1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-20 11:11:24 +00:00
freebsd/sys/dev/mpr/mpr.c
Stephen McConnell a2c1487946 The wrong commit message was given with r283632. This is the correct message.
- Updated all files with 2015 Avago copyright, and updated LSI's copyright
  dates.

- Changed all of the PCI device strings from LSI to Avago Technologies (LSI).

- Added a sysctl variable to control how StartStopUnit behavior works. User can
  select to spin down disks based on if disk is SSD or HDD.

- Inquiry data is required to tell if a disk will support SSU at shutdown or
  not. Due to the addition of mpssas_async, which gets Advanced Info but not
  Inquiry data, the setting of supports_SSU was moved to the
  mpssas_scsiio_complete function, which snoops for any Inquiry commands. And,
  since disks are shutdown as a target and not a LUN, this process was
  simplified by basing it on targets and not LUNs.

- Added a sysctl variable that sets the amount of time to retry after sending a
  failed SATA ID command. This helps with some bad disks and large disks that
  require a lot of time to spin up. Part of this change was to add a callout to
  handle timeouts with the SATA ID command. The callout function is called
  mpssas_ata_id_timeout(). (Fixes PR 191348)

- Changed the way resets work by allowing I/O to continue to devices that are
  not currently under a reset condition. This uses devq's instead of simq's and
  makes use of the MPSSAS_TARGET_INRESET flag. This change also adds a function
  called mpssas_prepare_tm().

- Some changes were made to reduce code duplication when getting a SAS address
  for a SATA disk.

- Fixed some formatting and whitespace.

- Bump version of mps driver to 9.255.01.00-fbsd

PR:		191348
Reviewed by:	ken, scottl
Approved by:	ken, scottl
MFC after:	1 week
2015-05-28 18:24:22 +00:00

2804 lines
83 KiB
C

/*-
* Copyright (c) 2009 Yahoo! Inc.
* Copyright (c) 2011-2015 LSI Corp.
* Copyright (c) 2013-2015 Avago Technologies
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/* Communications core for Avago Technologies (LSI) MPT3 */
/* TODO Move headers to mprvar */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/selinfo.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/bio.h>
#include <sys/malloc.h>
#include <sys/uio.h>
#include <sys/sysctl.h>
#include <sys/queue.h>
#include <sys/kthread.h>
#include <sys/taskqueue.h>
#include <sys/endian.h>
#include <sys/eventhandler.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <sys/proc.h>
#include <dev/pci/pcivar.h>
#include <cam/cam.h>
#include <cam/scsi/scsi_all.h>
#include <dev/mpr/mpi/mpi2_type.h>
#include <dev/mpr/mpi/mpi2.h>
#include <dev/mpr/mpi/mpi2_ioc.h>
#include <dev/mpr/mpi/mpi2_sas.h>
#include <dev/mpr/mpi/mpi2_cnfg.h>
#include <dev/mpr/mpi/mpi2_init.h>
#include <dev/mpr/mpi/mpi2_tool.h>
#include <dev/mpr/mpr_ioctl.h>
#include <dev/mpr/mprvar.h>
#include <dev/mpr/mpr_table.h>
static int mpr_diag_reset(struct mpr_softc *sc, int sleep_flag);
static int mpr_init_queues(struct mpr_softc *sc);
static int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag);
static int mpr_transition_operational(struct mpr_softc *sc);
static int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching);
static void mpr_iocfacts_free(struct mpr_softc *sc);
static void mpr_startup(void *arg);
static int mpr_send_iocinit(struct mpr_softc *sc);
static int mpr_alloc_queues(struct mpr_softc *sc);
static int mpr_alloc_replies(struct mpr_softc *sc);
static int mpr_alloc_requests(struct mpr_softc *sc);
static int mpr_attach_log(struct mpr_softc *sc);
static __inline void mpr_complete_command(struct mpr_softc *sc,
struct mpr_command *cm);
static void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
MPI2_EVENT_NOTIFICATION_REPLY *reply);
static void mpr_config_complete(struct mpr_softc *sc,
struct mpr_command *cm);
static void mpr_periodic(void *);
static int mpr_reregister_events(struct mpr_softc *sc);
static void mpr_enqueue_request(struct mpr_softc *sc,
struct mpr_command *cm);
static int mpr_get_iocfacts(struct mpr_softc *sc,
MPI2_IOC_FACTS_REPLY *facts);
static int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag);
SYSCTL_NODE(_hw, OID_AUTO, mpr, CTLFLAG_RD, 0, "MPR Driver Parameters");
MALLOC_DEFINE(M_MPR, "mpr", "mpr driver memory");
/*
* Do a "Diagnostic Reset" aka a hard reset. This should get the chip out of
* any state and back to its initialization state machine.
*/
static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
/*
* Added this union to smoothly convert le64toh cm->cm_desc.Words.
* Compiler only supports unint64_t to be passed as an argument.
* Otherwise it will through this error:
* "aggregate value used where an integer was expected"
*/
typedef union _reply_descriptor {
u64 word;
struct {
u32 low;
u32 high;
} u;
}reply_descriptor,address_descriptor;
/* Rate limit chain-fail messages to 1 per minute */
static struct timeval mpr_chainfail_interval = { 60, 0 };
/*
* sleep_flag can be either CAN_SLEEP or NO_SLEEP.
* If this function is called from process context, it can sleep
* and there is no harm to sleep, in case if this fuction is called
* from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
* based on sleep flags driver will call either msleep, pause or DELAY.
* msleep and pause are of same variant, but pause is used when mpr_mtx
* is not hold by driver.
*/
static int
mpr_diag_reset(struct mpr_softc *sc,int sleep_flag)
{
uint32_t reg;
int i, error, tries = 0;
uint8_t first_wait_done = FALSE;
mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
/* Clear any pending interrupts */
mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
/*
* Force NO_SLEEP for threads prohibited to sleep
* e.a Thread from interrupt handler are prohibited to sleep.
*/
#if __FreeBSD_version >= 1000029
if (curthread->td_no_sleeping)
#else //__FreeBSD_version < 1000029
if (curthread->td_pflags & TDP_NOSLEEPING)
#endif //__FreeBSD_version >= 1000029
sleep_flag = NO_SLEEP;
/* Push the magic sequence */
error = ETIMEDOUT;
while (tries++ < 20) {
for (i = 0; i < sizeof(mpt2_reset_magic); i++)
mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
mpt2_reset_magic[i]);
/* wait 100 msec */
if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
"mprdiag", hz/10);
else if (sleep_flag == CAN_SLEEP)
pause("mprdiag", hz/10);
else
DELAY(100 * 1000);
reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
error = 0;
break;
}
}
if (error)
return (error);
/* Send the actual reset. XXX need to refresh the reg? */
mpr_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET,
reg | MPI2_DIAG_RESET_ADAPTER);
/* Wait up to 300 seconds in 50ms intervals */
error = ETIMEDOUT;
for (i = 0; i < 6000; i++) {
/*
* Wait 50 msec. If this is the first time through, wait 256
* msec to satisfy Diag Reset timing requirements.
*/
if (first_wait_done) {
if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
"mprdiag", hz/20);
else if (sleep_flag == CAN_SLEEP)
pause("mprdiag", hz/20);
else
DELAY(50 * 1000);
} else {
DELAY(256 * 1000);
first_wait_done = TRUE;
}
/*
* Check for the RESET_ADAPTER bit to be cleared first, then
* wait for the RESET state to be cleared, which takes a little
* longer.
*/
reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
if (reg & MPI2_DIAG_RESET_ADAPTER) {
continue;
}
reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
error = 0;
break;
}
}
if (error)
return (error);
mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
return (0);
}
static int
mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag)
{
MPR_FUNCTRACE(sc);
mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
MPI2_DOORBELL_FUNCTION_SHIFT);
if (mpr_wait_db_ack(sc, 5, sleep_flag) != 0) {
mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed : <%s>\n",
__func__);
return (ETIMEDOUT);
}
return (0);
}
static int
mpr_transition_ready(struct mpr_softc *sc)
{
uint32_t reg, state;
int error, tries = 0;
int sleep_flags;
MPR_FUNCTRACE(sc);
/* If we are in attach call, do not sleep */
sleep_flags = (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE)
? CAN_SLEEP : NO_SLEEP;
error = 0;
while (tries++ < 1200) {
reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
mpr_dprint(sc, MPR_INIT, "Doorbell= 0x%x\n", reg);
/*
* Ensure the IOC is ready to talk. If it's not, try
* resetting it.
*/
if (reg & MPI2_DOORBELL_USED) {
mpr_diag_reset(sc, sleep_flags);
DELAY(50000);
continue;
}
/* Is the adapter owned by another peer? */
if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
(MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
device_printf(sc->mpr_dev, "IOC is under the control "
"of another peer host, aborting initialization.\n");
return (ENXIO);
}
state = reg & MPI2_IOC_STATE_MASK;
if (state == MPI2_IOC_STATE_READY) {
/* Ready to go! */
error = 0;
break;
} else if (state == MPI2_IOC_STATE_FAULT) {
mpr_dprint(sc, MPR_FAULT, "IOC in fault state 0x%x\n",
state & MPI2_DOORBELL_FAULT_CODE_MASK);
mpr_diag_reset(sc, sleep_flags);
} else if (state == MPI2_IOC_STATE_OPERATIONAL) {
/* Need to take ownership */
mpr_message_unit_reset(sc, sleep_flags);
} else if (state == MPI2_IOC_STATE_RESET) {
/* Wait a bit, IOC might be in transition */
mpr_dprint(sc, MPR_FAULT,
"IOC in unexpected reset state\n");
} else {
mpr_dprint(sc, MPR_FAULT,
"IOC in unknown state 0x%x\n", state);
error = EINVAL;
break;
}
/* Wait 50ms for things to settle down. */
DELAY(50000);
}
if (error)
device_printf(sc->mpr_dev, "Cannot transition IOC to ready\n");
return (error);
}
static int
mpr_transition_operational(struct mpr_softc *sc)
{
uint32_t reg, state;
int error;
MPR_FUNCTRACE(sc);
error = 0;
reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
mpr_dprint(sc, MPR_INIT, "Doorbell= 0x%x\n", reg);
state = reg & MPI2_IOC_STATE_MASK;
if (state != MPI2_IOC_STATE_READY) {
if ((error = mpr_transition_ready(sc)) != 0) {
mpr_dprint(sc, MPR_FAULT,
"%s failed to transition ready\n", __func__);
return (error);
}
}
error = mpr_send_iocinit(sc);
return (error);
}
/*
* This is called during attach and when re-initializing due to a Diag Reset.
* IOC Facts is used to allocate many of the structures needed by the driver.
* If called from attach, de-allocation is not required because the driver has
* not allocated any structures yet, but if called from a Diag Reset, previously
* allocated structures based on IOC Facts will need to be freed and re-
* allocated bases on the latest IOC Facts.
*/
static int
mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching)
{
int error;
Mpi2IOCFactsReply_t saved_facts;
uint8_t saved_mode, reallocating;
mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
/* Save old IOC Facts and then only reallocate if Facts have changed */
if (!attaching) {
bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
}
/*
* Get IOC Facts. In all cases throughout this function, panic if doing
* a re-initialization and only return the error if attaching so the OS
* can handle it.
*/
if ((error = mpr_get_iocfacts(sc, sc->facts)) != 0) {
if (attaching) {
mpr_dprint(sc, MPR_FAULT, "%s failed to get IOC Facts "
"with error %d\n", __func__, error);
return (error);
} else {
panic("%s failed to get IOC Facts with error %d\n",
__func__, error);
}
}
mpr_print_iocfacts(sc, sc->facts);
snprintf(sc->fw_version, sizeof(sc->fw_version),
"%02d.%02d.%02d.%02d",
sc->facts->FWVersion.Struct.Major,
sc->facts->FWVersion.Struct.Minor,
sc->facts->FWVersion.Struct.Unit,
sc->facts->FWVersion.Struct.Dev);
mpr_printf(sc, "Firmware: %s, Driver: %s\n", sc->fw_version,
MPR_DRIVER_VERSION);
mpr_printf(sc, "IOCCapabilities: %b\n", sc->facts->IOCCapabilities,
"\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
"\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
"\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc");
/*
* If the chip doesn't support event replay then a hard reset will be
* required to trigger a full discovery. Do the reset here then
* retransition to Ready. A hard reset might have already been done,
* but it doesn't hurt to do it again. Only do this if attaching, not
* for a Diag Reset.
*/
if (attaching) {
if ((sc->facts->IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0) {
mpr_diag_reset(sc, NO_SLEEP);
if ((error = mpr_transition_ready(sc)) != 0) {
mpr_dprint(sc, MPR_FAULT, "%s failed to "
"transition to ready with error %d\n",
__func__, error);
return (error);
}
}
}
/*
* Set flag if IR Firmware is loaded. If the RAID Capability has
* changed from the previous IOC Facts, log a warning, but only if
* checking this after a Diag Reset and not during attach.
*/
saved_mode = sc->ir_firmware;
if (sc->facts->IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
sc->ir_firmware = 1;
if (!attaching) {
if (sc->ir_firmware != saved_mode) {
mpr_dprint(sc, MPR_FAULT, "%s new IR/IT mode in IOC "
"Facts does not match previous mode\n", __func__);
}
}
/* Only deallocate and reallocate if relevant IOC Facts have changed */
reallocating = FALSE;
if ((!attaching) &&
((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
(saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
(saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
(saved_facts.RequestCredit != sc->facts->RequestCredit) ||
(saved_facts.ProductID != sc->facts->ProductID) ||
(saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
(saved_facts.IOCRequestFrameSize !=
sc->facts->IOCRequestFrameSize) ||
(saved_facts.MaxTargets != sc->facts->MaxTargets) ||
(saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
(saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
(saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
(saved_facts.MaxReplyDescriptorPostQueueDepth !=
sc->facts->MaxReplyDescriptorPostQueueDepth) ||
(saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
(saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
(saved_facts.MaxPersistentEntries !=
sc->facts->MaxPersistentEntries))) {
reallocating = TRUE;
}
/*
* Some things should be done if attaching or re-allocating after a Diag
* Reset, but are not needed after a Diag Reset if the FW has not
* changed.
*/
if (attaching || reallocating) {
/*
* Check if controller supports FW diag buffers and set flag to
* enable each type.
*/
if (sc->facts->IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
enabled = TRUE;
if (sc->facts->IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
enabled = TRUE;
if (sc->facts->IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
enabled = TRUE;
/*
* Set flag if EEDP is supported and if TLR is supported.
*/
if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
sc->eedp_enabled = TRUE;
if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
sc->control_TLR = TRUE;
/*
* Size the queues. Since the reply queues always need one free
* entry, we'll just deduct one reply message here.
*/
sc->num_reqs = MIN(MPR_REQ_FRAMES, sc->facts->RequestCredit);
sc->num_replies = MIN(MPR_REPLY_FRAMES + MPR_EVT_REPLY_FRAMES,
sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
/*
* Initialize all Tail Queues
*/
TAILQ_INIT(&sc->req_list);
TAILQ_INIT(&sc->high_priority_req_list);
TAILQ_INIT(&sc->chain_list);
TAILQ_INIT(&sc->tm_list);
}
/*
* If doing a Diag Reset and the FW is significantly different
* (reallocating will be set above in IOC Facts comparison), then all
* buffers based on the IOC Facts will need to be freed before they are
* reallocated.
*/
if (reallocating) {
mpr_iocfacts_free(sc);
mprsas_realloc_targets(sc, saved_facts.MaxTargets);
}
/*
* Any deallocation has been completed. Now start reallocating
* if needed. Will only need to reallocate if attaching or if the new
* IOC Facts are different from the previous IOC Facts after a Diag
* Reset. Targets have already been allocated above if needed.
*/
if (attaching || reallocating) {
if (((error = mpr_alloc_queues(sc)) != 0) ||
((error = mpr_alloc_replies(sc)) != 0) ||
((error = mpr_alloc_requests(sc)) != 0)) {
if (attaching ) {
mpr_dprint(sc, MPR_FAULT, "%s failed to alloc "
"queues with error %d\n", __func__, error);
mpr_free(sc);
return (error);
} else {
panic("%s failed to alloc queues with error "
"%d\n", __func__, error);
}
}
}
/* Always initialize the queues */
bzero(sc->free_queue, sc->fqdepth * 4);
mpr_init_queues(sc);
/*
* Always get the chip out of the reset state, but only panic if not
* attaching. If attaching and there is an error, that is handled by
* the OS.
*/
error = mpr_transition_operational(sc);
if (error != 0) {
if (attaching) {
mpr_printf(sc, "%s failed to transition to "
"operational with error %d\n", __func__, error);
mpr_free(sc);
return (error);
} else {
panic("%s failed to transition to operational with "
"error %d\n", __func__, error);
}
}
/*
* Finish the queue initialization.
* These are set here instead of in mpr_init_queues() because the
* IOC resets these values during the state transition in
* mpr_transition_operational(). The free index is set to 1
* because the corresponding index in the IOC is set to 0, and the
* IOC treats the queues as full if both are set to the same value.
* Hence the reason that the queue can't hold all of the possible
* replies.
*/
sc->replypostindex = 0;
mpr_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
/*
* Attach the subsystems so they can prepare their event masks.
*/
/* XXX Should be dynamic so that IM/IR and user modules can attach */
if (attaching) {
if (((error = mpr_attach_log(sc)) != 0) ||
((error = mpr_attach_sas(sc)) != 0) ||
((error = mpr_attach_user(sc)) != 0)) {
mpr_printf(sc, "%s failed to attach all subsystems: "
"error %d\n", __func__, error);
mpr_free(sc);
return (error);
}
if ((error = mpr_pci_setup_interrupts(sc)) != 0) {
mpr_printf(sc, "%s failed to setup interrupts\n",
__func__);
mpr_free(sc);
return (error);
}
}
return (error);
}
/*
* This is called if memory is being free (during detach for example) and when
* buffers need to be reallocated due to a Diag Reset.
*/
static void
mpr_iocfacts_free(struct mpr_softc *sc)
{
struct mpr_command *cm;
int i;
mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
if (sc->free_busaddr != 0)
bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
if (sc->free_queue != NULL)
bus_dmamem_free(sc->queues_dmat, sc->free_queue,
sc->queues_map);
if (sc->queues_dmat != NULL)
bus_dma_tag_destroy(sc->queues_dmat);
if (sc->chain_busaddr != 0)
bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
if (sc->chain_frames != NULL)
bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
sc->chain_map);
if (sc->chain_dmat != NULL)
bus_dma_tag_destroy(sc->chain_dmat);
if (sc->sense_busaddr != 0)
bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
if (sc->sense_frames != NULL)
bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
sc->sense_map);
if (sc->sense_dmat != NULL)
bus_dma_tag_destroy(sc->sense_dmat);
if (sc->reply_busaddr != 0)
bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
if (sc->reply_frames != NULL)
bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
sc->reply_map);
if (sc->reply_dmat != NULL)
bus_dma_tag_destroy(sc->reply_dmat);
if (sc->req_busaddr != 0)
bus_dmamap_unload(sc->req_dmat, sc->req_map);
if (sc->req_frames != NULL)
bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
if (sc->req_dmat != NULL)
bus_dma_tag_destroy(sc->req_dmat);
if (sc->chains != NULL)
free(sc->chains, M_MPR);
if (sc->commands != NULL) {
for (i = 1; i < sc->num_reqs; i++) {
cm = &sc->commands[i];
bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
}
free(sc->commands, M_MPR);
}
if (sc->buffer_dmat != NULL)
bus_dma_tag_destroy(sc->buffer_dmat);
}
/*
* The terms diag reset and hard reset are used interchangeably in the MPI
* docs to mean resetting the controller chip. In this code diag reset
* cleans everything up, and the hard reset function just sends the reset
* sequence to the chip. This should probably be refactored so that every
* subsystem gets a reset notification of some sort, and can clean up
* appropriately.
*/
int
mpr_reinit(struct mpr_softc *sc)
{
int error;
struct mprsas_softc *sassc;
sassc = sc->sassc;
MPR_FUNCTRACE(sc);
mtx_assert(&sc->mpr_mtx, MA_OWNED);
if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) {
mpr_dprint(sc, MPR_INIT, "%s reset already in progress\n",
__func__);
return 0;
}
mpr_dprint(sc, MPR_INFO, "Reinitializing controller,\n");
/* make sure the completion callbacks can recognize they're getting
* a NULL cm_reply due to a reset.
*/
sc->mpr_flags |= MPR_FLAGS_DIAGRESET;
/*
* Mask interrupts here.
*/
mpr_dprint(sc, MPR_INIT, "%s mask interrupts\n", __func__);
mpr_mask_intr(sc);
error = mpr_diag_reset(sc, CAN_SLEEP);
if (error != 0) {
panic("%s hard reset failed with error %d\n", __func__, error);
}
/* Restore the PCI state, including the MSI-X registers */
mpr_pci_restore(sc);
/* Give the I/O subsystem special priority to get itself prepared */
mprsas_handle_reinit(sc);
/*
* Get IOC Facts and allocate all structures based on this information.
* The attach function will also call mpr_iocfacts_allocate at startup.
* If relevant values have changed in IOC Facts, this function will free
* all of the memory based on IOC Facts and reallocate that memory.
*/
if ((error = mpr_iocfacts_allocate(sc, FALSE)) != 0) {
panic("%s IOC Facts based allocation failed with error %d\n",
__func__, error);
}
/*
* Mapping structures will be re-allocated after getting IOC Page8, so
* free these structures here.
*/
mpr_mapping_exit(sc);
/*
* The static page function currently read is IOC Page8. Others can be
* added in future. It's possible that the values in IOC Page8 have
* changed after a Diag Reset due to user modification, so always read
* these. Interrupts are masked, so unmask them before getting config
* pages.
*/
mpr_unmask_intr(sc);
sc->mpr_flags &= ~MPR_FLAGS_DIAGRESET;
mpr_base_static_config_pages(sc);
/*
* Some mapping info is based in IOC Page8 data, so re-initialize the
* mapping tables.
*/
mpr_mapping_initialize(sc);
/*
* Restart will reload the event masks clobbered by the reset, and
* then enable the port.
*/
mpr_reregister_events(sc);
/* the end of discovery will release the simq, so we're done. */
mpr_dprint(sc, MPR_INFO, "%s finished sc %p post %u free %u\n",
__func__, sc, sc->replypostindex, sc->replyfreeindex);
mprsas_release_simq_reinit(sassc);
return 0;
}
/* Wait for the chip to ACK a word that we've put into its FIFO
* Wait for <timeout> seconds. In single loop wait for busy loop
* for 500 microseconds.
* Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds.
* */
static int
mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag)
{
u32 cntdn, count;
u32 int_status;
u32 doorbell;
count = 0;
cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
do {
int_status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
mpr_dprint(sc, MPR_INIT, "%s: successful count(%d), "
"timeout(%d)\n", __func__, count, timeout);
return 0;
} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
doorbell = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
if ((doorbell & MPI2_IOC_STATE_MASK) ==
MPI2_IOC_STATE_FAULT) {
mpr_dprint(sc, MPR_FAULT,
"fault_state(0x%04x)!\n", doorbell);
return (EFAULT);
}
} else if (int_status == 0xFFFFFFFF)
goto out;
/*
* If it can sleep, sleep for 1 milisecond, else busy loop for
* 0.5 milisecond
*/
if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprdba",
hz/1000);
else if (sleep_flag == CAN_SLEEP)
pause("mprdba", hz/1000);
else
DELAY(500);
count++;
} while (--cntdn);
out:
mpr_dprint(sc, MPR_FAULT, "%s: failed due to timeout count(%d), "
"int_status(%x)!\n", __func__, count, int_status);
return (ETIMEDOUT);
}
/* Wait for the chip to signal that the next word in its FIFO can be fetched */
static int
mpr_wait_db_int(struct mpr_softc *sc)
{
int retry;
for (retry = 0; retry < MPR_DB_MAX_WAIT; retry++) {
if ((mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
return (0);
DELAY(2000);
}
return (ETIMEDOUT);
}
/* Step through the synchronous command state machine, i.e. "Doorbell mode" */
static int
mpr_request_sync(struct mpr_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
int req_sz, int reply_sz, int timeout)
{
uint32_t *data32;
uint16_t *data16;
int i, count, ioc_sz, residual;
int sleep_flags = CAN_SLEEP;
#if __FreeBSD_version >= 1000029
if (curthread->td_no_sleeping)
#else //__FreeBSD_version < 1000029
if (curthread->td_pflags & TDP_NOSLEEPING)
#endif //__FreeBSD_version >= 1000029
sleep_flags = NO_SLEEP;
/* Step 1 */
mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
/* Step 2 */
if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
return (EBUSY);
/* Step 3
* Announce that a message is coming through the doorbell. Messages
* are pushed at 32bit words, so round up if needed.
*/
count = (req_sz + 3) / 4;
mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
(MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
(count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
/* Step 4 */
if (mpr_wait_db_int(sc) ||
(mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
mpr_dprint(sc, MPR_FAULT, "Doorbell failed to activate\n");
return (ENXIO);
}
mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed\n");
return (ENXIO);
}
/* Step 5 */
/* Clock out the message data synchronously in 32-bit dwords*/
data32 = (uint32_t *)req;
for (i = 0; i < count; i++) {
mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
mpr_dprint(sc, MPR_FAULT,
"Timeout while writing doorbell\n");
return (ENXIO);
}
}
/* Step 6 */
/* Clock in the reply in 16-bit words. The total length of the
* message is always in the 4th byte, so clock out the first 2 words
* manually, then loop the rest.
*/
data16 = (uint16_t *)reply;
if (mpr_wait_db_int(sc) != 0) {
mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 0\n");
return (ENXIO);
}
data16[0] =
mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
if (mpr_wait_db_int(sc) != 0) {
mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 1\n");
return (ENXIO);
}
data16[1] =
mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
/* Number of 32bit words in the message */
ioc_sz = reply->MsgLength;
/*
* Figure out how many 16bit words to clock in without overrunning.
* The precision loss with dividing reply_sz can safely be
* ignored because the messages can only be multiples of 32bits.
*/
residual = 0;
count = MIN((reply_sz / 4), ioc_sz) * 2;
if (count < ioc_sz * 2) {
residual = ioc_sz * 2 - count;
mpr_dprint(sc, MPR_ERROR, "Driver error, throwing away %d "
"residual message words\n", residual);
}
for (i = 2; i < count; i++) {
if (mpr_wait_db_int(sc) != 0) {
mpr_dprint(sc, MPR_FAULT,
"Timeout reading doorbell %d\n", i);
return (ENXIO);
}
data16[i] = mpr_regread(sc, MPI2_DOORBELL_OFFSET) &
MPI2_DOORBELL_DATA_MASK;
mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
}
/*
* Pull out residual words that won't fit into the provided buffer.
* This keeps the chip from hanging due to a driver programming
* error.
*/
while (residual--) {
if (mpr_wait_db_int(sc) != 0) {
mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell\n");
return (ENXIO);
}
(void)mpr_regread(sc, MPI2_DOORBELL_OFFSET);
mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
}
/* Step 7 */
if (mpr_wait_db_int(sc) != 0) {
mpr_dprint(sc, MPR_FAULT, "Timeout waiting to exit doorbell\n");
return (ENXIO);
}
if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
mpr_dprint(sc, MPR_FAULT, "Warning, doorbell still active\n");
mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
return (0);
}
static void
mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm)
{
reply_descriptor rd;
MPR_FUNCTRACE(sc);
mpr_dprint(sc, MPR_TRACE, "SMID %u cm %p ccb %p\n",
cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
if (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE && !(sc->mpr_flags &
MPR_FLAGS_SHUTDOWN))
mtx_assert(&sc->mpr_mtx, MA_OWNED);
if (++sc->io_cmds_active > sc->io_cmds_highwater)
sc->io_cmds_highwater++;
rd.u.low = cm->cm_desc.Words.Low;
rd.u.high = cm->cm_desc.Words.High;
rd.word = htole64(rd.word);
/* TODO-We may need to make below regwrite atomic */
mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
rd.u.low);
mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
rd.u.high);
}
/*
* Just the FACTS, ma'am.
*/
static int
mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
{
MPI2_DEFAULT_REPLY *reply;
MPI2_IOC_FACTS_REQUEST request;
int error, req_sz, reply_sz;
MPR_FUNCTRACE(sc);
req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
reply = (MPI2_DEFAULT_REPLY *)facts;
bzero(&request, req_sz);
request.Function = MPI2_FUNCTION_IOC_FACTS;
error = mpr_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
return (error);
}
static int
mpr_send_iocinit(struct mpr_softc *sc)
{
MPI2_IOC_INIT_REQUEST init;
MPI2_DEFAULT_REPLY reply;
int req_sz, reply_sz, error;
struct timeval now;
uint64_t time_in_msec;
MPR_FUNCTRACE(sc);
req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
bzero(&init, req_sz);
bzero(&reply, reply_sz);
/*
* Fill in the init block. Note that most addresses are
* deliberately in the lower 32bits of memory. This is a micro-
* optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
*/
init.Function = MPI2_FUNCTION_IOC_INIT;
init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
init.MsgVersion = htole16(MPI2_VERSION);
init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
init.SystemRequestFrameSize = htole16(sc->facts->IOCRequestFrameSize);
init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
init.SenseBufferAddressHigh = 0;
init.SystemReplyAddressHigh = 0;
init.SystemRequestFrameBaseAddress.High = 0;
init.SystemRequestFrameBaseAddress.Low =
htole32((uint32_t)sc->req_busaddr);
init.ReplyDescriptorPostQueueAddress.High = 0;
init.ReplyDescriptorPostQueueAddress.Low =
htole32((uint32_t)sc->post_busaddr);
init.ReplyFreeQueueAddress.High = 0;
init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
getmicrotime(&now);
time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
error = mpr_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
error = ENXIO;
mpr_dprint(sc, MPR_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus);
return (error);
}
void
mpr_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
bus_addr_t *addr;
addr = arg;
*addr = segs[0].ds_addr;
}
static int
mpr_alloc_queues(struct mpr_softc *sc)
{
bus_addr_t queues_busaddr;
uint8_t *queues;
int qsize, fqsize, pqsize;
/*
* The reply free queue contains 4 byte entries in multiples of 16 and
* aligned on a 16 byte boundary. There must always be an unused entry.
* This queue supplies fresh reply frames for the firmware to use.
*
* The reply descriptor post queue contains 8 byte entries in
* multiples of 16 and aligned on a 16 byte boundary. This queue
* contains filled-in reply frames sent from the firmware to the host.
*
* These two queues are allocated together for simplicity.
*/
sc->fqdepth = roundup2((sc->num_replies + 1), 16);
sc->pqdepth = roundup2((sc->num_replies + 1), 16);
fqsize= sc->fqdepth * 4;
pqsize = sc->pqdepth * 8;
qsize = fqsize + pqsize;
if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */
16, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
qsize, /* maxsize */
1, /* nsegments */
qsize, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->queues_dmat)) {
device_printf(sc->mpr_dev, "Cannot allocate queues DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
&sc->queues_map)) {
device_printf(sc->mpr_dev, "Cannot allocate queues memory\n");
return (ENOMEM);
}
bzero(queues, qsize);
bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
mpr_memaddr_cb, &queues_busaddr, 0);
sc->free_queue = (uint32_t *)queues;
sc->free_busaddr = queues_busaddr;
sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
sc->post_busaddr = queues_busaddr + fqsize;
return (0);
}
static int
mpr_alloc_replies(struct mpr_softc *sc)
{
int rsize, num_replies;
/*
* sc->num_replies should be one less than sc->fqdepth. We need to
* allocate space for sc->fqdepth replies, but only sc->num_replies
* replies can be used at once.
*/
num_replies = max(sc->fqdepth, sc->num_replies);
rsize = sc->facts->ReplyFrameSize * num_replies * 4;
if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */
4, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
rsize, /* maxsize */
1, /* nsegments */
rsize, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->reply_dmat)) {
device_printf(sc->mpr_dev, "Cannot allocate replies DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
BUS_DMA_NOWAIT, &sc->reply_map)) {
device_printf(sc->mpr_dev, "Cannot allocate replies memory\n");
return (ENOMEM);
}
bzero(sc->reply_frames, rsize);
bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
mpr_memaddr_cb, &sc->reply_busaddr, 0);
return (0);
}
static int
mpr_alloc_requests(struct mpr_softc *sc)
{
struct mpr_command *cm;
struct mpr_chain *chain;
int i, rsize, nsegs;
rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4;
if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */
16, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
rsize, /* maxsize */
1, /* nsegments */
rsize, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->req_dmat)) {
device_printf(sc->mpr_dev, "Cannot allocate request DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
BUS_DMA_NOWAIT, &sc->req_map)) {
device_printf(sc->mpr_dev, "Cannot allocate request memory\n");
return (ENOMEM);
}
bzero(sc->req_frames, rsize);
bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
mpr_memaddr_cb, &sc->req_busaddr, 0);
rsize = sc->facts->IOCRequestFrameSize * sc->max_chains * 4;
if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */
16, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
rsize, /* maxsize */
1, /* nsegments */
rsize, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->chain_dmat)) {
device_printf(sc->mpr_dev, "Cannot allocate chain DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
BUS_DMA_NOWAIT, &sc->chain_map)) {
device_printf(sc->mpr_dev, "Cannot allocate chain memory\n");
return (ENOMEM);
}
bzero(sc->chain_frames, rsize);
bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize,
mpr_memaddr_cb, &sc->chain_busaddr, 0);
rsize = MPR_SENSE_LEN * sc->num_reqs;
if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
rsize, /* maxsize */
1, /* nsegments */
rsize, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->sense_dmat)) {
device_printf(sc->mpr_dev, "Cannot allocate sense DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
BUS_DMA_NOWAIT, &sc->sense_map)) {
device_printf(sc->mpr_dev, "Cannot allocate sense memory\n");
return (ENOMEM);
}
bzero(sc->sense_frames, rsize);
bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
mpr_memaddr_cb, &sc->sense_busaddr, 0);
sc->chains = malloc(sizeof(struct mpr_chain) * sc->max_chains, M_MPR,
M_WAITOK | M_ZERO);
if (!sc->chains) {
device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
__func__, __LINE__);
return (ENOMEM);
}
for (i = 0; i < sc->max_chains; i++) {
chain = &sc->chains[i];
chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames +
i * sc->facts->IOCRequestFrameSize * 4);
chain->chain_busaddr = sc->chain_busaddr +
i * sc->facts->IOCRequestFrameSize * 4;
mpr_free_chain(sc, chain);
sc->chain_free_lowwater++;
}
/* XXX Need to pick a more precise value */
nsegs = (MAXPHYS / PAGE_SIZE) + 1;
if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
nsegs, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
busdma_lock_mutex, /* lockfunc */
&sc->mpr_mtx, /* lockarg */
&sc->buffer_dmat)) {
device_printf(sc->mpr_dev, "Cannot allocate buffer DMA tag\n");
return (ENOMEM);
}
/*
* SMID 0 cannot be used as a free command per the firmware spec.
* Just drop that command instead of risking accounting bugs.
*/
sc->commands = malloc(sizeof(struct mpr_command) * sc->num_reqs,
M_MPR, M_WAITOK | M_ZERO);
if (!sc->commands) {
device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
__func__, __LINE__);
return (ENOMEM);
}
for (i = 1; i < sc->num_reqs; i++) {
cm = &sc->commands[i];
cm->cm_req = sc->req_frames +
i * sc->facts->IOCRequestFrameSize * 4;
cm->cm_req_busaddr = sc->req_busaddr +
i * sc->facts->IOCRequestFrameSize * 4;
cm->cm_sense = &sc->sense_frames[i];
cm->cm_sense_busaddr = sc->sense_busaddr + i * MPR_SENSE_LEN;
cm->cm_desc.Default.SMID = i;
cm->cm_sc = sc;
TAILQ_INIT(&cm->cm_chain_list);
callout_init_mtx(&cm->cm_callout, &sc->mpr_mtx, 0);
/* XXX Is a failure here a critical problem? */
if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0)
if (i <= sc->facts->HighPriorityCredit)
mpr_free_high_priority_command(sc, cm);
else
mpr_free_command(sc, cm);
else {
panic("failed to allocate command %d\n", i);
sc->num_reqs = i;
break;
}
}
return (0);
}
static int
mpr_init_queues(struct mpr_softc *sc)
{
int i;
memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
/*
* According to the spec, we need to use one less reply than we
* have space for on the queue. So sc->num_replies (the number we
* use) should be less than sc->fqdepth (allocated size).
*/
if (sc->num_replies >= sc->fqdepth)
return (EINVAL);
/*
* Initialize all of the free queue entries.
*/
for (i = 0; i < sc->fqdepth; i++)
sc->free_queue[i] = sc->reply_busaddr + (i * sc->facts->ReplyFrameSize * 4);
sc->replyfreeindex = sc->num_replies;
return (0);
}
/* Get the driver parameter tunables. Lowest priority are the driver defaults.
* Next are the global settings, if they exist. Highest are the per-unit
* settings, if they exist.
*/
static void
mpr_get_tunables(struct mpr_softc *sc)
{
char tmpstr[80];
/* XXX default to some debugging for now */
sc->mpr_debug = MPR_INFO | MPR_FAULT;
sc->disable_msix = 0;
sc->disable_msi = 0;
sc->max_chains = MPR_CHAIN_FRAMES;
sc->enable_ssu = MPR_SSU_ENABLE_SSD_DISABLE_HDD;
sc->spinup_wait_time = DEFAULT_SPINUP_WAIT;
/*
* Grab the global variables.
*/
TUNABLE_INT_FETCH("hw.mpr.debug_level", &sc->mpr_debug);
TUNABLE_INT_FETCH("hw.mpr.disable_msix", &sc->disable_msix);
TUNABLE_INT_FETCH("hw.mpr.disable_msi", &sc->disable_msi);
TUNABLE_INT_FETCH("hw.mpr.max_chains", &sc->max_chains);
TUNABLE_INT_FETCH("hw.mpr.enable_ssu", &sc->enable_ssu);
TUNABLE_INT_FETCH("hw.mpr.spinup_wait_time", &sc->spinup_wait_time);
/* Grab the unit-instance variables */
snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.debug_level",
device_get_unit(sc->mpr_dev));
TUNABLE_INT_FETCH(tmpstr, &sc->mpr_debug);
snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msix",
device_get_unit(sc->mpr_dev));
TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msi",
device_get_unit(sc->mpr_dev));
TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi);
snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_chains",
device_get_unit(sc->mpr_dev));
TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.exclude_ids",
device_get_unit(sc->mpr_dev));
TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.enable_ssu",
device_get_unit(sc->mpr_dev));
TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu);
snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.spinup_wait_time",
device_get_unit(sc->mpr_dev));
TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time);
}
static void
mpr_setup_sysctl(struct mpr_softc *sc)
{
struct sysctl_ctx_list *sysctl_ctx = NULL;
struct sysctl_oid *sysctl_tree = NULL;
char tmpstr[80], tmpstr2[80];
/*
* Setup the sysctl variable so the user can change the debug level
* on the fly.
*/
snprintf(tmpstr, sizeof(tmpstr), "MPR controller %d",
device_get_unit(sc->mpr_dev));
snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mpr_dev));
sysctl_ctx = device_get_sysctl_ctx(sc->mpr_dev);
if (sysctl_ctx != NULL)
sysctl_tree = device_get_sysctl_tree(sc->mpr_dev);
if (sysctl_tree == NULL) {
sysctl_ctx_init(&sc->sysctl_ctx);
sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
SYSCTL_STATIC_CHILDREN(_hw_mpr), OID_AUTO, tmpstr2,
CTLFLAG_RD, 0, tmpstr);
if (sc->sysctl_tree == NULL)
return;
sysctl_ctx = &sc->sysctl_ctx;
sysctl_tree = sc->sysctl_tree;
}
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mpr_debug, 0,
"mpr debug level");
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
"Disable the use of MSI-X interrupts");
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
OID_AUTO, "disable_msi", CTLFLAG_RD, &sc->disable_msi, 0,
"Disable the use of MSI interrupts");
SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
OID_AUTO, "firmware_version", CTLFLAG_RW, sc->fw_version,
strlen(sc->fw_version), "firmware version");
SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
OID_AUTO, "driver_version", CTLFLAG_RW, MPR_DRIVER_VERSION,
strlen(MPR_DRIVER_VERSION), "driver version");
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
OID_AUTO, "io_cmds_active", CTLFLAG_RD,
&sc->io_cmds_active, 0, "number of currently active commands");
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
&sc->io_cmds_highwater, 0, "maximum active commands seen");
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
OID_AUTO, "chain_free", CTLFLAG_RD,
&sc->chain_free, 0, "number of free chain elements");
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
&sc->chain_free_lowwater, 0,"lowest number of free chain elements");
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
OID_AUTO, "max_chains", CTLFLAG_RD,
&sc->max_chains, 0,"maximum chain frames that will be allocated");
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0,
"enable SSU to SATA SSD/HDD at shutdown");
#if __FreeBSD_version >= 900030
SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
&sc->chain_alloc_fail, "chain allocation failures");
#endif //FreeBSD_version >= 900030
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
OID_AUTO, "spinup_wait_time", CTLFLAG_RD,
&sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for "
"spinup after SATA ID error");
}
int
mpr_attach(struct mpr_softc *sc)
{
int error;
mpr_get_tunables(sc);
MPR_FUNCTRACE(sc);
mtx_init(&sc->mpr_mtx, "MPR lock", NULL, MTX_DEF);
callout_init_mtx(&sc->periodic, &sc->mpr_mtx, 0);
TAILQ_INIT(&sc->event_list);
timevalclear(&sc->lastfail);
if ((error = mpr_transition_ready(sc)) != 0) {
mpr_printf(sc, "%s failed to transition ready\n", __func__);
return (error);
}
sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPR,
M_ZERO|M_NOWAIT);
if (!sc->facts) {
device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
__func__, __LINE__);
return (ENOMEM);
}
/*
* Get IOC Facts and allocate all structures based on this information.
* A Diag Reset will also call mpr_iocfacts_allocate and re-read the IOC
* Facts. If relevant values have changed in IOC Facts, this function
* will free all of the memory based on IOC Facts and reallocate that
* memory. If this fails, any allocated memory should already be freed.
*/
if ((error = mpr_iocfacts_allocate(sc, TRUE)) != 0) {
mpr_dprint(sc, MPR_FAULT, "%s IOC Facts based allocation "
"failed with error %d\n", __func__, error);
return (error);
}
/* Start the periodic watchdog check on the IOC Doorbell */
mpr_periodic(sc);
/*
* The portenable will kick off discovery events that will drive the
* rest of the initialization process. The CAM/SAS module will
* hold up the boot sequence until discovery is complete.
*/
sc->mpr_ich.ich_func = mpr_startup;
sc->mpr_ich.ich_arg = sc;
if (config_intrhook_establish(&sc->mpr_ich) != 0) {
mpr_dprint(sc, MPR_ERROR, "Cannot establish MPR config hook\n");
error = EINVAL;
}
/*
* Allow IR to shutdown gracefully when shutdown occurs.
*/
sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
mprsas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
if (sc->shutdown_eh == NULL)
mpr_dprint(sc, MPR_ERROR, "shutdown event registration "
"failed\n");
mpr_setup_sysctl(sc);
sc->mpr_flags |= MPR_FLAGS_ATTACH_DONE;
return (error);
}
/* Run through any late-start handlers. */
static void
mpr_startup(void *arg)
{
struct mpr_softc *sc;
sc = (struct mpr_softc *)arg;
mpr_lock(sc);
mpr_unmask_intr(sc);
/* initialize device mapping tables */
mpr_base_static_config_pages(sc);
mpr_mapping_initialize(sc);
mprsas_startup(sc);
mpr_unlock(sc);
}
/* Periodic watchdog. Is called with the driver lock already held. */
static void
mpr_periodic(void *arg)
{
struct mpr_softc *sc;
uint32_t db;
sc = (struct mpr_softc *)arg;
if (sc->mpr_flags & MPR_FLAGS_SHUTDOWN)
return;
db = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
if ((db & MPI2_DOORBELL_FAULT_CODE_MASK) ==
IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED) {
panic("TEMPERATURE FAULT: STOPPING.");
}
mpr_dprint(sc, MPR_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
mpr_reinit(sc);
}
callout_reset(&sc->periodic, MPR_PERIODIC_DELAY * hz, mpr_periodic, sc);
}
static void
mpr_log_evt_handler(struct mpr_softc *sc, uintptr_t data,
MPI2_EVENT_NOTIFICATION_REPLY *event)
{
MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
mpr_print_event(sc, event);
switch (event->Event) {
case MPI2_EVENT_LOG_DATA:
mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_DATA:\n");
if (sc->mpr_debug & MPR_EVENT)
hexdump(event->EventData, event->EventDataLength, NULL,
0);
break;
case MPI2_EVENT_LOG_ENTRY_ADDED:
entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
"0x%x Sequence %d:\n", entry->LogEntryQualifier,
entry->LogSequence);
break;
default:
break;
}
return;
}
static int
mpr_attach_log(struct mpr_softc *sc)
{
uint8_t events[16];
bzero(events, 16);
setbit(events, MPI2_EVENT_LOG_DATA);
setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
mpr_register_events(sc, events, mpr_log_evt_handler, NULL,
&sc->mpr_log_eh);
return (0);
}
static int
mpr_detach_log(struct mpr_softc *sc)
{
if (sc->mpr_log_eh != NULL)
mpr_deregister_events(sc, sc->mpr_log_eh);
return (0);
}
/*
* Free all of the driver resources and detach submodules. Should be called
* without the lock held.
*/
int
mpr_free(struct mpr_softc *sc)
{
int error;
/* Turn off the watchdog */
mpr_lock(sc);
sc->mpr_flags |= MPR_FLAGS_SHUTDOWN;
mpr_unlock(sc);
/* Lock must not be held for this */
callout_drain(&sc->periodic);
if (((error = mpr_detach_log(sc)) != 0) ||
((error = mpr_detach_sas(sc)) != 0))
return (error);
mpr_detach_user(sc);
/* Put the IOC back in the READY state. */
mpr_lock(sc);
if ((error = mpr_transition_ready(sc)) != 0) {
mpr_unlock(sc);
return (error);
}
mpr_unlock(sc);
if (sc->facts != NULL)
free(sc->facts, M_MPR);
/*
* Free all buffers that are based on IOC Facts. A Diag Reset may need
* to free these buffers too.
*/
mpr_iocfacts_free(sc);
if (sc->sysctl_tree != NULL)
sysctl_ctx_free(&sc->sysctl_ctx);
/* Deregister the shutdown function */
if (sc->shutdown_eh != NULL)
EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
mtx_destroy(&sc->mpr_mtx);
return (0);
}
static __inline void
mpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm)
{
MPR_FUNCTRACE(sc);
if (cm == NULL) {
mpr_dprint(sc, MPR_ERROR, "Completing NULL command\n");
return;
}
if (cm->cm_flags & MPR_CM_FLAGS_POLLED)
cm->cm_flags |= MPR_CM_FLAGS_COMPLETE;
if (cm->cm_complete != NULL) {
mpr_dprint(sc, MPR_TRACE,
"%s cm %p calling cm_complete %p data %p reply %p\n",
__func__, cm, cm->cm_complete, cm->cm_complete_data,
cm->cm_reply);
cm->cm_complete(sc, cm);
}
if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) {
mpr_dprint(sc, MPR_TRACE, "waking up %p\n", cm);
wakeup(cm);
}
if (sc->io_cmds_active != 0) {
sc->io_cmds_active--;
} else {
mpr_dprint(sc, MPR_ERROR, "Warning: io_cmds_active is "
"out of sync - resynching to 0\n");
}
}
static void
mpr_sas_log_info(struct mpr_softc *sc , u32 log_info)
{
union loginfo_type {
u32 loginfo;
struct {
u32 subcode:16;
u32 code:8;
u32 originator:4;
u32 bus_type:4;
} dw;
};
union loginfo_type sas_loginfo;
char *originator_str = NULL;
sas_loginfo.loginfo = log_info;
if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
return;
/* each nexus loss loginfo */
if (log_info == 0x31170000)
return;
/* eat the loginfos associated with task aborts */
if ((log_info == 30050000) || (log_info == 0x31140000) ||
(log_info == 0x31130000))
return;
switch (sas_loginfo.dw.originator) {
case 0:
originator_str = "IOP";
break;
case 1:
originator_str = "PL";
break;
case 2:
originator_str = "IR";
break;
}
mpr_dprint(sc, MPR_INFO, "log_info(0x%08x): originator(%s), "
"code(0x%02x), sub_code(0x%04x)\n", log_info,
originator_str, sas_loginfo.dw.code,
sas_loginfo.dw.subcode);
}
static void
mpr_display_reply_info(struct mpr_softc *sc, uint8_t *reply)
{
MPI2DefaultReply_t *mpi_reply;
u16 sc_status;
mpi_reply = (MPI2DefaultReply_t*)reply;
sc_status = le16toh(mpi_reply->IOCStatus);
if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
mpr_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
}
void
mpr_intr(void *data)
{
struct mpr_softc *sc;
uint32_t status;
sc = (struct mpr_softc *)data;
mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
/*
* Check interrupt status register to flush the bus. This is
* needed for both INTx interrupts and driver-driven polling
*/
status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
return;
mpr_lock(sc);
mpr_intr_locked(data);
mpr_unlock(sc);
return;
}
/*
* In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
* chip. Hopefully this theory is correct.
*/
void
mpr_intr_msi(void *data)
{
struct mpr_softc *sc;
sc = (struct mpr_softc *)data;
mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
mpr_lock(sc);
mpr_intr_locked(data);
mpr_unlock(sc);
return;
}
/*
* The locking is overly broad and simplistic, but easy to deal with for now.
*/
void
mpr_intr_locked(void *data)
{
MPI2_REPLY_DESCRIPTORS_UNION *desc;
struct mpr_softc *sc;
struct mpr_command *cm = NULL;
uint8_t flags;
u_int pq;
MPI2_DIAG_RELEASE_REPLY *rel_rep;
mpr_fw_diagnostic_buffer_t *pBuffer;
sc = (struct mpr_softc *)data;
pq = sc->replypostindex;
mpr_dprint(sc, MPR_TRACE,
"%s sc %p starting with replypostindex %u\n",
__func__, sc, sc->replypostindex);
for ( ;; ) {
cm = NULL;
desc = &sc->post_queue[sc->replypostindex];
flags = desc->Default.ReplyFlags &
MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) ||
(le32toh(desc->Words.High) == 0xffffffff))
break;
/* increment the replypostindex now, so that event handlers
* and cm completion handlers which decide to do a diag
* reset can zero it without it getting incremented again
* afterwards, and we break out of this loop on the next
* iteration since the reply post queue has been cleared to
* 0xFF and all descriptors look unused (which they are).
*/
if (++sc->replypostindex >= sc->pqdepth)
sc->replypostindex = 0;
switch (flags) {
case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
case MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS:
cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
cm->cm_reply = NULL;
break;
case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
{
uint32_t baddr;
uint8_t *reply;
/*
* Re-compose the reply address from the address
* sent back from the chip. The ReplyFrameAddress
* is the lower 32 bits of the physical address of
* particular reply frame. Convert that address to
* host format, and then use that to provide the
* offset against the virtual address base
* (sc->reply_frames).
*/
baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
reply = sc->reply_frames +
(baddr - ((uint32_t)sc->reply_busaddr));
/*
* Make sure the reply we got back is in a valid
* range. If not, go ahead and panic here, since
* we'll probably panic as soon as we deference the
* reply pointer anyway.
*/
if ((reply < sc->reply_frames)
|| (reply > (sc->reply_frames +
(sc->fqdepth * sc->facts->ReplyFrameSize * 4)))) {
printf("%s: WARNING: reply %p out of range!\n",
__func__, reply);
printf("%s: reply_frames %p, fqdepth %d, "
"frame size %d\n", __func__,
sc->reply_frames, sc->fqdepth,
sc->facts->ReplyFrameSize * 4);
printf("%s: baddr %#x,\n", __func__, baddr);
/* LSI-TODO. See Linux Code for Graceful exit */
panic("Reply address out of range");
}
if (le16toh(desc->AddressReply.SMID) == 0) {
if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
MPI2_FUNCTION_DIAG_BUFFER_POST) {
/*
* If SMID is 0 for Diag Buffer Post,
* this implies that the reply is due to
* a release function with a status that
* the buffer has been released. Set
* the buffer flags accordingly.
*/
rel_rep =
(MPI2_DIAG_RELEASE_REPLY *)reply;
if (le16toh(rel_rep->IOCStatus) ==
MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
{
pBuffer =
&sc->fw_diag_buffer_list[
rel_rep->BufferType];
pBuffer->valid_data = TRUE;
pBuffer->owned_by_firmware =
FALSE;
pBuffer->immediate = FALSE;
}
} else
mpr_dispatch_event(sc, baddr,
(MPI2_EVENT_NOTIFICATION_REPLY *)
reply);
} else {
cm = &sc->commands[
le16toh(desc->AddressReply.SMID)];
cm->cm_reply = reply;
cm->cm_reply_data =
le32toh(desc->AddressReply.
ReplyFrameAddress);
}
break;
}
case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
default:
/* Unhandled */
mpr_dprint(sc, MPR_ERROR, "Unhandled reply 0x%x\n",
desc->Default.ReplyFlags);
cm = NULL;
break;
}
if (cm != NULL) {
// Print Error reply frame
if (cm->cm_reply)
mpr_display_reply_info(sc,cm->cm_reply);
mpr_complete_command(sc, cm);
}
desc->Words.Low = 0xffffffff;
desc->Words.High = 0xffffffff;
}
if (pq != sc->replypostindex) {
mpr_dprint(sc, MPR_TRACE,
"%s sc %p writing postindex %d\n",
__func__, sc, sc->replypostindex);
mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET,
sc->replypostindex);
}
return;
}
static void
mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
MPI2_EVENT_NOTIFICATION_REPLY *reply)
{
struct mpr_event_handle *eh;
int event, handled = 0;
event = le16toh(reply->Event);
TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
if (isset(eh->mask, event)) {
eh->callback(sc, data, reply);
handled++;
}
}
if (handled == 0)
mpr_dprint(sc, MPR_EVENT, "Unhandled event 0x%x\n",
le16toh(event));
/*
* This is the only place that the event/reply should be freed.
* Anything wanting to hold onto the event data should have
* already copied it into their own storage.
*/
mpr_free_reply(sc, data);
}
static void
mpr_reregister_events_complete(struct mpr_softc *sc, struct mpr_command *cm)
{
mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
if (cm->cm_reply)
mpr_print_event(sc,
(MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
mpr_free_command(sc, cm);
/* next, send a port enable */
mprsas_startup(sc);
}
/*
* For both register_events and update_events, the caller supplies a bitmap
* of events that it _wants_. These functions then turn that into a bitmask
* suitable for the controller.
*/
int
mpr_register_events(struct mpr_softc *sc, uint8_t *mask,
mpr_evt_callback_t *cb, void *data, struct mpr_event_handle **handle)
{
struct mpr_event_handle *eh;
int error = 0;
eh = malloc(sizeof(struct mpr_event_handle), M_MPR, M_WAITOK|M_ZERO);
if (!eh) {
device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
__func__, __LINE__);
return (ENOMEM);
}
eh->callback = cb;
eh->data = data;
TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
if (mask != NULL)
error = mpr_update_events(sc, eh, mask);
*handle = eh;
return (error);
}
int
mpr_update_events(struct mpr_softc *sc, struct mpr_event_handle *handle,
uint8_t *mask)
{
MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
MPI2_EVENT_NOTIFICATION_REPLY *reply;
struct mpr_command *cm;
struct mpr_event_handle *eh;
int error, i;
mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
if ((mask != NULL) && (handle != NULL))
bcopy(mask, &handle->mask[0], 16);
memset(sc->event_mask, 0xff, 16);
TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
for (i = 0; i < 16; i++)
sc->event_mask[i] &= ~eh->mask[i];
}
if ((cm = mpr_alloc_command(sc)) == NULL)
return (EBUSY);
evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
evtreq->MsgFlags = 0;
evtreq->SASBroadcastPrimitiveMasks = 0;
#ifdef MPR_DEBUG_ALL_EVENTS
{
u_char fullmask[16];
memset(fullmask, 0x00, 16);
bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
}
#else
bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
#endif
cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
cm->cm_data = NULL;
error = mpr_request_polled(sc, cm);
reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
if ((reply == NULL) ||
(reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
error = ENXIO;
if (reply)
mpr_print_event(sc, reply);
mpr_dprint(sc, MPR_TRACE, "%s finished error %d\n", __func__, error);
mpr_free_command(sc, cm);
return (error);
}
static int
mpr_reregister_events(struct mpr_softc *sc)
{
MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
struct mpr_command *cm;
struct mpr_event_handle *eh;
int error, i;
mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
/* first, reregister events */
memset(sc->event_mask, 0xff, 16);
TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
for (i = 0; i < 16; i++)
sc->event_mask[i] &= ~eh->mask[i];
}
if ((cm = mpr_alloc_command(sc)) == NULL)
return (EBUSY);
evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
evtreq->MsgFlags = 0;
evtreq->SASBroadcastPrimitiveMasks = 0;
#ifdef MPR_DEBUG_ALL_EVENTS
{
u_char fullmask[16];
memset(fullmask, 0x00, 16);
bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
}
#else
bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
#endif
cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
cm->cm_data = NULL;
cm->cm_complete = mpr_reregister_events_complete;
error = mpr_map_command(sc, cm);
mpr_dprint(sc, MPR_TRACE, "%s finished with error %d\n", __func__,
error);
return (error);
}
int
mpr_deregister_events(struct mpr_softc *sc, struct mpr_event_handle *handle)
{
TAILQ_REMOVE(&sc->event_list, handle, eh_list);
free(handle, M_MPR);
return (mpr_update_events(sc, NULL, NULL));
}
/*
* Add a chain element as the next SGE for the specified command.
* Reset cm_sge and cm_sgesize to indicate all the available space. Chains are
* only required for IEEE commands. Therefore there is no code for commands
* that have the MPR_CM_FLAGS_SGE_SIMPLE flag set (and those commands
* shouldn't be requesting chains).
*/
static int
mpr_add_chain(struct mpr_command *cm, int segsleft)
{
struct mpr_softc *sc = cm->cm_sc;
MPI2_REQUEST_HEADER *req;
MPI25_IEEE_SGE_CHAIN64 *ieee_sgc;
struct mpr_chain *chain;
int space, sgc_size, current_segs, rem_segs, segs_per_frame;
uint8_t next_chain_offset = 0;
/*
* Fail if a command is requesting a chain for SIMPLE SGE's. For SAS3
* only IEEE commands should be requesting chains. Return some error
* code other than 0.
*/
if (cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE) {
mpr_dprint(sc, MPR_ERROR, "A chain element cannot be added to "
"an MPI SGL.\n");
return(ENOBUFS);
}
sgc_size = sizeof(MPI25_IEEE_SGE_CHAIN64);
if (cm->cm_sglsize < sgc_size)
panic("MPR: Need SGE Error Code\n");
chain = mpr_alloc_chain(cm->cm_sc);
if (chain == NULL)
return (ENOBUFS);
space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4;
/*
* Note: a double-linked list is used to make it easier to walk for
* debugging.
*/
TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
/*
* Need to know if the number of frames left is more than 1 or not. If
* more than 1 frame is required, NextChainOffset will need to be set,
* which will just be the last segment of the frame.
*/
rem_segs = 0;
if (cm->cm_sglsize < (sgc_size * segsleft)) {
/*
* rem_segs is the number of segements remaining after the
* segments that will go into the current frame. Since it is
* known that at least one more frame is required, account for
* the chain element. To know if more than one more frame is
* required, just check if there will be a remainder after using
* the current frame (with this chain) and the next frame. If
* so the NextChainOffset must be the last element of the next
* frame.
*/
current_segs = (cm->cm_sglsize / sgc_size) - 1;
rem_segs = segsleft - current_segs;
segs_per_frame = space / sgc_size;
if (rem_segs > segs_per_frame) {
next_chain_offset = segs_per_frame - 1;
}
}
ieee_sgc = &((MPI25_SGE_IO_UNION *)cm->cm_sge)->IeeeChain;
ieee_sgc->Length = next_chain_offset ? htole32((uint32_t)space) :
htole32((uint32_t)rem_segs * (uint32_t)sgc_size);
ieee_sgc->NextChainOffset = next_chain_offset;
ieee_sgc->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
ieee_sgc->Address.Low = htole32(chain->chain_busaddr);
ieee_sgc->Address.High = htole32(chain->chain_busaddr >> 32);
cm->cm_sge = &((MPI25_SGE_IO_UNION *)chain->chain)->IeeeSimple;
req = (MPI2_REQUEST_HEADER *)cm->cm_req;
req->ChainOffset = ((sc->facts->IOCRequestFrameSize * 4) -
sgc_size) >> 4;
cm->cm_sglsize = space;
return (0);
}
/*
* Add one scatter-gather element to the scatter-gather list for a command.
* Maintain cm_sglsize and cm_sge as the remaining size and pointer to the
* next SGE to fill in, respectively. In Gen3, the MPI SGL does not have a
* chain, so don't consider any chain additions.
*/
int
mpr_push_sge(struct mpr_command *cm, MPI2_SGE_SIMPLE64 *sge, size_t len,
int segsleft)
{
uint32_t saved_buf_len, saved_address_low, saved_address_high;
u32 sge_flags;
/*
* case 1: >=1 more segment, no room for anything (error)
* case 2: 1 more segment and enough room for it
*/
if (cm->cm_sglsize < (segsleft * sizeof(MPI2_SGE_SIMPLE64))) {
mpr_dprint(cm->cm_sc, MPR_ERROR,
"%s: warning: Not enough room for MPI SGL in frame.\n",
__func__);
return(ENOBUFS);
}
KASSERT(segsleft == 1,
("segsleft cannot be more than 1 for an MPI SGL; segsleft = %d\n",
segsleft));
/*
* There is one more segment left to add for the MPI SGL and there is
* enough room in the frame to add it. This is the normal case because
* MPI SGL's don't have chains, otherwise something is wrong.
*
* If this is a bi-directional request, need to account for that
* here. Save the pre-filled sge values. These will be used
* either for the 2nd SGL or for a single direction SGL. If
* cm_out_len is non-zero, this is a bi-directional request, so
* fill in the OUT SGL first, then the IN SGL, otherwise just
* fill in the IN SGL. Note that at this time, when filling in
* 2 SGL's for a bi-directional request, they both use the same
* DMA buffer (same cm command).
*/
saved_buf_len = sge->FlagsLength & 0x00FFFFFF;
saved_address_low = sge->Address.Low;
saved_address_high = sge->Address.High;
if (cm->cm_out_len) {
sge->FlagsLength = cm->cm_out_len |
((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_HOST_TO_IOC |
MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
MPI2_SGE_FLAGS_SHIFT);
cm->cm_sglsize -= len;
/* Endian Safe code */
sge_flags = sge->FlagsLength;
sge->FlagsLength = htole32(sge_flags);
sge->Address.High = htole32(sge->Address.High);
sge->Address.Low = htole32(sge->Address.Low);
bcopy(sge, cm->cm_sge, len);
cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
}
sge->FlagsLength = saved_buf_len |
((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_LAST_ELEMENT |
MPI2_SGE_FLAGS_END_OF_LIST |
MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
MPI2_SGE_FLAGS_SHIFT);
if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
sge->FlagsLength |=
((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
MPI2_SGE_FLAGS_SHIFT);
} else {
sge->FlagsLength |=
((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
MPI2_SGE_FLAGS_SHIFT);
}
sge->Address.Low = saved_address_low;
sge->Address.High = saved_address_high;
cm->cm_sglsize -= len;
/* Endian Safe code */
sge_flags = sge->FlagsLength;
sge->FlagsLength = htole32(sge_flags);
sge->Address.High = htole32(sge->Address.High);
sge->Address.Low = htole32(sge->Address.Low);
bcopy(sge, cm->cm_sge, len);
cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
return (0);
}
/*
* Add one IEEE scatter-gather element (chain or simple) to the IEEE scatter-
* gather list for a command. Maintain cm_sglsize and cm_sge as the
* remaining size and pointer to the next SGE to fill in, respectively.
*/
int
mpr_push_ieee_sge(struct mpr_command *cm, void *sgep, int segsleft)
{
MPI2_IEEE_SGE_SIMPLE64 *sge = sgep;
int error, ieee_sge_size = sizeof(MPI25_SGE_IO_UNION);
uint32_t saved_buf_len, saved_address_low, saved_address_high;
uint32_t sge_length;
/*
* case 1: No room for chain or segment (error).
* case 2: Two or more segments left but only room for chain.
* case 3: Last segment and room for it, so set flags.
*/
/*
* There should be room for at least one element, or there is a big
* problem.
*/
if (cm->cm_sglsize < ieee_sge_size)
panic("MPR: Need SGE Error Code\n");
if ((segsleft >= 2) && (cm->cm_sglsize < (ieee_sge_size * 2))) {
if ((error = mpr_add_chain(cm, segsleft)) != 0)
return (error);
}
if (segsleft == 1) {
/*
* If this is a bi-directional request, need to account for that
* here. Save the pre-filled sge values. These will be used
* either for the 2nd SGL or for a single direction SGL. If
* cm_out_len is non-zero, this is a bi-directional request, so
* fill in the OUT SGL first, then the IN SGL, otherwise just
* fill in the IN SGL. Note that at this time, when filling in
* 2 SGL's for a bi-directional request, they both use the same
* DMA buffer (same cm command).
*/
saved_buf_len = sge->Length;
saved_address_low = sge->Address.Low;
saved_address_high = sge->Address.High;
if (cm->cm_out_len) {
sge->Length = cm->cm_out_len;
sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
cm->cm_sglsize -= ieee_sge_size;
/* Endian Safe code */
sge_length = sge->Length;
sge->Length = htole32(sge_length);
sge->Address.High = htole32(sge->Address.High);
sge->Address.Low = htole32(sge->Address.Low);
bcopy(sgep, cm->cm_sge, ieee_sge_size);
cm->cm_sge =
(MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
ieee_sge_size);
}
sge->Length = saved_buf_len;
sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
sge->Address.Low = saved_address_low;
sge->Address.High = saved_address_high;
}
cm->cm_sglsize -= ieee_sge_size;
/* Endian Safe code */
sge_length = sge->Length;
sge->Length = htole32(sge_length);
sge->Address.High = htole32(sge->Address.High);
sge->Address.Low = htole32(sge->Address.Low);
bcopy(sgep, cm->cm_sge, ieee_sge_size);
cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
ieee_sge_size);
return (0);
}
/*
* Add one dma segment to the scatter-gather list for a command.
*/
int
mpr_add_dmaseg(struct mpr_command *cm, vm_paddr_t pa, size_t len, u_int flags,
int segsleft)
{
MPI2_SGE_SIMPLE64 sge;
MPI2_IEEE_SGE_SIMPLE64 ieee_sge;
if (!(cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE)) {
ieee_sge.Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
ieee_sge.Length = len;
mpr_from_u64(pa, &ieee_sge.Address);
return (mpr_push_ieee_sge(cm, &ieee_sge, segsleft));
} else {
/*
* This driver always uses 64-bit address elements for
* simplicity.
*/
flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
/* Set Endian safe macro in mpr_push_sge */
sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT);
mpr_from_u64(pa, &sge.Address);
return (mpr_push_sge(cm, &sge, sizeof sge, segsleft));
}
}
static void
mpr_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct mpr_softc *sc;
struct mpr_command *cm;
u_int i, dir, sflags;
cm = (struct mpr_command *)arg;
sc = cm->cm_sc;
/*
* In this case, just print out a warning and let the chip tell the
* user they did the wrong thing.
*/
if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
mpr_dprint(sc, MPR_ERROR,
"%s: warning: busdma returned %d segments, "
"more than the %d allowed\n", __func__, nsegs,
cm->cm_max_segs);
}
/*
* Set up DMA direction flags. Bi-directional requests are also handled
* here. In that case, both direction flags will be set.
*/
sflags = 0;
if (cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) {
/*
* We have to add a special case for SMP passthrough, there
* is no easy way to generically handle it. The first
* S/G element is used for the command (therefore the
* direction bit needs to be set). The second one is used
* for the reply. We'll leave it to the caller to make
* sure we only have two buffers.
*/
/*
* Even though the busdma man page says it doesn't make
* sense to have both direction flags, it does in this case.
* We have one s/g element being accessed in each direction.
*/
dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
/*
* Set the direction flag on the first buffer in the SMP
* passthrough request. We'll clear it for the second one.
*/
sflags |= MPI2_SGE_FLAGS_DIRECTION |
MPI2_SGE_FLAGS_END_OF_BUFFER;
} else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) {
sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
dir = BUS_DMASYNC_PREWRITE;
} else
dir = BUS_DMASYNC_PREREAD;
for (i = 0; i < nsegs; i++) {
if ((cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) && (i != 0)) {
sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
}
error = mpr_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
sflags, nsegs - i);
if (error != 0) {
/* Resource shortage, roll back! */
if (ratecheck(&sc->lastfail, &mpr_chainfail_interval))
mpr_dprint(sc, MPR_INFO, "Out of chain frames, "
"consider increasing hw.mpr.max_chains.\n");
cm->cm_flags |= MPR_CM_FLAGS_CHAIN_FAILED;
mpr_complete_command(sc, cm);
return;
}
}
bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
mpr_enqueue_request(sc, cm);
return;
}
static void
mpr_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
int error)
{
mpr_data_cb(arg, segs, nsegs, error);
}
/*
* This is the routine to enqueue commands ansynchronously.
* Note that the only error path here is from bus_dmamap_load(), which can
* return EINPROGRESS if it is waiting for resources. Other than this, it's
* assumed that if you have a command in-hand, then you have enough credits
* to use it.
*/
int
mpr_map_command(struct mpr_softc *sc, struct mpr_command *cm)
{
int error = 0;
if (cm->cm_flags & MPR_CM_FLAGS_USE_UIO) {
error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
&cm->cm_uio, mpr_data_cb2, cm, 0);
} else if (cm->cm_flags & MPR_CM_FLAGS_USE_CCB) {
error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
cm->cm_data, mpr_data_cb, cm, 0);
} else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
cm->cm_data, cm->cm_length, mpr_data_cb, cm, 0);
} else {
/* Add a zero-length element as needed */
if (cm->cm_sge != NULL)
mpr_add_dmaseg(cm, 0, 0, 0, 1);
mpr_enqueue_request(sc, cm);
}
return (error);
}
/*
* This is the routine to enqueue commands synchronously. An error of
* EINPROGRESS from mpr_map_command() is ignored since the command will
* be executed and enqueued automatically. Other errors come from msleep().
*/
int
mpr_wait_command(struct mpr_softc *sc, struct mpr_command *cm, int timeout,
int sleep_flag)
{
int error, rc;
struct timeval cur_time, start_time;
if (sc->mpr_flags & MPR_FLAGS_DIAGRESET)
return EBUSY;
cm->cm_complete = NULL;
cm->cm_flags |= (MPR_CM_FLAGS_WAKEUP + MPR_CM_FLAGS_POLLED);
error = mpr_map_command(sc, cm);
if ((error != 0) && (error != EINPROGRESS))
return (error);
// Check for context and wait for 50 mSec at a time until time has
// expired or the command has finished. If msleep can't be used, need
// to poll.
#if __FreeBSD_version >= 1000029
if (curthread->td_no_sleeping)
#else //__FreeBSD_version < 1000029
if (curthread->td_pflags & TDP_NOSLEEPING)
#endif //__FreeBSD_version >= 1000029
sleep_flag = NO_SLEEP;
getmicrotime(&start_time);
if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) {
error = msleep(cm, &sc->mpr_mtx, 0, "mprwait", timeout*hz);
} else {
while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
mpr_intr_locked(sc);
if (sleep_flag == CAN_SLEEP)
pause("mprwait", hz/20);
else
DELAY(50000);
getmicrotime(&cur_time);
if ((cur_time.tv_sec - start_time.tv_sec) > timeout) {
error = EWOULDBLOCK;
break;
}
}
}
if (error == EWOULDBLOCK) {
mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__);
rc = mpr_reinit(sc);
mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
"failed");
error = ETIMEDOUT;
}
return (error);
}
/*
* This is the routine to enqueue a command synchonously and poll for
* completion. Its use should be rare.
*/
int
mpr_request_polled(struct mpr_softc *sc, struct mpr_command *cm)
{
int error, timeout = 0, rc;
struct timeval cur_time, start_time;
error = 0;
cm->cm_flags |= MPR_CM_FLAGS_POLLED;
cm->cm_complete = NULL;
mpr_map_command(sc, cm);
getmicrotime(&start_time);
while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
mpr_intr_locked(sc);
if (mtx_owned(&sc->mpr_mtx))
msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
"mprpoll", hz/20);
else
pause("mprpoll", hz/20);
/*
* Check for real-time timeout and fail if more than 60 seconds.
*/
getmicrotime(&cur_time);
timeout = cur_time.tv_sec - start_time.tv_sec;
if (timeout > 60) {
mpr_dprint(sc, MPR_FAULT, "polling failed\n");
error = ETIMEDOUT;
break;
}
}
if (error) {
mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__);
rc = mpr_reinit(sc);
mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ?
"success" : "failed");
}
return (error);
}
/*
* The MPT driver had a verbose interface for config pages. In this driver,
* reduce it to much simplier terms, similar to the Linux driver.
*/
int
mpr_read_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
{
MPI2_CONFIG_REQUEST *req;
struct mpr_command *cm;
int error;
if (sc->mpr_flags & MPR_FLAGS_BUSY) {
return (EBUSY);
}
cm = mpr_alloc_command(sc);
if (cm == NULL) {
return (EBUSY);
}
req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
req->Function = MPI2_FUNCTION_CONFIG;
req->Action = params->action;
req->SGLFlags = 0;
req->ChainOffset = 0;
req->PageAddress = params->page_address;
if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
hdr = &params->hdr.Ext;
req->ExtPageType = hdr->ExtPageType;
req->ExtPageLength = hdr->ExtPageLength;
req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
req->Header.PageLength = 0; /* Must be set to zero */
req->Header.PageNumber = hdr->PageNumber;
req->Header.PageVersion = hdr->PageVersion;
} else {
MPI2_CONFIG_PAGE_HEADER *hdr;
hdr = &params->hdr.Struct;
req->Header.PageType = hdr->PageType;
req->Header.PageNumber = hdr->PageNumber;
req->Header.PageLength = hdr->PageLength;
req->Header.PageVersion = hdr->PageVersion;
}
cm->cm_data = params->buffer;
cm->cm_length = params->length;
if (cm->cm_data != NULL) {
cm->cm_sge = &req->PageBufferSGE;
cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE | MPR_CM_FLAGS_DATAIN;
} else
cm->cm_sge = NULL;
cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
cm->cm_complete_data = params;
if (params->callback != NULL) {
cm->cm_complete = mpr_config_complete;
return (mpr_map_command(sc, cm));
} else {
error = mpr_wait_command(sc, cm, 0, CAN_SLEEP);
if (error) {
mpr_dprint(sc, MPR_FAULT,
"Error %d reading config page\n", error);
mpr_free_command(sc, cm);
return (error);
}
mpr_config_complete(sc, cm);
}
return (0);
}
int
mpr_write_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
{
return (EINVAL);
}
static void
mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm)
{
MPI2_CONFIG_REPLY *reply;
struct mpr_config_params *params;
MPR_FUNCTRACE(sc);
params = cm->cm_complete_data;
if (cm->cm_data != NULL) {
bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
}
/*
* XXX KDM need to do more error recovery? This results in the
* device in question not getting probed.
*/
if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
params->status = MPI2_IOCSTATUS_BUSY;
goto done;
}
reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
if (reply == NULL) {
params->status = MPI2_IOCSTATUS_BUSY;
goto done;
}
params->status = reply->IOCStatus;
if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
params->hdr.Ext.ExtPageType = reply->ExtPageType;
params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
params->hdr.Ext.PageType = reply->Header.PageType;
params->hdr.Ext.PageNumber = reply->Header.PageNumber;
params->hdr.Ext.PageVersion = reply->Header.PageVersion;
} else {
params->hdr.Struct.PageType = reply->Header.PageType;
params->hdr.Struct.PageNumber = reply->Header.PageNumber;
params->hdr.Struct.PageLength = reply->Header.PageLength;
params->hdr.Struct.PageVersion = reply->Header.PageVersion;
}
done:
mpr_free_command(sc, cm);
if (params->callback != NULL)
params->callback(sc, params);
return;
}