1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-24 16:10:11 +00:00
freebsd/sbin/ifconfig/sfp.c
Marcelo Araujo 7de7df1554 Use macro MIN() from sys/param.h.
MFC after:	2 weeks.
2016-04-27 02:02:44 +00:00

917 lines
22 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*-
* Copyright (c) 2014 Alexander V. Chernikov. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef lint
static const char rcsid[] =
"$FreeBSD$";
#endif /* not lint */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/sff8436.h>
#include <net/sff8472.h>
#include <math.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "ifconfig.h"
struct i2c_info {
int fd; /* fd to issue SIOCGI2C */
int error; /* Store first error */
int qsfp; /* True if transceiver is QSFP */
int do_diag; /* True if we need to request DDM */
struct ifreq *ifr; /* Pointer to pre-filled ifreq */
};
static int read_i2c(struct i2c_info *ii, uint8_t addr, uint8_t off,
uint8_t len, uint8_t *buf);
static void dump_i2c_data(struct i2c_info *ii, uint8_t addr, uint8_t off,
uint8_t len);
struct _nv {
int v;
const char *n;
};
const char *find_value(struct _nv *x, int value);
const char *find_zero_bit(struct _nv *x, int value, int sz);
/* SFF-8472 Rev. 11.4 table 3.4: Connector values */
static struct _nv conn[] = {
{ 0x00, "Unknown" },
{ 0x01, "SC" },
{ 0x02, "Fibre Channel Style 1 copper" },
{ 0x03, "Fibre Channel Style 2 copper" },
{ 0x04, "BNC/TNC" },
{ 0x05, "Fibre Channel coaxial" },
{ 0x06, "FiberJack" },
{ 0x07, "LC" },
{ 0x08, "MT-RJ" },
{ 0x09, "MU" },
{ 0x0A, "SG" },
{ 0x0B, "Optical pigtail" },
{ 0x0C, "MPO Parallel Optic" },
{ 0x20, "HSSDC II" },
{ 0x21, "Copper pigtail" },
{ 0x22, "RJ45" },
{ 0x23, "No separate connector" }, /* SFF-8436 */
{ 0, NULL }
};
/* SFF-8472 Rev. 11.4 table 3.5: Transceiver codes */
/* 10G Ethernet/IB compliance codes, byte 3 */
static struct _nv eth_10g[] = {
{ 0x80, "10G Base-ER" },
{ 0x40, "10G Base-LRM" },
{ 0x20, "10G Base-LR" },
{ 0x10, "10G Base-SR" },
{ 0x08, "1X SX" },
{ 0x04, "1X LX" },
{ 0x02, "1X Copper Active" },
{ 0x01, "1X Copper Passive" },
{ 0, NULL }
};
/* Ethernet compliance codes, byte 6 */
static struct _nv eth_compat[] = {
{ 0x80, "BASE-PX" },
{ 0x40, "BASE-BX10" },
{ 0x20, "100BASE-FX" },
{ 0x10, "100BASE-LX/LX10" },
{ 0x08, "1000BASE-T" },
{ 0x04, "1000BASE-CX" },
{ 0x02, "1000BASE-LX" },
{ 0x01, "1000BASE-SX" },
{ 0, NULL }
};
/* FC link length, byte 7 */
static struct _nv fc_len[] = {
{ 0x80, "very long distance" },
{ 0x40, "short distance" },
{ 0x20, "intermediate distance" },
{ 0x10, "long distance" },
{ 0x08, "medium distance" },
{ 0, NULL }
};
/* Channel/Cable technology, byte 7-8 */
static struct _nv cab_tech[] = {
{ 0x0400, "Shortwave laser (SA)" },
{ 0x0200, "Longwave laser (LC)" },
{ 0x0100, "Electrical inter-enclosure (EL)" },
{ 0x80, "Electrical intra-enclosure (EL)" },
{ 0x40, "Shortwave laser (SN)" },
{ 0x20, "Shortwave laser (SL)" },
{ 0x10, "Longwave laser (LL)" },
{ 0x08, "Active Cable" },
{ 0x04, "Passive Cable" },
{ 0, NULL }
};
/* FC Transmission media, byte 9 */
static struct _nv fc_media[] = {
{ 0x80, "Twin Axial Pair" },
{ 0x40, "Twisted Pair" },
{ 0x20, "Miniature Coax" },
{ 0x10, "Viao Coax" },
{ 0x08, "Miltimode, 62.5um" },
{ 0x04, "Multimode, 50um" },
{ 0x02, "" },
{ 0x01, "Single Mode" },
{ 0, NULL }
};
/* FC Speed, byte 10 */
static struct _nv fc_speed[] = {
{ 0x80, "1200 MBytes/sec" },
{ 0x40, "800 MBytes/sec" },
{ 0x20, "1600 MBytes/sec" },
{ 0x10, "400 MBytes/sec" },
{ 0x08, "3200 MBytes/sec" },
{ 0x04, "200 MBytes/sec" },
{ 0x01, "100 MBytes/sec" },
{ 0, NULL }
};
/* SFF-8436 Rev. 4.8 table 33: Specification compliance */
/* 10/40G Ethernet compliance codes, byte 128 + 3 */
static struct _nv eth_1040g[] = {
{ 0x80, "Extended" },
{ 0x40, "10GBASE-LRM" },
{ 0x20, "10GBASE-LR" },
{ 0x10, "10GBASE-SR" },
{ 0x08, "40GBASE-CR4" },
{ 0x04, "40GBASE-SR4" },
{ 0x02, "40GBASE-LR4" },
{ 0x01, "40G Active Cable" },
{ 0, NULL }
};
#define SFF_8636_EXT_COMPLIANCE 0x80
/* SFF-8024 Rev. 3.4 table 4.4: Extended Specification Compliance */
static struct _nv eth_extended_comp[] = {
{ 0xFF, "Reserved" },
{ 0x1A, "2 lambda DWDM 100G" },
{ 0x19, "100G ACC or 25GAUI C2M ACC" },
{ 0x18, "100G AOC or 25GAUI C2M AOC" },
{ 0x17, "100G CLR4" },
{ 0x16, "10GBASE-T with SFI electrical interface" },
{ 0x15, "G959.1 profile P1L1-2D2" },
{ 0x14, "G959.1 profile P1S1-2D2" },
{ 0x13, "G959.1 profile P1I1-2D1" },
{ 0x12, "40G PSM4 Parallel SMF" },
{ 0x11, "4 x 10GBASE-SR" },
{ 0x10, "40GBASE-ER4" },
{ 0x0F, "Reserved" },
{ 0x0D, "25GBASE-CR CA-N" },
{ 0x0C, "25GBASE-CR CA-S" },
{ 0x0B, "100GBASE-CR4 or 25GBASE-CR CA-L" },
{ 0x0A, "Reserved" },
{ 0x09, "100G CWDM4 MSA without FEC" },
{ 0x08, "100G ACC (Active Copper Cable)" },
{ 0x07, "100G PSM4 Parallel SMF" },
{ 0x06, "100G CWDM4 MSA with FEC" },
{ 0x05, "100GBASE-SR10" },
{ 0x04, "100GBASE-ER4" },
{ 0x03, "100GBASE-LR4" },
{ 0x02, "100GBASE-SR4" },
{ 0x01, "100G AOC (Active Optical Cable) or 25GAUI C2M ACC" },
{ 0x00, "Unspecified" }
};
/* SFF-8636 Rev. 2.5 table 6.3: Revision compliance */
static struct _nv rev_compl[] = {
{ 0x1, "SFF-8436 rev <=4.8" },
{ 0x2, "SFF-8436 rev <=4.8" },
{ 0x3, "SFF-8636 rev <=1.3" },
{ 0x4, "SFF-8636 rev <=1.4" },
{ 0x5, "SFF-8636 rev <=1.5" },
{ 0x6, "SFF-8636 rev <=2.0" },
{ 0x7, "SFF-8636 rev <=2.5" },
{ 0x0, "Unspecified" }
};
const char *
find_value(struct _nv *x, int value)
{
for (; x->n != NULL; x++)
if (x->v == value)
return (x->n);
return (NULL);
}
const char *
find_zero_bit(struct _nv *x, int value, int sz)
{
int v, m;
const char *s;
v = 1;
for (v = 1, m = 1 << (8 * sz); v < m; v *= 2) {
if ((value & v) == 0)
continue;
if ((s = find_value(x, value & v)) != NULL) {
value &= ~v;
return (s);
}
}
return (NULL);
}
static void
convert_sff_identifier(char *buf, size_t size, uint8_t value)
{
const char *x;
x = NULL;
if (value <= SFF_8024_ID_LAST)
x = sff_8024_id[value];
else {
if (value > 0x80)
x = "Vendor specific";
else
x = "Reserved";
}
snprintf(buf, size, "%s", x);
}
static void
convert_sff_connector(char *buf, size_t size, uint8_t value)
{
const char *x;
if ((x = find_value(conn, value)) == NULL) {
if (value >= 0x0D && value <= 0x1F)
x = "Unallocated";
else if (value >= 0x24 && value <= 0x7F)
x = "Unallocated";
else
x = "Vendor specific";
}
snprintf(buf, size, "%s", x);
}
static void
convert_sff_rev_compliance(char *buf, size_t size, uint8_t value)
{
const char *x;
if (value > 0x07)
x = "Unallocated";
else
x = find_value(rev_compl, value);
snprintf(buf, size, "%s", x);
}
static void
get_sfp_identifier(struct i2c_info *ii, char *buf, size_t size)
{
uint8_t data;
read_i2c(ii, SFF_8472_BASE, SFF_8472_ID, 1, &data);
convert_sff_identifier(buf, size, data);
}
static void
get_sfp_connector(struct i2c_info *ii, char *buf, size_t size)
{
uint8_t data;
read_i2c(ii, SFF_8472_BASE, SFF_8472_CONNECTOR, 1, &data);
convert_sff_connector(buf, size, data);
}
static void
get_qsfp_identifier(struct i2c_info *ii, char *buf, size_t size)
{
uint8_t data;
read_i2c(ii, SFF_8436_BASE, SFF_8436_ID, 1, &data);
convert_sff_identifier(buf, size, data);
}
static void
get_qsfp_connector(struct i2c_info *ii, char *buf, size_t size)
{
uint8_t data;
read_i2c(ii, SFF_8436_BASE, SFF_8436_CONNECTOR, 1, &data);
convert_sff_connector(buf, size, data);
}
static void
printf_sfp_transceiver_descr(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[12];
const char *tech_class, *tech_len, *tech_tech, *tech_media, *tech_speed;
tech_class = NULL;
tech_len = NULL;
tech_tech = NULL;
tech_media = NULL;
tech_speed = NULL;
/* Read bytes 3-10 at once */
read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 8, &xbuf[3]);
/* Check 10G ethernet first */
tech_class = find_zero_bit(eth_10g, xbuf[3], 1);
if (tech_class == NULL) {
/* No match. Try 1G */
tech_class = find_zero_bit(eth_compat, xbuf[6], 1);
}
tech_len = find_zero_bit(fc_len, xbuf[7], 1);
tech_tech = find_zero_bit(cab_tech, xbuf[7] << 8 | xbuf[8], 2);
tech_media = find_zero_bit(fc_media, xbuf[9], 1);
tech_speed = find_zero_bit(fc_speed, xbuf[10], 1);
printf("Class: %s\n", tech_class);
printf("Length: %s\n", tech_len);
printf("Tech: %s\n", tech_tech);
printf("Media: %s\n", tech_media);
printf("Speed: %s\n", tech_speed);
}
static void
get_sfp_transceiver_class(struct i2c_info *ii, char *buf, size_t size)
{
const char *tech_class;
uint8_t code;
unsigned char qbuf[8];
read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 8, (uint8_t *)qbuf);
/* Check 10G Ethernet/IB first */
read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 1, &code);
tech_class = find_zero_bit(eth_10g, code, 1);
if (tech_class == NULL) {
/* No match. Try Ethernet 1G */
read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START + 3,
1, (caddr_t)&code);
tech_class = find_zero_bit(eth_compat, code, 1);
}
if (tech_class == NULL)
tech_class = "Unknown";
snprintf(buf, size, "%s", tech_class);
}
static void
get_qsfp_transceiver_class(struct i2c_info *ii, char *buf, size_t size)
{
const char *tech_class;
uint8_t code;
read_i2c(ii, SFF_8436_BASE, SFF_8436_CODE_E1040100G, 1, &code);
/* Check for extended specification compliance */
if (code & SFF_8636_EXT_COMPLIANCE) {
read_i2c(ii, SFF_8436_BASE, SFF_8436_OPTIONS_START, 1, &code);
tech_class = find_value(eth_extended_comp, code);
} else
/* Check 10/40G Ethernet class only */
tech_class = find_zero_bit(eth_1040g, code, 1);
if (tech_class == NULL)
tech_class = "Unknown";
snprintf(buf, size, "%s", tech_class);
}
/*
* Print SFF-8472/SFF-8436 string to supplied buffer.
* All (vendor-specific) strings are padded right with '0x20'.
*/
static void
convert_sff_name(char *buf, size_t size, char *xbuf)
{
char *p;
for (p = &xbuf[16]; *(p - 1) == 0x20; p--)
;
*p = '\0';
snprintf(buf, size, "%s", xbuf);
}
static void
convert_sff_date(char *buf, size_t size, char *xbuf)
{
snprintf(buf, size, "20%c%c-%c%c-%c%c", xbuf[0], xbuf[1],
xbuf[2], xbuf[3], xbuf[4], xbuf[5]);
}
static void
get_sfp_vendor_name(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[17];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8472_BASE, SFF_8472_VENDOR_START, 16, (uint8_t *)xbuf);
convert_sff_name(buf, size, xbuf);
}
static void
get_sfp_vendor_pn(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[17];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8472_BASE, SFF_8472_PN_START, 16, (uint8_t *)xbuf);
convert_sff_name(buf, size, xbuf);
}
static void
get_sfp_vendor_sn(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[17];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8472_BASE, SFF_8472_SN_START, 16, (uint8_t *)xbuf);
convert_sff_name(buf, size, xbuf);
}
static void
get_sfp_vendor_date(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[6];
memset(xbuf, 0, sizeof(xbuf));
/* Date code, see Table 3.8 for description */
read_i2c(ii, SFF_8472_BASE, SFF_8472_DATE_START, 6, (uint8_t *)xbuf);
convert_sff_date(buf, size, xbuf);
}
static void
get_qsfp_vendor_name(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[17];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8436_BASE, SFF_8436_VENDOR_START, 16, (uint8_t *)xbuf);
convert_sff_name(buf, size, xbuf);
}
static void
get_qsfp_vendor_pn(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[17];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8436_BASE, SFF_8436_PN_START, 16, (uint8_t *)xbuf);
convert_sff_name(buf, size, xbuf);
}
static void
get_qsfp_vendor_sn(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[17];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8436_BASE, SFF_8436_SN_START, 16, (uint8_t *)xbuf);
convert_sff_name(buf, size, xbuf);
}
static void
get_qsfp_vendor_date(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[6];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8436_BASE, SFF_8436_DATE_START, 6, (uint8_t *)xbuf);
convert_sff_date(buf, size, xbuf);
}
static void
print_sfp_vendor(struct i2c_info *ii, char *buf, size_t size)
{
char xbuf[80];
memset(xbuf, 0, sizeof(xbuf));
if (ii->qsfp != 0) {
get_qsfp_vendor_name(ii, xbuf, 20);
get_qsfp_vendor_pn(ii, &xbuf[20], 20);
get_qsfp_vendor_sn(ii, &xbuf[40], 20);
get_qsfp_vendor_date(ii, &xbuf[60], 20);
} else {
get_sfp_vendor_name(ii, xbuf, 20);
get_sfp_vendor_pn(ii, &xbuf[20], 20);
get_sfp_vendor_sn(ii, &xbuf[40], 20);
get_sfp_vendor_date(ii, &xbuf[60], 20);
}
snprintf(buf, size, "vendor: %s PN: %s SN: %s DATE: %s",
xbuf, &xbuf[20], &xbuf[40], &xbuf[60]);
}
/*
* Converts internal templerature (SFF-8472, SFF-8436)
* 16-bit unsigned value to human-readable representation:
*
* Internally measured Module temperature are represented
* as a 16-bit signed twos complement value in increments of
* 1/256 degrees Celsius, yielding a total range of 128C to +128C
* that is considered valid between 40 and +125C.
*
*/
static void
convert_sff_temp(char *buf, size_t size, uint8_t *xbuf)
{
double d;
d = (double)xbuf[0];
d += (double)xbuf[1] / 256;
snprintf(buf, size, "%.2f C", d);
}
/*
* Retrieves supplied voltage (SFF-8472, SFF-8436).
* 16-bit usigned value, treated as range 0..+6.55 Volts
*/
static void
convert_sff_voltage(char *buf, size_t size, uint8_t *xbuf)
{
double d;
d = (double)((xbuf[0] << 8) | xbuf[1]);
snprintf(buf, size, "%.2f Volts", d / 10000);
}
/*
* Converts value in @xbuf to both milliwats and dBm
* human representation.
*/
static void
convert_sff_power(struct i2c_info *ii, char *buf, size_t size, uint8_t *xbuf)
{
uint16_t mW;
double dbm;
mW = (xbuf[0] << 8) + xbuf[1];
/* Convert mw to dbm */
dbm = 10.0 * log10(1.0 * mW / 10000);
/*
* Assume internally-calibrated data.
* This is always true for SFF-8346, and explicitly
* checked for SFF-8472.
*/
/* Table 3.9, bit 5 is set, internally calibrated */
snprintf(buf, size, "%d.%02d mW (%.2f dBm)",
mW / 10000, (mW % 10000) / 100, dbm);
}
static void
get_sfp_temp(struct i2c_info *ii, char *buf, size_t size)
{
uint8_t xbuf[2];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8472_DIAG, SFF_8472_TEMP, 2, xbuf);
convert_sff_temp(buf, size, xbuf);
}
static void
get_sfp_voltage(struct i2c_info *ii, char *buf, size_t size)
{
uint8_t xbuf[2];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8472_DIAG, SFF_8472_VCC, 2, xbuf);
convert_sff_voltage(buf, size, xbuf);
}
static int
get_qsfp_temp(struct i2c_info *ii, char *buf, size_t size)
{
uint8_t xbuf[2];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8436_BASE, SFF_8436_TEMP, 2, xbuf);
if ((xbuf[0] == 0xFF && xbuf[1] == 0xFF) || (xbuf[0] == 0 && xbuf[1] == 0))
return (-1);
convert_sff_temp(buf, size, xbuf);
return (0);
}
static void
get_qsfp_voltage(struct i2c_info *ii, char *buf, size_t size)
{
uint8_t xbuf[2];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8436_BASE, SFF_8436_VCC, 2, xbuf);
convert_sff_voltage(buf, size, xbuf);
}
static void
get_sfp_rx_power(struct i2c_info *ii, char *buf, size_t size)
{
uint8_t xbuf[2];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8472_DIAG, SFF_8472_RX_POWER, 2, xbuf);
convert_sff_power(ii, buf, size, xbuf);
}
static void
get_sfp_tx_power(struct i2c_info *ii, char *buf, size_t size)
{
uint8_t xbuf[2];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8472_DIAG, SFF_8472_TX_POWER, 2, xbuf);
convert_sff_power(ii, buf, size, xbuf);
}
static void
get_qsfp_rx_power(struct i2c_info *ii, char *buf, size_t size, int chan)
{
uint8_t xbuf[2];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8436_BASE, SFF_8436_RX_CH1_MSB + (chan-1)*2, 2, xbuf);
convert_sff_power(ii, buf, size, xbuf);
}
static void
get_qsfp_tx_power(struct i2c_info *ii, char *buf, size_t size, int chan)
{
uint8_t xbuf[2];
memset(xbuf, 0, sizeof(xbuf));
read_i2c(ii, SFF_8436_BASE, SFF_8436_TX_CH1_MSB + (chan-1)*2, 2, xbuf);
convert_sff_power(ii, buf, size, xbuf);
}
static void
get_qsfp_rev_compliance(struct i2c_info *ii, char *buf, size_t size)
{
uint8_t xbuf;
xbuf = 0;
read_i2c(ii, SFF_8436_BASE, SFF_8436_STATUS, 1, &xbuf);
convert_sff_rev_compliance(buf, size, xbuf);
}
static uint32_t
get_qsfp_br(struct i2c_info *ii)
{
uint8_t xbuf;
uint32_t rate;
xbuf = 0;
read_i2c(ii, SFF_8436_BASE, SFF_8436_BITRATE, 1, &xbuf);
rate = xbuf * 100;
if (xbuf == 0xFF) {
read_i2c(ii, SFF_8436_BASE, SFF_8636_BITRATE, 1, &xbuf);
rate = xbuf * 250;
}
return (rate);
}
/*
* Reads i2c data from opened kernel socket.
*/
static int
read_i2c(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len,
uint8_t *buf)
{
struct ifi2creq req;
int i, l;
if (ii->error != 0)
return (ii->error);
ii->ifr->ifr_data = (caddr_t)&req;
i = 0;
l = 0;
memset(&req, 0, sizeof(req));
req.dev_addr = addr;
req.offset = off;
req.len = len;
while (len > 0) {
l = MIN(sizeof(req.data), len);
req.len = l;
if (ioctl(ii->fd, SIOCGI2C, ii->ifr) != 0) {
ii->error = errno;
return (errno);
}
memcpy(&buf[i], req.data, l);
len -= l;
i += l;
req.offset += l;
}
return (0);
}
static void
dump_i2c_data(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len)
{
unsigned char buf[16];
int i, read;
while (len > 0) {
memset(buf, 0, sizeof(buf));
read = MIN(sizeof(buf), len);
read_i2c(ii, addr, off, read, buf);
if (ii->error != 0) {
fprintf(stderr, "Error reading i2c info\n");
return;
}
printf("\t");
for (i = 0; i < read; i++)
printf("%02X ", buf[i]);
printf("\n");
len -= read;
off += read;
}
}
static void
print_qsfp_status(struct i2c_info *ii, int verbose)
{
char buf[80], buf2[40], buf3[40];
uint32_t bitrate;
int i;
ii->qsfp = 1;
/* Transceiver type */
get_qsfp_identifier(ii, buf, sizeof(buf));
get_qsfp_transceiver_class(ii, buf2, sizeof(buf2));
get_qsfp_connector(ii, buf3, sizeof(buf3));
if (ii->error == 0)
printf("\tplugged: %s %s (%s)\n", buf, buf2, buf3);
print_sfp_vendor(ii, buf, sizeof(buf));
if (ii->error == 0)
printf("\t%s\n", buf);
if (verbose > 1) {
get_qsfp_rev_compliance(ii, buf, sizeof(buf));
if (ii->error == 0)
printf("\tcompliance level: %s\n", buf);
bitrate = get_qsfp_br(ii);
if (ii->error == 0 && bitrate > 0)
printf("\tnominal bitrate: %u Mbps\n", bitrate);
}
/*
* The standards in this area are not clear when the
* additional measurements are present or not. Use a valid
* temperature reading as an indicator for the presence of
* voltage and TX/RX power measurements.
*/
if (get_qsfp_temp(ii, buf, sizeof(buf)) == 0) {
get_qsfp_voltage(ii, buf2, sizeof(buf2));
printf("\tmodule temperature: %s voltage: %s\n", buf, buf2);
for (i = 1; i <= 4; i++) {
get_qsfp_rx_power(ii, buf, sizeof(buf), i);
get_qsfp_tx_power(ii, buf2, sizeof(buf2), i);
printf("\tlane %d: RX: %s TX: %s\n", i, buf, buf2);
}
}
if (verbose > 2) {
printf("\n\tSFF8436 DUMP (0xA0 128..255 range):\n");
dump_i2c_data(ii, SFF_8436_BASE, 128, 128);
printf("\n\tSFF8436 DUMP (0xA0 0..81 range):\n");
dump_i2c_data(ii, SFF_8436_BASE, 0, 82);
}
}
static void
print_sfp_status(struct i2c_info *ii, int verbose)
{
char buf[80], buf2[40], buf3[40];
uint8_t diag_type, flags;
/* Read diagnostic monitoring type */
read_i2c(ii, SFF_8472_BASE, SFF_8472_DIAG_TYPE, 1, (caddr_t)&diag_type);
if (ii->error != 0)
return;
/*
* Read monitoring data IFF it is supplied AND is
* internally calibrated
*/
flags = SFF_8472_DDM_DONE | SFF_8472_DDM_INTERNAL;
if ((diag_type & flags) == flags)
ii->do_diag = 1;
/* Transceiver type */
get_sfp_identifier(ii, buf, sizeof(buf));
get_sfp_transceiver_class(ii, buf2, sizeof(buf2));
get_sfp_connector(ii, buf3, sizeof(buf3));
if (ii->error == 0)
printf("\tplugged: %s %s (%s)\n", buf, buf2, buf3);
print_sfp_vendor(ii, buf, sizeof(buf));
if (ii->error == 0)
printf("\t%s\n", buf);
if (verbose > 5)
printf_sfp_transceiver_descr(ii, buf, sizeof(buf));
/*
* Request current measurements iff they are provided:
*/
if (ii->do_diag != 0) {
get_sfp_temp(ii, buf, sizeof(buf));
get_sfp_voltage(ii, buf2, sizeof(buf2));
printf("\tmodule temperature: %s Voltage: %s\n", buf, buf2);
get_sfp_rx_power(ii, buf, sizeof(buf));
get_sfp_tx_power(ii, buf2, sizeof(buf2));
printf("\tRX: %s TX: %s\n", buf, buf2);
}
if (verbose > 2) {
printf("\n\tSFF8472 DUMP (0xA0 0..127 range):\n");
dump_i2c_data(ii, SFF_8472_BASE, 0, 128);
}
}
void
sfp_status(int s, struct ifreq *ifr, int verbose)
{
struct i2c_info ii;
uint8_t id_byte;
/* Prepare necessary into pass to i2c reader */
memset(&ii, 0, sizeof(ii));
ii.fd = s;
ii.ifr = ifr;
/*
* Try to read byte 0 from i2c:
* Both SFF-8472 and SFF-8436 use it as
* 'identification byte'.
* Stop reading status on zero as value -
* this might happen in case of empty transceiver slot.
*/
id_byte = 0;
read_i2c(&ii, SFF_8472_BASE, SFF_8472_ID, 1, (caddr_t)&id_byte);
if (ii.error != 0 || id_byte == 0)
return;
switch (id_byte) {
case SFF_8024_ID_QSFP:
case SFF_8024_ID_QSFPPLUS:
case SFF_8024_ID_QSFP28:
print_qsfp_status(&ii, verbose);
break;
default:
print_sfp_status(&ii, verbose);
}
}