1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-21 11:13:30 +00:00
freebsd/sys/net80211/ieee80211_crypto_wep.c
2008-12-18 23:00:09 +00:00

481 lines
14 KiB
C

/*-
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* IEEE 802.11 WEP crypto support.
*/
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/endian.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_media.h>
#include <net/ethernet.h>
#include <net80211/ieee80211_var.h>
static void *wep_attach(struct ieee80211vap *, struct ieee80211_key *);
static void wep_detach(struct ieee80211_key *);
static int wep_setkey(struct ieee80211_key *);
static int wep_encap(struct ieee80211_key *, struct mbuf *, uint8_t keyid);
static int wep_decap(struct ieee80211_key *, struct mbuf *, int hdrlen);
static int wep_enmic(struct ieee80211_key *, struct mbuf *, int);
static int wep_demic(struct ieee80211_key *, struct mbuf *, int);
static const struct ieee80211_cipher wep = {
.ic_name = "WEP",
.ic_cipher = IEEE80211_CIPHER_WEP,
.ic_header = IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
.ic_trailer = IEEE80211_WEP_CRCLEN,
.ic_miclen = 0,
.ic_attach = wep_attach,
.ic_detach = wep_detach,
.ic_setkey = wep_setkey,
.ic_encap = wep_encap,
.ic_decap = wep_decap,
.ic_enmic = wep_enmic,
.ic_demic = wep_demic,
};
static int wep_encrypt(struct ieee80211_key *, struct mbuf *, int hdrlen);
static int wep_decrypt(struct ieee80211_key *, struct mbuf *, int hdrlen);
struct wep_ctx {
struct ieee80211vap *wc_vap; /* for diagnostics+statistics */
struct ieee80211com *wc_ic;
uint32_t wc_iv; /* initial vector for crypto */
};
/* number of references from net80211 layer */
static int nrefs = 0;
static void *
wep_attach(struct ieee80211vap *vap, struct ieee80211_key *k)
{
struct wep_ctx *ctx;
ctx = (struct wep_ctx *) malloc(sizeof(struct wep_ctx),
M_80211_CRYPTO, M_NOWAIT | M_ZERO);
if (ctx == NULL) {
vap->iv_stats.is_crypto_nomem++;
return NULL;
}
ctx->wc_vap = vap;
ctx->wc_ic = vap->iv_ic;
get_random_bytes(&ctx->wc_iv, sizeof(ctx->wc_iv));
nrefs++; /* NB: we assume caller locking */
return ctx;
}
static void
wep_detach(struct ieee80211_key *k)
{
struct wep_ctx *ctx = k->wk_private;
free(ctx, M_80211_CRYPTO);
KASSERT(nrefs > 0, ("imbalanced attach/detach"));
nrefs--; /* NB: we assume caller locking */
}
static int
wep_setkey(struct ieee80211_key *k)
{
return k->wk_keylen >= 40/NBBY;
}
/*
* Add privacy headers appropriate for the specified key.
*/
static int
wep_encap(struct ieee80211_key *k, struct mbuf *m, uint8_t keyid)
{
struct wep_ctx *ctx = k->wk_private;
struct ieee80211com *ic = ctx->wc_ic;
uint32_t iv;
uint8_t *ivp;
int hdrlen;
hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
/*
* Copy down 802.11 header and add the IV + KeyID.
*/
M_PREPEND(m, wep.ic_header, M_NOWAIT);
if (m == NULL)
return 0;
ivp = mtod(m, uint8_t *);
ovbcopy(ivp + wep.ic_header, ivp, hdrlen);
ivp += hdrlen;
/*
* XXX
* IV must not duplicate during the lifetime of the key.
* But no mechanism to renew keys is defined in IEEE 802.11
* for WEP. And the IV may be duplicated at other stations
* because the session key itself is shared. So we use a
* pseudo random IV for now, though it is not the right way.
*
* NB: Rather than use a strictly random IV we select a
* random one to start and then increment the value for
* each frame. This is an explicit tradeoff between
* overhead and security. Given the basic insecurity of
* WEP this seems worthwhile.
*/
/*
* Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
* (B, 255, N) with 3 <= B < 16 and 0 <= N <= 255
*/
iv = ctx->wc_iv;
if ((iv & 0xff00) == 0xff00) {
int B = (iv & 0xff0000) >> 16;
if (3 <= B && B < 16)
iv += 0x0100;
}
ctx->wc_iv = iv + 1;
/*
* NB: Preserve byte order of IV for packet
* sniffers; it doesn't matter otherwise.
*/
#if _BYTE_ORDER == _BIG_ENDIAN
ivp[0] = iv >> 0;
ivp[1] = iv >> 8;
ivp[2] = iv >> 16;
#else
ivp[2] = iv >> 0;
ivp[1] = iv >> 8;
ivp[0] = iv >> 16;
#endif
ivp[3] = keyid;
/*
* Finally, do software encrypt if neeed.
*/
if ((k->wk_flags & IEEE80211_KEY_SWENCRYPT) &&
!wep_encrypt(k, m, hdrlen))
return 0;
return 1;
}
/*
* Add MIC to the frame as needed.
*/
static int
wep_enmic(struct ieee80211_key *k, struct mbuf *m, int force)
{
return 1;
}
/*
* Validate and strip privacy headers (and trailer) for a
* received frame. If necessary, decrypt the frame using
* the specified key.
*/
static int
wep_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
{
struct wep_ctx *ctx = k->wk_private;
struct ieee80211vap *vap = ctx->wc_vap;
struct ieee80211_frame *wh;
wh = mtod(m, struct ieee80211_frame *);
/*
* Check if the device handled the decrypt in hardware.
* If so we just strip the header; otherwise we need to
* handle the decrypt in software.
*/
if ((k->wk_flags & IEEE80211_KEY_SWDECRYPT) &&
!wep_decrypt(k, m, hdrlen)) {
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
"%s", "WEP ICV mismatch on decrypt");
vap->iv_stats.is_rx_wepfail++;
return 0;
}
/*
* Copy up 802.11 header and strip crypto bits.
*/
ovbcopy(mtod(m, void *), mtod(m, uint8_t *) + wep.ic_header, hdrlen);
m_adj(m, wep.ic_header);
m_adj(m, -wep.ic_trailer);
return 1;
}
/*
* Verify and strip MIC from the frame.
*/
static int
wep_demic(struct ieee80211_key *k, struct mbuf *skb, int force)
{
return 1;
}
static const uint32_t crc32_table[256] = {
0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
0x2d02ef8dL
};
static int
wep_encrypt(struct ieee80211_key *key, struct mbuf *m0, int hdrlen)
{
#define S_SWAP(a,b) do { uint8_t t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
struct wep_ctx *ctx = key->wk_private;
struct ieee80211vap *vap = ctx->wc_vap;
struct mbuf *m = m0;
uint8_t rc4key[IEEE80211_WEP_IVLEN + IEEE80211_KEYBUF_SIZE];
uint8_t icv[IEEE80211_WEP_CRCLEN];
uint32_t i, j, k, crc;
size_t buflen, data_len;
uint8_t S[256];
uint8_t *pos;
u_int off, keylen;
vap->iv_stats.is_crypto_wep++;
/* NB: this assumes the header was pulled up */
memcpy(rc4key, mtod(m, uint8_t *) + hdrlen, IEEE80211_WEP_IVLEN);
memcpy(rc4key + IEEE80211_WEP_IVLEN, key->wk_key, key->wk_keylen);
/* Setup RC4 state */
for (i = 0; i < 256; i++)
S[i] = i;
j = 0;
keylen = key->wk_keylen + IEEE80211_WEP_IVLEN;
for (i = 0; i < 256; i++) {
j = (j + S[i] + rc4key[i % keylen]) & 0xff;
S_SWAP(i, j);
}
off = hdrlen + wep.ic_header;
data_len = m->m_pkthdr.len - off;
/* Compute CRC32 over unencrypted data and apply RC4 to data */
crc = ~0;
i = j = 0;
pos = mtod(m, uint8_t *) + off;
buflen = m->m_len - off;
for (;;) {
if (buflen > data_len)
buflen = data_len;
data_len -= buflen;
for (k = 0; k < buflen; k++) {
crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
i = (i + 1) & 0xff;
j = (j + S[i]) & 0xff;
S_SWAP(i, j);
*pos++ ^= S[(S[i] + S[j]) & 0xff];
}
if (m->m_next == NULL) {
if (data_len != 0) { /* out of data */
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
ether_sprintf(mtod(m0,
struct ieee80211_frame *)->i_addr2),
"out of data for WEP (data_len %zu)",
data_len);
/* XXX stat */
return 0;
}
break;
}
m = m->m_next;
pos = mtod(m, uint8_t *);
buflen = m->m_len;
}
crc = ~crc;
/* Append little-endian CRC32 and encrypt it to produce ICV */
icv[0] = crc;
icv[1] = crc >> 8;
icv[2] = crc >> 16;
icv[3] = crc >> 24;
for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
i = (i + 1) & 0xff;
j = (j + S[i]) & 0xff;
S_SWAP(i, j);
icv[k] ^= S[(S[i] + S[j]) & 0xff];
}
return m_append(m0, IEEE80211_WEP_CRCLEN, icv);
#undef S_SWAP
}
static int
wep_decrypt(struct ieee80211_key *key, struct mbuf *m0, int hdrlen)
{
#define S_SWAP(a,b) do { uint8_t t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
struct wep_ctx *ctx = key->wk_private;
struct ieee80211vap *vap = ctx->wc_vap;
struct mbuf *m = m0;
uint8_t rc4key[IEEE80211_WEP_IVLEN + IEEE80211_KEYBUF_SIZE];
uint8_t icv[IEEE80211_WEP_CRCLEN];
uint32_t i, j, k, crc;
size_t buflen, data_len;
uint8_t S[256];
uint8_t *pos;
u_int off, keylen;
vap->iv_stats.is_crypto_wep++;
/* NB: this assumes the header was pulled up */
memcpy(rc4key, mtod(m, uint8_t *) + hdrlen, IEEE80211_WEP_IVLEN);
memcpy(rc4key + IEEE80211_WEP_IVLEN, key->wk_key, key->wk_keylen);
/* Setup RC4 state */
for (i = 0; i < 256; i++)
S[i] = i;
j = 0;
keylen = key->wk_keylen + IEEE80211_WEP_IVLEN;
for (i = 0; i < 256; i++) {
j = (j + S[i] + rc4key[i % keylen]) & 0xff;
S_SWAP(i, j);
}
off = hdrlen + wep.ic_header;
data_len = m->m_pkthdr.len - (off + wep.ic_trailer),
/* Compute CRC32 over unencrypted data and apply RC4 to data */
crc = ~0;
i = j = 0;
pos = mtod(m, uint8_t *) + off;
buflen = m->m_len - off;
for (;;) {
if (buflen > data_len)
buflen = data_len;
data_len -= buflen;
for (k = 0; k < buflen; k++) {
i = (i + 1) & 0xff;
j = (j + S[i]) & 0xff;
S_SWAP(i, j);
*pos ^= S[(S[i] + S[j]) & 0xff];
crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
pos++;
}
m = m->m_next;
if (m == NULL) {
if (data_len != 0) { /* out of data */
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
mtod(m0, struct ieee80211_frame *)->i_addr2,
"out of data for WEP (data_len %zu)",
data_len);
return 0;
}
break;
}
pos = mtod(m, uint8_t *);
buflen = m->m_len;
}
crc = ~crc;
/* Encrypt little-endian CRC32 and verify that it matches with
* received ICV */
icv[0] = crc;
icv[1] = crc >> 8;
icv[2] = crc >> 16;
icv[3] = crc >> 24;
for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
i = (i + 1) & 0xff;
j = (j + S[i]) & 0xff;
S_SWAP(i, j);
/* XXX assumes ICV is contiguous in mbuf */
if ((icv[k] ^ S[(S[i] + S[j]) & 0xff]) != *pos++) {
/* ICV mismatch - drop frame */
return 0;
}
}
return 1;
#undef S_SWAP
}
/*
* Module glue.
*/
IEEE80211_CRYPTO_MODULE(wep, 1);