1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-04 12:52:15 +00:00
freebsd/sys/kern/kern_clocksource.c
Alexander Motin 803a9b3efd panic() with reasonable message instead of returning zero frequency causing
division by zero later if event timer's minimal period is above one second.
For now it is just a theoretical possibility.

Found by:	Clang Static Analyzer
2012-10-10 19:46:46 +00:00

970 lines
24 KiB
C

/*-
* Copyright (c) 2010-2012 Alexander Motin <mav@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Common routines to manage event timers hardware.
*/
#include "opt_device_polling.h"
#include "opt_kdtrace.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/lock.h>
#include <sys/kdb.h>
#include <sys/ktr.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/timeet.h>
#include <sys/timetc.h>
#include <machine/atomic.h>
#include <machine/clock.h>
#include <machine/cpu.h>
#include <machine/smp.h>
#ifdef KDTRACE_HOOKS
#include <sys/dtrace_bsd.h>
cyclic_clock_func_t cyclic_clock_func = NULL;
#endif
int cpu_can_deep_sleep = 0; /* C3 state is available. */
int cpu_disable_deep_sleep = 0; /* Timer dies in C3. */
static void setuptimer(void);
static void loadtimer(struct bintime *now, int first);
static int doconfigtimer(void);
static void configtimer(int start);
static int round_freq(struct eventtimer *et, int freq);
static void getnextcpuevent(struct bintime *event, int idle);
static void getnextevent(struct bintime *event);
static int handleevents(struct bintime *now, int fake);
#ifdef SMP
static void cpu_new_callout(int cpu, int ticks);
#endif
static struct mtx et_hw_mtx;
#define ET_HW_LOCK(state) \
{ \
if (timer->et_flags & ET_FLAGS_PERCPU) \
mtx_lock_spin(&(state)->et_hw_mtx); \
else \
mtx_lock_spin(&et_hw_mtx); \
}
#define ET_HW_UNLOCK(state) \
{ \
if (timer->et_flags & ET_FLAGS_PERCPU) \
mtx_unlock_spin(&(state)->et_hw_mtx); \
else \
mtx_unlock_spin(&et_hw_mtx); \
}
static struct eventtimer *timer = NULL;
static struct bintime timerperiod; /* Timer period for periodic mode. */
static struct bintime hardperiod; /* hardclock() events period. */
static struct bintime statperiod; /* statclock() events period. */
static struct bintime profperiod; /* profclock() events period. */
static struct bintime nexttick; /* Next global timer tick time. */
static struct bintime nexthard; /* Next global hardlock() event. */
static u_int busy = 0; /* Reconfiguration is in progress. */
static int profiling = 0; /* Profiling events enabled. */
static char timername[32]; /* Wanted timer. */
TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername));
static int singlemul = 0; /* Multiplier for periodic mode. */
TUNABLE_INT("kern.eventtimer.singlemul", &singlemul);
SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RW, &singlemul,
0, "Multiplier for periodic mode");
static u_int idletick = 0; /* Run periodic events when idle. */
TUNABLE_INT("kern.eventtimer.idletick", &idletick);
SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RW, &idletick,
0, "Run periodic events when idle");
static u_int activetick = 1; /* Run all periodic events when active. */
TUNABLE_INT("kern.eventtimer.activetick", &activetick);
SYSCTL_UINT(_kern_eventtimer, OID_AUTO, activetick, CTLFLAG_RW, &activetick,
0, "Run all periodic events when active");
static int periodic = 0; /* Periodic or one-shot mode. */
static int want_periodic = 0; /* What mode to prefer. */
TUNABLE_INT("kern.eventtimer.periodic", &want_periodic);
struct pcpu_state {
struct mtx et_hw_mtx; /* Per-CPU timer mutex. */
u_int action; /* Reconfiguration requests. */
u_int handle; /* Immediate handle resuests. */
struct bintime now; /* Last tick time. */
struct bintime nextevent; /* Next scheduled event on this CPU. */
struct bintime nexttick; /* Next timer tick time. */
struct bintime nexthard; /* Next hardlock() event. */
struct bintime nextstat; /* Next statclock() event. */
struct bintime nextprof; /* Next profclock() event. */
#ifdef KDTRACE_HOOKS
struct bintime nextcyc; /* Next OpenSolaris cyclics event. */
#endif
int ipi; /* This CPU needs IPI. */
int idle; /* This CPU is in idle mode. */
};
static DPCPU_DEFINE(struct pcpu_state, timerstate);
#define FREQ2BT(freq, bt) \
{ \
(bt)->sec = 0; \
(bt)->frac = ((uint64_t)0x8000000000000000 / (freq)) << 1; \
}
#define BT2FREQ(bt) \
(((uint64_t)0x8000000000000000 + ((bt)->frac >> 2)) / \
((bt)->frac >> 1))
/*
* Timer broadcast IPI handler.
*/
int
hardclockintr(void)
{
struct bintime now;
struct pcpu_state *state;
int done;
if (doconfigtimer() || busy)
return (FILTER_HANDLED);
state = DPCPU_PTR(timerstate);
now = state->now;
CTR4(KTR_SPARE2, "ipi at %d: now %d.%08x%08x",
curcpu, now.sec, (u_int)(now.frac >> 32),
(u_int)(now.frac & 0xffffffff));
done = handleevents(&now, 0);
return (done ? FILTER_HANDLED : FILTER_STRAY);
}
/*
* Handle all events for specified time on this CPU
*/
static int
handleevents(struct bintime *now, int fake)
{
struct bintime t;
struct trapframe *frame;
struct pcpu_state *state;
uintfptr_t pc;
int usermode;
int done, runs;
CTR4(KTR_SPARE2, "handle at %d: now %d.%08x%08x",
curcpu, now->sec, (u_int)(now->frac >> 32),
(u_int)(now->frac & 0xffffffff));
done = 0;
if (fake) {
frame = NULL;
usermode = 0;
pc = 0;
} else {
frame = curthread->td_intr_frame;
usermode = TRAPF_USERMODE(frame);
pc = TRAPF_PC(frame);
}
state = DPCPU_PTR(timerstate);
runs = 0;
while (bintime_cmp(now, &state->nexthard, >=)) {
bintime_addx(&state->nexthard, hardperiod.frac);
runs++;
}
if (runs) {
if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 &&
bintime_cmp(&state->nexthard, &nexthard, >))
nexthard = state->nexthard;
if (fake < 2) {
hardclock_cnt(runs, usermode);
done = 1;
}
}
runs = 0;
while (bintime_cmp(now, &state->nextstat, >=)) {
bintime_addx(&state->nextstat, statperiod.frac);
runs++;
}
if (runs && fake < 2) {
statclock_cnt(runs, usermode);
done = 1;
}
if (profiling) {
runs = 0;
while (bintime_cmp(now, &state->nextprof, >=)) {
bintime_addx(&state->nextprof, profperiod.frac);
runs++;
}
if (runs && !fake) {
profclock_cnt(runs, usermode, pc);
done = 1;
}
} else
state->nextprof = state->nextstat;
#ifdef KDTRACE_HOOKS
if (fake == 0 && cyclic_clock_func != NULL &&
state->nextcyc.sec != -1 &&
bintime_cmp(now, &state->nextcyc, >=)) {
state->nextcyc.sec = -1;
(*cyclic_clock_func)(frame);
}
#endif
getnextcpuevent(&t, 0);
if (fake == 2) {
state->nextevent = t;
return (done);
}
ET_HW_LOCK(state);
if (!busy) {
state->idle = 0;
state->nextevent = t;
loadtimer(now, 0);
}
ET_HW_UNLOCK(state);
return (done);
}
/*
* Schedule binuptime of the next event on current CPU.
*/
static void
getnextcpuevent(struct bintime *event, int idle)
{
struct bintime tmp;
struct pcpu_state *state;
int skip;
state = DPCPU_PTR(timerstate);
/* Handle hardclock() events. */
*event = state->nexthard;
if (idle || (!activetick && !profiling &&
(timer->et_flags & ET_FLAGS_PERCPU) == 0)) {
skip = idle ? 4 : (stathz / 2);
if (curcpu == CPU_FIRST() && tc_min_ticktock_freq > skip)
skip = tc_min_ticktock_freq;
skip = callout_tickstofirst(hz / skip) - 1;
CTR2(KTR_SPARE2, "skip at %d: %d", curcpu, skip);
tmp = hardperiod;
bintime_mul(&tmp, skip);
bintime_add(event, &tmp);
}
if (!idle) { /* If CPU is active - handle other types of events. */
if (bintime_cmp(event, &state->nextstat, >))
*event = state->nextstat;
if (profiling && bintime_cmp(event, &state->nextprof, >))
*event = state->nextprof;
}
#ifdef KDTRACE_HOOKS
if (state->nextcyc.sec != -1 && bintime_cmp(event, &state->nextcyc, >))
*event = state->nextcyc;
#endif
}
/*
* Schedule binuptime of the next event on all CPUs.
*/
static void
getnextevent(struct bintime *event)
{
struct pcpu_state *state;
#ifdef SMP
int cpu;
#endif
int c, nonidle;
state = DPCPU_PTR(timerstate);
*event = state->nextevent;
c = curcpu;
nonidle = !state->idle;
if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
#ifdef SMP
CPU_FOREACH(cpu) {
if (curcpu == cpu)
continue;
state = DPCPU_ID_PTR(cpu, timerstate);
nonidle += !state->idle;
if (bintime_cmp(event, &state->nextevent, >)) {
*event = state->nextevent;
c = cpu;
}
}
#endif
if (nonidle != 0 && bintime_cmp(event, &nexthard, >))
*event = nexthard;
}
CTR5(KTR_SPARE2, "next at %d: next %d.%08x%08x by %d",
curcpu, event->sec, (u_int)(event->frac >> 32),
(u_int)(event->frac & 0xffffffff), c);
}
/* Hardware timer callback function. */
static void
timercb(struct eventtimer *et, void *arg)
{
struct bintime now;
struct bintime *next;
struct pcpu_state *state;
#ifdef SMP
int cpu, bcast;
#endif
/* Do not touch anything if somebody reconfiguring timers. */
if (busy)
return;
/* Update present and next tick times. */
state = DPCPU_PTR(timerstate);
if (et->et_flags & ET_FLAGS_PERCPU) {
next = &state->nexttick;
} else
next = &nexttick;
binuptime(&now);
if (periodic) {
*next = now;
bintime_addx(next, timerperiod.frac); /* Next tick in 1 period. */
} else
next->sec = -1; /* Next tick is not scheduled yet. */
state->now = now;
CTR4(KTR_SPARE2, "intr at %d: now %d.%08x%08x",
curcpu, (int)(now.sec), (u_int)(now.frac >> 32),
(u_int)(now.frac & 0xffffffff));
#ifdef SMP
/* Prepare broadcasting to other CPUs for non-per-CPU timers. */
bcast = 0;
if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) {
CPU_FOREACH(cpu) {
state = DPCPU_ID_PTR(cpu, timerstate);
ET_HW_LOCK(state);
state->now = now;
if (bintime_cmp(&now, &state->nextevent, >=)) {
state->nextevent.sec++;
if (curcpu != cpu) {
state->ipi = 1;
bcast = 1;
}
}
ET_HW_UNLOCK(state);
}
}
#endif
/* Handle events for this time on this CPU. */
handleevents(&now, 0);
#ifdef SMP
/* Broadcast interrupt to other CPUs for non-per-CPU timers. */
if (bcast) {
CPU_FOREACH(cpu) {
if (curcpu == cpu)
continue;
state = DPCPU_ID_PTR(cpu, timerstate);
if (state->ipi) {
state->ipi = 0;
ipi_cpu(cpu, IPI_HARDCLOCK);
}
}
}
#endif
}
/*
* Load new value into hardware timer.
*/
static void
loadtimer(struct bintime *now, int start)
{
struct pcpu_state *state;
struct bintime new;
struct bintime *next;
uint64_t tmp;
int eq;
if (timer->et_flags & ET_FLAGS_PERCPU) {
state = DPCPU_PTR(timerstate);
next = &state->nexttick;
} else
next = &nexttick;
if (periodic) {
if (start) {
/*
* Try to start all periodic timers aligned
* to period to make events synchronous.
*/
tmp = ((uint64_t)now->sec << 36) + (now->frac >> 28);
tmp = (tmp % (timerperiod.frac >> 28)) << 28;
new.sec = 0;
new.frac = timerperiod.frac - tmp;
if (new.frac < tmp) /* Left less then passed. */
bintime_addx(&new, timerperiod.frac);
CTR5(KTR_SPARE2, "load p at %d: now %d.%08x first in %d.%08x",
curcpu, now->sec, (u_int)(now->frac >> 32),
new.sec, (u_int)(new.frac >> 32));
*next = new;
bintime_add(next, now);
et_start(timer, &new, &timerperiod);
}
} else {
getnextevent(&new);
eq = bintime_cmp(&new, next, ==);
CTR5(KTR_SPARE2, "load at %d: next %d.%08x%08x eq %d",
curcpu, new.sec, (u_int)(new.frac >> 32),
(u_int)(new.frac & 0xffffffff),
eq);
if (!eq) {
*next = new;
bintime_sub(&new, now);
et_start(timer, &new, NULL);
}
}
}
/*
* Prepare event timer parameters after configuration changes.
*/
static void
setuptimer(void)
{
int freq;
if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
periodic = 0;
else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
periodic = 1;
singlemul = MIN(MAX(singlemul, 1), 20);
freq = hz * singlemul;
while (freq < (profiling ? profhz : stathz))
freq += hz;
freq = round_freq(timer, freq);
FREQ2BT(freq, &timerperiod);
}
/*
* Reconfigure specified per-CPU timer on other CPU. Called from IPI handler.
*/
static int
doconfigtimer(void)
{
struct bintime now;
struct pcpu_state *state;
state = DPCPU_PTR(timerstate);
switch (atomic_load_acq_int(&state->action)) {
case 1:
binuptime(&now);
ET_HW_LOCK(state);
loadtimer(&now, 1);
ET_HW_UNLOCK(state);
state->handle = 0;
atomic_store_rel_int(&state->action, 0);
return (1);
case 2:
ET_HW_LOCK(state);
et_stop(timer);
ET_HW_UNLOCK(state);
state->handle = 0;
atomic_store_rel_int(&state->action, 0);
return (1);
}
if (atomic_readandclear_int(&state->handle) && !busy) {
binuptime(&now);
handleevents(&now, 0);
return (1);
}
return (0);
}
/*
* Reconfigure specified timer.
* For per-CPU timers use IPI to make other CPUs to reconfigure.
*/
static void
configtimer(int start)
{
struct bintime now, next;
struct pcpu_state *state;
int cpu;
if (start) {
setuptimer();
binuptime(&now);
}
critical_enter();
ET_HW_LOCK(DPCPU_PTR(timerstate));
if (start) {
/* Initialize time machine parameters. */
next = now;
bintime_addx(&next, timerperiod.frac);
if (periodic)
nexttick = next;
else
nexttick.sec = -1;
CPU_FOREACH(cpu) {
state = DPCPU_ID_PTR(cpu, timerstate);
state->now = now;
state->nextevent = next;
if (periodic)
state->nexttick = next;
else
state->nexttick.sec = -1;
state->nexthard = next;
state->nextstat = next;
state->nextprof = next;
hardclock_sync(cpu);
}
busy = 0;
/* Start global timer or per-CPU timer of this CPU. */
loadtimer(&now, 1);
} else {
busy = 1;
/* Stop global timer or per-CPU timer of this CPU. */
et_stop(timer);
}
ET_HW_UNLOCK(DPCPU_PTR(timerstate));
#ifdef SMP
/* If timer is global or there is no other CPUs yet - we are done. */
if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) {
critical_exit();
return;
}
/* Set reconfigure flags for other CPUs. */
CPU_FOREACH(cpu) {
state = DPCPU_ID_PTR(cpu, timerstate);
atomic_store_rel_int(&state->action,
(cpu == curcpu) ? 0 : ( start ? 1 : 2));
}
/* Broadcast reconfigure IPI. */
ipi_all_but_self(IPI_HARDCLOCK);
/* Wait for reconfiguration completed. */
restart:
cpu_spinwait();
CPU_FOREACH(cpu) {
if (cpu == curcpu)
continue;
state = DPCPU_ID_PTR(cpu, timerstate);
if (atomic_load_acq_int(&state->action))
goto restart;
}
#endif
critical_exit();
}
/*
* Calculate nearest frequency supported by hardware timer.
*/
static int
round_freq(struct eventtimer *et, int freq)
{
uint64_t div;
if (et->et_frequency != 0) {
div = lmax((et->et_frequency + freq / 2) / freq, 1);
if (et->et_flags & ET_FLAGS_POW2DIV)
div = 1 << (flsl(div + div / 2) - 1);
freq = (et->et_frequency + div / 2) / div;
}
if (et->et_min_period.sec > 0)
panic("Event timer \"%s\" doesn't support sub-second periods!",
et->et_name);
else if (et->et_min_period.frac != 0)
freq = min(freq, BT2FREQ(&et->et_min_period));
if (et->et_max_period.sec == 0 && et->et_max_period.frac != 0)
freq = max(freq, BT2FREQ(&et->et_max_period));
return (freq);
}
/*
* Configure and start event timers (BSP part).
*/
void
cpu_initclocks_bsp(void)
{
struct pcpu_state *state;
int base, div, cpu;
mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
CPU_FOREACH(cpu) {
state = DPCPU_ID_PTR(cpu, timerstate);
mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
#ifdef KDTRACE_HOOKS
state->nextcyc.sec = -1;
#endif
}
#ifdef SMP
callout_new_inserted = cpu_new_callout;
#endif
periodic = want_periodic;
/* Grab requested timer or the best of present. */
if (timername[0])
timer = et_find(timername, 0, 0);
if (timer == NULL && periodic) {
timer = et_find(NULL,
ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
}
if (timer == NULL) {
timer = et_find(NULL,
ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT);
}
if (timer == NULL && !periodic) {
timer = et_find(NULL,
ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
}
if (timer == NULL)
panic("No usable event timer found!");
et_init(timer, timercb, NULL, NULL);
/* Adapt to timer capabilities. */
if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
periodic = 0;
else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
periodic = 1;
if (timer->et_flags & ET_FLAGS_C3STOP)
cpu_disable_deep_sleep++;
/*
* We honor the requested 'hz' value.
* We want to run stathz in the neighborhood of 128hz.
* We would like profhz to run as often as possible.
*/
if (singlemul <= 0 || singlemul > 20) {
if (hz >= 1500 || (hz % 128) == 0)
singlemul = 1;
else if (hz >= 750)
singlemul = 2;
else
singlemul = 4;
}
if (periodic) {
base = round_freq(timer, hz * singlemul);
singlemul = max((base + hz / 2) / hz, 1);
hz = (base + singlemul / 2) / singlemul;
if (base <= 128)
stathz = base;
else {
div = base / 128;
if (div >= singlemul && (div % singlemul) == 0)
div++;
stathz = base / div;
}
profhz = stathz;
while ((profhz + stathz) <= 128 * 64)
profhz += stathz;
profhz = round_freq(timer, profhz);
} else {
hz = round_freq(timer, hz);
stathz = round_freq(timer, 127);
profhz = round_freq(timer, stathz * 64);
}
tick = 1000000 / hz;
FREQ2BT(hz, &hardperiod);
FREQ2BT(stathz, &statperiod);
FREQ2BT(profhz, &profperiod);
ET_LOCK();
configtimer(1);
ET_UNLOCK();
}
/*
* Start per-CPU event timers on APs.
*/
void
cpu_initclocks_ap(void)
{
struct bintime now;
struct pcpu_state *state;
state = DPCPU_PTR(timerstate);
binuptime(&now);
ET_HW_LOCK(state);
state->now = now;
hardclock_sync(curcpu);
handleevents(&state->now, 2);
if (timer->et_flags & ET_FLAGS_PERCPU)
loadtimer(&now, 1);
ET_HW_UNLOCK(state);
}
/*
* Switch to profiling clock rates.
*/
void
cpu_startprofclock(void)
{
ET_LOCK();
if (periodic) {
configtimer(0);
profiling = 1;
configtimer(1);
} else
profiling = 1;
ET_UNLOCK();
}
/*
* Switch to regular clock rates.
*/
void
cpu_stopprofclock(void)
{
ET_LOCK();
if (periodic) {
configtimer(0);
profiling = 0;
configtimer(1);
} else
profiling = 0;
ET_UNLOCK();
}
/*
* Switch to idle mode (all ticks handled).
*/
void
cpu_idleclock(void)
{
struct bintime now, t;
struct pcpu_state *state;
if (idletick || busy ||
(periodic && (timer->et_flags & ET_FLAGS_PERCPU))
#ifdef DEVICE_POLLING
|| curcpu == CPU_FIRST()
#endif
)
return;
state = DPCPU_PTR(timerstate);
if (periodic)
now = state->now;
else
binuptime(&now);
CTR4(KTR_SPARE2, "idle at %d: now %d.%08x%08x",
curcpu, now.sec, (u_int)(now.frac >> 32),
(u_int)(now.frac & 0xffffffff));
getnextcpuevent(&t, 1);
ET_HW_LOCK(state);
state->idle = 1;
state->nextevent = t;
if (!periodic)
loadtimer(&now, 0);
ET_HW_UNLOCK(state);
}
/*
* Switch to active mode (skip empty ticks).
*/
void
cpu_activeclock(void)
{
struct bintime now;
struct pcpu_state *state;
struct thread *td;
state = DPCPU_PTR(timerstate);
if (state->idle == 0 || busy)
return;
if (periodic)
now = state->now;
else
binuptime(&now);
CTR4(KTR_SPARE2, "active at %d: now %d.%08x%08x",
curcpu, now.sec, (u_int)(now.frac >> 32),
(u_int)(now.frac & 0xffffffff));
spinlock_enter();
td = curthread;
td->td_intr_nesting_level++;
handleevents(&now, 1);
td->td_intr_nesting_level--;
spinlock_exit();
}
#ifdef KDTRACE_HOOKS
void
clocksource_cyc_set(const struct bintime *t)
{
struct bintime now;
struct pcpu_state *state;
state = DPCPU_PTR(timerstate);
if (periodic)
now = state->now;
else
binuptime(&now);
CTR4(KTR_SPARE2, "set_cyc at %d: now %d.%08x%08x",
curcpu, now.sec, (u_int)(now.frac >> 32),
(u_int)(now.frac & 0xffffffff));
CTR4(KTR_SPARE2, "set_cyc at %d: t %d.%08x%08x",
curcpu, t->sec, (u_int)(t->frac >> 32),
(u_int)(t->frac & 0xffffffff));
ET_HW_LOCK(state);
if (bintime_cmp(t, &state->nextcyc, ==)) {
ET_HW_UNLOCK(state);
return;
}
state->nextcyc = *t;
if (bintime_cmp(&state->nextcyc, &state->nextevent, >=)) {
ET_HW_UNLOCK(state);
return;
}
state->nextevent = state->nextcyc;
if (!periodic)
loadtimer(&now, 0);
ET_HW_UNLOCK(state);
}
#endif
#ifdef SMP
static void
cpu_new_callout(int cpu, int ticks)
{
struct bintime tmp;
struct pcpu_state *state;
CTR3(KTR_SPARE2, "new co at %d: on %d in %d",
curcpu, cpu, ticks);
state = DPCPU_ID_PTR(cpu, timerstate);
ET_HW_LOCK(state);
if (state->idle == 0 || busy) {
ET_HW_UNLOCK(state);
return;
}
/*
* If timer is periodic - just update next event time for target CPU.
* If timer is global - there is chance it is already programmed.
*/
if (periodic || (timer->et_flags & ET_FLAGS_PERCPU) == 0) {
tmp = hardperiod;
bintime_mul(&tmp, ticks - 1);
bintime_add(&tmp, &state->nexthard);
if (bintime_cmp(&tmp, &state->nextevent, <))
state->nextevent = tmp;
if (periodic ||
bintime_cmp(&state->nextevent, &nexttick, >=)) {
ET_HW_UNLOCK(state);
return;
}
}
/*
* Otherwise we have to wake that CPU up, as we can't get present
* bintime to reprogram global timer from here. If timer is per-CPU,
* we by definition can't do it from here.
*/
ET_HW_UNLOCK(state);
if (timer->et_flags & ET_FLAGS_PERCPU) {
state->handle = 1;
ipi_cpu(cpu, IPI_HARDCLOCK);
} else {
if (!cpu_idle_wakeup(cpu))
ipi_cpu(cpu, IPI_AST);
}
}
#endif
/*
* Report or change the active event timers hardware.
*/
static int
sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS)
{
char buf[32];
struct eventtimer *et;
int error;
ET_LOCK();
et = timer;
snprintf(buf, sizeof(buf), "%s", et->et_name);
ET_UNLOCK();
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
ET_LOCK();
et = timer;
if (error != 0 || req->newptr == NULL ||
strcasecmp(buf, et->et_name) == 0) {
ET_UNLOCK();
return (error);
}
et = et_find(buf, 0, 0);
if (et == NULL) {
ET_UNLOCK();
return (ENOENT);
}
configtimer(0);
et_free(timer);
if (et->et_flags & ET_FLAGS_C3STOP)
cpu_disable_deep_sleep++;
if (timer->et_flags & ET_FLAGS_C3STOP)
cpu_disable_deep_sleep--;
periodic = want_periodic;
timer = et;
et_init(timer, timercb, NULL, NULL);
configtimer(1);
ET_UNLOCK();
return (error);
}
SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer,
CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer");
/*
* Report or change the active event timer periodicity.
*/
static int
sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS)
{
int error, val;
val = periodic;
error = sysctl_handle_int(oidp, &val, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
ET_LOCK();
configtimer(0);
periodic = want_periodic = val;
configtimer(1);
ET_UNLOCK();
return (error);
}
SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode");