers:
|
||
body is [(asm_operands ...) (clobber (reg ...))...]. */
|
||
int i;
|
||
|
||
/* Make sure all the other parallel things really are clobbers. */
|
||
for (i = XVECLEN (body, 0) - 1; i > 0; i--)
|
||
if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
|
||
return -1;
|
||
|
||
return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
|
||
}
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Assuming BODY is an insn body that uses ASM_OPERANDS,
|
||
copy its operands (both input and output) into the vector OPERANDS,
|
||
the locations of the operands within the insn into the vector OPERAND_LOCS,
|
||
and the constraints for the operands into CONSTRAINTS.
|
||
Write the modes of the operands into MODES.
|
||
Return the assembler-template.
|
||
|
||
If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
|
||
we don't store that info. */
|
||
|
||
char *
|
||
decode_asm_operands (body, operands, operand_locs, constraints, modes)
|
||
rtx body;
|
||
rtx *operands;
|
||
rtx **operand_locs;
|
||
char **constraints;
|
||
enum machine_mode *modes;
|
||
{
|
||
register int i;
|
||
int noperands;
|
||
char *template = 0;
|
||
|
||
if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
|
||
{
|
||
rtx asmop = SET_SRC (body);
|
||
/* Single output operand: BODY is (set OUTPUT (asm_operands ....)). */
|
||
|
||
noperands = ASM_OPERANDS_INPUT_LENGTH (asmop) + 1;
|
||
|
||
for (i = 1; i < noperands; i++)
|
||
{
|
||
if (operand_locs)
|
||
operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i - 1);
|
||
if (operands)
|
||
operands[i] = ASM_OPERANDS_INPUT (asmop, i - 1);
|
||
if (constraints)
|
||
constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i - 1);
|
||
if (modes)
|
||
modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i - 1);
|
||
}
|
||
|
||
/* The output is in the SET.
|
||
Its constraint is in the ASM_OPERANDS itself. */
|
||
if (operands)
|
||
operands[0] = SET_DEST (body);
|
||
if (operand_locs)
|
||
operand_locs[0] = &SET_DEST (body);
|
||
if (constraints)
|
||
constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
|
||
if (modes)
|
||
modes[0] = GET_MODE (SET_DEST (body));
|
||
template = ASM_OPERANDS_TEMPLATE (asmop);
|
||
}
|
||
else if (GET_CODE (body) == ASM_OPERANDS)
|
||
{
|
||
rtx asmop = body;
|
||
/* No output operands: BODY is (asm_operands ....). */
|
||
|
||
noperands = ASM_OPERANDS_INPUT_LENGTH (asmop);
|
||
|
||
/* The input operands are found in the 1st element vector. */
|
||
/* Constraints for inputs are in the 2nd element vector. */
|
||
for (i = 0; i < noperands; i++)
|
||
{
|
||
if (operand_locs)
|
||
operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
|
||
if (operands)
|
||
operands[i] = ASM_OPERANDS_INPUT (asmop, i);
|
||
if (constraints)
|
||
constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
|
||
if (modes)
|
||
modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
|
||
}
|
||
template = ASM_OPERANDS_TEMPLATE (asmop);
|
||
}
|
||
else if (GET_CODE (body) == PARALLEL
|
||
&& GET_CODE (XVECEXP (body, 0, 0)) == SET)
|
||
{
|
||
rtx asmop = SET_SRC (XVECEXP (body, 0, 0));
|
||
int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
|
||
int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
|
||
int nout = 0; /* Does not include CLOBBERs. */
|
||
|
||
/* At least one output, plus some CLOBBERs. */
|
||
|
||
/* The outputs are in the SETs.
|
||
Their constraints are in the ASM_OPERANDS itself. */
|
||
for (i = 0; i < nparallel; i++)
|
||
{
|
||
if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
|
||
break; /* Past last SET */
|
||
|
||
if (operands)
|
||
operands[i] = SET_DEST (XVECEXP (body, 0, i));
|
||
if (operand_locs)
|
||
operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
|
||
if (constraints)
|
||
constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
|
||
if (modes)
|
||
modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
|
||
nout++;
|
||
}
|
||
|
||
for (i = 0; i < nin; i++)
|
||
{
|
||
if (operand_locs)
|
||
operand_locs[i + nout] = &ASM_OPERANDS_INPUT (asmop, i);
|
||
if (operands)
|
||
operands[i + nout] = ASM_OPERANDS_INPUT (asmop, i);
|
||
if (constraints)
|
||
constraints[i + nout] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
|
||
if (modes)
|
||
modes[i + nout] = ASM_OPERANDS_INPUT_MODE (asmop, i);
|
||
}
|
||
|
||
template = ASM_OPERANDS_TEMPLATE (asmop);
|
||
}
|
||
else if (GET_CODE (body) == PARALLEL
|
||
&& GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
|
||
{
|
||
/* No outputs, but some CLOBBERs. */
|
||
|
||
rtx asmop = XVECEXP (body, 0, 0);
|
||
int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
|
||
|
||
for (i = 0; i < nin; i++)
|
||
{
|
||
if (operand_locs)
|
||
operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
|
||
if (operands)
|
||
operands[i] = ASM_OPERANDS_INPUT (asmop, i);
|
||
if (constraints)
|
||
constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
|
||
if (modes)
|
||
modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
|
||
}
|
||
|
||
template = ASM_OPERANDS_TEMPLATE (asmop);
|
||
}
|
||
|
||
return template;
|
||
}
|
||
|
||
/* Given an rtx *P, if it is a sum containing an integer constant term,
|
||
return the location (type rtx *) of the pointer to that constant term.
|
||
Otherwise, return a null pointer. */
|
||
|
||
static rtx *
|
||
find_constant_term_loc (p)
|
||
rtx *p;
|
||
{
|
||
register rtx *tem;
|
||
register enum rtx_code code = GET_CODE (*p);
|
||
|
||
/* If *P IS such a constant term, P is its location. */
|
||
|
||
if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
|
||
|| code == CONST)
|
||
return p;
|
||
|
||
/* Otherwise, if not a sum, it has no constant term. */
|
||
|
||
if (GET_CODE (*p) != PLUS)
|
||
return 0;
|
||
|
||
/* If one of the summands is constant, return its location. */
|
||
|
||
if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
|
||
&& XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
|
||
return p;
|
||
|
||
/* Otherwise, check each summand for containing a constant term. */
|
||
|
||
if (XEXP (*p, 0) != 0)
|
||
{
|
||
tem = find_constant_term_loc (&XEXP (*p, 0));
|
||
if (tem != 0)
|
||
return tem;
|
||
}
|
||
|
||
if (XEXP (*p, 1) != 0)
|
||
{
|
||
tem = find_constant_term_loc (&XEXP (*p, 1));
|
||
if (tem != 0)
|
||
return tem;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if OP is a memory reference
|
||
whose address contains no side effects
|
||
and remains valid after the addition
|
||
of a positive integer less than the
|
||
size of the object being referenced.
|
||
|
||
We assume that the original address is valid and do not check it.
|
||
|
||
This uses strict_memory_address_p as a subroutine, so
|
||
don't use it before reload. */
|
||
|
||
int
|
||
offsettable_memref_p (op)
|
||
rtx op;
|
||
{
|
||
return ((GET_CODE (op) == MEM)
|
||
&& offsettable_address_p (1, GET_MODE (op), XEXP (op, 0)));
|
||
}
|
||
|
||
/* Similar, but don't require a strictly valid mem ref:
|
||
consider pseudo-regs valid as index or base regs. */
|
||
|
||
int
|
||
offsettable_nonstrict_memref_p (op)
|
||
rtx op;
|
||
{
|
||
return ((GET_CODE (op) == MEM)
|
||
&& offsettable_address_p (0, GET_MODE (op), XEXP (op, 0)));
|
||
}
|
||
|
||
/* Return 1 if Y is a memory address which contains no side effects
|
||
and would remain valid after the addition of a positive integer
|
||
less than the size of that mode.
|
||
|
||
We assume that the original address is valid and do not check it.
|
||
We do check that it is valid for narrower modes.
|
||
|
||
If STRICTP is nonzero, we require a strictly valid address,
|
||
for the sake of use in reload.c. */
|
||
|
||
int
|
||
offsettable_address_p (strictp, mode, y)
|
||
int strictp;
|
||
enum machine_mode mode;
|
||
register rtx y;
|
||
{
|
||
register enum rtx_code ycode = GET_CODE (y);
|
||
register rtx z;
|
||
rtx y1 = y;
|
||
rtx *y2;
|
||
int (*addressp) () = (strictp ? strict_memory_address_p : memory_address_p);
|
||
|
||
if (CONSTANT_ADDRESS_P (y))
|
||
return 1;
|
||
|
||
/* Adjusting an offsettable address involves changing to a narrower mode.
|
||
Make sure that's OK. */
|
||
|
||
if (mode_dependent_address_p (y))
|
||
return 0;
|
||
|
||
/* If the expression contains a constant term,
|
||
see if it remains valid when max possible offset is added. */
|
||
|
||
if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
|
||
{
|
||
int good;
|
||
|
||
y1 = *y2;
|
||
*y2 = plus_constant (*y2, GET_MODE_SIZE (mode) - 1);
|
||
/* Use QImode because an odd displacement may be automatically invalid
|
||
for any wider mode. But it should be valid for a single byte. */
|
||
good = (*addressp) (QImode, y);
|
||
|
||
/* In any case, restore old contents of memory. */
|
||
*y2 = y1;
|
||
return good;
|
||
}
|
||
|
||
if (ycode == PRE_DEC || ycode == PRE_INC
|
||
|| ycode == POST_DEC || ycode == POST_INC)
|
||
return 0;
|
||
|
||
/* The offset added here is chosen as the maximum offset that
|
||
any instruction could need to add when operating on something
|
||
of the specified mode. We assume that if Y and Y+c are
|
||
valid addresses then so is Y+d for all 0<d<c. */
|
||
|
||
z = plus_constant_for_output (y, GET_MODE_SIZE (mode) - 1);
|
||
|
||
/* Use QImode because an odd displacement may be automatically invalid
|
||
for any wider mode. But it should be valid for a single byte. */
|
||
return (*addressp) (QImode, z);
|
||
}
|
||
|
||
/* Return 1 if ADDR is an address-expression whose effect depends
|
||
on the mode of the memory reference it is used in.
|
||
|
||
Autoincrement addressing is a typical example of mode-dependence
|
||
because the amount of the increment depends on the mode. */
|
||
|
||
int
|
||
mode_dependent_address_p (addr)
|
||
rtx addr;
|
||
{
|
||
GO_IF_MODE_DEPENDENT_ADDRESS (addr, win);
|
||
return 0;
|
||
win:
|
||
return 1;
|
||
}
|
||
|
||
/* Return 1 if OP is a general operand
|
||
other than a memory ref with a mode dependent address. */
|
||
|
||
int
|
||
mode_independent_operand (op, mode)
|
||
enum machine_mode mode;
|
||
rtx op;
|
||
{
|
||
rtx addr;
|
||
|
||
if (! general_operand (op, mode))
|
||
return 0;
|
||
|
||
if (GET_CODE (op) != MEM)
|
||
return 1;
|
||
|
||
addr = XEXP (op, 0);
|
||
GO_IF_MODE_DEPENDENT_ADDRESS (addr, lose);
|
||
return 1;
|
||
lose:
|
||
return 0;
|
||
}
|
||
|
||
/* Given an operand OP that is a valid memory reference
|
||
which satisfies offsettable_memref_p,
|
||
return a new memory reference whose address has been adjusted by OFFSET.
|
||
OFFSET should be positive and less than the size of the object referenced.
|
||
*/
|
||
|
||
rtx
|
||
adj_offsettable_operand (op, offset)
|
||
rtx op;
|
||
int offset;
|
||
{
|
||
register enum rtx_code code = GET_CODE (op);
|
||
|
||
if (code == MEM)
|
||
{
|
||
register rtx y = XEXP (op, 0);
|
||
register rtx new;
|
||
|
||
if (CONSTANT_ADDRESS_P (y))
|
||
{
|
||
new = gen_rtx (MEM, GET_MODE (op), plus_constant_for_output (y, offset));
|
||
RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (op);
|
||
return new;
|
||
}
|
||
|
||
if (GET_CODE (y) == PLUS)
|
||
{
|
||
rtx z = y;
|
||
register rtx *const_loc;
|
||
|
||
op = copy_rtx (op);
|
||
z = XEXP (op, 0);
|
||
const_loc = find_constant_term_loc (&z);
|
||
if (const_loc)
|
||
{
|
||
*const_loc = plus_constant_for_output (*const_loc, offset);
|
||
return op;
|
||
}
|
||
}
|
||
|
||
new = gen_rtx (MEM, GET_MODE (op), plus_constant_for_output (y, offset));
|
||
RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (op);
|
||
return new;
|
||
}
|
||
abort ();
|
||
}
|
||
|
||
#ifdef REGISTER_CONSTRAINTS
|
||
|
||
/* Check the operands of an insn (found in recog_operands)
|
||
against the insn's operand constraints (found via INSN_CODE_NUM)
|
||
and return 1 if they are valid.
|
||
|
||
WHICH_ALTERNATIVE is set to a number which indicates which
|
||
alternative of constraints was matched: 0 for the first alternative,
|
||
1 for the next, etc.
|
||
|
||
In addition, when two operands are match
|
||
and it happens that the output operand is (reg) while the
|
||
input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
|
||
make the output operand look like the input.
|
||
This is because the output operand is the one the template will print.
|
||
|
||
This is used in final, just before printing the assembler code and by
|
||
the routines that determine an insn's attribute.
|
||
|
||
If STRICT is a positive non-zero value, it means that we have been
|
||
called after reload has been completed. In that case, we must
|
||
do all checks strictly. If it is zero, it means that we have been called
|
||
before reload has completed. In that case, we first try to see if we can
|
||
find an alternative that matches strictly. If not, we try again, this
|
||
time assuming that reload will fix up the insn. This provides a "best
|
||
guess" for the alternative and is used to compute attributes of insns prior
|
||
to reload. A negative value of STRICT is used for this internal call. */
|
||
|
||
struct funny_match
|
||
{
|
||
int this, other;
|
||
};
|
||
|
||
int
|
||
constrain_operands (insn_code_num, strict)
|
||
int insn_code_num;
|
||
int strict;
|
||
{
|
||
char *constraints[MAX_RECOG_OPERANDS];
|
||
int matching_operands[MAX_RECOG_OPERANDS];
|
||
enum op_type {OP_IN, OP_OUT, OP_INOUT} op_types[MAX_RECOG_OPERANDS];
|
||
int earlyclobber[MAX_RECOG_OPERANDS];
|
||
register int c;
|
||
int noperands = insn_n_operands[insn_code_num];
|
||
|
||
struct funny_match funny_match[MAX_RECOG_OPERANDS];
|
||
int funny_match_index;
|
||
int nalternatives = insn_n_alternatives[insn_code_num];
|
||
|
||
if (noperands == 0 || nalternatives == 0)
|
||
return 1;
|
||
|
||
for (c = 0; c < noperands; c++)
|
||
{
|
||
constraints[c] = insn_operand_constraint[insn_code_num][c];
|
||
matching_operands[c] = -1;
|
||
op_types[c] = OP_IN;
|
||
}
|
||
|
||
which_alternative = 0;
|
||
|
||
while (which_alternative < nalternatives)
|
||
{
|
||
register int opno;
|
||
int lose = 0;
|
||
funny_match_index = 0;
|
||
|
||
for (opno = 0; opno < noperands; opno++)
|
||
{
|
||
register rtx op = recog_operand[opno];
|
||
enum machine_mode mode = GET_MODE (op);
|
||
register char *p = constraints[opno];
|
||
int offset = 0;
|
||
int win = 0;
|
||
int val;
|
||
|
||
earlyclobber[opno] = 0;
|
||
|
||
if (GET_CODE (op) == SUBREG)
|
||
{
|
||
if (GET_CODE (SUBREG_REG (op)) == REG
|
||
&& REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
|
||
offset = SUBREG_WORD (op);
|
||
op = SUBREG_REG (op);
|
||
}
|
||
|
||
/* An empty constraint or empty alternative
|
||
allows anything which matched the pattern. */
|
||
if (*p == 0 || *p == ',')
|
||
win = 1;
|
||
|
||
while (*p && (c = *p++) != ',')
|
||
switch (c)
|
||
{
|
||
case '?':
|
||
case '!':
|
||
case '*':
|
||
case '%':
|
||
break;
|
||
|
||
case '#':
|
||
/* Ignore rest of this alternative as far as
|
||
constraint checking is concerned. */
|
||
while (*p && *p != ',')
|
||
p++;
|
||
break;
|
||
|
||
case '=':
|
||
op_types[opno] = OP_OUT;
|
||
break;
|
||
|
||
case '+':
|
||
op_types[opno] = OP_INOUT;
|
||
break;
|
||
|
||
case '&':
|
||
earlyclobber[opno] = 1;
|
||
break;
|
||
|
||
case '0':
|
||
case '1':
|
||
case '2':
|
||
case '3':
|
||
case '4':
|
||
/* This operand must be the same as a previous one.
|
||
This kind of constraint is used for instructions such
|
||
as add when they take only two operands.
|
||
|
||
Note that the lower-numbered operand is passed first.
|
||
|
||
If we are not testing strictly, assume that this constraint
|
||
will be satisfied. */
|
||
if (strict < 0)
|
||
val = 1;
|
||
else
|
||
val = operands_match_p (recog_operand[c - '0'],
|
||
recog_operand[opno]);
|
||
|
||
matching_operands[opno] = c - '0';
|
||
matching_operands[c - '0'] = opno;
|
||
|
||
if (val != 0)
|
||
win = 1;
|
||
/* If output is *x and input is *--x,
|
||
arrange later to change the output to *--x as well,
|
||
since the output op is the one that will be printed. */
|
||
if (val == 2 && strict > 0)
|
||
{
|
||
funny_match[funny_match_index].this = opno;
|
||
funny_match[funny_match_index++].other = c - '0';
|
||
}
|
||
break;
|
||
|
||
case 'p':
|
||
/* p is used for address_operands. When we are called by
|
||
gen_reload, no one will have checked that the address is
|
||
strictly valid, i.e., that all pseudos requiring hard regs
|
||
have gotten them. */
|
||
if (strict <= 0
|
||
|| (strict_memory_address_p
|
||
(insn_operand_mode[insn_code_num][opno], op)))
|
||
win = 1;
|
||
break;
|
||
|
||
/* No need to check general_operand again;
|
||
it was done in insn-recog.c. */
|
||
case 'g':
|
||
/* Anything goes unless it is a REG and really has a hard reg
|
||
but the hard reg is not in the class GENERAL_REGS. */
|
||
if (strict < 0
|
||
|| GENERAL_REGS == ALL_REGS
|
||
|| GET_CODE (op) != REG
|
||
|| (reload_in_progress
|
||
&& REGNO (op) >= FIRST_PSEUDO_REGISTER)
|
||
|| reg_fits_class_p (op, GENERAL_REGS, offset, mode))
|
||
win = 1;
|
||
break;
|
||
|
||
case 'r':
|
||
if (strict < 0
|
||
|| (strict == 0
|
||
&& GET_CODE (op) == REG
|
||
&& REGNO (op) >= FIRST_PSEUDO_REGISTER)
|
||
|| (strict == 0 && GET_CODE (op) == SCRATCH)
|
||
|| (GET_CODE (op) == REG
|
||
&& ((GENERAL_REGS == ALL_REGS
|
||
&& REGNO (op) < FIRST_PSEUDO_REGISTER)
|
||
|| reg_fits_class_p (op, GENERAL_REGS,
|
||
offset, mode))))
|
||
win = 1;
|
||
break;
|
||
|
||
case 'X':
|
||
/* This is used for a MATCH_SCRATCH in the cases when we
|
||
don't actually need anything. So anything goes any time. */
|
||
win = 1;
|
||
break;
|
||
|
||
case 'm':
|
||
if (GET_CODE (op) == MEM
|
||
/* Before reload, accept what reload can turn into mem. */
|
||
|| (strict < 0 && CONSTANT_P (op))
|
||
/* During reload, accept a pseudo */
|
||
|| (reload_in_progress && GET_CODE (op) == REG
|
||
&& REGNO (op) >= FIRST_PSEUDO_REGISTER))
|
||
win = 1;
|
||
break;
|
||
|
||
case '<':
|
||
if (GET_CODE (op) == MEM
|
||
&& (GET_CODE (XEXP (op, 0)) == PRE_DEC
|
||
|| GET_CODE (XEXP (op, 0)) == POST_DEC))
|
||
win = 1;
|
||
break;
|
||
|
||
case '>':
|
||
if (GET_CODE (op) == MEM
|
||
&& (GET_CODE (XEXP (op, 0)) == PRE_INC
|
||
|| GET_CODE (XEXP (op, 0)) == POST_INC))
|
||
win = 1;
|
||
break;
|
||
|
||
case 'E':
|
||
#ifndef REAL_ARITHMETIC
|
||
/* Match any CONST_DOUBLE, but only if
|
||
we can examine the bits of it reliably. */
|
||
if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
|
||
|| HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
|
||
&& GET_MODE (op) != VOIDmode && ! flag_pretend_float)
|
||
break;
|
||
#endif
|
||
if (GET_CODE (op) == CONST_DOUBLE)
|
||
win = 1;
|
||
break;
|
||
|
||
case 'F':
|
||
if (GET_CODE (op) == CONST_DOUBLE)
|
||
win = 1;
|
||
break;
|
||
|
||
case 'G':
|
||
case 'H':
|
||
if (GET_CODE (op) == CONST_DOUBLE
|
||
&& CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
|
||
win = 1;
|
||
break;
|
||
|
||
case 's':
|
||
if (GET_CODE (op) == CONST_INT
|
||
|| (GET_CODE (op) == CONST_DOUBLE
|
||
&& GET_MODE (op) == VOIDmode))
|
||
break;
|
||
case 'i':
|
||
if (CONSTANT_P (op))
|
||
win = 1;
|
||
break;
|
||
|
||
case 'n':
|
||
if (GET_CODE (op) == CONST_INT
|
||
|| (GET_CODE (op) == CONST_DOUBLE
|
||
&& GET_MODE (op) == VOIDmode))
|
||
win = 1;
|
||
break;
|
||
|
||
case 'I':
|
||
case 'J':
|
||
case 'K':
|
||
case 'L':
|
||
case 'M':
|
||
case 'N':
|
||
case 'O':
|
||
case 'P':
|
||
if (GET_CODE (op) == CONST_INT
|
||
&& CONST_OK_FOR_LETTER_P (INTVAL (op), c))
|
||
win = 1;
|
||
break;
|
||
|
||
#ifdef EXTRA_CONSTRAINT
|
||
case 'Q':
|
||
case 'R':
|
||
case 'S':
|
||
case 'T':
|
||
case 'U':
|
||
if (EXTRA_CONSTRAINT (op, c))
|
||
win = 1;
|
||
break;
|
||
#endif
|
||
|
||
case 'V':
|
||
if (GET_CODE (op) == MEM
|
||
&& ! offsettable_memref_p (op))
|
||
win = 1;
|
||
break;
|
||
|
||
case 'o':
|
||
if ((strict > 0 && offsettable_memref_p (op))
|
||
|| (strict == 0 && offsettable_nonstrict_memref_p (op))
|
||
/* Before reload, accept what reload can handle. */
|
||
|| (strict < 0
|
||
&& (CONSTANT_P (op) || GET_CODE (op) == MEM))
|
||
/* During reload, accept a pseudo */
|
||
|| (reload_in_progress && GET_CODE (op) == REG
|
||
&& REGNO (op) >= FIRST_PSEUDO_REGISTER))
|
||
win = 1;
|
||
break;
|
||
|
||
default:
|
||
if (strict < 0
|
||
|| (strict == 0
|
||
&& GET_CODE (op) == REG
|
||
&& REGNO (op) >= FIRST_PSEUDO_REGISTER)
|
||
|| (strict == 0 && GET_CODE (op) == SCRATCH)
|
||
|| (GET_CODE (op) == REG
|
||
&& reg_fits_class_p (op, REG_CLASS_FROM_LETTER (c),
|
||
offset, mode)))
|
||
win = 1;
|
||
}
|
||
|
||
constraints[opno] = p;
|
||
/* If this operand did not win somehow,
|
||
this alternative loses. */
|
||
if (! win)
|
||
lose = 1;
|
||
}
|
||
/* This alternative won; the operands are ok.
|
||
Change whichever operands this alternative says to change. */
|
||
if (! lose)
|
||
{
|
||
int opno, eopno;
|
||
|
||
/* See if any earlyclobber operand conflicts with some other
|
||
operand. */
|
||
|
||
if (strict > 0)
|
||
for (eopno = 0; eopno < noperands; eopno++)
|
||
/* Ignore earlyclobber operands now in memory,
|
||
because we would often report failure when we have
|
||
two memory operands, one of which was formerly a REG. */
|
||
if (earlyclobber[eopno]
|
||
&& GET_CODE (recog_operand[eopno]) == REG)
|
||
for (opno = 0; opno < noperands; opno++)
|
||
if ((GET_CODE (recog_operand[opno]) == MEM
|
||
|| op_types[opno] != OP_OUT)
|
||
&& opno != eopno
|
||
/* Ignore things like match_operator operands. */
|
||
&& *constraints[opno] != 0
|
||
&& ! (matching_operands[opno] == eopno
|
||
&& rtx_equal_p (recog_operand[opno],
|
||
recog_operand[eopno]))
|
||
&& ! safe_from_earlyclobber (recog_operand[opno],
|
||
recog_operand[eopno]))
|
||
lose = 1;
|
||
|
||
if (! lose)
|
||
{
|
||
while (--funny_match_index >= 0)
|
||
{
|
||
recog_operand[funny_match[funny_match_index].other]
|
||
= recog_operand[funny_match[funny_match_index].this];
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
which_alternative++;
|
||
}
|
||
|
||
/* If we are about to reject this, but we are not to test strictly,
|
||
try a very loose test. Only return failure if it fails also. */
|
||
if (strict == 0)
|
||
return constrain_operands (insn_code_num, -1);
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 iff OPERAND (assumed to be a REG rtx)
|
||
is a hard reg in class CLASS when its regno is offsetted by OFFSET
|
||
and changed to mode MODE.
|
||
If REG occupies multiple hard regs, all of them must be in CLASS. */
|
||
|
||
int
|
||
reg_fits_class_p (operand, class, offset, mode)
|
||
rtx operand;
|
||
register enum reg_class class;
|
||
int offset;
|
||
enum machine_mode mode;
|
||
{
|
||
register int regno = REGNO (operand);
|
||
if (regno < FIRST_PSEUDO_REGISTER
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[(int) class],
|
||
regno + offset))
|
||
{
|
||
register int sr;
|
||
regno += offset;
|
||
for (sr = HARD_REGNO_NREGS (regno, mode) - 1;
|
||
sr > 0; sr--)
|
||
if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
|
||
regno + sr))
|
||
break;
|
||
return sr == 0;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
#endif /* REGISTER_CONSTRAINTS */
|