1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-04 12:52:15 +00:00
freebsd/sys/dev/ale/if_ale.c
John Baldwin 287e0d97bf Fix some bugs in my last set of changes to ale(4):
- Remove extra unlock from end of ale_start_locked().
- Expand scope of locking in interrupt handler.
- Move ether_ifdetach() earlier and retire now-unneeded DETACH flag.

Tested by:	Aryeh Friedman
Reviewed by:	yongari (earlier version)
2011-01-18 16:27:40 +00:00

3115 lines
91 KiB
C

/*-
* Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_llc.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
#include <machine/in_cksum.h>
#include <dev/ale/if_alereg.h>
#include <dev/ale/if_alevar.h>
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
/* For more information about Tx checksum offload issues see ale_encap(). */
#define ALE_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
MODULE_DEPEND(ale, pci, 1, 1, 1);
MODULE_DEPEND(ale, ether, 1, 1, 1);
MODULE_DEPEND(ale, miibus, 1, 1, 1);
/* Tunables. */
static int msi_disable = 0;
static int msix_disable = 0;
TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
/*
* Devices supported by this driver.
*/
static struct ale_dev {
uint16_t ale_vendorid;
uint16_t ale_deviceid;
const char *ale_name;
} ale_devs[] = {
{ VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
"Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
};
static int ale_attach(device_t);
static int ale_check_boundary(struct ale_softc *);
static int ale_detach(device_t);
static int ale_dma_alloc(struct ale_softc *);
static void ale_dma_free(struct ale_softc *);
static void ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
static int ale_encap(struct ale_softc *, struct mbuf **);
static void ale_get_macaddr(struct ale_softc *);
static void ale_init(void *);
static void ale_init_locked(struct ale_softc *);
static void ale_init_rx_pages(struct ale_softc *);
static void ale_init_tx_ring(struct ale_softc *);
static void ale_int_task(void *, int);
static int ale_intr(void *);
static int ale_ioctl(struct ifnet *, u_long, caddr_t);
static void ale_link_task(void *, int);
static void ale_mac_config(struct ale_softc *);
static int ale_miibus_readreg(device_t, int, int);
static void ale_miibus_statchg(device_t);
static int ale_miibus_writereg(device_t, int, int, int);
static int ale_mediachange(struct ifnet *);
static void ale_mediastatus(struct ifnet *, struct ifmediareq *);
static void ale_phy_reset(struct ale_softc *);
static int ale_probe(device_t);
static void ale_reset(struct ale_softc *);
static int ale_resume(device_t);
static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
uint32_t, uint32_t *);
static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
static int ale_rxeof(struct ale_softc *sc, int);
static void ale_rxfilter(struct ale_softc *);
static void ale_rxvlan(struct ale_softc *);
static void ale_setlinkspeed(struct ale_softc *);
static void ale_setwol(struct ale_softc *);
static int ale_shutdown(device_t);
static void ale_start(struct ifnet *);
static void ale_start_locked(struct ifnet *);
static void ale_stats_clear(struct ale_softc *);
static void ale_stats_update(struct ale_softc *);
static void ale_stop(struct ale_softc *);
static void ale_stop_mac(struct ale_softc *);
static int ale_suspend(device_t);
static void ale_sysctl_node(struct ale_softc *);
static void ale_tick(void *);
static void ale_txeof(struct ale_softc *);
static void ale_watchdog(struct ale_softc *);
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
static int sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
static int sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
static device_method_t ale_methods[] = {
/* Device interface. */
DEVMETHOD(device_probe, ale_probe),
DEVMETHOD(device_attach, ale_attach),
DEVMETHOD(device_detach, ale_detach),
DEVMETHOD(device_shutdown, ale_shutdown),
DEVMETHOD(device_suspend, ale_suspend),
DEVMETHOD(device_resume, ale_resume),
/* MII interface. */
DEVMETHOD(miibus_readreg, ale_miibus_readreg),
DEVMETHOD(miibus_writereg, ale_miibus_writereg),
DEVMETHOD(miibus_statchg, ale_miibus_statchg),
{ NULL, NULL }
};
static driver_t ale_driver = {
"ale",
ale_methods,
sizeof(struct ale_softc)
};
static devclass_t ale_devclass;
DRIVER_MODULE(ale, pci, ale_driver, ale_devclass, 0, 0);
DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, 0, 0);
static struct resource_spec ale_res_spec_mem[] = {
{ SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },
{ -1, 0, 0 }
};
static struct resource_spec ale_irq_spec_legacy[] = {
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
{ -1, 0, 0 }
};
static struct resource_spec ale_irq_spec_msi[] = {
{ SYS_RES_IRQ, 1, RF_ACTIVE },
{ -1, 0, 0 }
};
static struct resource_spec ale_irq_spec_msix[] = {
{ SYS_RES_IRQ, 1, RF_ACTIVE },
{ -1, 0, 0 }
};
static int
ale_miibus_readreg(device_t dev, int phy, int reg)
{
struct ale_softc *sc;
uint32_t v;
int i;
sc = device_get_softc(dev);
CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
DELAY(5);
v = CSR_READ_4(sc, ALE_MDIO);
if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
break;
}
if (i == 0) {
device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
return (0);
}
return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
}
static int
ale_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct ale_softc *sc;
uint32_t v;
int i;
sc = device_get_softc(dev);
CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
(val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
DELAY(5);
v = CSR_READ_4(sc, ALE_MDIO);
if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
break;
}
if (i == 0)
device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
return (0);
}
static void
ale_miibus_statchg(device_t dev)
{
struct ale_softc *sc;
sc = device_get_softc(dev);
taskqueue_enqueue(taskqueue_swi, &sc->ale_link_task);
}
static void
ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct ale_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
ALE_LOCK(sc);
mii = device_get_softc(sc->ale_miibus);
mii_pollstat(mii);
ALE_UNLOCK(sc);
ifmr->ifm_status = mii->mii_media_status;
ifmr->ifm_active = mii->mii_media_active;
}
static int
ale_mediachange(struct ifnet *ifp)
{
struct ale_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int error;
sc = ifp->if_softc;
ALE_LOCK(sc);
mii = device_get_softc(sc->ale_miibus);
if (mii->mii_instance != 0) {
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
error = mii_mediachg(mii);
ALE_UNLOCK(sc);
return (error);
}
static int
ale_probe(device_t dev)
{
struct ale_dev *sp;
int i;
uint16_t vendor, devid;
vendor = pci_get_vendor(dev);
devid = pci_get_device(dev);
sp = ale_devs;
for (i = 0; i < sizeof(ale_devs) / sizeof(ale_devs[0]); i++) {
if (vendor == sp->ale_vendorid &&
devid == sp->ale_deviceid) {
device_set_desc(dev, sp->ale_name);
return (BUS_PROBE_DEFAULT);
}
sp++;
}
return (ENXIO);
}
static void
ale_get_macaddr(struct ale_softc *sc)
{
uint32_t ea[2], reg;
int i, vpdc;
reg = CSR_READ_4(sc, ALE_SPI_CTRL);
if ((reg & SPI_VPD_ENB) != 0) {
reg &= ~SPI_VPD_ENB;
CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
}
if (pci_find_extcap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
/*
* PCI VPD capability found, let TWSI reload EEPROM.
* This will set ethernet address of controller.
*/
CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
TWSI_CTRL_SW_LD_START);
for (i = 100; i > 0; i--) {
DELAY(1000);
reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
if ((reg & TWSI_CTRL_SW_LD_START) == 0)
break;
}
if (i == 0)
device_printf(sc->ale_dev,
"reloading EEPROM timeout!\n");
} else {
if (bootverbose)
device_printf(sc->ale_dev,
"PCI VPD capability not found!\n");
}
ea[0] = CSR_READ_4(sc, ALE_PAR0);
ea[1] = CSR_READ_4(sc, ALE_PAR1);
sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
}
static void
ale_phy_reset(struct ale_softc *sc)
{
/* Reset magic from Linux. */
CSR_WRITE_2(sc, ALE_GPHY_CTRL,
GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
GPHY_CTRL_PHY_PLL_ON);
DELAY(1000);
CSR_WRITE_2(sc, ALE_GPHY_CTRL,
GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
DELAY(1000);
#define ATPHY_DBG_ADDR 0x1D
#define ATPHY_DBG_DATA 0x1E
/* Enable hibernation mode. */
ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
ATPHY_DBG_ADDR, 0x0B);
ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
ATPHY_DBG_DATA, 0xBC00);
/* Set Class A/B for all modes. */
ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
ATPHY_DBG_ADDR, 0x00);
ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
ATPHY_DBG_DATA, 0x02EF);
/* Enable 10BT power saving. */
ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
ATPHY_DBG_ADDR, 0x12);
ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
ATPHY_DBG_DATA, 0x4C04);
/* Adjust 1000T power. */
ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
ATPHY_DBG_ADDR, 0x04);
ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
ATPHY_DBG_ADDR, 0x8BBB);
/* 10BT center tap voltage. */
ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
ATPHY_DBG_ADDR, 0x05);
ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
ATPHY_DBG_ADDR, 0x2C46);
#undef ATPHY_DBG_ADDR
#undef ATPHY_DBG_DATA
DELAY(1000);
}
static int
ale_attach(device_t dev)
{
struct ale_softc *sc;
struct ifnet *ifp;
uint16_t burst;
int error, i, msic, msixc, pmc;
uint32_t rxf_len, txf_len;
error = 0;
sc = device_get_softc(dev);
sc->ale_dev = dev;
mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
TASK_INIT(&sc->ale_link_task, 0, ale_link_task, sc);
/* Map the device. */
pci_enable_busmaster(dev);
sc->ale_res_spec = ale_res_spec_mem;
sc->ale_irq_spec = ale_irq_spec_legacy;
error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
if (error != 0) {
device_printf(dev, "cannot allocate memory resources.\n");
goto fail;
}
/* Set PHY address. */
sc->ale_phyaddr = ALE_PHY_ADDR;
/* Reset PHY. */
ale_phy_reset(sc);
/* Reset the ethernet controller. */
ale_reset(sc);
/* Get PCI and chip id/revision. */
sc->ale_rev = pci_get_revid(dev);
if (sc->ale_rev >= 0xF0) {
/* L2E Rev. B. AR8114 */
sc->ale_flags |= ALE_FLAG_FASTETHER;
} else {
if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
/* L1E AR8121 */
sc->ale_flags |= ALE_FLAG_JUMBO;
} else {
/* L2E Rev. A. AR8113 */
sc->ale_flags |= ALE_FLAG_FASTETHER;
}
}
/*
* All known controllers seems to require 4 bytes alignment
* of Tx buffers to make Tx checksum offload with custom
* checksum generation method work.
*/
sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
/*
* All known controllers seems to have issues on Rx checksum
* offload for fragmented IP datagrams.
*/
sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
/*
* Don't use Tx CMB. It is known to cause RRS update failure
* under certain circumstances. Typical phenomenon of the
* issue would be unexpected sequence number encountered in
* Rx handler.
*/
sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
MASTER_CHIP_REV_SHIFT;
if (bootverbose) {
device_printf(dev, "PCI device revision : 0x%04x\n",
sc->ale_rev);
device_printf(dev, "Chip id/revision : 0x%04x\n",
sc->ale_chip_rev);
}
txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
/*
* Uninitialized hardware returns an invalid chip id/revision
* as well as 0xFFFFFFFF for Tx/Rx fifo length.
*/
if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
rxf_len == 0xFFFFFFF) {
device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
"%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
txf_len, rxf_len);
error = ENXIO;
goto fail;
}
device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
/* Allocate IRQ resources. */
msixc = pci_msix_count(dev);
msic = pci_msi_count(dev);
if (bootverbose) {
device_printf(dev, "MSIX count : %d\n", msixc);
device_printf(dev, "MSI count : %d\n", msic);
}
/* Prefer MSIX over MSI. */
if (msix_disable == 0 || msi_disable == 0) {
if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
pci_alloc_msix(dev, &msixc) == 0) {
if (msic == ALE_MSIX_MESSAGES) {
device_printf(dev, "Using %d MSIX messages.\n",
msixc);
sc->ale_flags |= ALE_FLAG_MSIX;
sc->ale_irq_spec = ale_irq_spec_msix;
} else
pci_release_msi(dev);
}
if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
msic == ALE_MSI_MESSAGES &&
pci_alloc_msi(dev, &msic) == 0) {
if (msic == ALE_MSI_MESSAGES) {
device_printf(dev, "Using %d MSI messages.\n",
msic);
sc->ale_flags |= ALE_FLAG_MSI;
sc->ale_irq_spec = ale_irq_spec_msi;
} else
pci_release_msi(dev);
}
}
error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
if (error != 0) {
device_printf(dev, "cannot allocate IRQ resources.\n");
goto fail;
}
/* Get DMA parameters from PCIe device control register. */
if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
sc->ale_flags |= ALE_FLAG_PCIE;
burst = pci_read_config(dev, i + 0x08, 2);
/* Max read request size. */
sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
DMA_CFG_RD_BURST_SHIFT;
/* Max payload size. */
sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
DMA_CFG_WR_BURST_SHIFT;
if (bootverbose) {
device_printf(dev, "Read request size : %d bytes.\n",
128 << ((burst >> 12) & 0x07));
device_printf(dev, "TLP payload size : %d bytes.\n",
128 << ((burst >> 5) & 0x07));
}
} else {
sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
}
/* Create device sysctl node. */
ale_sysctl_node(sc);
if ((error = ale_dma_alloc(sc) != 0))
goto fail;
/* Load station address. */
ale_get_macaddr(sc);
ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "cannot allocate ifnet structure.\n");
error = ENXIO;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = ale_ioctl;
ifp->if_start = ale_start;
ifp->if_init = ale_init;
ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4;
ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO;
if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
sc->ale_flags |= ALE_FLAG_PMCAP;
ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
}
ifp->if_capenable = ifp->if_capabilities;
/* Set up MII bus. */
error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange,
ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY,
0);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
ether_ifattach(ifp, sc->ale_eaddr);
/* VLAN capability setup. */
ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
ifp->if_capenable = ifp->if_capabilities;
/*
* Even though controllers supported by ale(3) have Rx checksum
* offload bug the workaround for fragmented frames seemed to
* work so far. However it seems Rx checksum offload does not
* work under certain conditions. So disable Rx checksum offload
* until I find more clue about it but allow users to override it.
*/
ifp->if_capenable &= ~IFCAP_RXCSUM;
/* Tell the upper layer(s) we support long frames. */
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
/* Create local taskq. */
sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
taskqueue_thread_enqueue, &sc->ale_tq);
if (sc->ale_tq == NULL) {
device_printf(dev, "could not create taskqueue.\n");
ether_ifdetach(ifp);
error = ENXIO;
goto fail;
}
taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
device_get_nameunit(sc->ale_dev));
if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
msic = ALE_MSIX_MESSAGES;
else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
msic = ALE_MSI_MESSAGES;
else
msic = 1;
for (i = 0; i < msic; i++) {
error = bus_setup_intr(dev, sc->ale_irq[i],
INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
&sc->ale_intrhand[i]);
if (error != 0)
break;
}
if (error != 0) {
device_printf(dev, "could not set up interrupt handler.\n");
taskqueue_free(sc->ale_tq);
sc->ale_tq = NULL;
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error != 0)
ale_detach(dev);
return (error);
}
static int
ale_detach(device_t dev)
{
struct ale_softc *sc;
struct ifnet *ifp;
int i, msic;
sc = device_get_softc(dev);
ifp = sc->ale_ifp;
if (device_is_attached(dev)) {
ether_ifdetach(ifp);
ALE_LOCK(sc);
ale_stop(sc);
ALE_UNLOCK(sc);
callout_drain(&sc->ale_tick_ch);
taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
taskqueue_drain(taskqueue_swi, &sc->ale_link_task);
}
if (sc->ale_tq != NULL) {
taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
taskqueue_free(sc->ale_tq);
sc->ale_tq = NULL;
}
if (sc->ale_miibus != NULL) {
device_delete_child(dev, sc->ale_miibus);
sc->ale_miibus = NULL;
}
bus_generic_detach(dev);
ale_dma_free(sc);
if (ifp != NULL) {
if_free(ifp);
sc->ale_ifp = NULL;
}
if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
msic = ALE_MSIX_MESSAGES;
else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
msic = ALE_MSI_MESSAGES;
else
msic = 1;
for (i = 0; i < msic; i++) {
if (sc->ale_intrhand[i] != NULL) {
bus_teardown_intr(dev, sc->ale_irq[i],
sc->ale_intrhand[i]);
sc->ale_intrhand[i] = NULL;
}
}
bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
pci_release_msi(dev);
bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
mtx_destroy(&sc->ale_mtx);
return (0);
}
#define ALE_SYSCTL_STAT_ADD32(c, h, n, p, d) \
SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
#if __FreeBSD_version >= 900030
#define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d) \
SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
#elif __FreeBSD_version > 800000
#define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d) \
SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
#else
#define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d) \
SYSCTL_ADD_ULONG(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
#endif
static void
ale_sysctl_node(struct ale_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *child, *parent;
struct sysctl_oid *tree;
struct ale_hw_stats *stats;
int error;
stats = &sc->ale_stats;
ctx = device_get_sysctl_ctx(sc->ale_dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_rx_mod, 0,
sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_tx_mod, 0,
sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
/* Pull in device tunables. */
sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
error = resource_int_value(device_get_name(sc->ale_dev),
device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
if (error == 0) {
if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
device_printf(sc->ale_dev, "int_rx_mod value out of "
"range; using default: %d\n",
ALE_IM_RX_TIMER_DEFAULT);
sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
}
}
sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
error = resource_int_value(device_get_name(sc->ale_dev),
device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
if (error == 0) {
if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
device_printf(sc->ale_dev, "int_tx_mod value out of "
"range; using default: %d\n",
ALE_IM_TX_TIMER_DEFAULT);
sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
}
}
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
CTLTYPE_INT | CTLFLAG_RW, &sc->ale_process_limit, 0,
sysctl_hw_ale_proc_limit, "I",
"max number of Rx events to process");
/* Pull in device tunables. */
sc->ale_process_limit = ALE_PROC_DEFAULT;
error = resource_int_value(device_get_name(sc->ale_dev),
device_get_unit(sc->ale_dev), "process_limit",
&sc->ale_process_limit);
if (error == 0) {
if (sc->ale_process_limit < ALE_PROC_MIN ||
sc->ale_process_limit > ALE_PROC_MAX) {
device_printf(sc->ale_dev,
"process_limit value out of range; "
"using default: %d\n", ALE_PROC_DEFAULT);
sc->ale_process_limit = ALE_PROC_DEFAULT;
}
}
/* Misc statistics. */
ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
&stats->reset_brk_seq,
"Controller resets due to broken Rx sequnce number");
tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
NULL, "ATE statistics");
parent = SYSCTL_CHILDREN(tree);
/* Rx statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
NULL, "Rx MAC statistics");
child = SYSCTL_CHILDREN(tree);
ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
&stats->rx_frames, "Good frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
&stats->rx_bcast_frames, "Good broadcast frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
&stats->rx_mcast_frames, "Good multicast frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
&stats->rx_pause_frames, "Pause control frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
&stats->rx_control_frames, "Control frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
&stats->rx_crcerrs, "CRC errors");
ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
&stats->rx_lenerrs, "Frames with length mismatched");
ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
&stats->rx_bytes, "Good octets");
ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
&stats->rx_bcast_bytes, "Good broadcast octets");
ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
&stats->rx_mcast_bytes, "Good multicast octets");
ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
&stats->rx_runts, "Too short frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
&stats->rx_fragments, "Fragmented frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
&stats->rx_pkts_64, "64 bytes frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
&stats->rx_pkts_65_127, "65 to 127 bytes frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
&stats->rx_pkts_128_255, "128 to 255 bytes frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
&stats->rx_pkts_256_511, "256 to 511 bytes frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
&stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
&stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
&stats->rx_pkts_1519_max, "1519 to max frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
&stats->rx_pkts_truncated, "Truncated frames due to MTU size");
ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
&stats->rx_fifo_oflows, "FIFO overflows");
ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
&stats->rx_rrs_errs, "Return status write-back errors");
ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
&stats->rx_alignerrs, "Alignment errors");
ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
&stats->rx_pkts_filtered,
"Frames dropped due to address filtering");
/* Tx statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
NULL, "Tx MAC statistics");
child = SYSCTL_CHILDREN(tree);
ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
&stats->tx_frames, "Good frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
&stats->tx_bcast_frames, "Good broadcast frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
&stats->tx_mcast_frames, "Good multicast frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
&stats->tx_pause_frames, "Pause control frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
&stats->tx_control_frames, "Control frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
&stats->tx_excess_defer, "Frames with excessive derferrals");
ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
&stats->tx_excess_defer, "Frames with derferrals");
ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
&stats->tx_bytes, "Good octets");
ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
&stats->tx_bcast_bytes, "Good broadcast octets");
ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
&stats->tx_mcast_bytes, "Good multicast octets");
ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
&stats->tx_pkts_64, "64 bytes frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
&stats->tx_pkts_65_127, "65 to 127 bytes frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
&stats->tx_pkts_128_255, "128 to 255 bytes frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
&stats->tx_pkts_256_511, "256 to 511 bytes frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
&stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
&stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
&stats->tx_pkts_1519_max, "1519 to max frames");
ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
&stats->tx_single_colls, "Single collisions");
ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
&stats->tx_multi_colls, "Multiple collisions");
ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
&stats->tx_late_colls, "Late collisions");
ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
&stats->tx_excess_colls, "Excessive collisions");
ALE_SYSCTL_STAT_ADD32(ctx, child, "abort",
&stats->tx_abort, "Aborted frames due to Excessive collisions");
ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
&stats->tx_underrun, "FIFO underruns");
ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
&stats->tx_desc_underrun, "Descriptor write-back errors");
ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
&stats->tx_lenerrs, "Frames with length mismatched");
ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
&stats->tx_pkts_truncated, "Truncated frames due to MTU size");
}
#undef ALE_SYSCTL_STAT_ADD32
#undef ALE_SYSCTL_STAT_ADD64
struct ale_dmamap_arg {
bus_addr_t ale_busaddr;
};
static void
ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct ale_dmamap_arg *ctx;
if (error != 0)
return;
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
ctx = (struct ale_dmamap_arg *)arg;
ctx->ale_busaddr = segs[0].ds_addr;
}
/*
* Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
* which specifies high address region of DMA blocks. Therefore these
* blocks should have the same high address of given 4GB address
* space(i.e. crossing 4GB boundary is not allowed).
*/
static int
ale_check_boundary(struct ale_softc *sc)
{
bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
sc->ale_pagesize;
rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
sc->ale_pagesize;
tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
if ((ALE_ADDR_HI(tx_ring_end) !=
ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
(ALE_ADDR_HI(rx_page_end[0]) !=
ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
(ALE_ADDR_HI(rx_page_end[1]) !=
ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
(ALE_ADDR_HI(tx_cmb_end) !=
ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
(ALE_ADDR_HI(rx_cmb_end[0]) !=
ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
(ALE_ADDR_HI(rx_cmb_end[1]) !=
ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
return (EFBIG);
if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
(ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
(ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
(ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
(ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
return (EFBIG);
return (0);
}
static int
ale_dma_alloc(struct ale_softc *sc)
{
struct ale_txdesc *txd;
bus_addr_t lowaddr;
struct ale_dmamap_arg ctx;
int error, guard_size, i;
if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
guard_size = ALE_JUMBO_FRAMELEN;
else
guard_size = ALE_MAX_FRAMELEN;
sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
ALE_RX_PAGE_ALIGN);
lowaddr = BUS_SPACE_MAXADDR;
again:
/* Create parent DMA tag. */
error = bus_dma_tag_create(
bus_get_dma_tag(sc->ale_dev), /* parent */
1, 0, /* alignment, boundary */
lowaddr, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ale_cdata.ale_parent_tag);
if (error != 0) {
device_printf(sc->ale_dev,
"could not create parent DMA tag.\n");
goto fail;
}
/* Create DMA tag for Tx descriptor ring. */
error = bus_dma_tag_create(
sc->ale_cdata.ale_parent_tag, /* parent */
ALE_TX_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
ALE_TX_RING_SZ, /* maxsize */
1, /* nsegments */
ALE_TX_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ale_cdata.ale_tx_ring_tag);
if (error != 0) {
device_printf(sc->ale_dev,
"could not create Tx ring DMA tag.\n");
goto fail;
}
/* Create DMA tag for Rx pages. */
for (i = 0; i < ALE_RX_PAGES; i++) {
error = bus_dma_tag_create(
sc->ale_cdata.ale_parent_tag, /* parent */
ALE_RX_PAGE_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
sc->ale_pagesize, /* maxsize */
1, /* nsegments */
sc->ale_pagesize, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ale_cdata.ale_rx_page[i].page_tag);
if (error != 0) {
device_printf(sc->ale_dev,
"could not create Rx page %d DMA tag.\n", i);
goto fail;
}
}
/* Create DMA tag for Tx coalescing message block. */
error = bus_dma_tag_create(
sc->ale_cdata.ale_parent_tag, /* parent */
ALE_CMB_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
ALE_TX_CMB_SZ, /* maxsize */
1, /* nsegments */
ALE_TX_CMB_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ale_cdata.ale_tx_cmb_tag);
if (error != 0) {
device_printf(sc->ale_dev,
"could not create Tx CMB DMA tag.\n");
goto fail;
}
/* Create DMA tag for Rx coalescing message block. */
for (i = 0; i < ALE_RX_PAGES; i++) {
error = bus_dma_tag_create(
sc->ale_cdata.ale_parent_tag, /* parent */
ALE_CMB_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
ALE_RX_CMB_SZ, /* maxsize */
1, /* nsegments */
ALE_RX_CMB_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ale_cdata.ale_rx_page[i].cmb_tag);
if (error != 0) {
device_printf(sc->ale_dev,
"could not create Rx page %d CMB DMA tag.\n", i);
goto fail;
}
}
/* Allocate DMA'able memory and load the DMA map for Tx ring. */
error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
(void **)&sc->ale_cdata.ale_tx_ring,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->ale_cdata.ale_tx_ring_map);
if (error != 0) {
device_printf(sc->ale_dev,
"could not allocate DMA'able memory for Tx ring.\n");
goto fail;
}
ctx.ale_busaddr = 0;
error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.ale_busaddr == 0) {
device_printf(sc->ale_dev,
"could not load DMA'able memory for Tx ring.\n");
goto fail;
}
sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
/* Rx pages. */
for (i = 0; i < ALE_RX_PAGES; i++) {
error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
(void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->ale_cdata.ale_rx_page[i].page_map);
if (error != 0) {
device_printf(sc->ale_dev,
"could not allocate DMA'able memory for "
"Rx page %d.\n", i);
goto fail;
}
ctx.ale_busaddr = 0;
error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
sc->ale_cdata.ale_rx_page[i].page_map,
sc->ale_cdata.ale_rx_page[i].page_addr,
sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.ale_busaddr == 0) {
device_printf(sc->ale_dev,
"could not load DMA'able memory for "
"Rx page %d.\n", i);
goto fail;
}
sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
}
/* Tx CMB. */
error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
(void **)&sc->ale_cdata.ale_tx_cmb,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->ale_cdata.ale_tx_cmb_map);
if (error != 0) {
device_printf(sc->ale_dev,
"could not allocate DMA'able memory for Tx CMB.\n");
goto fail;
}
ctx.ale_busaddr = 0;
error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.ale_busaddr == 0) {
device_printf(sc->ale_dev,
"could not load DMA'able memory for Tx CMB.\n");
goto fail;
}
sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
/* Rx CMB. */
for (i = 0; i < ALE_RX_PAGES; i++) {
error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
(void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->ale_cdata.ale_rx_page[i].cmb_map);
if (error != 0) {
device_printf(sc->ale_dev, "could not allocate "
"DMA'able memory for Rx page %d CMB.\n", i);
goto fail;
}
ctx.ale_busaddr = 0;
error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
sc->ale_cdata.ale_rx_page[i].cmb_map,
sc->ale_cdata.ale_rx_page[i].cmb_addr,
ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.ale_busaddr == 0) {
device_printf(sc->ale_dev, "could not load DMA'able "
"memory for Rx page %d CMB.\n", i);
goto fail;
}
sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
}
/*
* Tx descriptors/RXF0/CMB DMA blocks share the same
* high address region of 64bit DMA address space.
*/
if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
(error = ale_check_boundary(sc)) != 0) {
device_printf(sc->ale_dev, "4GB boundary crossed, "
"switching to 32bit DMA addressing mode.\n");
ale_dma_free(sc);
/*
* Limit max allowable DMA address space to 32bit
* and try again.
*/
lowaddr = BUS_SPACE_MAXADDR_32BIT;
goto again;
}
/*
* Create Tx buffer parent tag.
* AR81xx allows 64bit DMA addressing of Tx buffers so it
* needs separate parent DMA tag as parent DMA address space
* could be restricted to be within 32bit address space by
* 4GB boundary crossing.
*/
error = bus_dma_tag_create(
bus_get_dma_tag(sc->ale_dev), /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ale_cdata.ale_buffer_tag);
if (error != 0) {
device_printf(sc->ale_dev,
"could not create parent buffer DMA tag.\n");
goto fail;
}
/* Create DMA tag for Tx buffers. */
error = bus_dma_tag_create(
sc->ale_cdata.ale_buffer_tag, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
ALE_TSO_MAXSIZE, /* maxsize */
ALE_MAXTXSEGS, /* nsegments */
ALE_TSO_MAXSEGSIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ale_cdata.ale_tx_tag);
if (error != 0) {
device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
goto fail;
}
/* Create DMA maps for Tx buffers. */
for (i = 0; i < ALE_TX_RING_CNT; i++) {
txd = &sc->ale_cdata.ale_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
&txd->tx_dmamap);
if (error != 0) {
device_printf(sc->ale_dev,
"could not create Tx dmamap.\n");
goto fail;
}
}
fail:
return (error);
}
static void
ale_dma_free(struct ale_softc *sc)
{
struct ale_txdesc *txd;
int i;
/* Tx buffers. */
if (sc->ale_cdata.ale_tx_tag != NULL) {
for (i = 0; i < ALE_TX_RING_CNT; i++) {
txd = &sc->ale_cdata.ale_txdesc[i];
if (txd->tx_dmamap != NULL) {
bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
sc->ale_cdata.ale_tx_tag = NULL;
}
/* Tx descriptor ring. */
if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
if (sc->ale_cdata.ale_tx_ring_map != NULL)
bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
sc->ale_cdata.ale_tx_ring_map);
if (sc->ale_cdata.ale_tx_ring_map != NULL &&
sc->ale_cdata.ale_tx_ring != NULL)
bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
sc->ale_cdata.ale_tx_ring,
sc->ale_cdata.ale_tx_ring_map);
sc->ale_cdata.ale_tx_ring = NULL;
sc->ale_cdata.ale_tx_ring_map = NULL;
bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
sc->ale_cdata.ale_tx_ring_tag = NULL;
}
/* Rx page block. */
for (i = 0; i < ALE_RX_PAGES; i++) {
if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
bus_dmamap_unload(
sc->ale_cdata.ale_rx_page[i].page_tag,
sc->ale_cdata.ale_rx_page[i].page_map);
if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
bus_dmamem_free(
sc->ale_cdata.ale_rx_page[i].page_tag,
sc->ale_cdata.ale_rx_page[i].page_addr,
sc->ale_cdata.ale_rx_page[i].page_map);
sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
sc->ale_cdata.ale_rx_page[i].page_map = NULL;
bus_dma_tag_destroy(
sc->ale_cdata.ale_rx_page[i].page_tag);
sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
}
}
/* Rx CMB. */
for (i = 0; i < ALE_RX_PAGES; i++) {
if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
bus_dmamap_unload(
sc->ale_cdata.ale_rx_page[i].cmb_tag,
sc->ale_cdata.ale_rx_page[i].cmb_map);
if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
bus_dmamem_free(
sc->ale_cdata.ale_rx_page[i].cmb_tag,
sc->ale_cdata.ale_rx_page[i].cmb_addr,
sc->ale_cdata.ale_rx_page[i].cmb_map);
sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
bus_dma_tag_destroy(
sc->ale_cdata.ale_rx_page[i].cmb_tag);
sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
}
}
/* Tx CMB. */
if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
if (sc->ale_cdata.ale_tx_cmb_map != NULL)
bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
sc->ale_cdata.ale_tx_cmb_map);
if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
sc->ale_cdata.ale_tx_cmb != NULL)
bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
sc->ale_cdata.ale_tx_cmb,
sc->ale_cdata.ale_tx_cmb_map);
sc->ale_cdata.ale_tx_cmb = NULL;
sc->ale_cdata.ale_tx_cmb_map = NULL;
bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
sc->ale_cdata.ale_tx_cmb_tag = NULL;
}
if (sc->ale_cdata.ale_buffer_tag != NULL) {
bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
sc->ale_cdata.ale_buffer_tag = NULL;
}
if (sc->ale_cdata.ale_parent_tag != NULL) {
bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
sc->ale_cdata.ale_parent_tag = NULL;
}
}
static int
ale_shutdown(device_t dev)
{
return (ale_suspend(dev));
}
/*
* Note, this driver resets the link speed to 10/100Mbps by
* restarting auto-negotiation in suspend/shutdown phase but we
* don't know whether that auto-negotiation would succeed or not
* as driver has no control after powering off/suspend operation.
* If the renegotiation fail WOL may not work. Running at 1Gbps
* will draw more power than 375mA at 3.3V which is specified in
* PCI specification and that would result in complete
* shutdowning power to ethernet controller.
*
* TODO
* Save current negotiated media speed/duplex/flow-control to
* softc and restore the same link again after resuming. PHY
* handling such as power down/resetting to 100Mbps may be better
* handled in suspend method in phy driver.
*/
static void
ale_setlinkspeed(struct ale_softc *sc)
{
struct mii_data *mii;
int aneg, i;
mii = device_get_softc(sc->ale_miibus);
mii_pollstat(mii);
aneg = 0;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch IFM_SUBTYPE(mii->mii_media_active) {
case IFM_10_T:
case IFM_100_TX:
return;
case IFM_1000_T:
aneg++;
break;
default:
break;
}
}
ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
DELAY(1000);
if (aneg != 0) {
/*
* Poll link state until ale(4) get a 10/100Mbps link.
*/
for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
mii_pollstat(mii);
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
== (IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(
mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
ale_mac_config(sc);
return;
default:
break;
}
}
ALE_UNLOCK(sc);
pause("alelnk", hz);
ALE_LOCK(sc);
}
if (i == MII_ANEGTICKS_GIGE)
device_printf(sc->ale_dev,
"establishing a link failed, WOL may not work!");
}
/*
* No link, force MAC to have 100Mbps, full-duplex link.
* This is the last resort and may/may not work.
*/
mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
ale_mac_config(sc);
}
static void
ale_setwol(struct ale_softc *sc)
{
struct ifnet *ifp;
uint32_t reg, pmcs;
uint16_t pmstat;
int pmc;
ALE_LOCK_ASSERT(sc);
if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
/* Disable WOL. */
CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
reg |= PCIE_PHYMISC_FORCE_RCV_DET;
CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
/* Force PHY power down. */
CSR_WRITE_2(sc, ALE_GPHY_CTRL,
GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
return;
}
ifp = sc->ale_ifp;
if ((ifp->if_capenable & IFCAP_WOL) != 0) {
if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
ale_setlinkspeed(sc);
}
pmcs = 0;
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
reg = CSR_READ_4(sc, ALE_MAC_CFG);
reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
MAC_CFG_BCAST);
if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
if ((ifp->if_capenable & IFCAP_WOL) != 0)
reg |= MAC_CFG_RX_ENB;
CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
if ((ifp->if_capenable & IFCAP_WOL) == 0) {
/* WOL disabled, PHY power down. */
reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
reg |= PCIE_PHYMISC_FORCE_RCV_DET;
CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
CSR_WRITE_2(sc, ALE_GPHY_CTRL,
GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
GPHY_CTRL_PWDOWN_HW);
}
/* Request PME. */
pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
if ((ifp->if_capenable & IFCAP_WOL) != 0)
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
}
static int
ale_suspend(device_t dev)
{
struct ale_softc *sc;
sc = device_get_softc(dev);
ALE_LOCK(sc);
ale_stop(sc);
ale_setwol(sc);
ALE_UNLOCK(sc);
return (0);
}
static int
ale_resume(device_t dev)
{
struct ale_softc *sc;
struct ifnet *ifp;
int pmc;
uint16_t pmstat;
sc = device_get_softc(dev);
ALE_LOCK(sc);
if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
/* Disable PME and clear PME status. */
pmstat = pci_read_config(sc->ale_dev,
pmc + PCIR_POWER_STATUS, 2);
if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
pmstat &= ~PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->ale_dev,
pmc + PCIR_POWER_STATUS, pmstat, 2);
}
}
/* Reset PHY. */
ale_phy_reset(sc);
ifp = sc->ale_ifp;
if ((ifp->if_flags & IFF_UP) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ale_init_locked(sc);
}
ALE_UNLOCK(sc);
return (0);
}
static int
ale_encap(struct ale_softc *sc, struct mbuf **m_head)
{
struct ale_txdesc *txd, *txd_last;
struct tx_desc *desc;
struct mbuf *m;
struct ip *ip;
struct tcphdr *tcp;
bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
bus_dmamap_t map;
uint32_t cflags, hdrlen, ip_off, poff, vtag;
int error, i, nsegs, prod, si;
ALE_LOCK_ASSERT(sc);
M_ASSERTPKTHDR((*m_head));
m = *m_head;
ip = NULL;
tcp = NULL;
cflags = vtag = 0;
ip_off = poff = 0;
if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
/*
* AR81xx requires offset of TCP/UDP payload in its Tx
* descriptor to perform hardware Tx checksum offload.
* Additionally, TSO requires IP/TCP header size and
* modification of IP/TCP header in order to make TSO
* engine work. This kind of operation takes many CPU
* cycles on FreeBSD so fast host CPU is required to
* get smooth TSO performance.
*/
struct ether_header *eh;
if (M_WRITABLE(m) == 0) {
/* Get a writable copy. */
m = m_dup(*m_head, M_DONTWAIT);
/* Release original mbufs. */
m_freem(*m_head);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
}
/*
* Buggy-controller requires 4 byte aligned Tx buffer
* to make custom checksum offload work.
*/
if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
(m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
(mtod(m, intptr_t) & 3) != 0) {
m = m_defrag(*m_head, M_DONTWAIT);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
}
ip_off = sizeof(struct ether_header);
m = m_pullup(m, ip_off);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
eh = mtod(m, struct ether_header *);
/*
* Check if hardware VLAN insertion is off.
* Additional check for LLC/SNAP frame?
*/
if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
ip_off = sizeof(struct ether_vlan_header);
m = m_pullup(m, ip_off);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
}
m = m_pullup(m, ip_off + sizeof(struct ip));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
ip = (struct ip *)(mtod(m, char *) + ip_off);
poff = ip_off + (ip->ip_hl << 2);
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
/*
* XXX
* AR81xx requires the first descriptor should
* not include any TCP playload for TSO case.
* (i.e. ethernet header + IP + TCP header only)
* m_pullup(9) above will ensure this too.
* However it's not correct if the first mbuf
* of the chain does not use cluster.
*/
m = m_pullup(m, poff + sizeof(struct tcphdr));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
ip = (struct ip *)(mtod(m, char *) + ip_off);
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
m = m_pullup(m, poff + (tcp->th_off << 2));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
/*
* AR81xx requires IP/TCP header size and offset as
* well as TCP pseudo checksum which complicates
* TSO configuration. I guess this comes from the
* adherence to Microsoft NDIS Large Send
* specification which requires insertion of
* pseudo checksum by upper stack. The pseudo
* checksum that NDIS refers to doesn't include
* TCP payload length so ale(4) should recompute
* the pseudo checksum here. Hopefully this wouldn't
* be much burden on modern CPUs.
* Reset IP checksum and recompute TCP pseudo
* checksum as NDIS specification said.
*/
ip->ip_sum = 0;
tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
}
*m_head = m;
}
si = prod = sc->ale_cdata.ale_tx_prod;
txd = &sc->ale_cdata.ale_txdesc[prod];
txd_last = txd;
map = txd->tx_dmamap;
error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
*m_head, txsegs, &nsegs, 0);
if (error == EFBIG) {
m = m_collapse(*m_head, M_DONTWAIT, ALE_MAXTXSEGS);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOMEM);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
*m_head, txsegs, &nsegs, 0);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
/* Check descriptor overrun. */
if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) {
bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
return (ENOBUFS);
}
bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
m = *m_head;
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
/* Request TSO and set MSS. */
cflags |= ALE_TD_TSO;
cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
/* Set IP/TCP header size. */
cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
} else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
/*
* AR81xx supports Tx custom checksum offload feature
* that offloads single 16bit checksum computation.
* So you can choose one among IP, TCP and UDP.
* Normally driver sets checksum start/insertion
* position from the information of TCP/UDP frame as
* TCP/UDP checksum takes more time than that of IP.
* However it seems that custom checksum offload
* requires 4 bytes aligned Tx buffers due to hardware
* bug.
* AR81xx also supports explicit Tx checksum computation
* if it is told that the size of IP header and TCP
* header(for UDP, the header size does not matter
* because it's fixed length). However with this scheme
* TSO does not work so you have to choose one either
* TSO or explicit Tx checksum offload. I chosen TSO
* plus custom checksum offload with work-around which
* will cover most common usage for this consumer
* ethernet controller. The work-around takes a lot of
* CPU cycles if Tx buffer is not aligned on 4 bytes
* boundary, though.
*/
cflags |= ALE_TD_CXSUM;
/* Set checksum start offset. */
cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
/* Set checksum insertion position of TCP/UDP. */
cflags |= ((poff + m->m_pkthdr.csum_data) <<
ALE_TD_CSUM_XSUMOFFSET_SHIFT);
}
/* Configure VLAN hardware tag insertion. */
if ((m->m_flags & M_VLANTAG) != 0) {
vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
cflags |= ALE_TD_INSERT_VLAN_TAG;
}
i = 0;
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
/*
* Make sure the first fragment contains
* only ethernet and IP/TCP header with options.
*/
hdrlen = poff + (tcp->th_off << 2);
desc = &sc->ale_cdata.ale_tx_ring[prod];
desc->addr = htole64(txsegs[i].ds_addr);
desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag);
desc->flags = htole32(cflags);
sc->ale_cdata.ale_tx_cnt++;
ALE_DESC_INC(prod, ALE_TX_RING_CNT);
if (m->m_len - hdrlen > 0) {
/* Handle remaining payload of the first fragment. */
desc = &sc->ale_cdata.ale_tx_ring[prod];
desc->addr = htole64(txsegs[i].ds_addr + hdrlen);
desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) |
vtag);
desc->flags = htole32(cflags);
sc->ale_cdata.ale_tx_cnt++;
ALE_DESC_INC(prod, ALE_TX_RING_CNT);
}
i = 1;
}
for (; i < nsegs; i++) {
desc = &sc->ale_cdata.ale_tx_ring[prod];
desc->addr = htole64(txsegs[i].ds_addr);
desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
desc->flags = htole32(cflags);
sc->ale_cdata.ale_tx_cnt++;
ALE_DESC_INC(prod, ALE_TX_RING_CNT);
}
/* Update producer index. */
sc->ale_cdata.ale_tx_prod = prod;
/* Set TSO header on the first descriptor. */
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
desc = &sc->ale_cdata.ale_tx_ring[si];
desc->flags |= htole32(ALE_TD_TSO_HDR);
}
/* Finally set EOP on the last descriptor. */
prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
desc = &sc->ale_cdata.ale_tx_ring[prod];
desc->flags |= htole32(ALE_TD_EOP);
/* Swap dmamap of the first and the last. */
txd = &sc->ale_cdata.ale_txdesc[prod];
map = txd_last->tx_dmamap;
txd_last->tx_dmamap = txd->tx_dmamap;
txd->tx_dmamap = map;
txd->tx_m = m;
/* Sync descriptors. */
bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
sc->ale_cdata.ale_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static void
ale_start(struct ifnet *ifp)
{
struct ale_softc *sc;
sc = ifp->if_softc;
ALE_LOCK(sc);
ale_start_locked(ifp);
ALE_UNLOCK(sc);
}
static void
ale_start_locked(struct ifnet *ifp)
{
struct ale_softc *sc;
struct mbuf *m_head;
int enq;
sc = ifp->if_softc;
ALE_LOCK_ASSERT(sc);
/* Reclaim transmitted frames. */
if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
ale_txeof(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0)
return;
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (ale_encap(sc, &m_head)) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
enq++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
ETHER_BPF_MTAP(ifp, m_head);
}
if (enq > 0) {
/* Kick. */
CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
sc->ale_cdata.ale_tx_prod);
/* Set a timeout in case the chip goes out to lunch. */
sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
}
}
static void
ale_watchdog(struct ale_softc *sc)
{
struct ifnet *ifp;
ALE_LOCK_ASSERT(sc);
if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
return;
ifp = sc->ale_ifp;
if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
ifp->if_oerrors++;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ale_init_locked(sc);
return;
}
if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
ifp->if_oerrors++;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ale_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
ale_start_locked(ifp);
}
static int
ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ale_softc *sc;
struct ifreq *ifr;
struct mii_data *mii;
int error, mask;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
error = 0;
switch (cmd) {
case SIOCSIFMTU:
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
ifr->ifr_mtu > ETHERMTU))
error = EINVAL;
else if (ifp->if_mtu != ifr->ifr_mtu) {
ALE_LOCK(sc);
ifp->if_mtu = ifr->ifr_mtu;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ale_init_locked(sc);
}
ALE_UNLOCK(sc);
}
break;
case SIOCSIFFLAGS:
ALE_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if (((ifp->if_flags ^ sc->ale_if_flags)
& (IFF_PROMISC | IFF_ALLMULTI)) != 0)
ale_rxfilter(sc);
} else {
ale_init_locked(sc);
}
} else {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
ale_stop(sc);
}
sc->ale_if_flags = ifp->if_flags;
ALE_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
ALE_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
ale_rxfilter(sc);
ALE_UNLOCK(sc);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
mii = device_get_softc(sc->ale_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
case SIOCSIFCAP:
ALE_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if ((mask & IFCAP_TXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
ifp->if_hwassist |= ALE_CSUM_FEATURES;
else
ifp->if_hwassist &= ~ALE_CSUM_FEATURES;
}
if ((mask & IFCAP_RXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_RXCSUM) != 0)
ifp->if_capenable ^= IFCAP_RXCSUM;
if ((mask & IFCAP_TSO4) != 0 &&
(ifp->if_capabilities & IFCAP_TSO4) != 0) {
ifp->if_capenable ^= IFCAP_TSO4;
if ((ifp->if_capenable & IFCAP_TSO4) != 0)
ifp->if_hwassist |= CSUM_TSO;
else
ifp->if_hwassist &= ~CSUM_TSO;
}
if ((mask & IFCAP_WOL_MCAST) != 0 &&
(ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
ifp->if_capenable ^= IFCAP_WOL_MCAST;
if ((mask & IFCAP_WOL_MAGIC) != 0 &&
(ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
ale_rxvlan(sc);
}
ALE_UNLOCK(sc);
VLAN_CAPABILITIES(ifp);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static void
ale_mac_config(struct ale_softc *sc)
{
struct mii_data *mii;
uint32_t reg;
ALE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->ale_miibus);
reg = CSR_READ_4(sc, ALE_MAC_CFG);
reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
MAC_CFG_SPEED_MASK);
/* Reprogram MAC with resolved speed/duplex. */
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
reg |= MAC_CFG_SPEED_10_100;
break;
case IFM_1000_T:
reg |= MAC_CFG_SPEED_1000;
break;
}
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
reg |= MAC_CFG_FULL_DUPLEX;
#ifdef notyet
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
reg |= MAC_CFG_TX_FC;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
reg |= MAC_CFG_RX_FC;
#endif
}
CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
}
static void
ale_link_task(void *arg, int pending)
{
struct ale_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
uint32_t reg;
sc = (struct ale_softc *)arg;
ALE_LOCK(sc);
mii = device_get_softc(sc->ale_miibus);
ifp = sc->ale_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
ALE_UNLOCK(sc);
return;
}
sc->ale_flags &= ~ALE_FLAG_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
sc->ale_flags |= ALE_FLAG_LINK;
break;
case IFM_1000_T:
if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
sc->ale_flags |= ALE_FLAG_LINK;
break;
default:
break;
}
}
/* Stop Rx/Tx MACs. */
ale_stop_mac(sc);
/* Program MACs with resolved speed/duplex/flow-control. */
if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
ale_mac_config(sc);
/* Reenable Tx/Rx MACs. */
reg = CSR_READ_4(sc, ALE_MAC_CFG);
reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
}
ALE_UNLOCK(sc);
}
static void
ale_stats_clear(struct ale_softc *sc)
{
struct smb sb;
uint32_t *reg;
int i;
for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
i += sizeof(uint32_t);
}
/* Read Tx statistics. */
for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
i += sizeof(uint32_t);
}
}
static void
ale_stats_update(struct ale_softc *sc)
{
struct ale_hw_stats *stat;
struct smb sb, *smb;
struct ifnet *ifp;
uint32_t *reg;
int i;
ALE_LOCK_ASSERT(sc);
ifp = sc->ale_ifp;
stat = &sc->ale_stats;
smb = &sb;
/* Read Rx statistics. */
for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
i += sizeof(uint32_t);
}
/* Read Tx statistics. */
for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
i += sizeof(uint32_t);
}
/* Rx stats. */
stat->rx_frames += smb->rx_frames;
stat->rx_bcast_frames += smb->rx_bcast_frames;
stat->rx_mcast_frames += smb->rx_mcast_frames;
stat->rx_pause_frames += smb->rx_pause_frames;
stat->rx_control_frames += smb->rx_control_frames;
stat->rx_crcerrs += smb->rx_crcerrs;
stat->rx_lenerrs += smb->rx_lenerrs;
stat->rx_bytes += smb->rx_bytes;
stat->rx_runts += smb->rx_runts;
stat->rx_fragments += smb->rx_fragments;
stat->rx_pkts_64 += smb->rx_pkts_64;
stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
stat->rx_pkts_truncated += smb->rx_pkts_truncated;
stat->rx_fifo_oflows += smb->rx_fifo_oflows;
stat->rx_rrs_errs += smb->rx_rrs_errs;
stat->rx_alignerrs += smb->rx_alignerrs;
stat->rx_bcast_bytes += smb->rx_bcast_bytes;
stat->rx_mcast_bytes += smb->rx_mcast_bytes;
stat->rx_pkts_filtered += smb->rx_pkts_filtered;
/* Tx stats. */
stat->tx_frames += smb->tx_frames;
stat->tx_bcast_frames += smb->tx_bcast_frames;
stat->tx_mcast_frames += smb->tx_mcast_frames;
stat->tx_pause_frames += smb->tx_pause_frames;
stat->tx_excess_defer += smb->tx_excess_defer;
stat->tx_control_frames += smb->tx_control_frames;
stat->tx_deferred += smb->tx_deferred;
stat->tx_bytes += smb->tx_bytes;
stat->tx_pkts_64 += smb->tx_pkts_64;
stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
stat->tx_single_colls += smb->tx_single_colls;
stat->tx_multi_colls += smb->tx_multi_colls;
stat->tx_late_colls += smb->tx_late_colls;
stat->tx_excess_colls += smb->tx_excess_colls;
stat->tx_abort += smb->tx_abort;
stat->tx_underrun += smb->tx_underrun;
stat->tx_desc_underrun += smb->tx_desc_underrun;
stat->tx_lenerrs += smb->tx_lenerrs;
stat->tx_pkts_truncated += smb->tx_pkts_truncated;
stat->tx_bcast_bytes += smb->tx_bcast_bytes;
stat->tx_mcast_bytes += smb->tx_mcast_bytes;
/* Update counters in ifnet. */
ifp->if_opackets += smb->tx_frames;
ifp->if_collisions += smb->tx_single_colls +
smb->tx_multi_colls * 2 + smb->tx_late_colls +
smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
/*
* XXX
* tx_pkts_truncated counter looks suspicious. It constantly
* increments with no sign of Tx errors. This may indicate
* the counter name is not correct one so I've removed the
* counter in output errors.
*/
ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
smb->tx_underrun;
ifp->if_ipackets += smb->rx_frames;
ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
smb->rx_runts + smb->rx_pkts_truncated +
smb->rx_fifo_oflows + smb->rx_rrs_errs +
smb->rx_alignerrs;
}
static int
ale_intr(void *arg)
{
struct ale_softc *sc;
uint32_t status;
sc = (struct ale_softc *)arg;
status = CSR_READ_4(sc, ALE_INTR_STATUS);
if ((status & ALE_INTRS) == 0)
return (FILTER_STRAY);
/* Disable interrupts. */
CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
return (FILTER_HANDLED);
}
static void
ale_int_task(void *arg, int pending)
{
struct ale_softc *sc;
struct ifnet *ifp;
uint32_t status;
int more;
sc = (struct ale_softc *)arg;
status = CSR_READ_4(sc, ALE_INTR_STATUS);
ALE_LOCK(sc);
if (sc->ale_morework != 0)
status |= INTR_RX_PKT;
if ((status & ALE_INTRS) == 0)
goto done;
/* Acknowledge interrupts but still disable interrupts. */
CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
ifp = sc->ale_ifp;
more = 0;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
more = ale_rxeof(sc, sc->ale_process_limit);
if (more == EAGAIN)
sc->ale_morework = 1;
else if (more == EIO) {
sc->ale_stats.reset_brk_seq++;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ale_init_locked(sc);
ALE_UNLOCK(sc);
return;
}
if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
if ((status & INTR_DMA_RD_TO_RST) != 0)
device_printf(sc->ale_dev,
"DMA read error! -- resetting\n");
if ((status & INTR_DMA_WR_TO_RST) != 0)
device_printf(sc->ale_dev,
"DMA write error! -- resetting\n");
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ale_init_locked(sc);
ALE_UNLOCK(sc);
return;
}
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
ale_start_locked(ifp);
}
if (more == EAGAIN ||
(CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
ALE_UNLOCK(sc);
taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
return;
}
done:
ALE_UNLOCK(sc);
/* Re-enable interrupts. */
CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
}
static void
ale_txeof(struct ale_softc *sc)
{
struct ifnet *ifp;
struct ale_txdesc *txd;
uint32_t cons, prod;
int prog;
ALE_LOCK_ASSERT(sc);
ifp = sc->ale_ifp;
if (sc->ale_cdata.ale_tx_cnt == 0)
return;
bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
sc->ale_cdata.ale_tx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
sc->ale_cdata.ale_tx_cmb_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
} else
prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
cons = sc->ale_cdata.ale_tx_cons;
/*
* Go through our Tx list and free mbufs for those
* frames which have been transmitted.
*/
for (prog = 0; cons != prod; prog++,
ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
if (sc->ale_cdata.ale_tx_cnt <= 0)
break;
prog++;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->ale_cdata.ale_tx_cnt--;
txd = &sc->ale_cdata.ale_txdesc[cons];
if (txd->tx_m != NULL) {
/* Reclaim transmitted mbufs. */
bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
if (prog > 0) {
sc->ale_cdata.ale_tx_cons = cons;
/*
* Unarm watchdog timer only when there is no pending
* Tx descriptors in queue.
*/
if (sc->ale_cdata.ale_tx_cnt == 0)
sc->ale_watchdog_timer = 0;
}
}
static void
ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
uint32_t length, uint32_t *prod)
{
struct ale_rx_page *rx_page;
rx_page = *page;
/* Update consumer position. */
rx_page->cons += roundup(length + sizeof(struct rx_rs),
ALE_RX_PAGE_ALIGN);
if (rx_page->cons >= ALE_RX_PAGE_SZ) {
/*
* End of Rx page reached, let hardware reuse
* this page.
*/
rx_page->cons = 0;
*rx_page->cmb_addr = 0;
bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
RXF_VALID);
/* Switch to alternate Rx page. */
sc->ale_cdata.ale_rx_curp ^= 1;
rx_page = *page =
&sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
/* Page flipped, sync CMB and Rx page. */
bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/* Sync completed, cache updated producer index. */
*prod = *rx_page->cmb_addr;
}
}
/*
* It seems that AR81xx controller can compute partial checksum.
* The partial checksum value can be used to accelerate checksum
* computation for fragmented TCP/UDP packets. Upper network stack
* already takes advantage of the partial checksum value in IP
* reassembly stage. But I'm not sure the correctness of the
* partial hardware checksum assistance due to lack of data sheet.
* In addition, the Rx feature of controller that requires copying
* for every frames effectively nullifies one of most nice offload
* capability of controller.
*/
static void
ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
{
struct ifnet *ifp;
struct ip *ip;
char *p;
ifp = sc->ale_ifp;
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if ((status & ALE_RD_IPCSUM_NOK) == 0)
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
if (((status & ALE_RD_IPV4_FRAG) == 0) &&
((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
} else {
if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
(status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
p = mtod(m, char *);
p += ETHER_HDR_LEN;
if ((status & ALE_RD_802_3) != 0)
p += LLC_SNAPFRAMELEN;
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 &&
(status & ALE_RD_VLAN) != 0)
p += ETHER_VLAN_ENCAP_LEN;
ip = (struct ip *)p;
if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
return;
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
/*
* Don't mark bad checksum for TCP/UDP frames
* as fragmented frames may always have set
* bad checksummed bit of frame status.
*/
}
/* Process received frames. */
static int
ale_rxeof(struct ale_softc *sc, int count)
{
struct ale_rx_page *rx_page;
struct rx_rs *rs;
struct ifnet *ifp;
struct mbuf *m;
uint32_t length, prod, seqno, status, vtags;
int prog;
ifp = sc->ale_ifp;
rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/*
* Don't directly access producer index as hardware may
* update it while Rx handler is in progress. It would
* be even better if there is a way to let hardware
* know how far driver processed its received frames.
* Alternatively, hardware could provide a way to disable
* CMB updates until driver acknowledges the end of CMB
* access.
*/
prod = *rx_page->cmb_addr;
for (prog = 0; prog < count; prog++) {
if (rx_page->cons >= prod)
break;
rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
if (sc->ale_cdata.ale_rx_seqno != seqno) {
/*
* Normally I believe this should not happen unless
* severe driver bug or corrupted memory. However
* it seems to happen under certain conditions which
* is triggered by abrupt Rx events such as initiation
* of bulk transfer of remote host. It's not easy to
* reproduce this and I doubt it could be related
* with FIFO overflow of hardware or activity of Tx
* CMB updates. I also remember similar behaviour
* seen on RealTek 8139 which uses resembling Rx
* scheme.
*/
if (bootverbose)
device_printf(sc->ale_dev,
"garbled seq: %u, expected: %u -- "
"resetting!\n", seqno,
sc->ale_cdata.ale_rx_seqno);
return (EIO);
}
/* Frame received. */
sc->ale_cdata.ale_rx_seqno++;
length = ALE_RX_BYTES(le32toh(rs->length));
status = le32toh(rs->flags);
if ((status & ALE_RD_ERROR) != 0) {
/*
* We want to pass the following frames to upper
* layer regardless of error status of Rx return
* status.
*
* o IP/TCP/UDP checksum is bad.
* o frame length and protocol specific length
* does not match.
*/
if ((status & (ALE_RD_CRC | ALE_RD_CODE |
ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
ALE_RD_TRUNC)) != 0) {
ale_rx_update_page(sc, &rx_page, length, &prod);
continue;
}
}
/*
* m_devget(9) is major bottle-neck of ale(4)(It comes
* from hardware limitation). For jumbo frames we could
* get a slightly better performance if driver use
* m_getjcl(9) with proper buffer size argument. However
* that would make code more complicated and I don't
* think users would expect good Rx performance numbers
* on these low-end consumer ethernet controller.
*/
m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
ETHER_ALIGN, ifp, NULL);
if (m == NULL) {
ifp->if_iqdrops++;
ale_rx_update_page(sc, &rx_page, length, &prod);
continue;
}
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
(status & ALE_RD_IPV4) != 0)
ale_rxcsum(sc, m, status);
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
(status & ALE_RD_VLAN) != 0) {
vtags = ALE_RX_VLAN(le32toh(rs->vtags));
m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
m->m_flags |= M_VLANTAG;
}
/* Pass it to upper layer. */
ALE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
ALE_LOCK(sc);
ale_rx_update_page(sc, &rx_page, length, &prod);
}
return (count > 0 ? 0 : EAGAIN);
}
static void
ale_tick(void *arg)
{
struct ale_softc *sc;
struct mii_data *mii;
sc = (struct ale_softc *)arg;
ALE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->ale_miibus);
mii_tick(mii);
ale_stats_update(sc);
/*
* Reclaim Tx buffers that have been transferred. It's not
* needed here but it would release allocated mbuf chains
* faster and limit the maximum delay to a hz.
*/
ale_txeof(sc);
ale_watchdog(sc);
callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
}
static void
ale_reset(struct ale_softc *sc)
{
uint32_t reg;
int i;
/* Initialize PCIe module. From Linux. */
CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
DELAY(10);
if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
break;
}
if (i == 0)
device_printf(sc->ale_dev, "master reset timeout!\n");
for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
break;
DELAY(10);
}
if (i == 0)
device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
}
static void
ale_init(void *xsc)
{
struct ale_softc *sc;
sc = (struct ale_softc *)xsc;
ALE_LOCK(sc);
ale_init_locked(sc);
ALE_UNLOCK(sc);
}
static void
ale_init_locked(struct ale_softc *sc)
{
struct ifnet *ifp;
struct mii_data *mii;
uint8_t eaddr[ETHER_ADDR_LEN];
bus_addr_t paddr;
uint32_t reg, rxf_hi, rxf_lo;
ALE_LOCK_ASSERT(sc);
ifp = sc->ale_ifp;
mii = device_get_softc(sc->ale_miibus);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
/*
* Cancel any pending I/O.
*/
ale_stop(sc);
/*
* Reset the chip to a known state.
*/
ale_reset(sc);
/* Initialize Tx descriptors, DMA memory blocks. */
ale_init_rx_pages(sc);
ale_init_tx_ring(sc);
/* Reprogram the station address. */
bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
CSR_WRITE_4(sc, ALE_PAR0,
eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
/*
* Clear WOL status and disable all WOL feature as WOL
* would interfere Rx operation under normal environments.
*/
CSR_READ_4(sc, ALE_WOL_CFG);
CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
/*
* Set Tx descriptor/RXF0/CMB base addresses. They share
* the same high address part of DMAable region.
*/
paddr = sc->ale_cdata.ale_tx_ring_paddr;
CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
CSR_WRITE_4(sc, ALE_TPD_CNT,
(ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
/* Set Rx page base address, note we use single queue. */
paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
/* Set Tx/Rx CMB addresses. */
paddr = sc->ale_cdata.ale_tx_cmb_paddr;
CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
/* Mark RXF0 is valid. */
CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
/*
* No need to initialize RFX1/RXF2/RXF3. We don't use
* multi-queue yet.
*/
/* Set Rx page size, excluding guard frame size. */
CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
/* Tell hardware that we're ready to load DMA blocks. */
CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
/* Set Rx/Tx interrupt trigger threshold. */
CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
(4 << INT_TRIG_TX_THRESH_SHIFT));
/*
* XXX
* Set interrupt trigger timer, its purpose and relation
* with interrupt moderation mechanism is not clear yet.
*/
CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
(ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
/* Configure interrupt moderation timer. */
reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
reg = CSR_READ_4(sc, ALE_MASTER_CFG);
reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
if (ALE_USECS(sc->ale_int_rx_mod) != 0)
reg |= MASTER_IM_RX_TIMER_ENB;
if (ALE_USECS(sc->ale_int_tx_mod) != 0)
reg |= MASTER_IM_TX_TIMER_ENB;
CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
/* Set Maximum frame size of controller. */
if (ifp->if_mtu < ETHERMTU)
sc->ale_max_frame_size = ETHERMTU;
else
sc->ale_max_frame_size = ifp->if_mtu;
sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
ETHER_CRC_LEN;
CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
/* Configure IPG/IFG parameters. */
CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
/* Set parameters for half-duplex media. */
CSR_WRITE_4(sc, ALE_HDPX_CFG,
((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
HDPX_CFG_LCOL_MASK) |
((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
HDPX_CFG_ABEBT_MASK) |
((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
HDPX_CFG_JAMIPG_MASK));
/* Configure Tx jumbo frame parameters. */
if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
if (ifp->if_mtu < ETHERMTU)
reg = sc->ale_max_frame_size;
else if (ifp->if_mtu < 6 * 1024)
reg = (sc->ale_max_frame_size * 2) / 3;
else
reg = sc->ale_max_frame_size / 2;
CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
roundup(reg, TX_JUMBO_THRESH_UNIT) >>
TX_JUMBO_THRESH_UNIT_SHIFT);
}
/* Configure TxQ. */
reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
<< TXQ_CFG_TX_FIFO_BURST_SHIFT;
reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
TXQ_CFG_TPD_BURST_MASK;
CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
/* Configure Rx jumbo frame & flow control parameters. */
if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
(((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
RX_JUMBO_LKAH_MASK));
reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
rxf_hi = (reg * 7) / 10;
rxf_lo = (reg * 3)/ 10;
CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
RX_FIFO_PAUSE_THRESH_LO_MASK) |
((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
RX_FIFO_PAUSE_THRESH_HI_MASK));
}
/* Disable RSS. */
CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
/* Configure RxQ. */
CSR_WRITE_4(sc, ALE_RXQ_CFG,
RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
/* Configure DMA parameters. */
reg = 0;
if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
reg |= DMA_CFG_TXCMB_ENB;
CSR_WRITE_4(sc, ALE_DMA_CFG,
DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
sc->ale_dma_rd_burst | reg |
sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
DMA_CFG_RD_DELAY_CNT_MASK) |
((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
DMA_CFG_WR_DELAY_CNT_MASK));
/*
* Hardware can be configured to issue SMB interrupt based
* on programmed interval. Since there is a callout that is
* invoked for every hz in driver we use that instead of
* relying on periodic SMB interrupt.
*/
CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
/* Clear MAC statistics. */
ale_stats_clear(sc);
/*
* Configure Tx/Rx MACs.
* - Auto-padding for short frames.
* - Enable CRC generation.
* Actual reconfiguration of MAC for resolved speed/duplex
* is followed after detection of link establishment.
* AR81xx always does checksum computation regardless of
* MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
* cause Rx handling issue for fragmented IP datagrams due
* to silicon bug.
*/
reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
MAC_CFG_PREAMBLE_MASK);
if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
reg |= MAC_CFG_SPEED_10_100;
else
reg |= MAC_CFG_SPEED_1000;
CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
/* Set up the receive filter. */
ale_rxfilter(sc);
ale_rxvlan(sc);
/* Acknowledge all pending interrupts and clear it. */
CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
sc->ale_flags &= ~ALE_FLAG_LINK;
/* Switch to the current media. */
mii_mediachg(mii);
callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
static void
ale_stop(struct ale_softc *sc)
{
struct ifnet *ifp;
struct ale_txdesc *txd;
uint32_t reg;
int i;
ALE_LOCK_ASSERT(sc);
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp = sc->ale_ifp;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->ale_flags &= ~ALE_FLAG_LINK;
callout_stop(&sc->ale_tick_ch);
sc->ale_watchdog_timer = 0;
ale_stats_update(sc);
/* Disable interrupts. */
CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
/* Disable queue processing and DMA. */
reg = CSR_READ_4(sc, ALE_TXQ_CFG);
reg &= ~TXQ_CFG_ENB;
CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
reg = CSR_READ_4(sc, ALE_RXQ_CFG);
reg &= ~RXQ_CFG_ENB;
CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
reg = CSR_READ_4(sc, ALE_DMA_CFG);
reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
DELAY(1000);
/* Stop Rx/Tx MACs. */
ale_stop_mac(sc);
/* Disable interrupts which might be touched in taskq handler. */
CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
/*
* Free TX mbufs still in the queues.
*/
for (i = 0; i < ALE_TX_RING_CNT; i++) {
txd = &sc->ale_cdata.ale_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
}
static void
ale_stop_mac(struct ale_softc *sc)
{
uint32_t reg;
int i;
ALE_LOCK_ASSERT(sc);
reg = CSR_READ_4(sc, ALE_MAC_CFG);
if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
}
for (i = ALE_TIMEOUT; i > 0; i--) {
reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
if (reg == 0)
break;
DELAY(10);
}
if (i == 0)
device_printf(sc->ale_dev,
"could not disable Tx/Rx MAC(0x%08x)!\n", reg);
}
static void
ale_init_tx_ring(struct ale_softc *sc)
{
struct ale_txdesc *txd;
int i;
ALE_LOCK_ASSERT(sc);
sc->ale_cdata.ale_tx_prod = 0;
sc->ale_cdata.ale_tx_cons = 0;
sc->ale_cdata.ale_tx_cnt = 0;
bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
for (i = 0; i < ALE_TX_RING_CNT; i++) {
txd = &sc->ale_cdata.ale_txdesc[i];
txd->tx_m = NULL;
}
*sc->ale_cdata.ale_tx_cmb = 0;
bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
sc->ale_cdata.ale_tx_cmb_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
sc->ale_cdata.ale_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
ale_init_rx_pages(struct ale_softc *sc)
{
struct ale_rx_page *rx_page;
int i;
ALE_LOCK_ASSERT(sc);
sc->ale_morework = 0;
sc->ale_cdata.ale_rx_seqno = 0;
sc->ale_cdata.ale_rx_curp = 0;
for (i = 0; i < ALE_RX_PAGES; i++) {
rx_page = &sc->ale_cdata.ale_rx_page[i];
bzero(rx_page->page_addr, sc->ale_pagesize);
bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
rx_page->cons = 0;
*rx_page->cmb_addr = 0;
bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
}
static void
ale_rxvlan(struct ale_softc *sc)
{
struct ifnet *ifp;
uint32_t reg;
ALE_LOCK_ASSERT(sc);
ifp = sc->ale_ifp;
reg = CSR_READ_4(sc, ALE_MAC_CFG);
reg &= ~MAC_CFG_VLAN_TAG_STRIP;
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
reg |= MAC_CFG_VLAN_TAG_STRIP;
CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
}
static void
ale_rxfilter(struct ale_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t crc;
uint32_t mchash[2];
uint32_t rxcfg;
ALE_LOCK_ASSERT(sc);
ifp = sc->ale_ifp;
rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
if ((ifp->if_flags & IFF_BROADCAST) != 0)
rxcfg |= MAC_CFG_BCAST;
if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
if ((ifp->if_flags & IFF_PROMISC) != 0)
rxcfg |= MAC_CFG_PROMISC;
if ((ifp->if_flags & IFF_ALLMULTI) != 0)
rxcfg |= MAC_CFG_ALLMULTI;
CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
return;
}
/* Program new filter. */
bzero(mchash, sizeof(mchash));
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &sc->ale_ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN);
mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
}
if_maddr_runlock(ifp);
CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
}
static int
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
{
int error, value;
if (arg1 == NULL)
return (EINVAL);
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || req->newptr == NULL)
return (error);
if (value < low || value > high)
return (EINVAL);
*(int *)arg1 = value;
return (0);
}
static int
sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req,
ALE_PROC_MIN, ALE_PROC_MAX));
}
static int
sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req,
ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
}