1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-11-29 08:08:37 +00:00
freebsd/lib/libkvm/kvm_private.h
John Baldwin 7f911abe54 Add support to libkvm for reading vmcores from other architectures.
- Add a kvaddr_type to represent kernel virtual addresses instead of
  unsigned long.
- Add a struct kvm_nlist which is a stripped down version of struct nlist
  that uses kvaddr_t for n_value.
- Add a kvm_native() routine that returns true if an open kvm descriptor
  is for a native kernel and memory image.
- Add a kvm_open2() function similar to kvm_openfiles().  It drops the
  unused 'swapfile' argument and adds a new function pointer argument for
  a symbol resolving function.  Native kernels still use _fdnlist() from
  libc to resolve symbols if a resolver function is not supplied, but cross
  kernels require a resolver.
- Add a kvm_nlist2() function similar to kvm_nlist() except that it uses
  struct kvm_nlist instead of struct nlist.
- Add a kvm_read2() function similar to kvm_read() except that it uses
  kvaddr_t instead of unsigned long for the kernel virtual address.
- Add a new kvm_arch switch of routines needed by a vmcore backend.
  Each backend is responsible for implementing kvm_read2() for a given
  vmcore format.
- Use libelf to read headers from ELF kernels and cores (except for
  powerpc cores).
- Add internal helper routines for the common page offset hash table used
  by the minidump backends.
- Port all of the existing kvm backends to implement a kvm_arch switch and
  to be cross-friendly by using private constants instead of ones that
  vary by platform (e.g. PAGE_SIZE).  Static assertions are present when
  a given backend is compiled natively to ensure the private constants
  match the real ones.
- Enable all of the existing vmcore backends on all platforms.  This means
  that libkvm on any platform should be able to perform KVA translation
  and read data from a vmcore of any platform.

Tested on:	amd64, i386, sparc64 (marius)
Differential Revision:	https://reviews.freebsd.org/D3341
2015-11-27 18:58:26 +00:00

160 lines
5.6 KiB
C

/*-
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software developed by the Computer Systems
* Engineering group at Lawrence Berkeley Laboratory under DARPA contract
* BG 91-66 and contributed to Berkeley.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kvm_private.h 8.1 (Berkeley) 6/4/93
* $FreeBSD$
*/
#include <sys/endian.h>
#include <sys/linker_set.h>
#include <gelf.h>
struct kvm_arch {
int (*ka_probe)(kvm_t *);
int (*ka_initvtop)(kvm_t *);
void (*ka_freevtop)(kvm_t *);
int (*ka_kvatop)(kvm_t *, kvaddr_t, off_t *);
int (*ka_native)(kvm_t *);
};
#define KVM_ARCH(ka) DATA_SET(kvm_arch, ka)
struct __kvm {
struct kvm_arch *arch;
/*
* a string to be prepended to error messages
* provided for compatibility with sun's interface
* if this value is null, errors are saved in errbuf[]
*/
const char *program;
char *errp; /* XXX this can probably go away */
char errbuf[_POSIX2_LINE_MAX];
#define ISALIVE(kd) ((kd)->vmfd >= 0)
int pmfd; /* physical memory file (or crashdump) */
int vmfd; /* virtual memory file (-1 if crashdump) */
int nlfd; /* namelist file (e.g., /kernel) */
GElf_Ehdr nlehdr; /* ELF file header for namelist file */
int (*resolve_symbol)(const char *, kvaddr_t *);
struct kinfo_proc *procbase;
char *argspc; /* (dynamic) storage for argv strings */
int arglen; /* length of the above */
char **argv; /* (dynamic) storage for argv pointers */
int argc; /* length of above (not actual # present) */
char *argbuf; /* (dynamic) temporary storage */
/*
* Kernel virtual address translation state. This only gets filled
* in for dead kernels; otherwise, the running kernel (i.e. kmem)
* will do the translations for us. It could be big, so we
* only allocate it if necessary.
*/
struct vmstate *vmst;
int rawdump; /* raw dump format */
int vnet_initialized; /* vnet fields set up */
kvaddr_t vnet_start; /* start of kernel's vnet region */
kvaddr_t vnet_stop; /* stop of kernel's vnet region */
kvaddr_t vnet_current; /* vnet we're working with */
kvaddr_t vnet_base; /* vnet base of current vnet */
/*
* Dynamic per-CPU kernel memory. We translate symbols, on-demand,
* to the data associated with dpcpu_curcpu, set with
* kvm_dpcpu_setcpu().
*/
int dpcpu_initialized; /* dpcpu fields set up */
kvaddr_t dpcpu_start; /* start of kernel's dpcpu region */
kvaddr_t dpcpu_stop; /* stop of kernel's dpcpu region */
u_int dpcpu_maxcpus; /* size of base array */
uintptr_t *dpcpu_off; /* base array, indexed by CPU ID */
u_int dpcpu_curcpu; /* CPU we're currently working with */
kvaddr_t dpcpu_curoff; /* dpcpu base of current CPU */
};
/*
* Page table hash used by minidump backends to map physical addresses
* to file offsets.
*/
struct hpte {
struct hpte *next;
uint64_t pa;
off_t off;
};
#define HPT_SIZE 1024
struct hpt {
struct hpte *hpt_head[HPT_SIZE];
};
/*
* Functions used internally by kvm, but across kvm modules.
*/
static inline uint32_t
_kvm32toh(kvm_t *kd, uint32_t val)
{
if (kd->nlehdr.e_ident[EI_DATA] == ELFDATA2LSB)
return (le32toh(val));
else
return (be32toh(val));
}
static inline uint64_t
_kvm64toh(kvm_t *kd, uint64_t val)
{
if (kd->nlehdr.e_ident[EI_DATA] == ELFDATA2LSB)
return (le64toh(val));
else
return (be64toh(val));
}
void _kvm_err(kvm_t *kd, const char *program, const char *fmt, ...)
__printflike(3, 4);
void _kvm_freeprocs(kvm_t *kd);
void *_kvm_malloc(kvm_t *kd, size_t);
int _kvm_nlist(kvm_t *, struct kvm_nlist *, int);
void *_kvm_realloc(kvm_t *kd, void *, size_t);
void _kvm_syserr (kvm_t *kd, const char *program, const char *fmt, ...)
__printflike(3, 4);
int _kvm_vnet_selectpid(kvm_t *, pid_t);
int _kvm_vnet_initialized(kvm_t *, int);
kvaddr_t _kvm_vnet_validaddr(kvm_t *, kvaddr_t);
int _kvm_dpcpu_initialized(kvm_t *, int);
kvaddr_t _kvm_dpcpu_validaddr(kvm_t *, kvaddr_t);
int _kvm_probe_elf_kernel(kvm_t *, int, int);
int _kvm_is_minidump(kvm_t *);
int _kvm_read_core_phdrs(kvm_t *, size_t *, GElf_Phdr **);
void _kvm_hpt_init(kvm_t *, struct hpt *, void *, size_t, off_t, int, int);
off_t _kvm_hpt_find(struct hpt *, uint64_t);
void _kvm_hpt_free(struct hpt *);