1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-20 11:11:24 +00:00
freebsd/sbin/ipfw/ipfw2.c
Paolo Pisati 3fc7bd58bc Honor the quiet (-q) option while adding a nat rule.
Submitted by:	Andrey V. Elsukov<bu7cher@yandex.ru>
MFC after:	3 days
2008-12-18 21:37:31 +00:00

6524 lines
152 KiB
C

/*
* Copyright (c) 2002-2003 Luigi Rizzo
* Copyright (c) 1996 Alex Nash, Paul Traina, Poul-Henning Kamp
* Copyright (c) 1994 Ugen J.S.Antsilevich
*
* Idea and grammar partially left from:
* Copyright (c) 1993 Daniel Boulet
*
* Redistribution and use in source forms, with and without modification,
* are permitted provided that this entire comment appears intact.
*
* Redistribution in binary form may occur without any restrictions.
* Obviously, it would be nice if you gave credit where credit is due
* but requiring it would be too onerous.
*
* This software is provided ``AS IS'' without any warranties of any kind.
*
* NEW command line interface for IP firewall facility
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <sys/queue.h>
#include <ctype.h>
#include <err.h>
#include <errno.h>
#include <grp.h>
#include <limits.h>
#include <netdb.h>
#include <pwd.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <timeconv.h> /* XXX do we need this ? */
#include <unistd.h>
#include <sysexits.h>
#include <unistd.h>
#include <fcntl.h>
#define IPFW_INTERNAL /* Access to protected structures in ip_fw.h. */
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/pfvar.h>
#include <net/route.h> /* def. of struct route */
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h>
#include <netinet/icmp6.h>
#include <netinet/ip_fw.h>
#include <netinet/ip_dummynet.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include <alias.h>
int
do_value_as_ip, /* show table value as IP */
do_resolv, /* Would try to resolve all */
do_time, /* Show time stamps */
do_quiet, /* Be quiet in add and flush */
do_pipe, /* this cmd refers to a pipe */
do_nat, /* Nat configuration. */
do_sort, /* field to sort results (0 = no) */
do_dynamic, /* display dynamic rules */
do_expired, /* display expired dynamic rules */
do_compact, /* show rules in compact mode */
do_force, /* do not ask for confirmation */
use_set, /* work with specified set number */
show_sets, /* display rule sets */
test_only, /* only check syntax */
comment_only, /* only print action and comment */
verbose;
#define IP_MASK_ALL 0xffffffff
/*
* the following macro returns an error message if we run out of
* arguments.
*/
#define NEED1(msg) {if (!ac) errx(EX_USAGE, msg);}
#define GET_UINT_ARG(arg, min, max, tok, s_x) do { \
if (!ac) \
errx(EX_USAGE, "%s: missing argument", match_value(s_x, tok)); \
if (_substrcmp(*av, "tablearg") == 0) { \
arg = IP_FW_TABLEARG; \
break; \
} \
\
{ \
long val; \
char *end; \
\
val = strtol(*av, &end, 10); \
\
if (!isdigit(**av) || *end != '\0' || (val == 0 && errno == EINVAL)) \
errx(EX_DATAERR, "%s: invalid argument: %s", \
match_value(s_x, tok), *av); \
\
if (errno == ERANGE || val < min || val > max) \
errx(EX_DATAERR, "%s: argument is out of range (%u..%u): %s", \
match_value(s_x, tok), min, max, *av); \
\
if (val == IP_FW_TABLEARG) \
errx(EX_DATAERR, "%s: illegal argument value: %s", \
match_value(s_x, tok), *av); \
arg = val; \
} \
} while (0)
#define PRINT_UINT_ARG(str, arg) do { \
if (str != NULL) \
printf("%s",str); \
if (arg == IP_FW_TABLEARG) \
printf("tablearg"); \
else \
printf("%u", (uint32_t)arg); \
} while (0)
/*
* _s_x is a structure that stores a string <-> token pairs, used in
* various places in the parser. Entries are stored in arrays,
* with an entry with s=NULL as terminator.
* The search routines are match_token() and match_value().
* Often, an element with x=0 contains an error string.
*
*/
struct _s_x {
char const *s;
int x;
};
static struct _s_x f_tcpflags[] = {
{ "syn", TH_SYN },
{ "fin", TH_FIN },
{ "ack", TH_ACK },
{ "psh", TH_PUSH },
{ "rst", TH_RST },
{ "urg", TH_URG },
{ "tcp flag", 0 },
{ NULL, 0 }
};
static struct _s_x f_tcpopts[] = {
{ "mss", IP_FW_TCPOPT_MSS },
{ "maxseg", IP_FW_TCPOPT_MSS },
{ "window", IP_FW_TCPOPT_WINDOW },
{ "sack", IP_FW_TCPOPT_SACK },
{ "ts", IP_FW_TCPOPT_TS },
{ "timestamp", IP_FW_TCPOPT_TS },
{ "cc", IP_FW_TCPOPT_CC },
{ "tcp option", 0 },
{ NULL, 0 }
};
/*
* IP options span the range 0 to 255 so we need to remap them
* (though in fact only the low 5 bits are significant).
*/
static struct _s_x f_ipopts[] = {
{ "ssrr", IP_FW_IPOPT_SSRR},
{ "lsrr", IP_FW_IPOPT_LSRR},
{ "rr", IP_FW_IPOPT_RR},
{ "ts", IP_FW_IPOPT_TS},
{ "ip option", 0 },
{ NULL, 0 }
};
static struct _s_x f_iptos[] = {
{ "lowdelay", IPTOS_LOWDELAY},
{ "throughput", IPTOS_THROUGHPUT},
{ "reliability", IPTOS_RELIABILITY},
{ "mincost", IPTOS_MINCOST},
{ "congestion", IPTOS_ECN_CE},
{ "ecntransport", IPTOS_ECN_ECT0},
{ "ip tos option", 0},
{ NULL, 0 }
};
static struct _s_x limit_masks[] = {
{"all", DYN_SRC_ADDR|DYN_SRC_PORT|DYN_DST_ADDR|DYN_DST_PORT},
{"src-addr", DYN_SRC_ADDR},
{"src-port", DYN_SRC_PORT},
{"dst-addr", DYN_DST_ADDR},
{"dst-port", DYN_DST_PORT},
{NULL, 0}
};
/*
* we use IPPROTO_ETHERTYPE as a fake protocol id to call the print routines
* This is only used in this code.
*/
#define IPPROTO_ETHERTYPE 0x1000
static struct _s_x ether_types[] = {
/*
* Note, we cannot use "-:&/" in the names because they are field
* separators in the type specifications. Also, we use s = NULL as
* end-delimiter, because a type of 0 can be legal.
*/
{ "ip", 0x0800 },
{ "ipv4", 0x0800 },
{ "ipv6", 0x86dd },
{ "arp", 0x0806 },
{ "rarp", 0x8035 },
{ "vlan", 0x8100 },
{ "loop", 0x9000 },
{ "trail", 0x1000 },
{ "at", 0x809b },
{ "atalk", 0x809b },
{ "aarp", 0x80f3 },
{ "pppoe_disc", 0x8863 },
{ "pppoe_sess", 0x8864 },
{ "ipx_8022", 0x00E0 },
{ "ipx_8023", 0x0000 },
{ "ipx_ii", 0x8137 },
{ "ipx_snap", 0x8137 },
{ "ipx", 0x8137 },
{ "ns", 0x0600 },
{ NULL, 0 }
};
static void show_usage(void);
enum tokens {
TOK_NULL=0,
TOK_OR,
TOK_NOT,
TOK_STARTBRACE,
TOK_ENDBRACE,
TOK_ACCEPT,
TOK_COUNT,
TOK_PIPE,
TOK_QUEUE,
TOK_DIVERT,
TOK_TEE,
TOK_NETGRAPH,
TOK_NGTEE,
TOK_FORWARD,
TOK_SKIPTO,
TOK_DENY,
TOK_REJECT,
TOK_RESET,
TOK_UNREACH,
TOK_CHECKSTATE,
TOK_NAT,
TOK_ALTQ,
TOK_LOG,
TOK_TAG,
TOK_UNTAG,
TOK_TAGGED,
TOK_UID,
TOK_GID,
TOK_JAIL,
TOK_IN,
TOK_LIMIT,
TOK_KEEPSTATE,
TOK_LAYER2,
TOK_OUT,
TOK_DIVERTED,
TOK_DIVERTEDLOOPBACK,
TOK_DIVERTEDOUTPUT,
TOK_XMIT,
TOK_RECV,
TOK_VIA,
TOK_FRAG,
TOK_IPOPTS,
TOK_IPLEN,
TOK_IPID,
TOK_IPPRECEDENCE,
TOK_IPTOS,
TOK_IPTTL,
TOK_IPVER,
TOK_ESTAB,
TOK_SETUP,
TOK_TCPDATALEN,
TOK_TCPFLAGS,
TOK_TCPOPTS,
TOK_TCPSEQ,
TOK_TCPACK,
TOK_TCPWIN,
TOK_ICMPTYPES,
TOK_MAC,
TOK_MACTYPE,
TOK_VERREVPATH,
TOK_VERSRCREACH,
TOK_ANTISPOOF,
TOK_IPSEC,
TOK_COMMENT,
TOK_PLR,
TOK_NOERROR,
TOK_BUCKETS,
TOK_DSTIP,
TOK_SRCIP,
TOK_DSTPORT,
TOK_SRCPORT,
TOK_ALL,
TOK_MASK,
TOK_BW,
TOK_DELAY,
TOK_RED,
TOK_GRED,
TOK_DROPTAIL,
TOK_PROTO,
TOK_WEIGHT,
TOK_IP,
TOK_IF,
TOK_ALOG,
TOK_DENY_INC,
TOK_SAME_PORTS,
TOK_UNREG_ONLY,
TOK_RESET_ADDR,
TOK_ALIAS_REV,
TOK_PROXY_ONLY,
TOK_REDIR_ADDR,
TOK_REDIR_PORT,
TOK_REDIR_PROTO,
TOK_IPV6,
TOK_FLOWID,
TOK_ICMP6TYPES,
TOK_EXT6HDR,
TOK_DSTIP6,
TOK_SRCIP6,
TOK_IPV4,
TOK_UNREACH6,
TOK_RESET6,
TOK_FIB,
TOK_SETFIB,
};
struct _s_x dummynet_params[] = {
{ "plr", TOK_PLR },
{ "noerror", TOK_NOERROR },
{ "buckets", TOK_BUCKETS },
{ "dst-ip", TOK_DSTIP },
{ "src-ip", TOK_SRCIP },
{ "dst-port", TOK_DSTPORT },
{ "src-port", TOK_SRCPORT },
{ "proto", TOK_PROTO },
{ "weight", TOK_WEIGHT },
{ "all", TOK_ALL },
{ "mask", TOK_MASK },
{ "droptail", TOK_DROPTAIL },
{ "red", TOK_RED },
{ "gred", TOK_GRED },
{ "bw", TOK_BW },
{ "bandwidth", TOK_BW },
{ "delay", TOK_DELAY },
{ "pipe", TOK_PIPE },
{ "queue", TOK_QUEUE },
{ "flow-id", TOK_FLOWID},
{ "dst-ipv6", TOK_DSTIP6},
{ "dst-ip6", TOK_DSTIP6},
{ "src-ipv6", TOK_SRCIP6},
{ "src-ip6", TOK_SRCIP6},
{ "dummynet-params", TOK_NULL },
{ NULL, 0 } /* terminator */
};
struct _s_x nat_params[] = {
{ "ip", TOK_IP },
{ "if", TOK_IF },
{ "log", TOK_ALOG },
{ "deny_in", TOK_DENY_INC },
{ "same_ports", TOK_SAME_PORTS },
{ "unreg_only", TOK_UNREG_ONLY },
{ "reset", TOK_RESET_ADDR },
{ "reverse", TOK_ALIAS_REV },
{ "proxy_only", TOK_PROXY_ONLY },
{ "redirect_addr", TOK_REDIR_ADDR },
{ "redirect_port", TOK_REDIR_PORT },
{ "redirect_proto", TOK_REDIR_PROTO },
{ NULL, 0 } /* terminator */
};
struct _s_x rule_actions[] = {
{ "accept", TOK_ACCEPT },
{ "pass", TOK_ACCEPT },
{ "allow", TOK_ACCEPT },
{ "permit", TOK_ACCEPT },
{ "count", TOK_COUNT },
{ "pipe", TOK_PIPE },
{ "queue", TOK_QUEUE },
{ "divert", TOK_DIVERT },
{ "tee", TOK_TEE },
{ "netgraph", TOK_NETGRAPH },
{ "ngtee", TOK_NGTEE },
{ "fwd", TOK_FORWARD },
{ "forward", TOK_FORWARD },
{ "skipto", TOK_SKIPTO },
{ "deny", TOK_DENY },
{ "drop", TOK_DENY },
{ "reject", TOK_REJECT },
{ "reset6", TOK_RESET6 },
{ "reset", TOK_RESET },
{ "unreach6", TOK_UNREACH6 },
{ "unreach", TOK_UNREACH },
{ "check-state", TOK_CHECKSTATE },
{ "//", TOK_COMMENT },
{ "nat", TOK_NAT },
{ "setfib", TOK_SETFIB },
{ NULL, 0 } /* terminator */
};
struct _s_x rule_action_params[] = {
{ "altq", TOK_ALTQ },
{ "log", TOK_LOG },
{ "tag", TOK_TAG },
{ "untag", TOK_UNTAG },
{ NULL, 0 } /* terminator */
};
struct _s_x rule_options[] = {
{ "tagged", TOK_TAGGED },
{ "uid", TOK_UID },
{ "gid", TOK_GID },
{ "jail", TOK_JAIL },
{ "in", TOK_IN },
{ "limit", TOK_LIMIT },
{ "keep-state", TOK_KEEPSTATE },
{ "bridged", TOK_LAYER2 },
{ "layer2", TOK_LAYER2 },
{ "out", TOK_OUT },
{ "diverted", TOK_DIVERTED },
{ "diverted-loopback", TOK_DIVERTEDLOOPBACK },
{ "diverted-output", TOK_DIVERTEDOUTPUT },
{ "xmit", TOK_XMIT },
{ "recv", TOK_RECV },
{ "via", TOK_VIA },
{ "fragment", TOK_FRAG },
{ "frag", TOK_FRAG },
{ "fib", TOK_FIB },
{ "ipoptions", TOK_IPOPTS },
{ "ipopts", TOK_IPOPTS },
{ "iplen", TOK_IPLEN },
{ "ipid", TOK_IPID },
{ "ipprecedence", TOK_IPPRECEDENCE },
{ "iptos", TOK_IPTOS },
{ "ipttl", TOK_IPTTL },
{ "ipversion", TOK_IPVER },
{ "ipver", TOK_IPVER },
{ "estab", TOK_ESTAB },
{ "established", TOK_ESTAB },
{ "setup", TOK_SETUP },
{ "tcpdatalen", TOK_TCPDATALEN },
{ "tcpflags", TOK_TCPFLAGS },
{ "tcpflgs", TOK_TCPFLAGS },
{ "tcpoptions", TOK_TCPOPTS },
{ "tcpopts", TOK_TCPOPTS },
{ "tcpseq", TOK_TCPSEQ },
{ "tcpack", TOK_TCPACK },
{ "tcpwin", TOK_TCPWIN },
{ "icmptype", TOK_ICMPTYPES },
{ "icmptypes", TOK_ICMPTYPES },
{ "dst-ip", TOK_DSTIP },
{ "src-ip", TOK_SRCIP },
{ "dst-port", TOK_DSTPORT },
{ "src-port", TOK_SRCPORT },
{ "proto", TOK_PROTO },
{ "MAC", TOK_MAC },
{ "mac", TOK_MAC },
{ "mac-type", TOK_MACTYPE },
{ "verrevpath", TOK_VERREVPATH },
{ "versrcreach", TOK_VERSRCREACH },
{ "antispoof", TOK_ANTISPOOF },
{ "ipsec", TOK_IPSEC },
{ "icmp6type", TOK_ICMP6TYPES },
{ "icmp6types", TOK_ICMP6TYPES },
{ "ext6hdr", TOK_EXT6HDR},
{ "flow-id", TOK_FLOWID},
{ "ipv6", TOK_IPV6},
{ "ip6", TOK_IPV6},
{ "ipv4", TOK_IPV4},
{ "ip4", TOK_IPV4},
{ "dst-ipv6", TOK_DSTIP6},
{ "dst-ip6", TOK_DSTIP6},
{ "src-ipv6", TOK_SRCIP6},
{ "src-ip6", TOK_SRCIP6},
{ "//", TOK_COMMENT },
{ "not", TOK_NOT }, /* pseudo option */
{ "!", /* escape ? */ TOK_NOT }, /* pseudo option */
{ "or", TOK_OR }, /* pseudo option */
{ "|", /* escape */ TOK_OR }, /* pseudo option */
{ "{", TOK_STARTBRACE }, /* pseudo option */
{ "(", TOK_STARTBRACE }, /* pseudo option */
{ "}", TOK_ENDBRACE }, /* pseudo option */
{ ")", TOK_ENDBRACE }, /* pseudo option */
{ NULL, 0 } /* terminator */
};
#define TABLEARG "tablearg"
static __inline uint64_t
align_uint64(uint64_t *pll) {
uint64_t ret;
bcopy (pll, &ret, sizeof(ret));
return ret;
}
/*
* conditionally runs the command.
*/
static int
do_cmd(int optname, void *optval, uintptr_t optlen)
{
static int s = -1; /* the socket */
int i;
if (test_only)
return 0;
if (s == -1)
s = socket(AF_INET, SOCK_RAW, IPPROTO_RAW);
if (s < 0)
err(EX_UNAVAILABLE, "socket");
if (optname == IP_FW_GET || optname == IP_DUMMYNET_GET ||
optname == IP_FW_ADD || optname == IP_FW_TABLE_LIST ||
optname == IP_FW_TABLE_GETSIZE ||
optname == IP_FW_NAT_GET_CONFIG ||
optname == IP_FW_NAT_GET_LOG)
i = getsockopt(s, IPPROTO_IP, optname, optval,
(socklen_t *)optlen);
else
i = setsockopt(s, IPPROTO_IP, optname, optval, optlen);
return i;
}
/**
* match_token takes a table and a string, returns the value associated
* with the string (-1 in case of failure).
*/
static int
match_token(struct _s_x *table, char *string)
{
struct _s_x *pt;
uint i = strlen(string);
for (pt = table ; i && pt->s != NULL ; pt++)
if (strlen(pt->s) == i && !bcmp(string, pt->s, i))
return pt->x;
return -1;
}
/**
* match_value takes a table and a value, returns the string associated
* with the value (NULL in case of failure).
*/
static char const *
match_value(struct _s_x *p, int value)
{
for (; p->s != NULL; p++)
if (p->x == value)
return p->s;
return NULL;
}
/*
* _substrcmp takes two strings and returns 1 if they do not match,
* and 0 if they match exactly or the first string is a sub-string
* of the second. A warning is printed to stderr in the case that the
* first string is a sub-string of the second.
*
* This function will be removed in the future through the usual
* deprecation process.
*/
static int
_substrcmp(const char *str1, const char* str2)
{
if (strncmp(str1, str2, strlen(str1)) != 0)
return 1;
if (strlen(str1) != strlen(str2))
warnx("DEPRECATED: '%s' matched '%s' as a sub-string",
str1, str2);
return 0;
}
/*
* _substrcmp2 takes three strings and returns 1 if the first two do not match,
* and 0 if they match exactly or the second string is a sub-string
* of the first. A warning is printed to stderr in the case that the
* first string does not match the third.
*
* This function exists to warn about the bizzare construction
* strncmp(str, "by", 2) which is used to allow people to use a shotcut
* for "bytes". The problem is that in addition to accepting "by",
* "byt", "byte", and "bytes", it also excepts "by_rabid_dogs" and any
* other string beginning with "by".
*
* This function will be removed in the future through the usual
* deprecation process.
*/
static int
_substrcmp2(const char *str1, const char* str2, const char* str3)
{
if (strncmp(str1, str2, strlen(str2)) != 0)
return 1;
if (strcmp(str1, str3) != 0)
warnx("DEPRECATED: '%s' matched '%s'",
str1, str3);
return 0;
}
/*
* prints one port, symbolic or numeric
*/
static void
print_port(int proto, uint16_t port)
{
if (proto == IPPROTO_ETHERTYPE) {
char const *s;
if (do_resolv && (s = match_value(ether_types, port)) )
printf("%s", s);
else
printf("0x%04x", port);
} else {
struct servent *se = NULL;
if (do_resolv) {
struct protoent *pe = getprotobynumber(proto);
se = getservbyport(htons(port), pe ? pe->p_name : NULL);
}
if (se)
printf("%s", se->s_name);
else
printf("%d", port);
}
}
struct _s_x _port_name[] = {
{"dst-port", O_IP_DSTPORT},
{"src-port", O_IP_SRCPORT},
{"ipid", O_IPID},
{"iplen", O_IPLEN},
{"ipttl", O_IPTTL},
{"mac-type", O_MAC_TYPE},
{"tcpdatalen", O_TCPDATALEN},
{"tagged", O_TAGGED},
{NULL, 0}
};
/*
* Print the values in a list 16-bit items of the types above.
* XXX todo: add support for mask.
*/
static void
print_newports(ipfw_insn_u16 *cmd, int proto, int opcode)
{
uint16_t *p = cmd->ports;
int i;
char const *sep;
if (opcode != 0) {
sep = match_value(_port_name, opcode);
if (sep == NULL)
sep = "???";
printf (" %s", sep);
}
sep = " ";
for (i = F_LEN((ipfw_insn *)cmd) - 1; i > 0; i--, p += 2) {
printf(sep);
print_port(proto, p[0]);
if (p[0] != p[1]) {
printf("-");
print_port(proto, p[1]);
}
sep = ",";
}
}
/*
* Like strtol, but also translates service names into port numbers
* for some protocols.
* In particular:
* proto == -1 disables the protocol check;
* proto == IPPROTO_ETHERTYPE looks up an internal table
* proto == <some value in /etc/protocols> matches the values there.
* Returns *end == s in case the parameter is not found.
*/
static int
strtoport(char *s, char **end, int base, int proto)
{
char *p, *buf;
char *s1;
int i;
*end = s; /* default - not found */
if (*s == '\0')
return 0; /* not found */
if (isdigit(*s))
return strtol(s, end, base);
/*
* find separator. '\\' escapes the next char.
*/
for (s1 = s; *s1 && (isalnum(*s1) || *s1 == '\\') ; s1++)
if (*s1 == '\\' && s1[1] != '\0')
s1++;
buf = malloc(s1 - s + 1);
if (buf == NULL)
return 0;
/*
* copy into a buffer skipping backslashes
*/
for (p = s, i = 0; p != s1 ; p++)
if (*p != '\\')
buf[i++] = *p;
buf[i++] = '\0';
if (proto == IPPROTO_ETHERTYPE) {
i = match_token(ether_types, buf);
free(buf);
if (i != -1) { /* found */
*end = s1;
return i;
}
} else {
struct protoent *pe = NULL;
struct servent *se;
if (proto != 0)
pe = getprotobynumber(proto);
setservent(1);
se = getservbyname(buf, pe ? pe->p_name : NULL);
free(buf);
if (se != NULL) {
*end = s1;
return ntohs(se->s_port);
}
}
return 0; /* not found */
}
/*
* Map between current altq queue id numbers and names.
*/
static int altq_fetched = 0;
static TAILQ_HEAD(, pf_altq) altq_entries =
TAILQ_HEAD_INITIALIZER(altq_entries);
static void
altq_set_enabled(int enabled)
{
int pffd;
pffd = open("/dev/pf", O_RDWR);
if (pffd == -1)
err(EX_UNAVAILABLE,
"altq support opening pf(4) control device");
if (enabled) {
if (ioctl(pffd, DIOCSTARTALTQ) != 0 && errno != EEXIST)
err(EX_UNAVAILABLE, "enabling altq");
} else {
if (ioctl(pffd, DIOCSTOPALTQ) != 0 && errno != ENOENT)
err(EX_UNAVAILABLE, "disabling altq");
}
close(pffd);
}
static void
altq_fetch()
{
struct pfioc_altq pfioc;
struct pf_altq *altq;
int pffd, mnr;
if (altq_fetched)
return;
altq_fetched = 1;
pffd = open("/dev/pf", O_RDONLY);
if (pffd == -1) {
warn("altq support opening pf(4) control device");
return;
}
bzero(&pfioc, sizeof(pfioc));
if (ioctl(pffd, DIOCGETALTQS, &pfioc) != 0) {
warn("altq support getting queue list");
close(pffd);
return;
}
mnr = pfioc.nr;
for (pfioc.nr = 0; pfioc.nr < mnr; pfioc.nr++) {
if (ioctl(pffd, DIOCGETALTQ, &pfioc) != 0) {
if (errno == EBUSY)
break;
warn("altq support getting queue list");
close(pffd);
return;
}
if (pfioc.altq.qid == 0)
continue;
altq = malloc(sizeof(*altq));
if (altq == NULL)
err(EX_OSERR, "malloc");
*altq = pfioc.altq;
TAILQ_INSERT_TAIL(&altq_entries, altq, entries);
}
close(pffd);
}
static u_int32_t
altq_name_to_qid(const char *name)
{
struct pf_altq *altq;
altq_fetch();
TAILQ_FOREACH(altq, &altq_entries, entries)
if (strcmp(name, altq->qname) == 0)
break;
if (altq == NULL)
errx(EX_DATAERR, "altq has no queue named `%s'", name);
return altq->qid;
}
static const char *
altq_qid_to_name(u_int32_t qid)
{
struct pf_altq *altq;
altq_fetch();
TAILQ_FOREACH(altq, &altq_entries, entries)
if (qid == altq->qid)
break;
if (altq == NULL)
return NULL;
return altq->qname;
}
static void
fill_altq_qid(u_int32_t *qid, const char *av)
{
*qid = altq_name_to_qid(av);
}
/*
* Fill the body of the command with the list of port ranges.
*/
static int
fill_newports(ipfw_insn_u16 *cmd, char *av, int proto)
{
uint16_t a, b, *p = cmd->ports;
int i = 0;
char *s = av;
while (*s) {
a = strtoport(av, &s, 0, proto);
if (s == av) /* empty or invalid argument */
return (0);
switch (*s) {
case '-': /* a range */
av = s + 1;
b = strtoport(av, &s, 0, proto);
/* Reject expressions like '1-abc' or '1-2-3'. */
if (s == av || (*s != ',' && *s != '\0'))
return (0);
p[0] = a;
p[1] = b;
break;
case ',': /* comma separated list */
case '\0':
p[0] = p[1] = a;
break;
default:
warnx("port list: invalid separator <%c> in <%s>",
*s, av);
return (0);
}
i++;
p += 2;
av = s + 1;
}
if (i > 0) {
if (i + 1 > F_LEN_MASK)
errx(EX_DATAERR, "too many ports/ranges\n");
cmd->o.len |= i + 1; /* leave F_NOT and F_OR untouched */
}
return (i);
}
static struct _s_x icmpcodes[] = {
{ "net", ICMP_UNREACH_NET },
{ "host", ICMP_UNREACH_HOST },
{ "protocol", ICMP_UNREACH_PROTOCOL },
{ "port", ICMP_UNREACH_PORT },
{ "needfrag", ICMP_UNREACH_NEEDFRAG },
{ "srcfail", ICMP_UNREACH_SRCFAIL },
{ "net-unknown", ICMP_UNREACH_NET_UNKNOWN },
{ "host-unknown", ICMP_UNREACH_HOST_UNKNOWN },
{ "isolated", ICMP_UNREACH_ISOLATED },
{ "net-prohib", ICMP_UNREACH_NET_PROHIB },
{ "host-prohib", ICMP_UNREACH_HOST_PROHIB },
{ "tosnet", ICMP_UNREACH_TOSNET },
{ "toshost", ICMP_UNREACH_TOSHOST },
{ "filter-prohib", ICMP_UNREACH_FILTER_PROHIB },
{ "host-precedence", ICMP_UNREACH_HOST_PRECEDENCE },
{ "precedence-cutoff", ICMP_UNREACH_PRECEDENCE_CUTOFF },
{ NULL, 0 }
};
static void
fill_reject_code(u_short *codep, char *str)
{
int val;
char *s;
val = strtoul(str, &s, 0);
if (s == str || *s != '\0' || val >= 0x100)
val = match_token(icmpcodes, str);
if (val < 0)
errx(EX_DATAERR, "unknown ICMP unreachable code ``%s''", str);
*codep = val;
return;
}
static void
print_reject_code(uint16_t code)
{
char const *s = match_value(icmpcodes, code);
if (s != NULL)
printf("unreach %s", s);
else
printf("unreach %u", code);
}
static struct _s_x icmp6codes[] = {
{ "no-route", ICMP6_DST_UNREACH_NOROUTE },
{ "admin-prohib", ICMP6_DST_UNREACH_ADMIN },
{ "address", ICMP6_DST_UNREACH_ADDR },
{ "port", ICMP6_DST_UNREACH_NOPORT },
{ NULL, 0 }
};
static void
fill_unreach6_code(u_short *codep, char *str)
{
int val;
char *s;
val = strtoul(str, &s, 0);
if (s == str || *s != '\0' || val >= 0x100)
val = match_token(icmp6codes, str);
if (val < 0)
errx(EX_DATAERR, "unknown ICMPv6 unreachable code ``%s''", str);
*codep = val;
return;
}
static void
print_unreach6_code(uint16_t code)
{
char const *s = match_value(icmp6codes, code);
if (s != NULL)
printf("unreach6 %s", s);
else
printf("unreach6 %u", code);
}
/*
* Returns the number of bits set (from left) in a contiguous bitmask,
* or -1 if the mask is not contiguous.
* XXX this needs a proper fix.
* This effectively works on masks in big-endian (network) format.
* when compiled on little endian architectures.
*
* First bit is bit 7 of the first byte -- note, for MAC addresses,
* the first bit on the wire is bit 0 of the first byte.
* len is the max length in bits.
*/
static int
contigmask(uint8_t *p, int len)
{
int i, n;
for (i=0; i<len ; i++)
if ( (p[i/8] & (1 << (7 - (i%8)))) == 0) /* first bit unset */
break;
for (n=i+1; n < len; n++)
if ( (p[n/8] & (1 << (7 - (n%8)))) != 0)
return -1; /* mask not contiguous */
return i;
}
/*
* print flags set/clear in the two bitmasks passed as parameters.
* There is a specialized check for f_tcpflags.
*/
static void
print_flags(char const *name, ipfw_insn *cmd, struct _s_x *list)
{
char const *comma = "";
int i;
uint8_t set = cmd->arg1 & 0xff;
uint8_t clear = (cmd->arg1 >> 8) & 0xff;
if (list == f_tcpflags && set == TH_SYN && clear == TH_ACK) {
printf(" setup");
return;
}
printf(" %s ", name);
for (i=0; list[i].x != 0; i++) {
if (set & list[i].x) {
set &= ~list[i].x;
printf("%s%s", comma, list[i].s);
comma = ",";
}
if (clear & list[i].x) {
clear &= ~list[i].x;
printf("%s!%s", comma, list[i].s);
comma = ",";
}
}
}
/*
* Print the ip address contained in a command.
*/
static void
print_ip(ipfw_insn_ip *cmd, char const *s)
{
struct hostent *he = NULL;
int len = F_LEN((ipfw_insn *)cmd);
uint32_t *a = ((ipfw_insn_u32 *)cmd)->d;
printf("%s%s ", cmd->o.len & F_NOT ? " not": "", s);
if (cmd->o.opcode == O_IP_SRC_ME || cmd->o.opcode == O_IP_DST_ME) {
printf("me");
return;
}
if (cmd->o.opcode == O_IP_SRC_LOOKUP ||
cmd->o.opcode == O_IP_DST_LOOKUP) {
printf("table(%u", ((ipfw_insn *)cmd)->arg1);
if (len == F_INSN_SIZE(ipfw_insn_u32))
printf(",%u", *a);
printf(")");
return;
}
if (cmd->o.opcode == O_IP_SRC_SET || cmd->o.opcode == O_IP_DST_SET) {
uint32_t x, *map = (uint32_t *)&(cmd->mask);
int i, j;
char comma = '{';
x = cmd->o.arg1 - 1;
x = htonl( ~x );
cmd->addr.s_addr = htonl(cmd->addr.s_addr);
printf("%s/%d", inet_ntoa(cmd->addr),
contigmask((uint8_t *)&x, 32));
x = cmd->addr.s_addr = htonl(cmd->addr.s_addr);
x &= 0xff; /* base */
/*
* Print bits and ranges.
* Locate first bit set (i), then locate first bit unset (j).
* If we have 3+ consecutive bits set, then print them as a
* range, otherwise only print the initial bit and rescan.
*/
for (i=0; i < cmd->o.arg1; i++)
if (map[i/32] & (1<<(i & 31))) {
for (j=i+1; j < cmd->o.arg1; j++)
if (!(map[ j/32] & (1<<(j & 31))))
break;
printf("%c%d", comma, i+x);
if (j>i+2) { /* range has at least 3 elements */
printf("-%d", j-1+x);
i = j-1;
}
comma = ',';
}
printf("}");
return;
}
/*
* len == 2 indicates a single IP, whereas lists of 1 or more
* addr/mask pairs have len = (2n+1). We convert len to n so we
* use that to count the number of entries.
*/
for (len = len / 2; len > 0; len--, a += 2) {
int mb = /* mask length */
(cmd->o.opcode == O_IP_SRC || cmd->o.opcode == O_IP_DST) ?
32 : contigmask((uint8_t *)&(a[1]), 32);
if (mb == 32 && do_resolv)
he = gethostbyaddr((char *)&(a[0]), sizeof(u_long), AF_INET);
if (he != NULL) /* resolved to name */
printf("%s", he->h_name);
else if (mb == 0) /* any */
printf("any");
else { /* numeric IP followed by some kind of mask */
printf("%s", inet_ntoa( *((struct in_addr *)&a[0]) ) );
if (mb < 0)
printf(":%s", inet_ntoa( *((struct in_addr *)&a[1]) ) );
else if (mb < 32)
printf("/%d", mb);
}
if (len > 1)
printf(",");
}
}
/*
* prints a MAC address/mask pair
*/
static void
print_mac(uint8_t *addr, uint8_t *mask)
{
int l = contigmask(mask, 48);
if (l == 0)
printf(" any");
else {
printf(" %02x:%02x:%02x:%02x:%02x:%02x",
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
if (l == -1)
printf("&%02x:%02x:%02x:%02x:%02x:%02x",
mask[0], mask[1], mask[2],
mask[3], mask[4], mask[5]);
else if (l < 48)
printf("/%d", l);
}
}
static void
fill_icmptypes(ipfw_insn_u32 *cmd, char *av)
{
uint8_t type;
cmd->d[0] = 0;
while (*av) {
if (*av == ',')
av++;
type = strtoul(av, &av, 0);
if (*av != ',' && *av != '\0')
errx(EX_DATAERR, "invalid ICMP type");
if (type > 31)
errx(EX_DATAERR, "ICMP type out of range");
cmd->d[0] |= 1 << type;
}
cmd->o.opcode = O_ICMPTYPE;
cmd->o.len |= F_INSN_SIZE(ipfw_insn_u32);
}
static void
print_icmptypes(ipfw_insn_u32 *cmd)
{
int i;
char sep= ' ';
printf(" icmptypes");
for (i = 0; i < 32; i++) {
if ( (cmd->d[0] & (1 << (i))) == 0)
continue;
printf("%c%d", sep, i);
sep = ',';
}
}
/*
* Print the ip address contained in a command.
*/
static void
print_ip6(ipfw_insn_ip6 *cmd, char const *s)
{
struct hostent *he = NULL;
int len = F_LEN((ipfw_insn *) cmd) - 1;
struct in6_addr *a = &(cmd->addr6);
char trad[255];
printf("%s%s ", cmd->o.len & F_NOT ? " not": "", s);
if (cmd->o.opcode == O_IP6_SRC_ME || cmd->o.opcode == O_IP6_DST_ME) {
printf("me6");
return;
}
if (cmd->o.opcode == O_IP6) {
printf(" ip6");
return;
}
/*
* len == 4 indicates a single IP, whereas lists of 1 or more
* addr/mask pairs have len = (2n+1). We convert len to n so we
* use that to count the number of entries.
*/
for (len = len / 4; len > 0; len -= 2, a += 2) {
int mb = /* mask length */
(cmd->o.opcode == O_IP6_SRC || cmd->o.opcode == O_IP6_DST) ?
128 : contigmask((uint8_t *)&(a[1]), 128);
if (mb == 128 && do_resolv)
he = gethostbyaddr((char *)a, sizeof(*a), AF_INET6);
if (he != NULL) /* resolved to name */
printf("%s", he->h_name);
else if (mb == 0) /* any */
printf("any");
else { /* numeric IP followed by some kind of mask */
if (inet_ntop(AF_INET6, a, trad, sizeof( trad ) ) == NULL)
printf("Error ntop in print_ip6\n");
printf("%s", trad );
if (mb < 0) /* XXX not really legal... */
printf(":%s",
inet_ntop(AF_INET6, &a[1], trad, sizeof(trad)));
else if (mb < 128)
printf("/%d", mb);
}
if (len > 2)
printf(",");
}
}
static void
fill_icmp6types(ipfw_insn_icmp6 *cmd, char *av)
{
uint8_t type;
bzero(cmd, sizeof(*cmd));
while (*av) {
if (*av == ',')
av++;
type = strtoul(av, &av, 0);
if (*av != ',' && *av != '\0')
errx(EX_DATAERR, "invalid ICMP6 type");
/*
* XXX: shouldn't this be 0xFF? I can't see any reason why
* we shouldn't be able to filter all possiable values
* regardless of the ability of the rest of the kernel to do
* anything useful with them.
*/
if (type > ICMP6_MAXTYPE)
errx(EX_DATAERR, "ICMP6 type out of range");
cmd->d[type / 32] |= ( 1 << (type % 32));
}
cmd->o.opcode = O_ICMP6TYPE;
cmd->o.len |= F_INSN_SIZE(ipfw_insn_icmp6);
}
static void
print_icmp6types(ipfw_insn_u32 *cmd)
{
int i, j;
char sep= ' ';
printf(" ip6 icmp6types");
for (i = 0; i < 7; i++)
for (j=0; j < 32; ++j) {
if ( (cmd->d[i] & (1 << (j))) == 0)
continue;
printf("%c%d", sep, (i*32 + j));
sep = ',';
}
}
static void
print_flow6id( ipfw_insn_u32 *cmd)
{
uint16_t i, limit = cmd->o.arg1;
char sep = ',';
printf(" flow-id ");
for( i=0; i < limit; ++i) {
if (i == limit - 1)
sep = ' ';
printf("%d%c", cmd->d[i], sep);
}
}
/* structure and define for the extension header in ipv6 */
static struct _s_x ext6hdrcodes[] = {
{ "frag", EXT_FRAGMENT },
{ "hopopt", EXT_HOPOPTS },
{ "route", EXT_ROUTING },
{ "dstopt", EXT_DSTOPTS },
{ "ah", EXT_AH },
{ "esp", EXT_ESP },
{ "rthdr0", EXT_RTHDR0 },
{ "rthdr2", EXT_RTHDR2 },
{ NULL, 0 }
};
/* fills command for the extension header filtering */
int
fill_ext6hdr( ipfw_insn *cmd, char *av)
{
int tok;
char *s = av;
cmd->arg1 = 0;
while(s) {
av = strsep( &s, ",") ;
tok = match_token(ext6hdrcodes, av);
switch (tok) {
case EXT_FRAGMENT:
cmd->arg1 |= EXT_FRAGMENT;
break;
case EXT_HOPOPTS:
cmd->arg1 |= EXT_HOPOPTS;
break;
case EXT_ROUTING:
cmd->arg1 |= EXT_ROUTING;
break;
case EXT_DSTOPTS:
cmd->arg1 |= EXT_DSTOPTS;
break;
case EXT_AH:
cmd->arg1 |= EXT_AH;
break;
case EXT_ESP:
cmd->arg1 |= EXT_ESP;
break;
case EXT_RTHDR0:
cmd->arg1 |= EXT_RTHDR0;
break;
case EXT_RTHDR2:
cmd->arg1 |= EXT_RTHDR2;
break;
default:
errx( EX_DATAERR, "invalid option for ipv6 exten header" );
break;
}
}
if (cmd->arg1 == 0 )
return 0;
cmd->opcode = O_EXT_HDR;
cmd->len |= F_INSN_SIZE( ipfw_insn );
return 1;
}
void
print_ext6hdr( ipfw_insn *cmd )
{
char sep = ' ';
printf(" extension header:");
if (cmd->arg1 & EXT_FRAGMENT ) {
printf("%cfragmentation", sep);
sep = ',';
}
if (cmd->arg1 & EXT_HOPOPTS ) {
printf("%chop options", sep);
sep = ',';
}
if (cmd->arg1 & EXT_ROUTING ) {
printf("%crouting options", sep);
sep = ',';
}
if (cmd->arg1 & EXT_RTHDR0 ) {
printf("%crthdr0", sep);
sep = ',';
}
if (cmd->arg1 & EXT_RTHDR2 ) {
printf("%crthdr2", sep);
sep = ',';
}
if (cmd->arg1 & EXT_DSTOPTS ) {
printf("%cdestination options", sep);
sep = ',';
}
if (cmd->arg1 & EXT_AH ) {
printf("%cauthentication header", sep);
sep = ',';
}
if (cmd->arg1 & EXT_ESP ) {
printf("%cencapsulated security payload", sep);
}
}
/*
* show_ipfw() prints the body of an ipfw rule.
* Because the standard rule has at least proto src_ip dst_ip, we use
* a helper function to produce these entries if not provided explicitly.
* The first argument is the list of fields we have, the second is
* the list of fields we want to be printed.
*
* Special cases if we have provided a MAC header:
* + if the rule does not contain IP addresses/ports, do not print them;
* + if the rule does not contain an IP proto, print "all" instead of "ip";
*
* Once we have 'have_options', IP header fields are printed as options.
*/
#define HAVE_PROTO 0x0001
#define HAVE_SRCIP 0x0002
#define HAVE_DSTIP 0x0004
#define HAVE_PROTO4 0x0008
#define HAVE_PROTO6 0x0010
#define HAVE_OPTIONS 0x8000
#define HAVE_IP (HAVE_PROTO | HAVE_SRCIP | HAVE_DSTIP)
static void
show_prerequisites(int *flags, int want, int cmd)
{
if (comment_only)
return;
if ( (*flags & HAVE_IP) == HAVE_IP)
*flags |= HAVE_OPTIONS;
if ( !(*flags & HAVE_OPTIONS)) {
if ( !(*flags & HAVE_PROTO) && (want & HAVE_PROTO))
if ( (*flags & HAVE_PROTO4))
printf(" ip4");
else if ( (*flags & HAVE_PROTO6))
printf(" ip6");
else
printf(" ip");
if ( !(*flags & HAVE_SRCIP) && (want & HAVE_SRCIP))
printf(" from any");
if ( !(*flags & HAVE_DSTIP) && (want & HAVE_DSTIP))
printf(" to any");
}
*flags |= want;
}
static void
show_ipfw(struct ip_fw *rule, int pcwidth, int bcwidth)
{
static int twidth = 0;
int l;
ipfw_insn *cmd, *tagptr = NULL;
char *comment = NULL; /* ptr to comment if we have one */
int proto = 0; /* default */
int flags = 0; /* prerequisites */
ipfw_insn_log *logptr = NULL; /* set if we find an O_LOG */
ipfw_insn_altq *altqptr = NULL; /* set if we find an O_ALTQ */
int or_block = 0; /* we are in an or block */
uint32_t set_disable;
bcopy(&rule->next_rule, &set_disable, sizeof(set_disable));
if (set_disable & (1 << rule->set)) { /* disabled */
if (!show_sets)
return;
else
printf("# DISABLED ");
}
printf("%05u ", rule->rulenum);
if (pcwidth>0 || bcwidth>0)
printf("%*llu %*llu ", pcwidth, align_uint64(&rule->pcnt),
bcwidth, align_uint64(&rule->bcnt));
if (do_time == 2)
printf("%10u ", rule->timestamp);
else if (do_time == 1) {
char timestr[30];
time_t t = (time_t)0;
if (twidth == 0) {
strcpy(timestr, ctime(&t));
*strchr(timestr, '\n') = '\0';
twidth = strlen(timestr);
}
if (rule->timestamp) {
t = _long_to_time(rule->timestamp);
strcpy(timestr, ctime(&t));
*strchr(timestr, '\n') = '\0';
printf("%s ", timestr);
} else {
printf("%*s", twidth, " ");
}
}
if (show_sets)
printf("set %d ", rule->set);
/*
* print the optional "match probability"
*/
if (rule->cmd_len > 0) {
cmd = rule->cmd ;
if (cmd->opcode == O_PROB) {
ipfw_insn_u32 *p = (ipfw_insn_u32 *)cmd;
double d = 1.0 * p->d[0];
d = (d / 0x7fffffff);
printf("prob %f ", d);
}
}
/*
* first print actions
*/
for (l = rule->cmd_len - rule->act_ofs, cmd = ACTION_PTR(rule);
l > 0 ; l -= F_LEN(cmd), cmd += F_LEN(cmd)) {
switch(cmd->opcode) {
case O_CHECK_STATE:
printf("check-state");
flags = HAVE_IP; /* avoid printing anything else */
break;
case O_ACCEPT:
printf("allow");
break;
case O_COUNT:
printf("count");
break;
case O_DENY:
printf("deny");
break;
case O_REJECT:
if (cmd->arg1 == ICMP_REJECT_RST)
printf("reset");
else if (cmd->arg1 == ICMP_UNREACH_HOST)
printf("reject");
else
print_reject_code(cmd->arg1);
break;
case O_UNREACH6:
if (cmd->arg1 == ICMP6_UNREACH_RST)
printf("reset6");
else
print_unreach6_code(cmd->arg1);
break;
case O_SKIPTO:
PRINT_UINT_ARG("skipto ", cmd->arg1);
break;
case O_PIPE:
PRINT_UINT_ARG("pipe ", cmd->arg1);
break;
case O_QUEUE:
PRINT_UINT_ARG("queue ", cmd->arg1);
break;
case O_DIVERT:
PRINT_UINT_ARG("divert ", cmd->arg1);
break;
case O_TEE:
PRINT_UINT_ARG("tee ", cmd->arg1);
break;
case O_NETGRAPH:
PRINT_UINT_ARG("netgraph ", cmd->arg1);
break;
case O_NGTEE:
PRINT_UINT_ARG("ngtee ", cmd->arg1);
break;
case O_FORWARD_IP:
{
ipfw_insn_sa *s = (ipfw_insn_sa *)cmd;
if (s->sa.sin_addr.s_addr == INADDR_ANY) {
printf("fwd tablearg");
} else {
printf("fwd %s", inet_ntoa(s->sa.sin_addr));
}
if (s->sa.sin_port)
printf(",%d", s->sa.sin_port);
}
break;
case O_LOG: /* O_LOG is printed last */
logptr = (ipfw_insn_log *)cmd;
break;
case O_ALTQ: /* O_ALTQ is printed after O_LOG */
altqptr = (ipfw_insn_altq *)cmd;
break;
case O_TAG:
tagptr = cmd;
break;
case O_NAT:
PRINT_UINT_ARG("nat ", cmd->arg1);
break;
case O_SETFIB:
PRINT_UINT_ARG("setfib ", cmd->arg1);
break;
default:
printf("** unrecognized action %d len %d ",
cmd->opcode, cmd->len);
}
}
if (logptr) {
if (logptr->max_log > 0)
printf(" log logamount %d", logptr->max_log);
else
printf(" log");
}
if (altqptr) {
const char *qname;
qname = altq_qid_to_name(altqptr->qid);
if (qname == NULL)
printf(" altq ?<%u>", altqptr->qid);
else
printf(" altq %s", qname);
}
if (tagptr) {
if (tagptr->len & F_NOT)
PRINT_UINT_ARG(" untag ", tagptr->arg1);
else
PRINT_UINT_ARG(" tag ", tagptr->arg1);
}
/*
* then print the body.
*/
for (l = rule->act_ofs, cmd = rule->cmd ;
l > 0 ; l -= F_LEN(cmd) , cmd += F_LEN(cmd)) {
if ((cmd->len & F_OR) || (cmd->len & F_NOT))
continue;
if (cmd->opcode == O_IP4) {
flags |= HAVE_PROTO4;
break;
} else if (cmd->opcode == O_IP6) {
flags |= HAVE_PROTO6;
break;
}
}
if (rule->_pad & 1) { /* empty rules before options */
if (!do_compact) {
show_prerequisites(&flags, HAVE_PROTO, 0);
printf(" from any to any");
}
flags |= HAVE_IP | HAVE_OPTIONS;
}
if (comment_only)
comment = "...";
for (l = rule->act_ofs, cmd = rule->cmd ;
l > 0 ; l -= F_LEN(cmd) , cmd += F_LEN(cmd)) {
/* useful alias */
ipfw_insn_u32 *cmd32 = (ipfw_insn_u32 *)cmd;
if (comment_only) {
if (cmd->opcode != O_NOP)
continue;
printf(" // %s\n", (char *)(cmd + 1));
return;
}
show_prerequisites(&flags, 0, cmd->opcode);
switch(cmd->opcode) {
case O_PROB:
break; /* done already */
case O_PROBE_STATE:
break; /* no need to print anything here */
case O_IP_SRC:
case O_IP_SRC_LOOKUP:
case O_IP_SRC_MASK:
case O_IP_SRC_ME:
case O_IP_SRC_SET:
show_prerequisites(&flags, HAVE_PROTO, 0);
if (!(flags & HAVE_SRCIP))
printf(" from");
if ((cmd->len & F_OR) && !or_block)
printf(" {");
print_ip((ipfw_insn_ip *)cmd,
(flags & HAVE_OPTIONS) ? " src-ip" : "");
flags |= HAVE_SRCIP;
break;
case O_IP_DST:
case O_IP_DST_LOOKUP:
case O_IP_DST_MASK:
case O_IP_DST_ME:
case O_IP_DST_SET:
show_prerequisites(&flags, HAVE_PROTO|HAVE_SRCIP, 0);
if (!(flags & HAVE_DSTIP))
printf(" to");
if ((cmd->len & F_OR) && !or_block)
printf(" {");
print_ip((ipfw_insn_ip *)cmd,
(flags & HAVE_OPTIONS) ? " dst-ip" : "");
flags |= HAVE_DSTIP;
break;
case O_IP6_SRC:
case O_IP6_SRC_MASK:
case O_IP6_SRC_ME:
show_prerequisites(&flags, HAVE_PROTO, 0);
if (!(flags & HAVE_SRCIP))
printf(" from");
if ((cmd->len & F_OR) && !or_block)
printf(" {");
print_ip6((ipfw_insn_ip6 *)cmd,
(flags & HAVE_OPTIONS) ? " src-ip6" : "");
flags |= HAVE_SRCIP | HAVE_PROTO;
break;
case O_IP6_DST:
case O_IP6_DST_MASK:
case O_IP6_DST_ME:
show_prerequisites(&flags, HAVE_PROTO|HAVE_SRCIP, 0);
if (!(flags & HAVE_DSTIP))
printf(" to");
if ((cmd->len & F_OR) && !or_block)
printf(" {");
print_ip6((ipfw_insn_ip6 *)cmd,
(flags & HAVE_OPTIONS) ? " dst-ip6" : "");
flags |= HAVE_DSTIP;
break;
case O_FLOW6ID:
print_flow6id( (ipfw_insn_u32 *) cmd );
flags |= HAVE_OPTIONS;
break;
case O_IP_DSTPORT:
show_prerequisites(&flags, HAVE_IP, 0);
case O_IP_SRCPORT:
show_prerequisites(&flags, HAVE_PROTO|HAVE_SRCIP, 0);
if ((cmd->len & F_OR) && !or_block)
printf(" {");
if (cmd->len & F_NOT)
printf(" not");
print_newports((ipfw_insn_u16 *)cmd, proto,
(flags & HAVE_OPTIONS) ? cmd->opcode : 0);
break;
case O_PROTO: {
struct protoent *pe = NULL;
if ((cmd->len & F_OR) && !or_block)
printf(" {");
if (cmd->len & F_NOT)
printf(" not");
proto = cmd->arg1;
pe = getprotobynumber(cmd->arg1);
if ((flags & (HAVE_PROTO4 | HAVE_PROTO6)) &&
!(flags & HAVE_PROTO))
show_prerequisites(&flags,
HAVE_IP | HAVE_OPTIONS, 0);
if (flags & HAVE_OPTIONS)
printf(" proto");
if (pe)
printf(" %s", pe->p_name);
else
printf(" %u", cmd->arg1);
}
flags |= HAVE_PROTO;
break;
default: /*options ... */
if (!(cmd->len & (F_OR|F_NOT)))
if (((cmd->opcode == O_IP6) &&
(flags & HAVE_PROTO6)) ||
((cmd->opcode == O_IP4) &&
(flags & HAVE_PROTO4)))
break;
show_prerequisites(&flags, HAVE_IP | HAVE_OPTIONS, 0);
if ((cmd->len & F_OR) && !or_block)
printf(" {");
if (cmd->len & F_NOT && cmd->opcode != O_IN)
printf(" not");
switch(cmd->opcode) {
case O_MACADDR2: {
ipfw_insn_mac *m = (ipfw_insn_mac *)cmd;
printf(" MAC");
print_mac(m->addr, m->mask);
print_mac(m->addr + 6, m->mask + 6);
}
break;
case O_MAC_TYPE:
print_newports((ipfw_insn_u16 *)cmd,
IPPROTO_ETHERTYPE, cmd->opcode);
break;
case O_FRAG:
printf(" frag");
break;
case O_FIB:
printf(" fib %u", cmd->arg1 );
break;
case O_IN:
printf(cmd->len & F_NOT ? " out" : " in");
break;
case O_DIVERTED:
switch (cmd->arg1) {
case 3:
printf(" diverted");
break;
case 1:
printf(" diverted-loopback");
break;
case 2:
printf(" diverted-output");
break;
default:
printf(" diverted-?<%u>", cmd->arg1);
break;
}
break;
case O_LAYER2:
printf(" layer2");
break;
case O_XMIT:
case O_RECV:
case O_VIA:
{
char const *s;
ipfw_insn_if *cmdif = (ipfw_insn_if *)cmd;
if (cmd->opcode == O_XMIT)
s = "xmit";
else if (cmd->opcode == O_RECV)
s = "recv";
else /* if (cmd->opcode == O_VIA) */
s = "via";
if (cmdif->name[0] == '\0')
printf(" %s %s", s,
inet_ntoa(cmdif->p.ip));
else
printf(" %s %s", s, cmdif->name);
break;
}
case O_IPID:
if (F_LEN(cmd) == 1)
printf(" ipid %u", cmd->arg1 );
else
print_newports((ipfw_insn_u16 *)cmd, 0,
O_IPID);
break;
case O_IPTTL:
if (F_LEN(cmd) == 1)
printf(" ipttl %u", cmd->arg1 );
else
print_newports((ipfw_insn_u16 *)cmd, 0,
O_IPTTL);
break;
case O_IPVER:
printf(" ipver %u", cmd->arg1 );
break;
case O_IPPRECEDENCE:
printf(" ipprecedence %u", (cmd->arg1) >> 5 );
break;
case O_IPLEN:
if (F_LEN(cmd) == 1)
printf(" iplen %u", cmd->arg1 );
else
print_newports((ipfw_insn_u16 *)cmd, 0,
O_IPLEN);
break;
case O_IPOPT:
print_flags("ipoptions", cmd, f_ipopts);
break;
case O_IPTOS:
print_flags("iptos", cmd, f_iptos);
break;
case O_ICMPTYPE:
print_icmptypes((ipfw_insn_u32 *)cmd);
break;
case O_ESTAB:
printf(" established");
break;
case O_TCPDATALEN:
if (F_LEN(cmd) == 1)
printf(" tcpdatalen %u", cmd->arg1 );
else
print_newports((ipfw_insn_u16 *)cmd, 0,
O_TCPDATALEN);
break;
case O_TCPFLAGS:
print_flags("tcpflags", cmd, f_tcpflags);
break;
case O_TCPOPTS:
print_flags("tcpoptions", cmd, f_tcpopts);
break;
case O_TCPWIN:
printf(" tcpwin %d", ntohs(cmd->arg1));
break;
case O_TCPACK:
printf(" tcpack %d", ntohl(cmd32->d[0]));
break;
case O_TCPSEQ:
printf(" tcpseq %d", ntohl(cmd32->d[0]));
break;
case O_UID:
{
struct passwd *pwd = getpwuid(cmd32->d[0]);
if (pwd)
printf(" uid %s", pwd->pw_name);
else
printf(" uid %u", cmd32->d[0]);
}
break;
case O_GID:
{
struct group *grp = getgrgid(cmd32->d[0]);
if (grp)
printf(" gid %s", grp->gr_name);
else
printf(" gid %u", cmd32->d[0]);
}
break;
case O_JAIL:
printf(" jail %d", cmd32->d[0]);
break;
case O_VERREVPATH:
printf(" verrevpath");
break;
case O_VERSRCREACH:
printf(" versrcreach");
break;
case O_ANTISPOOF:
printf(" antispoof");
break;
case O_IPSEC:
printf(" ipsec");
break;
case O_NOP:
comment = (char *)(cmd + 1);
break;
case O_KEEP_STATE:
printf(" keep-state");
break;
case O_LIMIT: {
struct _s_x *p = limit_masks;
ipfw_insn_limit *c = (ipfw_insn_limit *)cmd;
uint8_t x = c->limit_mask;
char const *comma = " ";
printf(" limit");
for (; p->x != 0 ; p++)
if ((x & p->x) == p->x) {
x &= ~p->x;
printf("%s%s", comma, p->s);
comma = ",";
}
PRINT_UINT_ARG(" ", c->conn_limit);
break;
}
case O_IP6:
printf(" ip6");
break;
case O_IP4:
printf(" ip4");
break;
case O_ICMP6TYPE:
print_icmp6types((ipfw_insn_u32 *)cmd);
break;
case O_EXT_HDR:
print_ext6hdr( (ipfw_insn *) cmd );
break;
case O_TAGGED:
if (F_LEN(cmd) == 1)
PRINT_UINT_ARG(" tagged ", cmd->arg1);
else
print_newports((ipfw_insn_u16 *)cmd, 0,
O_TAGGED);
break;
default:
printf(" [opcode %d len %d]",
cmd->opcode, cmd->len);
}
}
if (cmd->len & F_OR) {
printf(" or");
or_block = 1;
} else if (or_block) {
printf(" }");
or_block = 0;
}
}
show_prerequisites(&flags, HAVE_IP, 0);
if (comment)
printf(" // %s", comment);
printf("\n");
}
static void
show_dyn_ipfw(ipfw_dyn_rule *d, int pcwidth, int bcwidth)
{
struct protoent *pe;
struct in_addr a;
uint16_t rulenum;
char buf[INET6_ADDRSTRLEN];
if (!do_expired) {
if (!d->expire && !(d->dyn_type == O_LIMIT_PARENT))
return;
}
bcopy(&d->rule, &rulenum, sizeof(rulenum));
printf("%05d", rulenum);
if (pcwidth>0 || bcwidth>0)
printf(" %*llu %*llu (%ds)", pcwidth,
align_uint64(&d->pcnt), bcwidth,
align_uint64(&d->bcnt), d->expire);
switch (d->dyn_type) {
case O_LIMIT_PARENT:
printf(" PARENT %d", d->count);
break;
case O_LIMIT:
printf(" LIMIT");
break;
case O_KEEP_STATE: /* bidir, no mask */
printf(" STATE");
break;
}
if ((pe = getprotobynumber(d->id.proto)) != NULL)
printf(" %s", pe->p_name);
else
printf(" proto %u", d->id.proto);
if (d->id.addr_type == 4) {
a.s_addr = htonl(d->id.src_ip);
printf(" %s %d", inet_ntoa(a), d->id.src_port);
a.s_addr = htonl(d->id.dst_ip);
printf(" <-> %s %d", inet_ntoa(a), d->id.dst_port);
} else if (d->id.addr_type == 6) {
printf(" %s %d", inet_ntop(AF_INET6, &d->id.src_ip6, buf,
sizeof(buf)), d->id.src_port);
printf(" <-> %s %d", inet_ntop(AF_INET6, &d->id.dst_ip6, buf,
sizeof(buf)), d->id.dst_port);
} else
printf(" UNKNOWN <-> UNKNOWN\n");
printf("\n");
}
static int
sort_q(const void *pa, const void *pb)
{
int rev = (do_sort < 0);
int field = rev ? -do_sort : do_sort;
long long res = 0;
const struct dn_flow_queue *a = pa;
const struct dn_flow_queue *b = pb;
switch (field) {
case 1: /* pkts */
res = a->len - b->len;
break;
case 2: /* bytes */
res = a->len_bytes - b->len_bytes;
break;
case 3: /* tot pkts */
res = a->tot_pkts - b->tot_pkts;
break;
case 4: /* tot bytes */
res = a->tot_bytes - b->tot_bytes;
break;
}
if (res < 0)
res = -1;
if (res > 0)
res = 1;
return (int)(rev ? res : -res);
}
static void
list_queues(struct dn_flow_set *fs, struct dn_flow_queue *q)
{
int l;
int index_printed, indexes = 0;
char buff[255];
struct protoent *pe;
if (fs->rq_elements == 0)
return;
if (do_sort != 0)
heapsort(q, fs->rq_elements, sizeof *q, sort_q);
/* Print IPv4 flows */
index_printed = 0;
for (l = 0; l < fs->rq_elements; l++) {
struct in_addr ina;
/* XXX: Should check for IPv4 flows */
if (IS_IP6_FLOW_ID(&(q[l].id)))
continue;
if (!index_printed) {
index_printed = 1;
if (indexes > 0) /* currently a no-op */
printf("\n");
indexes++;
printf(" "
"mask: 0x%02x 0x%08x/0x%04x -> 0x%08x/0x%04x\n",
fs->flow_mask.proto,
fs->flow_mask.src_ip, fs->flow_mask.src_port,
fs->flow_mask.dst_ip, fs->flow_mask.dst_port);
printf("BKT Prot ___Source IP/port____ "
"____Dest. IP/port____ "
"Tot_pkt/bytes Pkt/Byte Drp\n");
}
printf("%3d ", q[l].hash_slot);
pe = getprotobynumber(q[l].id.proto);
if (pe)
printf("%-4s ", pe->p_name);
else
printf("%4u ", q[l].id.proto);
ina.s_addr = htonl(q[l].id.src_ip);
printf("%15s/%-5d ",
inet_ntoa(ina), q[l].id.src_port);
ina.s_addr = htonl(q[l].id.dst_ip);
printf("%15s/%-5d ",
inet_ntoa(ina), q[l].id.dst_port);
printf("%4qu %8qu %2u %4u %3u\n",
q[l].tot_pkts, q[l].tot_bytes,
q[l].len, q[l].len_bytes, q[l].drops);
if (verbose)
printf(" S %20qd F %20qd\n",
q[l].S, q[l].F);
}
/* Print IPv6 flows */
index_printed = 0;
for (l = 0; l < fs->rq_elements; l++) {
if (!IS_IP6_FLOW_ID(&(q[l].id)))
continue;
if (!index_printed) {
index_printed = 1;
if (indexes > 0)
printf("\n");
indexes++;
printf("\n mask: proto: 0x%02x, flow_id: 0x%08x, ",
fs->flow_mask.proto, fs->flow_mask.flow_id6);
inet_ntop(AF_INET6, &(fs->flow_mask.src_ip6),
buff, sizeof(buff));
printf("%s/0x%04x -> ", buff, fs->flow_mask.src_port);
inet_ntop( AF_INET6, &(fs->flow_mask.dst_ip6),
buff, sizeof(buff) );
printf("%s/0x%04x\n", buff, fs->flow_mask.dst_port);
printf("BKT ___Prot___ _flow-id_ "
"______________Source IPv6/port_______________ "
"_______________Dest. IPv6/port_______________ "
"Tot_pkt/bytes Pkt/Byte Drp\n");
}
printf("%3d ", q[l].hash_slot);
pe = getprotobynumber(q[l].id.proto);
if (pe != NULL)
printf("%9s ", pe->p_name);
else
printf("%9u ", q[l].id.proto);
printf("%7d %39s/%-5d ", q[l].id.flow_id6,
inet_ntop(AF_INET6, &(q[l].id.src_ip6), buff, sizeof(buff)),
q[l].id.src_port);
printf(" %39s/%-5d ",
inet_ntop(AF_INET6, &(q[l].id.dst_ip6), buff, sizeof(buff)),
q[l].id.dst_port);
printf(" %4qu %8qu %2u %4u %3u\n",
q[l].tot_pkts, q[l].tot_bytes,
q[l].len, q[l].len_bytes, q[l].drops);
if (verbose)
printf(" S %20qd F %20qd\n", q[l].S, q[l].F);
}
}
static void
print_flowset_parms(struct dn_flow_set *fs, char *prefix)
{
int l;
char qs[30];
char plr[30];
char red[90]; /* Display RED parameters */
l = fs->qsize;
if (fs->flags_fs & DN_QSIZE_IS_BYTES) {
if (l >= 8192)
sprintf(qs, "%d KB", l / 1024);
else
sprintf(qs, "%d B", l);
} else
sprintf(qs, "%3d sl.", l);
if (fs->plr)
sprintf(plr, "plr %f", 1.0 * fs->plr / (double)(0x7fffffff));
else
plr[0] = '\0';
if (fs->flags_fs & DN_IS_RED) /* RED parameters */
sprintf(red,
"\n\t %cRED w_q %f min_th %d max_th %d max_p %f",
(fs->flags_fs & DN_IS_GENTLE_RED) ? 'G' : ' ',
1.0 * fs->w_q / (double)(1 << SCALE_RED),
SCALE_VAL(fs->min_th),
SCALE_VAL(fs->max_th),
1.0 * fs->max_p / (double)(1 << SCALE_RED));
else
sprintf(red, "droptail");
printf("%s %s%s %d queues (%d buckets) %s\n",
prefix, qs, plr, fs->rq_elements, fs->rq_size, red);
}
static void
list_pipes(void *data, uint nbytes, int ac, char *av[])
{
int rulenum;
void *next = data;
struct dn_pipe *p = (struct dn_pipe *) data;
struct dn_flow_set *fs;
struct dn_flow_queue *q;
int l;
if (ac > 0)
rulenum = strtoul(*av++, NULL, 10);
else
rulenum = 0;
for (; nbytes >= sizeof *p; p = (struct dn_pipe *)next) {
double b = p->bandwidth;
char buf[30];
char prefix[80];
if (SLIST_NEXT(p, next) != (struct dn_pipe *)DN_IS_PIPE)
break; /* done with pipes, now queues */
/*
* compute length, as pipe have variable size
*/
l = sizeof(*p) + p->fs.rq_elements * sizeof(*q);
next = (char *)p + l;
nbytes -= l;
if ((rulenum != 0 && rulenum != p->pipe_nr) || do_pipe == 2)
continue;
/*
* Print rate (or clocking interface)
*/
if (p->if_name[0] != '\0')
sprintf(buf, "%s", p->if_name);
else if (b == 0)
sprintf(buf, "unlimited");
else if (b >= 1000000)
sprintf(buf, "%7.3f Mbit/s", b/1000000);
else if (b >= 1000)
sprintf(buf, "%7.3f Kbit/s", b/1000);
else
sprintf(buf, "%7.3f bit/s ", b);
sprintf(prefix, "%05d: %s %4d ms ",
p->pipe_nr, buf, p->delay);
print_flowset_parms(&(p->fs), prefix);
if (verbose)
printf(" V %20qd\n", p->V >> MY_M);
q = (struct dn_flow_queue *)(p+1);
list_queues(&(p->fs), q);
}
for (fs = next; nbytes >= sizeof *fs; fs = next) {
char prefix[80];
if (SLIST_NEXT(fs, next) != (struct dn_flow_set *)DN_IS_QUEUE)
break;
l = sizeof(*fs) + fs->rq_elements * sizeof(*q);
next = (char *)fs + l;
nbytes -= l;
if (rulenum != 0 && ((rulenum != fs->fs_nr && do_pipe == 2) ||
(rulenum != fs->parent_nr && do_pipe == 1))) {
continue;
}
q = (struct dn_flow_queue *)(fs+1);
sprintf(prefix, "q%05d: weight %d pipe %d ",
fs->fs_nr, fs->weight, fs->parent_nr);
print_flowset_parms(fs, prefix);
list_queues(fs, q);
}
}
/*
* This one handles all set-related commands
* ipfw set { show | enable | disable }
* ipfw set swap X Y
* ipfw set move X to Y
* ipfw set move rule X to Y
*/
static void
sets_handler(int ac, char *av[])
{
uint32_t set_disable, masks[2];
int i, nbytes;
uint16_t rulenum;
uint8_t cmd, new_set;
ac--;
av++;
if (!ac)
errx(EX_USAGE, "set needs command");
if (_substrcmp(*av, "show") == 0) {
void *data;
char const *msg;
nbytes = sizeof(struct ip_fw);
if ((data = calloc(1, nbytes)) == NULL)
err(EX_OSERR, "calloc");
if (do_cmd(IP_FW_GET, data, (uintptr_t)&nbytes) < 0)
err(EX_OSERR, "getsockopt(IP_FW_GET)");
bcopy(&((struct ip_fw *)data)->next_rule,
&set_disable, sizeof(set_disable));
for (i = 0, msg = "disable" ; i < RESVD_SET; i++)
if ((set_disable & (1<<i))) {
printf("%s %d", msg, i);
msg = "";
}
msg = (set_disable) ? " enable" : "enable";
for (i = 0; i < RESVD_SET; i++)
if (!(set_disable & (1<<i))) {
printf("%s %d", msg, i);
msg = "";
}
printf("\n");
} else if (_substrcmp(*av, "swap") == 0) {
ac--; av++;
if (ac != 2)
errx(EX_USAGE, "set swap needs 2 set numbers\n");
rulenum = atoi(av[0]);
new_set = atoi(av[1]);
if (!isdigit(*(av[0])) || rulenum > RESVD_SET)
errx(EX_DATAERR, "invalid set number %s\n", av[0]);
if (!isdigit(*(av[1])) || new_set > RESVD_SET)
errx(EX_DATAERR, "invalid set number %s\n", av[1]);
masks[0] = (4 << 24) | (new_set << 16) | (rulenum);
i = do_cmd(IP_FW_DEL, masks, sizeof(uint32_t));
} else if (_substrcmp(*av, "move") == 0) {
ac--; av++;
if (ac && _substrcmp(*av, "rule") == 0) {
cmd = 2;
ac--; av++;
} else
cmd = 3;
if (ac != 3 || _substrcmp(av[1], "to") != 0)
errx(EX_USAGE, "syntax: set move [rule] X to Y\n");
rulenum = atoi(av[0]);
new_set = atoi(av[2]);
if (!isdigit(*(av[0])) || (cmd == 3 && rulenum > RESVD_SET) ||
(cmd == 2 && rulenum == IPFW_DEFAULT_RULE) )
errx(EX_DATAERR, "invalid source number %s\n", av[0]);
if (!isdigit(*(av[2])) || new_set > RESVD_SET)
errx(EX_DATAERR, "invalid dest. set %s\n", av[1]);
masks[0] = (cmd << 24) | (new_set << 16) | (rulenum);
i = do_cmd(IP_FW_DEL, masks, sizeof(uint32_t));
} else if (_substrcmp(*av, "disable") == 0 ||
_substrcmp(*av, "enable") == 0 ) {
int which = _substrcmp(*av, "enable") == 0 ? 1 : 0;
ac--; av++;
masks[0] = masks[1] = 0;
while (ac) {
if (isdigit(**av)) {
i = atoi(*av);
if (i < 0 || i > RESVD_SET)
errx(EX_DATAERR,
"invalid set number %d\n", i);
masks[which] |= (1<<i);
} else if (_substrcmp(*av, "disable") == 0)
which = 0;
else if (_substrcmp(*av, "enable") == 0)
which = 1;
else
errx(EX_DATAERR,
"invalid set command %s\n", *av);
av++; ac--;
}
if ( (masks[0] & masks[1]) != 0 )
errx(EX_DATAERR,
"cannot enable and disable the same set\n");
i = do_cmd(IP_FW_DEL, masks, sizeof(masks));
if (i)
warn("set enable/disable: setsockopt(IP_FW_DEL)");
} else
errx(EX_USAGE, "invalid set command %s\n", *av);
}
static void
sysctl_handler(int ac, char *av[], int which)
{
ac--;
av++;
if (ac == 0) {
warnx("missing keyword to enable/disable\n");
} else if (_substrcmp(*av, "firewall") == 0) {
sysctlbyname("net.inet.ip.fw.enable", NULL, 0,
&which, sizeof(which));
} else if (_substrcmp(*av, "one_pass") == 0) {
sysctlbyname("net.inet.ip.fw.one_pass", NULL, 0,
&which, sizeof(which));
} else if (_substrcmp(*av, "debug") == 0) {
sysctlbyname("net.inet.ip.fw.debug", NULL, 0,
&which, sizeof(which));
} else if (_substrcmp(*av, "verbose") == 0) {
sysctlbyname("net.inet.ip.fw.verbose", NULL, 0,
&which, sizeof(which));
} else if (_substrcmp(*av, "dyn_keepalive") == 0) {
sysctlbyname("net.inet.ip.fw.dyn_keepalive", NULL, 0,
&which, sizeof(which));
} else if (_substrcmp(*av, "altq") == 0) {
altq_set_enabled(which);
} else {
warnx("unrecognize enable/disable keyword: %s\n", *av);
}
}
static void
list(int ac, char *av[], int show_counters)
{
struct ip_fw *r;
ipfw_dyn_rule *dynrules, *d;
#define NEXT(r) ((struct ip_fw *)((char *)r + RULESIZE(r)))
char *lim;
void *data = NULL;
int bcwidth, n, nbytes, nstat, ndyn, pcwidth, width;
int exitval = EX_OK;
int lac;
char **lav;
u_long rnum, last;
char *endptr;
int seen = 0;
uint8_t set;
const int ocmd = do_pipe ? IP_DUMMYNET_GET : IP_FW_GET;
int nalloc = 1024; /* start somewhere... */
last = 0;
if (test_only) {
fprintf(stderr, "Testing only, list disabled\n");
return;
}
ac--;
av++;
/* get rules or pipes from kernel, resizing array as necessary */
nbytes = nalloc;
while (nbytes >= nalloc) {
nalloc = nalloc * 2 + 200;
nbytes = nalloc;
if ((data = realloc(data, nbytes)) == NULL)
err(EX_OSERR, "realloc");
if (do_cmd(ocmd, data, (uintptr_t)&nbytes) < 0)
err(EX_OSERR, "getsockopt(IP_%s_GET)",
do_pipe ? "DUMMYNET" : "FW");
}
if (do_pipe) {
list_pipes(data, nbytes, ac, av);
goto done;
}
/*
* Count static rules. They have variable size so we
* need to scan the list to count them.
*/
for (nstat = 1, r = data, lim = (char *)data + nbytes;
r->rulenum < IPFW_DEFAULT_RULE && (char *)r < lim;
++nstat, r = NEXT(r) )
; /* nothing */
/*
* Count dynamic rules. This is easier as they have
* fixed size.
*/
r = NEXT(r);
dynrules = (ipfw_dyn_rule *)r ;
n = (char *)r - (char *)data;
ndyn = (nbytes - n) / sizeof *dynrules;
/* if showing stats, figure out column widths ahead of time */
bcwidth = pcwidth = 0;
if (show_counters) {
for (n = 0, r = data; n < nstat; n++, r = NEXT(r)) {
/* skip rules from another set */
if (use_set && r->set != use_set - 1)
continue;
/* packet counter */
width = snprintf(NULL, 0, "%llu",
align_uint64(&r->pcnt));
if (width > pcwidth)
pcwidth = width;
/* byte counter */
width = snprintf(NULL, 0, "%llu",
align_uint64(&r->bcnt));
if (width > bcwidth)
bcwidth = width;
}
}
if (do_dynamic && ndyn) {
for (n = 0, d = dynrules; n < ndyn; n++, d++) {
if (use_set) {
/* skip rules from another set */
bcopy((char *)&d->rule + sizeof(uint16_t),
&set, sizeof(uint8_t));
if (set != use_set - 1)
continue;
}
width = snprintf(NULL, 0, "%llu",
align_uint64(&d->pcnt));
if (width > pcwidth)
pcwidth = width;
width = snprintf(NULL, 0, "%llu",
align_uint64(&d->bcnt));
if (width > bcwidth)
bcwidth = width;
}
}
/* if no rule numbers were specified, list all rules */
if (ac == 0) {
for (n = 0, r = data; n < nstat; n++, r = NEXT(r)) {
if (use_set && r->set != use_set - 1)
continue;
show_ipfw(r, pcwidth, bcwidth);
}
if (do_dynamic && ndyn) {
printf("## Dynamic rules (%d):\n", ndyn);
for (n = 0, d = dynrules; n < ndyn; n++, d++) {
if (use_set) {
bcopy((char *)&d->rule + sizeof(uint16_t),
&set, sizeof(uint8_t));
if (set != use_set - 1)
continue;
}
show_dyn_ipfw(d, pcwidth, bcwidth);
}
}
goto done;
}
/* display specific rules requested on command line */
for (lac = ac, lav = av; lac != 0; lac--) {
/* convert command line rule # */
last = rnum = strtoul(*lav++, &endptr, 10);
if (*endptr == '-')
last = strtoul(endptr+1, &endptr, 10);
if (*endptr) {
exitval = EX_USAGE;
warnx("invalid rule number: %s", *(lav - 1));
continue;
}
for (n = seen = 0, r = data; n < nstat; n++, r = NEXT(r) ) {
if (r->rulenum > last)
break;
if (use_set && r->set != use_set - 1)
continue;
if (r->rulenum >= rnum && r->rulenum <= last) {
show_ipfw(r, pcwidth, bcwidth);
seen = 1;
}
}
if (!seen) {
/* give precedence to other error(s) */
if (exitval == EX_OK)
exitval = EX_UNAVAILABLE;
warnx("rule %lu does not exist", rnum);
}
}
if (do_dynamic && ndyn) {
printf("## Dynamic rules:\n");
for (lac = ac, lav = av; lac != 0; lac--) {
last = rnum = strtoul(*lav++, &endptr, 10);
if (*endptr == '-')
last = strtoul(endptr+1, &endptr, 10);
if (*endptr)
/* already warned */
continue;
for (n = 0, d = dynrules; n < ndyn; n++, d++) {
uint16_t rulenum;
bcopy(&d->rule, &rulenum, sizeof(rulenum));
if (rulenum > rnum)
break;
if (use_set) {
bcopy((char *)&d->rule + sizeof(uint16_t),
&set, sizeof(uint8_t));
if (set != use_set - 1)
continue;
}
if (r->rulenum >= rnum && r->rulenum <= last)
show_dyn_ipfw(d, pcwidth, bcwidth);
}
}
}
ac = 0;
done:
free(data);
if (exitval != EX_OK)
exit(exitval);
#undef NEXT
}
static void
show_usage(void)
{
fprintf(stderr, "usage: ipfw [options]\n"
"do \"ipfw -h\" or see ipfw manpage for details\n"
);
exit(EX_USAGE);
}
static void
help(void)
{
fprintf(stderr,
"ipfw syntax summary (but please do read the ipfw(8) manpage):\n"
"ipfw [-abcdefhnNqStTv] <command> where <command> is one of:\n"
"add [num] [set N] [prob x] RULE-BODY\n"
"{pipe|queue} N config PIPE-BODY\n"
"[pipe|queue] {zero|delete|show} [N{,N}]\n"
"nat N config {ip IPADDR|if IFNAME|log|deny_in|same_ports|unreg_only|reset|\n"
" reverse|proxy_only|redirect_addr linkspec|\n"
" redirect_port linkspec|redirect_proto linkspec}\n"
"set [disable N... enable N...] | move [rule] X to Y | swap X Y | show\n"
"set N {show|list|zero|resetlog|delete} [N{,N}] | flush\n"
"table N {add ip[/bits] [value] | delete ip[/bits] | flush | list}\n"
"table all {flush | list}\n"
"\n"
"RULE-BODY: check-state [PARAMS] | ACTION [PARAMS] ADDR [OPTION_LIST]\n"
"ACTION: check-state | allow | count | deny | unreach{,6} CODE |\n"
" skipto N | {divert|tee} PORT | forward ADDR |\n"
" pipe N | queue N | nat N | setfib FIB\n"
"PARAMS: [log [logamount LOGLIMIT]] [altq QUEUE_NAME]\n"
"ADDR: [ MAC dst src ether_type ] \n"
" [ ip from IPADDR [ PORT ] to IPADDR [ PORTLIST ] ]\n"
" [ ipv6|ip6 from IP6ADDR [ PORT ] to IP6ADDR [ PORTLIST ] ]\n"
"IPADDR: [not] { any | me | ip/bits{x,y,z} | table(t[,v]) | IPLIST }\n"
"IP6ADDR: [not] { any | me | me6 | ip6/bits | IP6LIST }\n"
"IP6LIST: { ip6 | ip6/bits }[,IP6LIST]\n"
"IPLIST: { ip | ip/bits | ip:mask }[,IPLIST]\n"
"OPTION_LIST: OPTION [OPTION_LIST]\n"
"OPTION: bridged | diverted | diverted-loopback | diverted-output |\n"
" {dst-ip|src-ip} IPADDR | {dst-ip6|src-ip6|dst-ipv6|src-ipv6} IP6ADDR |\n"
" {dst-port|src-port} LIST |\n"
" estab | frag | {gid|uid} N | icmptypes LIST | in | out | ipid LIST |\n"
" iplen LIST | ipoptions SPEC | ipprecedence | ipsec | iptos SPEC |\n"
" ipttl LIST | ipversion VER | keep-state | layer2 | limit ... |\n"
" icmp6types LIST | ext6hdr LIST | flow-id N[,N] | fib FIB |\n"
" mac ... | mac-type LIST | proto LIST | {recv|xmit|via} {IF|IPADDR} |\n"
" setup | {tcpack|tcpseq|tcpwin} NN | tcpflags SPEC | tcpoptions SPEC |\n"
" tcpdatalen LIST | verrevpath | versrcreach | antispoof\n"
);
exit(0);
}
static int
lookup_host (char *host, struct in_addr *ipaddr)
{
struct hostent *he;
if (!inet_aton(host, ipaddr)) {
if ((he = gethostbyname(host)) == NULL)
return(-1);
*ipaddr = *(struct in_addr *)he->h_addr_list[0];
}
return(0);
}
/*
* fills the addr and mask fields in the instruction as appropriate from av.
* Update length as appropriate.
* The following formats are allowed:
* me returns O_IP_*_ME
* 1.2.3.4 single IP address
* 1.2.3.4:5.6.7.8 address:mask
* 1.2.3.4/24 address/mask
* 1.2.3.4/26{1,6,5,4,23} set of addresses in a subnet
* We can have multiple comma-separated address/mask entries.
*/
static void
fill_ip(ipfw_insn_ip *cmd, char *av)
{
int len = 0;
uint32_t *d = ((ipfw_insn_u32 *)cmd)->d;
cmd->o.len &= ~F_LEN_MASK; /* zero len */
if (_substrcmp(av, "any") == 0)
return;
if (_substrcmp(av, "me") == 0) {
cmd->o.len |= F_INSN_SIZE(ipfw_insn);
return;
}
if (strncmp(av, "table(", 6) == 0) {
char *p = strchr(av + 6, ',');
if (p)
*p++ = '\0';
cmd->o.opcode = O_IP_DST_LOOKUP;
cmd->o.arg1 = strtoul(av + 6, NULL, 0);
if (p) {
cmd->o.len |= F_INSN_SIZE(ipfw_insn_u32);
d[0] = strtoul(p, NULL, 0);
} else
cmd->o.len |= F_INSN_SIZE(ipfw_insn);
return;
}
while (av) {
/*
* After the address we can have '/' or ':' indicating a mask,
* ',' indicating another address follows, '{' indicating a
* set of addresses of unspecified size.
*/
char *t = NULL, *p = strpbrk(av, "/:,{");
int masklen;
char md, nd;
if (p) {
md = *p;
*p++ = '\0';
if ((t = strpbrk(p, ",{")) != NULL) {
nd = *t;
*t = '\0';
}
} else
md = '\0';
if (lookup_host(av, (struct in_addr *)&d[0]) != 0)
errx(EX_NOHOST, "hostname ``%s'' unknown", av);
switch (md) {
case ':':
if (!inet_aton(p, (struct in_addr *)&d[1]))
errx(EX_DATAERR, "bad netmask ``%s''", p);
break;
case '/':
masklen = atoi(p);
if (masklen == 0)
d[1] = htonl(0); /* mask */
else if (masklen > 32)
errx(EX_DATAERR, "bad width ``%s''", p);
else
d[1] = htonl(~0 << (32 - masklen));
break;
case '{': /* no mask, assume /24 and put back the '{' */
d[1] = htonl(~0 << (32 - 24));
*(--p) = md;
break;
case ',': /* single address plus continuation */
*(--p) = md;
/* FALLTHROUGH */
case 0: /* initialization value */
default:
d[1] = htonl(~0); /* force /32 */
break;
}
d[0] &= d[1]; /* mask base address with mask */
if (t)
*t = nd;
/* find next separator */
if (p)
p = strpbrk(p, ",{");
if (p && *p == '{') {
/*
* We have a set of addresses. They are stored as follows:
* arg1 is the set size (powers of 2, 2..256)
* addr is the base address IN HOST FORMAT
* mask.. is an array of arg1 bits (rounded up to
* the next multiple of 32) with bits set
* for each host in the map.
*/
uint32_t *map = (uint32_t *)&cmd->mask;
int low, high;
int i = contigmask((uint8_t *)&(d[1]), 32);
if (len > 0)
errx(EX_DATAERR, "address set cannot be in a list");
if (i < 24 || i > 31)
errx(EX_DATAERR, "invalid set with mask %d\n", i);
cmd->o.arg1 = 1<<(32-i); /* map length */
d[0] = ntohl(d[0]); /* base addr in host format */
cmd->o.opcode = O_IP_DST_SET; /* default */
cmd->o.len |= F_INSN_SIZE(ipfw_insn_u32) + (cmd->o.arg1+31)/32;
for (i = 0; i < (cmd->o.arg1+31)/32 ; i++)
map[i] = 0; /* clear map */
av = p + 1;
low = d[0] & 0xff;
high = low + cmd->o.arg1 - 1;
/*
* Here, i stores the previous value when we specify a range
* of addresses within a mask, e.g. 45-63. i = -1 means we
* have no previous value.
*/
i = -1; /* previous value in a range */
while (isdigit(*av)) {
char *s;
int a = strtol(av, &s, 0);
if (s == av) { /* no parameter */
if (*av != '}')
errx(EX_DATAERR, "set not closed\n");
if (i != -1)
errx(EX_DATAERR, "incomplete range %d-", i);
break;
}
if (a < low || a > high)
errx(EX_DATAERR, "addr %d out of range [%d-%d]\n",
a, low, high);
a -= low;
if (i == -1) /* no previous in range */
i = a;
else { /* check that range is valid */
if (i > a)
errx(EX_DATAERR, "invalid range %d-%d",
i+low, a+low);
if (*s == '-')
errx(EX_DATAERR, "double '-' in range");
}
for (; i <= a; i++)
map[i/32] |= 1<<(i & 31);
i = -1;
if (*s == '-')
i = a;
else if (*s == '}')
break;
av = s+1;
}
return;
}
av = p;
if (av) /* then *av must be a ',' */
av++;
/* Check this entry */
if (d[1] == 0) { /* "any", specified as x.x.x.x/0 */
/*
* 'any' turns the entire list into a NOP.
* 'not any' never matches, so it is removed from the
* list unless it is the only item, in which case we
* report an error.
*/
if (cmd->o.len & F_NOT) { /* "not any" never matches */
if (av == NULL && len == 0) /* only this entry */
errx(EX_DATAERR, "not any never matches");
}
/* else do nothing and skip this entry */
return;
}
/* A single IP can be stored in an optimized format */
if (d[1] == IP_MASK_ALL && av == NULL && len == 0) {
cmd->o.len |= F_INSN_SIZE(ipfw_insn_u32);
return;
}
len += 2; /* two words... */
d += 2;
} /* end while */
if (len + 1 > F_LEN_MASK)
errx(EX_DATAERR, "address list too long");
cmd->o.len |= len+1;
}
/* Try to find ipv6 address by hostname */
static int
lookup_host6 (char *host, struct in6_addr *ip6addr)
{
struct hostent *he;
if (!inet_pton(AF_INET6, host, ip6addr)) {
if ((he = gethostbyname2(host, AF_INET6)) == NULL)
return(-1);
memcpy(ip6addr, he->h_addr_list[0], sizeof( struct in6_addr));
}
return(0);
}
/* n2mask sets n bits of the mask */
static void
n2mask(struct in6_addr *mask, int n)
{
static int minimask[9] =
{ 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff };
u_char *p;
memset(mask, 0, sizeof(struct in6_addr));
p = (u_char *) mask;
for (; n > 0; p++, n -= 8) {
if (n >= 8)
*p = 0xff;
else
*p = minimask[n];
}
return;
}
/*
* fill the addr and mask fields in the instruction as appropriate from av.
* Update length as appropriate.
* The following formats are allowed:
* any matches any IP6. Actually returns an empty instruction.
* me returns O_IP6_*_ME
*
* 03f1::234:123:0342 single IP6 addres
* 03f1::234:123:0342/24 address/mask
* 03f1::234:123:0342/24,03f1::234:123:0343/ List of address
*
* Set of address (as in ipv6) not supported because ipv6 address
* are typically random past the initial prefix.
* Return 1 on success, 0 on failure.
*/
static int
fill_ip6(ipfw_insn_ip6 *cmd, char *av)
{
int len = 0;
struct in6_addr *d = &(cmd->addr6);
/*
* Needed for multiple address.
* Note d[1] points to struct in6_add r mask6 of cmd
*/
cmd->o.len &= ~F_LEN_MASK; /* zero len */
if (strcmp(av, "any") == 0)
return (1);
if (strcmp(av, "me") == 0) { /* Set the data for "me" opt*/
cmd->o.len |= F_INSN_SIZE(ipfw_insn);
return (1);
}
if (strcmp(av, "me6") == 0) { /* Set the data for "me" opt*/
cmd->o.len |= F_INSN_SIZE(ipfw_insn);
return (1);
}
av = strdup(av);
while (av) {
/*
* After the address we can have '/' indicating a mask,
* or ',' indicating another address follows.
*/
char *p;
int masklen;
char md = '\0';
if ((p = strpbrk(av, "/,")) ) {
md = *p; /* save the separator */
*p = '\0'; /* terminate address string */
p++; /* and skip past it */
}
/* now p points to NULL, mask or next entry */
/* lookup stores address in *d as a side effect */
if (lookup_host6(av, d) != 0) {
/* XXX: failed. Free memory and go */
errx(EX_DATAERR, "bad address \"%s\"", av);
}
/* next, look at the mask, if any */
masklen = (md == '/') ? atoi(p) : 128;
if (masklen > 128 || masklen < 0)
errx(EX_DATAERR, "bad width \"%s\''", p);
else
n2mask(&d[1], masklen);
APPLY_MASK(d, &d[1]) /* mask base address with mask */
/* find next separator */
if (md == '/') { /* find separator past the mask */
p = strpbrk(p, ",");
if (p != NULL)
p++;
}
av = p;
/* Check this entry */
if (masklen == 0) {
/*
* 'any' turns the entire list into a NOP.
* 'not any' never matches, so it is removed from the
* list unless it is the only item, in which case we
* report an error.
*/
if (cmd->o.len & F_NOT && av == NULL && len == 0)
errx(EX_DATAERR, "not any never matches");
continue;
}
/*
* A single IP can be stored alone
*/
if (masklen == 128 && av == NULL && len == 0) {
len = F_INSN_SIZE(struct in6_addr);
break;
}
/* Update length and pointer to arguments */
len += F_INSN_SIZE(struct in6_addr)*2;
d += 2;
} /* end while */
/*
* Total length of the command, remember that 1 is the size of
* the base command.
*/
if (len + 1 > F_LEN_MASK)
errx(EX_DATAERR, "address list too long");
cmd->o.len |= len+1;
free(av);
return (1);
}
/*
* fills command for ipv6 flow-id filtering
* note that the 20 bit flow number is stored in a array of u_int32_t
* it's supported lists of flow-id, so in the o.arg1 we store how many
* additional flow-id we want to filter, the basic is 1
*/
void
fill_flow6( ipfw_insn_u32 *cmd, char *av )
{
u_int32_t type; /* Current flow number */
u_int16_t nflow = 0; /* Current flow index */
char *s = av;
cmd->d[0] = 0; /* Initializing the base number*/
while (s) {
av = strsep( &s, ",") ;
type = strtoul(av, &av, 0);
if (*av != ',' && *av != '\0')
errx(EX_DATAERR, "invalid ipv6 flow number %s", av);
if (type > 0xfffff)
errx(EX_DATAERR, "flow number out of range %s", av);
cmd->d[nflow] |= type;
nflow++;
}
if( nflow > 0 ) {
cmd->o.opcode = O_FLOW6ID;
cmd->o.len |= F_INSN_SIZE(ipfw_insn_u32) + nflow;
cmd->o.arg1 = nflow;
}
else {
errx(EX_DATAERR, "invalid ipv6 flow number %s", av);
}
}
static ipfw_insn *
add_srcip6(ipfw_insn *cmd, char *av)
{
fill_ip6((ipfw_insn_ip6 *)cmd, av);
if (F_LEN(cmd) == 0) /* any */
;
if (F_LEN(cmd) == F_INSN_SIZE(ipfw_insn)) { /* "me" */
cmd->opcode = O_IP6_SRC_ME;
} else if (F_LEN(cmd) ==
(F_INSN_SIZE(struct in6_addr) + F_INSN_SIZE(ipfw_insn))) {
/* single IP, no mask*/
cmd->opcode = O_IP6_SRC;
} else { /* addr/mask opt */
cmd->opcode = O_IP6_SRC_MASK;
}
return cmd;
}
static ipfw_insn *
add_dstip6(ipfw_insn *cmd, char *av)
{
fill_ip6((ipfw_insn_ip6 *)cmd, av);
if (F_LEN(cmd) == 0) /* any */
;
if (F_LEN(cmd) == F_INSN_SIZE(ipfw_insn)) { /* "me" */
cmd->opcode = O_IP6_DST_ME;
} else if (F_LEN(cmd) ==
(F_INSN_SIZE(struct in6_addr) + F_INSN_SIZE(ipfw_insn))) {
/* single IP, no mask*/
cmd->opcode = O_IP6_DST;
} else { /* addr/mask opt */
cmd->opcode = O_IP6_DST_MASK;
}
return cmd;
}
/*
* helper function to process a set of flags and set bits in the
* appropriate masks.
*/
static void
fill_flags(ipfw_insn *cmd, enum ipfw_opcodes opcode,
struct _s_x *flags, char *p)
{
uint8_t set=0, clear=0;
while (p && *p) {
char *q; /* points to the separator */
int val;
uint8_t *which; /* mask we are working on */
if (*p == '!') {
p++;
which = &clear;
} else
which = &set;
q = strchr(p, ',');
if (q)
*q++ = '\0';
val = match_token(flags, p);
if (val <= 0)
errx(EX_DATAERR, "invalid flag %s", p);
*which |= (uint8_t)val;
p = q;
}
cmd->opcode = opcode;
cmd->len = (cmd->len & (F_NOT | F_OR)) | 1;
cmd->arg1 = (set & 0xff) | ( (clear & 0xff) << 8);
}
static void
delete(int ac, char *av[])
{
uint32_t rulenum;
struct dn_pipe p;
int i;
int exitval = EX_OK;
int do_set = 0;
memset(&p, 0, sizeof p);
av++; ac--;
NEED1("missing rule specification");
if (ac > 0 && _substrcmp(*av, "set") == 0) {
/* Do not allow using the following syntax:
* ipfw set N delete set M
*/
if (use_set)
errx(EX_DATAERR, "invalid syntax");
do_set = 1; /* delete set */
ac--; av++;
}
/* Rule number */
while (ac && isdigit(**av)) {
i = atoi(*av); av++; ac--;
if (do_nat) {
exitval = do_cmd(IP_FW_NAT_DEL, &i, sizeof i);
if (exitval) {
exitval = EX_UNAVAILABLE;
warn("rule %u not available", i);
}
} else if (do_pipe) {
if (do_pipe == 1)
p.pipe_nr = i;
else
p.fs.fs_nr = i;
i = do_cmd(IP_DUMMYNET_DEL, &p, sizeof p);
if (i) {
exitval = 1;
warn("rule %u: setsockopt(IP_DUMMYNET_DEL)",
do_pipe == 1 ? p.pipe_nr : p.fs.fs_nr);
}
} else {
if (use_set)
rulenum = (i & 0xffff) | (5 << 24) |
((use_set - 1) << 16);
else
rulenum = (i & 0xffff) | (do_set << 24);
i = do_cmd(IP_FW_DEL, &rulenum, sizeof rulenum);
if (i) {
exitval = EX_UNAVAILABLE;
warn("rule %u: setsockopt(IP_FW_DEL)",
rulenum);
}
}
}
if (exitval != EX_OK)
exit(exitval);
}
/*
* fill the interface structure. We do not check the name as we can
* create interfaces dynamically, so checking them at insert time
* makes relatively little sense.
* Interface names containing '*', '?', or '[' are assumed to be shell
* patterns which match interfaces.
*/
static void
fill_iface(ipfw_insn_if *cmd, char *arg)
{
cmd->name[0] = '\0';
cmd->o.len |= F_INSN_SIZE(ipfw_insn_if);
/* Parse the interface or address */
if (strcmp(arg, "any") == 0)
cmd->o.len = 0; /* effectively ignore this command */
else if (!isdigit(*arg)) {
strlcpy(cmd->name, arg, sizeof(cmd->name));
cmd->p.glob = strpbrk(arg, "*?[") != NULL ? 1 : 0;
} else if (!inet_aton(arg, &cmd->p.ip))
errx(EX_DATAERR, "bad ip address ``%s''", arg);
}
/*
* Search for interface with name "ifn", and fill n accordingly:
*
* n->ip ip address of interface "ifn"
* n->if_name copy of interface name "ifn"
*/
static void
set_addr_dynamic(const char *ifn, struct cfg_nat *n)
{
size_t needed;
int mib[6];
char *buf, *lim, *next;
struct if_msghdr *ifm;
struct ifa_msghdr *ifam;
struct sockaddr_dl *sdl;
struct sockaddr_in *sin;
int ifIndex, ifMTU;
mib[0] = CTL_NET;
mib[1] = PF_ROUTE;
mib[2] = 0;
mib[3] = AF_INET;
mib[4] = NET_RT_IFLIST;
mib[5] = 0;
/*
* Get interface data.
*/
if (sysctl(mib, 6, NULL, &needed, NULL, 0) == -1)
err(1, "iflist-sysctl-estimate");
if ((buf = malloc(needed)) == NULL)
errx(1, "malloc failed");
if (sysctl(mib, 6, buf, &needed, NULL, 0) == -1)
err(1, "iflist-sysctl-get");
lim = buf + needed;
/*
* Loop through interfaces until one with
* given name is found. This is done to
* find correct interface index for routing
* message processing.
*/
ifIndex = 0;
next = buf;
while (next < lim) {
ifm = (struct if_msghdr *)next;
next += ifm->ifm_msglen;
if (ifm->ifm_version != RTM_VERSION) {
if (verbose)
warnx("routing message version %d "
"not understood", ifm->ifm_version);
continue;
}
if (ifm->ifm_type == RTM_IFINFO) {
sdl = (struct sockaddr_dl *)(ifm + 1);
if (strlen(ifn) == sdl->sdl_nlen &&
strncmp(ifn, sdl->sdl_data, sdl->sdl_nlen) == 0) {
ifIndex = ifm->ifm_index;
ifMTU = ifm->ifm_data.ifi_mtu;
break;
}
}
}
if (!ifIndex)
errx(1, "unknown interface name %s", ifn);
/*
* Get interface address.
*/
sin = NULL;
while (next < lim) {
ifam = (struct ifa_msghdr *)next;
next += ifam->ifam_msglen;
if (ifam->ifam_version != RTM_VERSION) {
if (verbose)
warnx("routing message version %d "
"not understood", ifam->ifam_version);
continue;
}
if (ifam->ifam_type != RTM_NEWADDR)
break;
if (ifam->ifam_addrs & RTA_IFA) {
int i;
char *cp = (char *)(ifam + 1);
for (i = 1; i < RTA_IFA; i <<= 1) {
if (ifam->ifam_addrs & i)
cp += SA_SIZE((struct sockaddr *)cp);
}
if (((struct sockaddr *)cp)->sa_family == AF_INET) {
sin = (struct sockaddr_in *)cp;
break;
}
}
}
if (sin == NULL)
errx(1, "%s: cannot get interface address", ifn);
n->ip = sin->sin_addr;
strncpy(n->if_name, ifn, IF_NAMESIZE);
free(buf);
}
/*
* XXX - The following functions, macros and definitions come from natd.c:
* it would be better to move them outside natd.c, in a file
* (redirect_support.[ch]?) shared by ipfw and natd, but for now i can live
* with it.
*/
/*
* Definition of a port range, and macros to deal with values.
* FORMAT: HI 16-bits == first port in range, 0 == all ports.
* LO 16-bits == number of ports in range
* NOTES: - Port values are not stored in network byte order.
*/
#define port_range u_long
#define GETLOPORT(x) ((x) >> 0x10)
#define GETNUMPORTS(x) ((x) & 0x0000ffff)
#define GETHIPORT(x) (GETLOPORT((x)) + GETNUMPORTS((x)))
/* Set y to be the low-port value in port_range variable x. */
#define SETLOPORT(x,y) ((x) = ((x) & 0x0000ffff) | ((y) << 0x10))
/* Set y to be the number of ports in port_range variable x. */
#define SETNUMPORTS(x,y) ((x) = ((x) & 0xffff0000) | (y))
static void
StrToAddr (const char* str, struct in_addr* addr)
{
struct hostent* hp;
if (inet_aton (str, addr))
return;
hp = gethostbyname (str);
if (!hp)
errx (1, "unknown host %s", str);
memcpy (addr, hp->h_addr, sizeof (struct in_addr));
}
static int
StrToPortRange (const char* str, const char* proto, port_range *portRange)
{
char* sep;
struct servent* sp;
char* end;
u_short loPort;
u_short hiPort;
/* First see if this is a service, return corresponding port if so. */
sp = getservbyname (str,proto);
if (sp) {
SETLOPORT(*portRange, ntohs(sp->s_port));
SETNUMPORTS(*portRange, 1);
return 0;
}
/* Not a service, see if it's a single port or port range. */
sep = strchr (str, '-');
if (sep == NULL) {
SETLOPORT(*portRange, strtol(str, &end, 10));
if (end != str) {
/* Single port. */
SETNUMPORTS(*portRange, 1);
return 0;
}
/* Error in port range field. */
errx (EX_DATAERR, "%s/%s: unknown service", str, proto);
}
/* Port range, get the values and sanity check. */
sscanf (str, "%hu-%hu", &loPort, &hiPort);
SETLOPORT(*portRange, loPort);
SETNUMPORTS(*portRange, 0); /* Error by default */
if (loPort <= hiPort)
SETNUMPORTS(*portRange, hiPort - loPort + 1);
if (GETNUMPORTS(*portRange) == 0)
errx (EX_DATAERR, "invalid port range %s", str);
return 0;
}
static int
StrToProto (const char* str)
{
if (!strcmp (str, "tcp"))
return IPPROTO_TCP;
if (!strcmp (str, "udp"))
return IPPROTO_UDP;
errx (EX_DATAERR, "unknown protocol %s. Expected tcp or udp", str);
}
static int
StrToAddrAndPortRange (const char* str, struct in_addr* addr, char* proto,
port_range *portRange)
{
char* ptr;
ptr = strchr (str, ':');
if (!ptr)
errx (EX_DATAERR, "%s is missing port number", str);
*ptr = '\0';
++ptr;
StrToAddr (str, addr);
return StrToPortRange (ptr, proto, portRange);
}
/* End of stuff taken from natd.c. */
#define INC_ARGCV() do { \
(*_av)++; \
(*_ac)--; \
av = *_av; \
ac = *_ac; \
} while(0)
/*
* The next 3 functions add support for the addr, port and proto redirect and
* their logic is loosely based on SetupAddressRedirect(), SetupPortRedirect()
* and SetupProtoRedirect() from natd.c.
*
* Every setup_* function fills at least one redirect entry
* (struct cfg_redir) and zero or more server pool entry (struct cfg_spool)
* in buf.
*
* The format of data in buf is:
*
*
* cfg_nat cfg_redir cfg_spool ...... cfg_spool
*
* ------------------------------------- ------------
* | | .....X ... | | | | .....
* ------------------------------------- ...... ------------
* ^
* spool_cnt n=0 ...... n=(X-1)
*
* len points to the amount of available space in buf
* space counts the memory consumed by every function
*
* XXX - Every function get all the argv params so it
* has to check, in optional parameters, that the next
* args is a valid option for the redir entry and not
* another token. Only redir_port and redir_proto are
* affected by this.
*/
static int
setup_redir_addr(char *spool_buf, int len,
int *_ac, char ***_av)
{
char **av, *sep; /* Token separator. */
/* Temporary buffer used to hold server pool ip's. */
char tmp_spool_buf[NAT_BUF_LEN];
int ac, space, lsnat;
struct cfg_redir *r;
struct cfg_spool *tmp;
av = *_av;
ac = *_ac;
space = 0;
lsnat = 0;
if (len >= SOF_REDIR) {
r = (struct cfg_redir *)spool_buf;
/* Skip cfg_redir at beginning of buf. */
spool_buf = &spool_buf[SOF_REDIR];
space = SOF_REDIR;
len -= SOF_REDIR;
} else
goto nospace;
r->mode = REDIR_ADDR;
/* Extract local address. */
if (ac == 0)
errx(EX_DATAERR, "redirect_addr: missing local address");
sep = strchr(*av, ',');
if (sep) { /* LSNAT redirection syntax. */
r->laddr.s_addr = INADDR_NONE;
/* Preserve av, copy spool servers to tmp_spool_buf. */
strncpy(tmp_spool_buf, *av, strlen(*av)+1);
lsnat = 1;
} else
StrToAddr(*av, &r->laddr);
INC_ARGCV();
/* Extract public address. */
if (ac == 0)
errx(EX_DATAERR, "redirect_addr: missing public address");
StrToAddr(*av, &r->paddr);
INC_ARGCV();
/* Setup LSNAT server pool. */
if (sep) {
sep = strtok(tmp_spool_buf, ",");
while (sep != NULL) {
tmp = (struct cfg_spool *)spool_buf;
if (len < SOF_SPOOL)
goto nospace;
len -= SOF_SPOOL;
space += SOF_SPOOL;
StrToAddr(sep, &tmp->addr);
tmp->port = ~0;
r->spool_cnt++;
/* Point to the next possible cfg_spool. */
spool_buf = &spool_buf[SOF_SPOOL];
sep = strtok(NULL, ",");
}
}
return(space);
nospace:
errx(EX_DATAERR, "redirect_addr: buf is too small\n");
}
static int
setup_redir_port(char *spool_buf, int len,
int *_ac, char ***_av)
{
char **av, *sep, *protoName;
char tmp_spool_buf[NAT_BUF_LEN];
int ac, space, lsnat;
struct cfg_redir *r;
struct cfg_spool *tmp;
u_short numLocalPorts;
port_range portRange;
av = *_av;
ac = *_ac;
space = 0;
lsnat = 0;
numLocalPorts = 0;
if (len >= SOF_REDIR) {
r = (struct cfg_redir *)spool_buf;
/* Skip cfg_redir at beginning of buf. */
spool_buf = &spool_buf[SOF_REDIR];
space = SOF_REDIR;
len -= SOF_REDIR;
} else
goto nospace;
r->mode = REDIR_PORT;
/*
* Extract protocol.
*/
if (ac == 0)
errx (EX_DATAERR, "redirect_port: missing protocol");
r->proto = StrToProto(*av);
protoName = *av;
INC_ARGCV();
/*
* Extract local address.
*/
if (ac == 0)
errx (EX_DATAERR, "redirect_port: missing local address");
sep = strchr(*av, ',');
/* LSNAT redirection syntax. */
if (sep) {
r->laddr.s_addr = INADDR_NONE;
r->lport = ~0;
numLocalPorts = 1;
/* Preserve av, copy spool servers to tmp_spool_buf. */
strncpy(tmp_spool_buf, *av, strlen(*av)+1);
lsnat = 1;
} else {
if (StrToAddrAndPortRange (*av, &r->laddr, protoName,
&portRange) != 0)
errx(EX_DATAERR, "redirect_port:"
"invalid local port range");
r->lport = GETLOPORT(portRange);
numLocalPorts = GETNUMPORTS(portRange);
}
INC_ARGCV();
/*
* Extract public port and optionally address.
*/
if (ac == 0)
errx (EX_DATAERR, "redirect_port: missing public port");
sep = strchr (*av, ':');
if (sep) {
if (StrToAddrAndPortRange (*av, &r->paddr, protoName,
&portRange) != 0)
errx(EX_DATAERR, "redirect_port:"
"invalid public port range");
} else {
r->paddr.s_addr = INADDR_ANY;
if (StrToPortRange (*av, protoName, &portRange) != 0)
errx(EX_DATAERR, "redirect_port:"
"invalid public port range");
}
r->pport = GETLOPORT(portRange);
r->pport_cnt = GETNUMPORTS(portRange);
INC_ARGCV();
/*
* Extract remote address and optionally port.
*/
/*
* NB: isalpha(**av) => we've to check that next parameter is really an
* option for this redirect entry, else stop here processing arg[cv].
*/
if (ac != 0 && !isalpha(**av)) {
sep = strchr (*av, ':');
if (sep) {
if (StrToAddrAndPortRange (*av, &r->raddr, protoName,
&portRange) != 0)
errx(EX_DATAERR, "redirect_port:"
"invalid remote port range");
} else {
SETLOPORT(portRange, 0);
SETNUMPORTS(portRange, 1);
StrToAddr (*av, &r->raddr);
}
INC_ARGCV();
} else {
SETLOPORT(portRange, 0);
SETNUMPORTS(portRange, 1);
r->raddr.s_addr = INADDR_ANY;
}
r->rport = GETLOPORT(portRange);
r->rport_cnt = GETNUMPORTS(portRange);
/*
* Make sure port ranges match up, then add the redirect ports.
*/
if (numLocalPorts != r->pport_cnt)
errx(EX_DATAERR, "redirect_port:"
"port ranges must be equal in size");
/* Remote port range is allowed to be '0' which means all ports. */
if (r->rport_cnt != numLocalPorts &&
(r->rport_cnt != 1 || r->rport != 0))
errx(EX_DATAERR, "redirect_port: remote port must"
"be 0 or equal to local port range in size");
/*
* Setup LSNAT server pool.
*/
if (lsnat) {
sep = strtok(tmp_spool_buf, ",");
while (sep != NULL) {
tmp = (struct cfg_spool *)spool_buf;
if (len < SOF_SPOOL)
goto nospace;
len -= SOF_SPOOL;
space += SOF_SPOOL;
if (StrToAddrAndPortRange(sep, &tmp->addr, protoName,
&portRange) != 0)
errx(EX_DATAERR, "redirect_port:"
"invalid local port range");
if (GETNUMPORTS(portRange) != 1)
errx(EX_DATAERR, "redirect_port: local port"
"must be single in this context");
tmp->port = GETLOPORT(portRange);
r->spool_cnt++;
/* Point to the next possible cfg_spool. */
spool_buf = &spool_buf[SOF_SPOOL];
sep = strtok(NULL, ",");
}
}
return (space);
nospace:
errx(EX_DATAERR, "redirect_port: buf is too small\n");
}
static int
setup_redir_proto(char *spool_buf, int len,
int *_ac, char ***_av)
{
char **av;
int ac, space;
struct protoent *protoent;
struct cfg_redir *r;
av = *_av;
ac = *_ac;
if (len >= SOF_REDIR) {
r = (struct cfg_redir *)spool_buf;
/* Skip cfg_redir at beginning of buf. */
spool_buf = &spool_buf[SOF_REDIR];
space = SOF_REDIR;
len -= SOF_REDIR;
} else
goto nospace;
r->mode = REDIR_PROTO;
/*
* Extract protocol.
*/
if (ac == 0)
errx(EX_DATAERR, "redirect_proto: missing protocol");
protoent = getprotobyname(*av);
if (protoent == NULL)
errx(EX_DATAERR, "redirect_proto: unknown protocol %s", *av);
else
r->proto = protoent->p_proto;
INC_ARGCV();
/*
* Extract local address.
*/
if (ac == 0)
errx(EX_DATAERR, "redirect_proto: missing local address");
else
StrToAddr(*av, &r->laddr);
INC_ARGCV();
/*
* Extract optional public address.
*/
if (ac == 0) {
r->paddr.s_addr = INADDR_ANY;
r->raddr.s_addr = INADDR_ANY;
} else {
/* see above in setup_redir_port() */
if (!isalpha(**av)) {
StrToAddr(*av, &r->paddr);
INC_ARGCV();
/*
* Extract optional remote address.
*/
/* see above in setup_redir_port() */
if (ac!=0 && !isalpha(**av)) {
StrToAddr(*av, &r->raddr);
INC_ARGCV();
}
}
}
return (space);
nospace:
errx(EX_DATAERR, "redirect_proto: buf is too small\n");
}
static void
show_nat(int ac, char **av);
static void
print_nat_config(char *buf) {
struct cfg_nat *n;
int i, cnt, flag, off;
struct cfg_redir *t;
struct cfg_spool *s;
struct protoent *p;
n = (struct cfg_nat *)buf;
flag = 1;
off = sizeof(*n);
printf("ipfw nat %u config", n->id);
if (strlen(n->if_name) != 0)
printf(" if %s", n->if_name);
else if (n->ip.s_addr != 0)
printf(" ip %s", inet_ntoa(n->ip));
while (n->mode != 0) {
if (n->mode & PKT_ALIAS_LOG) {
printf(" log");
n->mode &= ~PKT_ALIAS_LOG;
} else if (n->mode & PKT_ALIAS_DENY_INCOMING) {
printf(" deny_in");
n->mode &= ~PKT_ALIAS_DENY_INCOMING;
} else if (n->mode & PKT_ALIAS_SAME_PORTS) {
printf(" same_ports");
n->mode &= ~PKT_ALIAS_SAME_PORTS;
} else if (n->mode & PKT_ALIAS_UNREGISTERED_ONLY) {
printf(" unreg_only");
n->mode &= ~PKT_ALIAS_UNREGISTERED_ONLY;
} else if (n->mode & PKT_ALIAS_RESET_ON_ADDR_CHANGE) {
printf(" reset");
n->mode &= ~PKT_ALIAS_RESET_ON_ADDR_CHANGE;
} else if (n->mode & PKT_ALIAS_REVERSE) {
printf(" reverse");
n->mode &= ~PKT_ALIAS_REVERSE;
} else if (n->mode & PKT_ALIAS_PROXY_ONLY) {
printf(" proxy_only");
n->mode &= ~PKT_ALIAS_PROXY_ONLY;
}
}
/* Print all the redirect's data configuration. */
for (cnt = 0; cnt < n->redir_cnt; cnt++) {
t = (struct cfg_redir *)&buf[off];
off += SOF_REDIR;
switch (t->mode) {
case REDIR_ADDR:
printf(" redirect_addr");
if (t->spool_cnt == 0)
printf(" %s", inet_ntoa(t->laddr));
else
for (i = 0; i < t->spool_cnt; i++) {
s = (struct cfg_spool *)&buf[off];
if (i)
printf(",");
else
printf(" ");
printf("%s", inet_ntoa(s->addr));
off += SOF_SPOOL;
}
printf(" %s", inet_ntoa(t->paddr));
break;
case REDIR_PORT:
p = getprotobynumber(t->proto);
printf(" redirect_port %s ", p->p_name);
if (!t->spool_cnt) {
printf("%s:%u", inet_ntoa(t->laddr), t->lport);
if (t->pport_cnt > 1)
printf("-%u", t->lport +
t->pport_cnt - 1);
} else
for (i=0; i < t->spool_cnt; i++) {
s = (struct cfg_spool *)&buf[off];
if (i)
printf(",");
printf("%s:%u", inet_ntoa(s->addr),
s->port);
off += SOF_SPOOL;
}
printf(" ");
if (t->paddr.s_addr)
printf("%s:", inet_ntoa(t->paddr));
printf("%u", t->pport);
if (!t->spool_cnt && t->pport_cnt > 1)
printf("-%u", t->pport + t->pport_cnt - 1);
if (t->raddr.s_addr) {
printf(" %s", inet_ntoa(t->raddr));
if (t->rport) {
printf(":%u", t->rport);
if (!t->spool_cnt && t->rport_cnt > 1)
printf("-%u", t->rport +
t->rport_cnt - 1);
}
}
break;
case REDIR_PROTO:
p = getprotobynumber(t->proto);
printf(" redirect_proto %s %s", p->p_name,
inet_ntoa(t->laddr));
if (t->paddr.s_addr != 0) {
printf(" %s", inet_ntoa(t->paddr));
if (t->raddr.s_addr)
printf(" %s", inet_ntoa(t->raddr));
}
break;
default:
errx(EX_DATAERR, "unknown redir mode");
break;
}
}
printf("\n");
}
static void
config_nat(int ac, char **av)
{
struct cfg_nat *n; /* Nat instance configuration. */
int i, len, off, tok;
char *id, buf[NAT_BUF_LEN]; /* Buffer for serialized data. */
len = NAT_BUF_LEN;
/* Offset in buf: save space for n at the beginning. */
off = sizeof(*n);
memset(buf, 0, sizeof(buf));
n = (struct cfg_nat *)buf;
av++; ac--;
/* Nat id. */
if (ac && isdigit(**av)) {
id = *av;
i = atoi(*av);
ac--; av++;
n->id = i;
} else
errx(EX_DATAERR, "missing nat id");
if (ac == 0)
errx(EX_DATAERR, "missing option");
while (ac > 0) {
tok = match_token(nat_params, *av);
ac--; av++;
switch (tok) {
case TOK_IP:
if (ac == 0)
errx(EX_DATAERR, "missing option");
if (!inet_aton(av[0], &(n->ip)))
errx(EX_DATAERR, "bad ip address ``%s''",
av[0]);
ac--; av++;
break;
case TOK_IF:
if (ac == 0)
errx(EX_DATAERR, "missing option");
set_addr_dynamic(av[0], n);
ac--; av++;
break;
case TOK_ALOG:
n->mode |= PKT_ALIAS_LOG;
break;
case TOK_DENY_INC:
n->mode |= PKT_ALIAS_DENY_INCOMING;
break;
case TOK_SAME_PORTS:
n->mode |= PKT_ALIAS_SAME_PORTS;
break;
case TOK_UNREG_ONLY:
n->mode |= PKT_ALIAS_UNREGISTERED_ONLY;
break;
case TOK_RESET_ADDR:
n->mode |= PKT_ALIAS_RESET_ON_ADDR_CHANGE;
break;
case TOK_ALIAS_REV:
n->mode |= PKT_ALIAS_REVERSE;
break;
case TOK_PROXY_ONLY:
n->mode |= PKT_ALIAS_PROXY_ONLY;
break;
/*
* All the setup_redir_* functions work directly in the final
* buffer, see above for details.
*/
case TOK_REDIR_ADDR:
case TOK_REDIR_PORT:
case TOK_REDIR_PROTO:
switch (tok) {
case TOK_REDIR_ADDR:
i = setup_redir_addr(&buf[off], len, &ac, &av);
break;
case TOK_REDIR_PORT:
i = setup_redir_port(&buf[off], len, &ac, &av);
break;
case TOK_REDIR_PROTO:
i = setup_redir_proto(&buf[off], len, &ac, &av);
break;
}
n->redir_cnt++;
off += i;
len -= i;
break;
default:
errx(EX_DATAERR, "unrecognised option ``%s''", av[-1]);
}
}
i = do_cmd(IP_FW_NAT_CFG, buf, off);
if (i)
err(1, "setsockopt(%s)", "IP_FW_NAT_CFG");
if (!do_quiet) {
/* After every modification, we show the resultant rule. */
int _ac = 3;
char *_av[] = {"show", "config", id};
show_nat(_ac, _av);
}
}
static void
config_pipe(int ac, char **av)
{
struct dn_pipe p;
int i;
char *end;
void *par = NULL;
memset(&p, 0, sizeof p);
av++; ac--;
/* Pipe number */
if (ac && isdigit(**av)) {
i = atoi(*av); av++; ac--;
if (do_pipe == 1)
p.pipe_nr = i;
else
p.fs.fs_nr = i;
}
while (ac > 0) {
double d;
int tok = match_token(dummynet_params, *av);
ac--; av++;
switch(tok) {
case TOK_NOERROR:
p.fs.flags_fs |= DN_NOERROR;
break;
case TOK_PLR:
NEED1("plr needs argument 0..1\n");
d = strtod(av[0], NULL);
if (d > 1)
d = 1;
else if (d < 0)
d = 0;
p.fs.plr = (int)(d*0x7fffffff);
ac--; av++;
break;
case TOK_QUEUE:
NEED1("queue needs queue size\n");
end = NULL;
p.fs.qsize = strtoul(av[0], &end, 0);
if (*end == 'K' || *end == 'k') {
p.fs.flags_fs |= DN_QSIZE_IS_BYTES;
p.fs.qsize *= 1024;
} else if (*end == 'B' ||
_substrcmp2(end, "by", "bytes") == 0) {
p.fs.flags_fs |= DN_QSIZE_IS_BYTES;
}
ac--; av++;
break;
case TOK_BUCKETS:
NEED1("buckets needs argument\n");
p.fs.rq_size = strtoul(av[0], NULL, 0);
ac--; av++;
break;
case TOK_MASK:
NEED1("mask needs mask specifier\n");
/*
* per-flow queue, mask is dst_ip, dst_port,
* src_ip, src_port, proto measured in bits
*/
par = NULL;
bzero(&p.fs.flow_mask, sizeof(p.fs.flow_mask));
end = NULL;
while (ac >= 1) {
uint32_t *p32 = NULL;
uint16_t *p16 = NULL;
uint32_t *p20 = NULL;
struct in6_addr *pa6 = NULL;
uint32_t a;
tok = match_token(dummynet_params, *av);
ac--; av++;
switch(tok) {
case TOK_ALL:
/*
* special case, all bits significant
*/
p.fs.flow_mask.dst_ip = ~0;
p.fs.flow_mask.src_ip = ~0;
p.fs.flow_mask.dst_port = ~0;
p.fs.flow_mask.src_port = ~0;
p.fs.flow_mask.proto = ~0;
n2mask(&(p.fs.flow_mask.dst_ip6), 128);
n2mask(&(p.fs.flow_mask.src_ip6), 128);
p.fs.flow_mask.flow_id6 = ~0;
p.fs.flags_fs |= DN_HAVE_FLOW_MASK;
goto end_mask;
case TOK_DSTIP:
p32 = &p.fs.flow_mask.dst_ip;
break;
case TOK_SRCIP:
p32 = &p.fs.flow_mask.src_ip;
break;
case TOK_DSTIP6:
pa6 = &(p.fs.flow_mask.dst_ip6);
break;
case TOK_SRCIP6:
pa6 = &(p.fs.flow_mask.src_ip6);
break;
case TOK_FLOWID:
p20 = &p.fs.flow_mask.flow_id6;
break;
case TOK_DSTPORT:
p16 = &p.fs.flow_mask.dst_port;
break;
case TOK_SRCPORT:
p16 = &p.fs.flow_mask.src_port;
break;
case TOK_PROTO:
break;
default:
ac++; av--; /* backtrack */
goto end_mask;
}
if (ac < 1)
errx(EX_USAGE, "mask: value missing");
if (*av[0] == '/') {
a = strtoul(av[0]+1, &end, 0);
if (pa6 == NULL)
a = (a == 32) ? ~0 : (1 << a) - 1;
} else
a = strtoul(av[0], &end, 0);
if (p32 != NULL)
*p32 = a;
else if (p16 != NULL) {
if (a > 0xFFFF)
errx(EX_DATAERR,
"port mask must be 16 bit");
*p16 = (uint16_t)a;
} else if (p20 != NULL) {
if (a > 0xfffff)
errx(EX_DATAERR,
"flow_id mask must be 20 bit");
*p20 = (uint32_t)a;
} else if (pa6 != NULL) {
if (a < 0 || a > 128)
errx(EX_DATAERR,
"in6addr invalid mask len");
else
n2mask(pa6, a);
} else {
if (a > 0xFF)
errx(EX_DATAERR,
"proto mask must be 8 bit");
p.fs.flow_mask.proto = (uint8_t)a;
}
if (a != 0)
p.fs.flags_fs |= DN_HAVE_FLOW_MASK;
ac--; av++;
} /* end while, config masks */
end_mask:
break;
case TOK_RED:
case TOK_GRED:
NEED1("red/gred needs w_q/min_th/max_th/max_p\n");
p.fs.flags_fs |= DN_IS_RED;
if (tok == TOK_GRED)
p.fs.flags_fs |= DN_IS_GENTLE_RED;
/*
* the format for parameters is w_q/min_th/max_th/max_p
*/
if ((end = strsep(&av[0], "/"))) {
double w_q = strtod(end, NULL);
if (w_q > 1 || w_q <= 0)
errx(EX_DATAERR, "0 < w_q <= 1");
p.fs.w_q = (int) (w_q * (1 << SCALE_RED));
}
if ((end = strsep(&av[0], "/"))) {
p.fs.min_th = strtoul(end, &end, 0);
if (*end == 'K' || *end == 'k')
p.fs.min_th *= 1024;
}
if ((end = strsep(&av[0], "/"))) {
p.fs.max_th = strtoul(end, &end, 0);
if (*end == 'K' || *end == 'k')
p.fs.max_th *= 1024;
}
if ((end = strsep(&av[0], "/"))) {
double max_p = strtod(end, NULL);
if (max_p > 1 || max_p <= 0)
errx(EX_DATAERR, "0 < max_p <= 1");
p.fs.max_p = (int)(max_p * (1 << SCALE_RED));
}
ac--; av++;
break;
case TOK_DROPTAIL:
p.fs.flags_fs &= ~(DN_IS_RED|DN_IS_GENTLE_RED);
break;
case TOK_BW:
NEED1("bw needs bandwidth or interface\n");
if (do_pipe != 1)
errx(EX_DATAERR, "bandwidth only valid for pipes");
/*
* set clocking interface or bandwidth value
*/
if (av[0][0] >= 'a' && av[0][0] <= 'z') {
int l = sizeof(p.if_name)-1;
/* interface name */
strncpy(p.if_name, av[0], l);
p.if_name[l] = '\0';
p.bandwidth = 0;
} else {
p.if_name[0] = '\0';
p.bandwidth = strtoul(av[0], &end, 0);
if (*end == 'K' || *end == 'k') {
end++;
p.bandwidth *= 1000;
} else if (*end == 'M') {
end++;
p.bandwidth *= 1000000;
}
if ((*end == 'B' &&
_substrcmp2(end, "Bi", "Bit/s") != 0) ||
_substrcmp2(end, "by", "bytes") == 0)
p.bandwidth *= 8;
if (p.bandwidth < 0)
errx(EX_DATAERR, "bandwidth too large");
}
ac--; av++;
break;
case TOK_DELAY:
if (do_pipe != 1)
errx(EX_DATAERR, "delay only valid for pipes");
NEED1("delay needs argument 0..10000ms\n");
p.delay = strtoul(av[0], NULL, 0);
ac--; av++;
break;
case TOK_WEIGHT:
if (do_pipe == 1)
errx(EX_DATAERR,"weight only valid for queues");
NEED1("weight needs argument 0..100\n");
p.fs.weight = strtoul(av[0], &end, 0);
ac--; av++;
break;
case TOK_PIPE:
if (do_pipe == 1)
errx(EX_DATAERR,"pipe only valid for queues");
NEED1("pipe needs pipe_number\n");
p.fs.parent_nr = strtoul(av[0], &end, 0);
ac--; av++;
break;
default:
errx(EX_DATAERR, "unrecognised option ``%s''", av[-1]);
}
}
if (do_pipe == 1) {
if (p.pipe_nr == 0)
errx(EX_DATAERR, "pipe_nr must be > 0");
if (p.delay > 10000)
errx(EX_DATAERR, "delay must be < 10000");
} else { /* do_pipe == 2, queue */
if (p.fs.parent_nr == 0)
errx(EX_DATAERR, "pipe must be > 0");
if (p.fs.weight >100)
errx(EX_DATAERR, "weight must be <= 100");
}
if (p.fs.flags_fs & DN_QSIZE_IS_BYTES) {
size_t len;
long limit;
len = sizeof(limit);
if (sysctlbyname("net.inet.ip.dummynet.pipe_byte_limit",
&limit, &len, NULL, 0) == -1)
limit = 1024*1024;
if (p.fs.qsize > limit)
errx(EX_DATAERR, "queue size must be < %ldB", limit);
} else {
size_t len;
long limit;
len = sizeof(limit);
if (sysctlbyname("net.inet.ip.dummynet.pipe_slot_limit",
&limit, &len, NULL, 0) == -1)
limit = 100;
if (p.fs.qsize > limit)
errx(EX_DATAERR, "2 <= queue size <= %ld", limit);
}
if (p.fs.flags_fs & DN_IS_RED) {
size_t len;
int lookup_depth, avg_pkt_size;
double s, idle, weight, w_q;
struct clockinfo ck;
int t;
if (p.fs.min_th >= p.fs.max_th)
errx(EX_DATAERR, "min_th %d must be < than max_th %d",
p.fs.min_th, p.fs.max_th);
if (p.fs.max_th == 0)
errx(EX_DATAERR, "max_th must be > 0");
len = sizeof(int);
if (sysctlbyname("net.inet.ip.dummynet.red_lookup_depth",
&lookup_depth, &len, NULL, 0) == -1)
errx(1, "sysctlbyname(\"%s\")",
"net.inet.ip.dummynet.red_lookup_depth");
if (lookup_depth == 0)
errx(EX_DATAERR, "net.inet.ip.dummynet.red_lookup_depth"
" must be greater than zero");
len = sizeof(int);
if (sysctlbyname("net.inet.ip.dummynet.red_avg_pkt_size",
&avg_pkt_size, &len, NULL, 0) == -1)
errx(1, "sysctlbyname(\"%s\")",
"net.inet.ip.dummynet.red_avg_pkt_size");
if (avg_pkt_size == 0)
errx(EX_DATAERR,
"net.inet.ip.dummynet.red_avg_pkt_size must"
" be greater than zero");
len = sizeof(struct clockinfo);
if (sysctlbyname("kern.clockrate", &ck, &len, NULL, 0) == -1)
errx(1, "sysctlbyname(\"%s\")", "kern.clockrate");
/*
* Ticks needed for sending a medium-sized packet.
* Unfortunately, when we are configuring a WF2Q+ queue, we
* do not have bandwidth information, because that is stored
* in the parent pipe, and also we have multiple queues
* competing for it. So we set s=0, which is not very
* correct. But on the other hand, why do we want RED with
* WF2Q+ ?
*/
if (p.bandwidth==0) /* this is a WF2Q+ queue */
s = 0;
else
s = (double)ck.hz * avg_pkt_size * 8 / p.bandwidth;
/*
* max idle time (in ticks) before avg queue size becomes 0.
* NOTA: (3/w_q) is approx the value x so that
* (1-w_q)^x < 10^-3.
*/
w_q = ((double)p.fs.w_q) / (1 << SCALE_RED);
idle = s * 3. / w_q;
p.fs.lookup_step = (int)idle / lookup_depth;
if (!p.fs.lookup_step)
p.fs.lookup_step = 1;
weight = 1 - w_q;
for (t = p.fs.lookup_step; t > 1; --t)
weight *= 1 - w_q;
p.fs.lookup_weight = (int)(weight * (1 << SCALE_RED));
}
i = do_cmd(IP_DUMMYNET_CONFIGURE, &p, sizeof p);
if (i)
err(1, "setsockopt(%s)", "IP_DUMMYNET_CONFIGURE");
}
static void
get_mac_addr_mask(const char *p, uint8_t *addr, uint8_t *mask)
{
int i, l;
char *ap, *ptr, *optr;
struct ether_addr *mac;
const char *macset = "0123456789abcdefABCDEF:";
if (strcmp(p, "any") == 0) {
for (i = 0; i < ETHER_ADDR_LEN; i++)
addr[i] = mask[i] = 0;
return;
}
optr = ptr = strdup(p);
if ((ap = strsep(&ptr, "&/")) != NULL && *ap != 0) {
l = strlen(ap);
if (strspn(ap, macset) != l || (mac = ether_aton(ap)) == NULL)
errx(EX_DATAERR, "Incorrect MAC address");
bcopy(mac, addr, ETHER_ADDR_LEN);
} else
errx(EX_DATAERR, "Incorrect MAC address");
if (ptr != NULL) { /* we have mask? */
if (p[ptr - optr - 1] == '/') { /* mask len */
l = strtol(ptr, &ap, 10);
if (*ap != 0 || l > ETHER_ADDR_LEN * 8 || l < 0)
errx(EX_DATAERR, "Incorrect mask length");
for (i = 0; l > 0 && i < ETHER_ADDR_LEN; l -= 8, i++)
mask[i] = (l >= 8) ? 0xff: (~0) << (8 - l);
} else { /* mask */
l = strlen(ptr);
if (strspn(ptr, macset) != l ||
(mac = ether_aton(ptr)) == NULL)
errx(EX_DATAERR, "Incorrect mask");
bcopy(mac, mask, ETHER_ADDR_LEN);
}
} else { /* default mask: ff:ff:ff:ff:ff:ff */
for (i = 0; i < ETHER_ADDR_LEN; i++)
mask[i] = 0xff;
}
for (i = 0; i < ETHER_ADDR_LEN; i++)
addr[i] &= mask[i];
free(optr);
}
/*
* helper function, updates the pointer to cmd with the length
* of the current command, and also cleans up the first word of
* the new command in case it has been clobbered before.
*/
static ipfw_insn *
next_cmd(ipfw_insn *cmd)
{
cmd += F_LEN(cmd);
bzero(cmd, sizeof(*cmd));
return cmd;
}
/*
* Takes arguments and copies them into a comment
*/
static void
fill_comment(ipfw_insn *cmd, int ac, char **av)
{
int i, l;
char *p = (char *)(cmd + 1);
cmd->opcode = O_NOP;
cmd->len = (cmd->len & (F_NOT | F_OR));
/* Compute length of comment string. */
for (i = 0, l = 0; i < ac; i++)
l += strlen(av[i]) + 1;
if (l == 0)
return;
if (l > 84)
errx(EX_DATAERR,
"comment too long (max 80 chars)");
l = 1 + (l+3)/4;
cmd->len = (cmd->len & (F_NOT | F_OR)) | l;
for (i = 0; i < ac; i++) {
strcpy(p, av[i]);
p += strlen(av[i]);
*p++ = ' ';
}
*(--p) = '\0';
}
/*
* A function to fill simple commands of size 1.
* Existing flags are preserved.
*/
static void
fill_cmd(ipfw_insn *cmd, enum ipfw_opcodes opcode, int flags, uint16_t arg)
{
cmd->opcode = opcode;
cmd->len = ((cmd->len | flags) & (F_NOT | F_OR)) | 1;
cmd->arg1 = arg;
}
/*
* Fetch and add the MAC address and type, with masks. This generates one or
* two microinstructions, and returns the pointer to the last one.
*/
static ipfw_insn *
add_mac(ipfw_insn *cmd, int ac, char *av[])
{
ipfw_insn_mac *mac;
if (ac < 2)
errx(EX_DATAERR, "MAC dst src");
cmd->opcode = O_MACADDR2;
cmd->len = (cmd->len & (F_NOT | F_OR)) | F_INSN_SIZE(ipfw_insn_mac);
mac = (ipfw_insn_mac *)cmd;
get_mac_addr_mask(av[0], mac->addr, mac->mask); /* dst */
get_mac_addr_mask(av[1], &(mac->addr[ETHER_ADDR_LEN]),
&(mac->mask[ETHER_ADDR_LEN])); /* src */
return cmd;
}
static ipfw_insn *
add_mactype(ipfw_insn *cmd, int ac, char *av)
{
if (ac < 1)
errx(EX_DATAERR, "missing MAC type");
if (strcmp(av, "any") != 0) { /* we have a non-null type */
fill_newports((ipfw_insn_u16 *)cmd, av, IPPROTO_ETHERTYPE);
cmd->opcode = O_MAC_TYPE;
return cmd;
} else
return NULL;
}
static ipfw_insn *
add_proto0(ipfw_insn *cmd, char *av, u_char *protop)
{
struct protoent *pe;
char *ep;
int proto;
proto = strtol(av, &ep, 10);
if (*ep != '\0' || proto <= 0) {
if ((pe = getprotobyname(av)) == NULL)
return NULL;
proto = pe->p_proto;
}
fill_cmd(cmd, O_PROTO, 0, proto);
*protop = proto;
return cmd;
}
static ipfw_insn *
add_proto(ipfw_insn *cmd, char *av, u_char *protop)
{
u_char proto = IPPROTO_IP;
if (_substrcmp(av, "all") == 0 || strcmp(av, "ip") == 0)
; /* do not set O_IP4 nor O_IP6 */
else if (strcmp(av, "ip4") == 0)
/* explicit "just IPv4" rule */
fill_cmd(cmd, O_IP4, 0, 0);
else if (strcmp(av, "ip6") == 0) {
/* explicit "just IPv6" rule */
proto = IPPROTO_IPV6;
fill_cmd(cmd, O_IP6, 0, 0);
} else
return add_proto0(cmd, av, protop);
*protop = proto;
return cmd;
}
static ipfw_insn *
add_proto_compat(ipfw_insn *cmd, char *av, u_char *protop)
{
u_char proto = IPPROTO_IP;
if (_substrcmp(av, "all") == 0 || strcmp(av, "ip") == 0)
; /* do not set O_IP4 nor O_IP6 */
else if (strcmp(av, "ipv4") == 0 || strcmp(av, "ip4") == 0)
/* explicit "just IPv4" rule */
fill_cmd(cmd, O_IP4, 0, 0);
else if (strcmp(av, "ipv6") == 0 || strcmp(av, "ip6") == 0) {
/* explicit "just IPv6" rule */
proto = IPPROTO_IPV6;
fill_cmd(cmd, O_IP6, 0, 0);
} else
return add_proto0(cmd, av, protop);
*protop = proto;
return cmd;
}
static ipfw_insn *
add_srcip(ipfw_insn *cmd, char *av)
{
fill_ip((ipfw_insn_ip *)cmd, av);
if (cmd->opcode == O_IP_DST_SET) /* set */
cmd->opcode = O_IP_SRC_SET;
else if (cmd->opcode == O_IP_DST_LOOKUP) /* table */
cmd->opcode = O_IP_SRC_LOOKUP;
else if (F_LEN(cmd) == F_INSN_SIZE(ipfw_insn)) /* me */
cmd->opcode = O_IP_SRC_ME;
else if (F_LEN(cmd) == F_INSN_SIZE(ipfw_insn_u32)) /* one IP */
cmd->opcode = O_IP_SRC;
else /* addr/mask */
cmd->opcode = O_IP_SRC_MASK;
return cmd;
}
static ipfw_insn *
add_dstip(ipfw_insn *cmd, char *av)
{
fill_ip((ipfw_insn_ip *)cmd, av);
if (cmd->opcode == O_IP_DST_SET) /* set */
;
else if (cmd->opcode == O_IP_DST_LOOKUP) /* table */
;
else if (F_LEN(cmd) == F_INSN_SIZE(ipfw_insn)) /* me */
cmd->opcode = O_IP_DST_ME;
else if (F_LEN(cmd) == F_INSN_SIZE(ipfw_insn_u32)) /* one IP */
cmd->opcode = O_IP_DST;
else /* addr/mask */
cmd->opcode = O_IP_DST_MASK;
return cmd;
}
static ipfw_insn *
add_ports(ipfw_insn *cmd, char *av, u_char proto, int opcode)
{
if (_substrcmp(av, "any") == 0) {
return NULL;
} else if (fill_newports((ipfw_insn_u16 *)cmd, av, proto)) {
/* XXX todo: check that we have a protocol with ports */
cmd->opcode = opcode;
return cmd;
}
return NULL;
}
static ipfw_insn *
add_src(ipfw_insn *cmd, char *av, u_char proto)
{
struct in6_addr a;
char *host, *ch;
ipfw_insn *ret = NULL;
if ((host = strdup(av)) == NULL)
return NULL;
if ((ch = strrchr(host, '/')) != NULL)
*ch = '\0';
if (proto == IPPROTO_IPV6 || strcmp(av, "me6") == 0 ||
inet_pton(AF_INET6, host, &a))
ret = add_srcip6(cmd, av);
/* XXX: should check for IPv4, not !IPv6 */
if (ret == NULL && (proto == IPPROTO_IP || strcmp(av, "me") == 0 ||
!inet_pton(AF_INET6, host, &a)))
ret = add_srcip(cmd, av);
if (ret == NULL && strcmp(av, "any") != 0)
ret = cmd;
free(host);
return ret;
}
static ipfw_insn *
add_dst(ipfw_insn *cmd, char *av, u_char proto)
{
struct in6_addr a;
char *host, *ch;
ipfw_insn *ret = NULL;
if ((host = strdup(av)) == NULL)
return NULL;
if ((ch = strrchr(host, '/')) != NULL)
*ch = '\0';
if (proto == IPPROTO_IPV6 || strcmp(av, "me6") == 0 ||
inet_pton(AF_INET6, host, &a))
ret = add_dstip6(cmd, av);
/* XXX: should check for IPv4, not !IPv6 */
if (ret == NULL && (proto == IPPROTO_IP || strcmp(av, "me") == 0 ||
!inet_pton(AF_INET6, host, &a)))
ret = add_dstip(cmd, av);
if (ret == NULL && strcmp(av, "any") != 0)
ret = cmd;
free(host);
return ret;
}
/*
* Parse arguments and assemble the microinstructions which make up a rule.
* Rules are added into the 'rulebuf' and then copied in the correct order
* into the actual rule.
*
* The syntax for a rule starts with the action, followed by
* optional action parameters, and the various match patterns.
* In the assembled microcode, the first opcode must be an O_PROBE_STATE
* (generated if the rule includes a keep-state option), then the
* various match patterns, log/altq actions, and the actual action.
*
*/
static void
add(int ac, char *av[])
{
/*
* rules are added into the 'rulebuf' and then copied in
* the correct order into the actual rule.
* Some things that need to go out of order (prob, action etc.)
* go into actbuf[].
*/
static uint32_t rulebuf[255], actbuf[255], cmdbuf[255];
ipfw_insn *src, *dst, *cmd, *action, *prev=NULL;
ipfw_insn *first_cmd; /* first match pattern */
struct ip_fw *rule;
/*
* various flags used to record that we entered some fields.
*/
ipfw_insn *have_state = NULL; /* check-state or keep-state */
ipfw_insn *have_log = NULL, *have_altq = NULL, *have_tag = NULL;
size_t len;
int i;
int open_par = 0; /* open parenthesis ( */
/* proto is here because it is used to fetch ports */
u_char proto = IPPROTO_IP; /* default protocol */
double match_prob = 1; /* match probability, default is always match */
bzero(actbuf, sizeof(actbuf)); /* actions go here */
bzero(cmdbuf, sizeof(cmdbuf));
bzero(rulebuf, sizeof(rulebuf));
rule = (struct ip_fw *)rulebuf;
cmd = (ipfw_insn *)cmdbuf;
action = (ipfw_insn *)actbuf;
av++; ac--;
/* [rule N] -- Rule number optional */
if (ac && isdigit(**av)) {
rule->rulenum = atoi(*av);
av++;
ac--;
}
/* [set N] -- set number (0..RESVD_SET), optional */
if (ac > 1 && _substrcmp(*av, "set") == 0) {
int set = strtoul(av[1], NULL, 10);
if (set < 0 || set > RESVD_SET)
errx(EX_DATAERR, "illegal set %s", av[1]);
rule->set = set;
av += 2; ac -= 2;
}
/* [prob D] -- match probability, optional */
if (ac > 1 && _substrcmp(*av, "prob") == 0) {
match_prob = strtod(av[1], NULL);
if (match_prob <= 0 || match_prob > 1)
errx(EX_DATAERR, "illegal match prob. %s", av[1]);
av += 2; ac -= 2;
}
/* action -- mandatory */
NEED1("missing action");
i = match_token(rule_actions, *av);
ac--; av++;
action->len = 1; /* default */
switch(i) {
case TOK_CHECKSTATE:
have_state = action;
action->opcode = O_CHECK_STATE;
break;
case TOK_ACCEPT:
action->opcode = O_ACCEPT;
break;
case TOK_DENY:
action->opcode = O_DENY;
action->arg1 = 0;
break;
case TOK_REJECT:
action->opcode = O_REJECT;
action->arg1 = ICMP_UNREACH_HOST;
break;
case TOK_RESET:
action->opcode = O_REJECT;
action->arg1 = ICMP_REJECT_RST;
break;
case TOK_RESET6:
action->opcode = O_UNREACH6;
action->arg1 = ICMP6_UNREACH_RST;
break;
case TOK_UNREACH:
action->opcode = O_REJECT;
NEED1("missing reject code");
fill_reject_code(&action->arg1, *av);
ac--; av++;
break;
case TOK_UNREACH6:
action->opcode = O_UNREACH6;
NEED1("missing unreach code");
fill_unreach6_code(&action->arg1, *av);
ac--; av++;
break;
case TOK_COUNT:
action->opcode = O_COUNT;
break;
case TOK_NAT:
action->opcode = O_NAT;
action->len = F_INSN_SIZE(ipfw_insn_nat);
goto chkarg;
case TOK_QUEUE:
action->opcode = O_QUEUE;
goto chkarg;
case TOK_PIPE:
action->opcode = O_PIPE;
goto chkarg;
case TOK_SKIPTO:
action->opcode = O_SKIPTO;
goto chkarg;
case TOK_NETGRAPH:
action->opcode = O_NETGRAPH;
goto chkarg;
case TOK_NGTEE:
action->opcode = O_NGTEE;
goto chkarg;
case TOK_DIVERT:
action->opcode = O_DIVERT;
goto chkarg;
case TOK_TEE:
action->opcode = O_TEE;
chkarg:
if (!ac)
errx(EX_USAGE, "missing argument for %s", *(av - 1));
if (isdigit(**av)) {
action->arg1 = strtoul(*av, NULL, 10);
if (action->arg1 <= 0 || action->arg1 >= IP_FW_TABLEARG)
errx(EX_DATAERR, "illegal argument for %s",
*(av - 1));
} else if (_substrcmp(*av, TABLEARG) == 0) {
action->arg1 = IP_FW_TABLEARG;
} else if (i == TOK_DIVERT || i == TOK_TEE) {
struct servent *s;
setservent(1);
s = getservbyname(av[0], "divert");
if (s != NULL)
action->arg1 = ntohs(s->s_port);
else
errx(EX_DATAERR, "illegal divert/tee port");
} else
errx(EX_DATAERR, "illegal argument for %s", *(av - 1));
ac--; av++;
break;
case TOK_FORWARD: {
ipfw_insn_sa *p = (ipfw_insn_sa *)action;
char *s, *end;
NEED1("missing forward address[:port]");
action->opcode = O_FORWARD_IP;
action->len = F_INSN_SIZE(ipfw_insn_sa);
p->sa.sin_len = sizeof(struct sockaddr_in);
p->sa.sin_family = AF_INET;
p->sa.sin_port = 0;
/*
* locate the address-port separator (':' or ',')
*/
s = strchr(*av, ':');
if (s == NULL)
s = strchr(*av, ',');
if (s != NULL) {
*(s++) = '\0';
i = strtoport(s, &end, 0 /* base */, 0 /* proto */);
if (s == end)
errx(EX_DATAERR,
"illegal forwarding port ``%s''", s);
p->sa.sin_port = (u_short)i;
}
if (_substrcmp(*av, "tablearg") == 0)
p->sa.sin_addr.s_addr = INADDR_ANY;
else
lookup_host(*av, &(p->sa.sin_addr));
ac--; av++;
break;
}
case TOK_COMMENT:
/* pretend it is a 'count' rule followed by the comment */
action->opcode = O_COUNT;
ac++; av--; /* go back... */
break;
case TOK_SETFIB:
{
int numfibs;
size_t intsize = sizeof(int);
action->opcode = O_SETFIB;
NEED1("missing fib number");
action->arg1 = strtoul(*av, NULL, 10);
if (sysctlbyname("net.fibs", &numfibs, &intsize, NULL, 0) == -1)
errx(EX_DATAERR, "fibs not suported.\n");
if (action->arg1 >= numfibs) /* Temporary */
errx(EX_DATAERR, "fib too large.\n");
ac--; av++;
break;
}
default:
errx(EX_DATAERR, "invalid action %s\n", av[-1]);
}
action = next_cmd(action);
/*
* [altq queuename] -- altq tag, optional
* [log [logamount N]] -- log, optional
*
* If they exist, it go first in the cmdbuf, but then it is
* skipped in the copy section to the end of the buffer.
*/
while (ac != 0 && (i = match_token(rule_action_params, *av)) != -1) {
ac--; av++;
switch (i) {
case TOK_LOG:
{
ipfw_insn_log *c = (ipfw_insn_log *)cmd;
int l;
if (have_log)
errx(EX_DATAERR,
"log cannot be specified more than once");
have_log = (ipfw_insn *)c;
cmd->len = F_INSN_SIZE(ipfw_insn_log);
cmd->opcode = O_LOG;
if (ac && _substrcmp(*av, "logamount") == 0) {
ac--; av++;
NEED1("logamount requires argument");
l = atoi(*av);
if (l < 0)
errx(EX_DATAERR,
"logamount must be positive");
c->max_log = l;
ac--; av++;
} else {
len = sizeof(c->max_log);
if (sysctlbyname("net.inet.ip.fw.verbose_limit",
&c->max_log, &len, NULL, 0) == -1)
errx(1, "sysctlbyname(\"%s\")",
"net.inet.ip.fw.verbose_limit");
}
}
break;
case TOK_ALTQ:
{
ipfw_insn_altq *a = (ipfw_insn_altq *)cmd;
NEED1("missing altq queue name");
if (have_altq)
errx(EX_DATAERR,
"altq cannot be specified more than once");
have_altq = (ipfw_insn *)a;
cmd->len = F_INSN_SIZE(ipfw_insn_altq);
cmd->opcode = O_ALTQ;
fill_altq_qid(&a->qid, *av);
ac--; av++;
}
break;
case TOK_TAG:
case TOK_UNTAG: {
uint16_t tag;
if (have_tag)
errx(EX_USAGE, "tag and untag cannot be "
"specified more than once");
GET_UINT_ARG(tag, 1, IPFW_DEFAULT_RULE - 1, i,
rule_action_params);
have_tag = cmd;
fill_cmd(cmd, O_TAG, (i == TOK_TAG) ? 0: F_NOT, tag);
ac--; av++;
break;
}
default:
abort();
}
cmd = next_cmd(cmd);
}
if (have_state) /* must be a check-state, we are done */
goto done;
#define OR_START(target) \
if (ac && (*av[0] == '(' || *av[0] == '{')) { \
if (open_par) \
errx(EX_USAGE, "nested \"(\" not allowed\n"); \
prev = NULL; \
open_par = 1; \
if ( (av[0])[1] == '\0') { \
ac--; av++; \
} else \
(*av)++; \
} \
target: \
#define CLOSE_PAR \
if (open_par) { \
if (ac && ( \
strcmp(*av, ")") == 0 || \
strcmp(*av, "}") == 0)) { \
prev = NULL; \
open_par = 0; \
ac--; av++; \
} else \
errx(EX_USAGE, "missing \")\"\n"); \
}
#define NOT_BLOCK \
if (ac && _substrcmp(*av, "not") == 0) { \
if (cmd->len & F_NOT) \
errx(EX_USAGE, "double \"not\" not allowed\n"); \
cmd->len |= F_NOT; \
ac--; av++; \
}
#define OR_BLOCK(target) \
if (ac && _substrcmp(*av, "or") == 0) { \
if (prev == NULL || open_par == 0) \
errx(EX_DATAERR, "invalid OR block"); \
prev->len |= F_OR; \
ac--; av++; \
goto target; \
} \
CLOSE_PAR;
first_cmd = cmd;
#if 0
/*
* MAC addresses, optional.
* If we have this, we skip the part "proto from src to dst"
* and jump straight to the option parsing.
*/
NOT_BLOCK;
NEED1("missing protocol");
if (_substrcmp(*av, "MAC") == 0 ||
_substrcmp(*av, "mac") == 0) {
ac--; av++; /* the "MAC" keyword */
add_mac(cmd, ac, av); /* exits in case of errors */
cmd = next_cmd(cmd);
ac -= 2; av += 2; /* dst-mac and src-mac */
NOT_BLOCK;
NEED1("missing mac type");
if (add_mactype(cmd, ac, av[0]))
cmd = next_cmd(cmd);
ac--; av++; /* any or mac-type */
goto read_options;
}
#endif
/*
* protocol, mandatory
*/
OR_START(get_proto);
NOT_BLOCK;
NEED1("missing protocol");
if (add_proto_compat(cmd, *av, &proto)) {
av++; ac--;
if (F_LEN(cmd) != 0) {
prev = cmd;
cmd = next_cmd(cmd);
}
} else if (first_cmd != cmd) {
errx(EX_DATAERR, "invalid protocol ``%s''", *av);
} else
goto read_options;
OR_BLOCK(get_proto);
/*
* "from", mandatory
*/
if (!ac || _substrcmp(*av, "from") != 0)
errx(EX_USAGE, "missing ``from''");
ac--; av++;
/*
* source IP, mandatory
*/
OR_START(source_ip);
NOT_BLOCK; /* optional "not" */
NEED1("missing source address");
if (add_src(cmd, *av, proto)) {
ac--; av++;
if (F_LEN(cmd) != 0) { /* ! any */
prev = cmd;
cmd = next_cmd(cmd);
}
} else
errx(EX_USAGE, "bad source address %s", *av);
OR_BLOCK(source_ip);
/*
* source ports, optional
*/
NOT_BLOCK; /* optional "not" */
if (ac) {
if (_substrcmp(*av, "any") == 0 ||
add_ports(cmd, *av, proto, O_IP_SRCPORT)) {
ac--; av++;
if (F_LEN(cmd) != 0)
cmd = next_cmd(cmd);
}
}
/*
* "to", mandatory
*/
if (!ac || _substrcmp(*av, "to") != 0)
errx(EX_USAGE, "missing ``to''");
av++; ac--;
/*
* destination, mandatory
*/
OR_START(dest_ip);
NOT_BLOCK; /* optional "not" */
NEED1("missing dst address");
if (add_dst(cmd, *av, proto)) {
ac--; av++;
if (F_LEN(cmd) != 0) { /* ! any */
prev = cmd;
cmd = next_cmd(cmd);
}
} else
errx( EX_USAGE, "bad destination address %s", *av);
OR_BLOCK(dest_ip);
/*
* dest. ports, optional
*/
NOT_BLOCK; /* optional "not" */
if (ac) {
if (_substrcmp(*av, "any") == 0 ||
add_ports(cmd, *av, proto, O_IP_DSTPORT)) {
ac--; av++;
if (F_LEN(cmd) != 0)
cmd = next_cmd(cmd);
}
}
read_options:
if (ac && first_cmd == cmd) {
/*
* nothing specified so far, store in the rule to ease
* printout later.
*/
rule->_pad = 1;
}
prev = NULL;
while (ac) {
char *s;
ipfw_insn_u32 *cmd32; /* alias for cmd */
s = *av;
cmd32 = (ipfw_insn_u32 *)cmd;
if (*s == '!') { /* alternate syntax for NOT */
if (cmd->len & F_NOT)
errx(EX_USAGE, "double \"not\" not allowed\n");
cmd->len = F_NOT;
s++;
}
i = match_token(rule_options, s);
ac--; av++;
switch(i) {
case TOK_NOT:
if (cmd->len & F_NOT)
errx(EX_USAGE, "double \"not\" not allowed\n");
cmd->len = F_NOT;
break;
case TOK_OR:
if (open_par == 0 || prev == NULL)
errx(EX_USAGE, "invalid \"or\" block\n");
prev->len |= F_OR;
break;
case TOK_STARTBRACE:
if (open_par)
errx(EX_USAGE, "+nested \"(\" not allowed\n");
open_par = 1;
break;
case TOK_ENDBRACE:
if (!open_par)
errx(EX_USAGE, "+missing \")\"\n");
open_par = 0;
prev = NULL;
break;
case TOK_IN:
fill_cmd(cmd, O_IN, 0, 0);
break;
case TOK_OUT:
cmd->len ^= F_NOT; /* toggle F_NOT */
fill_cmd(cmd, O_IN, 0, 0);
break;
case TOK_DIVERTED:
fill_cmd(cmd, O_DIVERTED, 0, 3);
break;
case TOK_DIVERTEDLOOPBACK:
fill_cmd(cmd, O_DIVERTED, 0, 1);
break;
case TOK_DIVERTEDOUTPUT:
fill_cmd(cmd, O_DIVERTED, 0, 2);
break;
case TOK_FRAG:
fill_cmd(cmd, O_FRAG, 0, 0);
break;
case TOK_LAYER2:
fill_cmd(cmd, O_LAYER2, 0, 0);
break;
case TOK_XMIT:
case TOK_RECV:
case TOK_VIA:
NEED1("recv, xmit, via require interface name"
" or address");
fill_iface((ipfw_insn_if *)cmd, av[0]);
ac--; av++;
if (F_LEN(cmd) == 0) /* not a valid address */
break;
if (i == TOK_XMIT)
cmd->opcode = O_XMIT;
else if (i == TOK_RECV)
cmd->opcode = O_RECV;
else if (i == TOK_VIA)
cmd->opcode = O_VIA;
break;
case TOK_ICMPTYPES:
NEED1("icmptypes requires list of types");
fill_icmptypes((ipfw_insn_u32 *)cmd, *av);
av++; ac--;
break;
case TOK_ICMP6TYPES:
NEED1("icmptypes requires list of types");
fill_icmp6types((ipfw_insn_icmp6 *)cmd, *av);
av++; ac--;
break;
case TOK_IPTTL:
NEED1("ipttl requires TTL");
if (strpbrk(*av, "-,")) {
if (!add_ports(cmd, *av, 0, O_IPTTL))
errx(EX_DATAERR, "invalid ipttl %s", *av);
} else
fill_cmd(cmd, O_IPTTL, 0, strtoul(*av, NULL, 0));
ac--; av++;
break;
case TOK_IPID:
NEED1("ipid requires id");
if (strpbrk(*av, "-,")) {
if (!add_ports(cmd, *av, 0, O_IPID))
errx(EX_DATAERR, "invalid ipid %s", *av);
} else
fill_cmd(cmd, O_IPID, 0, strtoul(*av, NULL, 0));
ac--; av++;
break;
case TOK_IPLEN:
NEED1("iplen requires length");
if (strpbrk(*av, "-,")) {
if (!add_ports(cmd, *av, 0, O_IPLEN))
errx(EX_DATAERR, "invalid ip len %s", *av);
} else
fill_cmd(cmd, O_IPLEN, 0, strtoul(*av, NULL, 0));
ac--; av++;
break;
case TOK_IPVER:
NEED1("ipver requires version");
fill_cmd(cmd, O_IPVER, 0, strtoul(*av, NULL, 0));
ac--; av++;
break;
case TOK_IPPRECEDENCE:
NEED1("ipprecedence requires value");
fill_cmd(cmd, O_IPPRECEDENCE, 0,
(strtoul(*av, NULL, 0) & 7) << 5);
ac--; av++;
break;
case TOK_IPOPTS:
NEED1("missing argument for ipoptions");
fill_flags(cmd, O_IPOPT, f_ipopts, *av);
ac--; av++;
break;
case TOK_IPTOS:
NEED1("missing argument for iptos");
fill_flags(cmd, O_IPTOS, f_iptos, *av);
ac--; av++;
break;
case TOK_UID:
NEED1("uid requires argument");
{
char *end;
uid_t uid;
struct passwd *pwd;
cmd->opcode = O_UID;
uid = strtoul(*av, &end, 0);
pwd = (*end == '\0') ? getpwuid(uid) : getpwnam(*av);
if (pwd == NULL)
errx(EX_DATAERR, "uid \"%s\" nonexistent", *av);
cmd32->d[0] = pwd->pw_uid;
cmd->len |= F_INSN_SIZE(ipfw_insn_u32);
ac--; av++;
}
break;
case TOK_GID:
NEED1("gid requires argument");
{
char *end;
gid_t gid;
struct group *grp;
cmd->opcode = O_GID;
gid = strtoul(*av, &end, 0);
grp = (*end == '\0') ? getgrgid(gid) : getgrnam(*av);
if (grp == NULL)
errx(EX_DATAERR, "gid \"%s\" nonexistent", *av);
cmd32->d[0] = grp->gr_gid;
cmd->len |= F_INSN_SIZE(ipfw_insn_u32);
ac--; av++;
}
break;
case TOK_JAIL:
NEED1("jail requires argument");
{
char *end;
int jid;
cmd->opcode = O_JAIL;
jid = (int)strtol(*av, &end, 0);
if (jid < 0 || *end != '\0')
errx(EX_DATAERR, "jail requires prison ID");
cmd32->d[0] = (uint32_t)jid;
cmd->len |= F_INSN_SIZE(ipfw_insn_u32);
ac--; av++;
}
break;
case TOK_ESTAB:
fill_cmd(cmd, O_ESTAB, 0, 0);
break;
case TOK_SETUP:
fill_cmd(cmd, O_TCPFLAGS, 0,
(TH_SYN) | ( (TH_ACK) & 0xff) <<8 );
break;
case TOK_TCPDATALEN:
NEED1("tcpdatalen requires length");
if (strpbrk(*av, "-,")) {
if (!add_ports(cmd, *av, 0, O_TCPDATALEN))
errx(EX_DATAERR, "invalid tcpdata len %s", *av);
} else
fill_cmd(cmd, O_TCPDATALEN, 0,
strtoul(*av, NULL, 0));
ac--; av++;
break;
case TOK_TCPOPTS:
NEED1("missing argument for tcpoptions");
fill_flags(cmd, O_TCPOPTS, f_tcpopts, *av);
ac--; av++;
break;
case TOK_TCPSEQ:
case TOK_TCPACK:
NEED1("tcpseq/tcpack requires argument");
cmd->len = F_INSN_SIZE(ipfw_insn_u32);
cmd->opcode = (i == TOK_TCPSEQ) ? O_TCPSEQ : O_TCPACK;
cmd32->d[0] = htonl(strtoul(*av, NULL, 0));
ac--; av++;
break;
case TOK_TCPWIN:
NEED1("tcpwin requires length");
fill_cmd(cmd, O_TCPWIN, 0,
htons(strtoul(*av, NULL, 0)));
ac--; av++;
break;
case TOK_TCPFLAGS:
NEED1("missing argument for tcpflags");
cmd->opcode = O_TCPFLAGS;
fill_flags(cmd, O_TCPFLAGS, f_tcpflags, *av);
ac--; av++;
break;
case TOK_KEEPSTATE:
if (open_par)
errx(EX_USAGE, "keep-state cannot be part "
"of an or block");
if (have_state)
errx(EX_USAGE, "only one of keep-state "
"and limit is allowed");
have_state = cmd;
fill_cmd(cmd, O_KEEP_STATE, 0, 0);
break;
case TOK_LIMIT: {
ipfw_insn_limit *c = (ipfw_insn_limit *)cmd;
int val;
if (open_par)
errx(EX_USAGE,
"limit cannot be part of an or block");
if (have_state)
errx(EX_USAGE, "only one of keep-state and "
"limit is allowed");
have_state = cmd;
cmd->len = F_INSN_SIZE(ipfw_insn_limit);
cmd->opcode = O_LIMIT;
c->limit_mask = c->conn_limit = 0;
while (ac > 0) {
if ((val = match_token(limit_masks, *av)) <= 0)
break;
c->limit_mask |= val;
ac--; av++;
}
if (c->limit_mask == 0)
errx(EX_USAGE, "limit: missing limit mask");
GET_UINT_ARG(c->conn_limit, 1, IPFW_DEFAULT_RULE - 1,
TOK_LIMIT, rule_options);
ac--; av++;
break;
}
case TOK_PROTO:
NEED1("missing protocol");
if (add_proto(cmd, *av, &proto)) {
ac--; av++;
} else
errx(EX_DATAERR, "invalid protocol ``%s''",
*av);
break;
case TOK_SRCIP:
NEED1("missing source IP");
if (add_srcip(cmd, *av)) {
ac--; av++;
}
break;
case TOK_DSTIP:
NEED1("missing destination IP");
if (add_dstip(cmd, *av)) {
ac--; av++;
}
break;
case TOK_SRCIP6:
NEED1("missing source IP6");
if (add_srcip6(cmd, *av)) {
ac--; av++;
}
break;
case TOK_DSTIP6:
NEED1("missing destination IP6");
if (add_dstip6(cmd, *av)) {
ac--; av++;
}
break;
case TOK_SRCPORT:
NEED1("missing source port");
if (_substrcmp(*av, "any") == 0 ||
add_ports(cmd, *av, proto, O_IP_SRCPORT)) {
ac--; av++;
} else
errx(EX_DATAERR, "invalid source port %s", *av);
break;
case TOK_DSTPORT:
NEED1("missing destination port");
if (_substrcmp(*av, "any") == 0 ||
add_ports(cmd, *av, proto, O_IP_DSTPORT)) {
ac--; av++;
} else
errx(EX_DATAERR, "invalid destination port %s",
*av);
break;
case TOK_MAC:
if (add_mac(cmd, ac, av)) {
ac -= 2; av += 2;
}
break;
case TOK_MACTYPE:
NEED1("missing mac type");
if (!add_mactype(cmd, ac, *av))
errx(EX_DATAERR, "invalid mac type %s", *av);
ac--; av++;
break;
case TOK_VERREVPATH:
fill_cmd(cmd, O_VERREVPATH, 0, 0);
break;
case TOK_VERSRCREACH:
fill_cmd(cmd, O_VERSRCREACH, 0, 0);
break;
case TOK_ANTISPOOF:
fill_cmd(cmd, O_ANTISPOOF, 0, 0);
break;
case TOK_IPSEC:
fill_cmd(cmd, O_IPSEC, 0, 0);
break;
case TOK_IPV6:
fill_cmd(cmd, O_IP6, 0, 0);
break;
case TOK_IPV4:
fill_cmd(cmd, O_IP4, 0, 0);
break;
case TOK_EXT6HDR:
fill_ext6hdr( cmd, *av );
ac--; av++;
break;
case TOK_FLOWID:
if (proto != IPPROTO_IPV6 )
errx( EX_USAGE, "flow-id filter is active "
"only for ipv6 protocol\n");
fill_flow6( (ipfw_insn_u32 *) cmd, *av );
ac--; av++;
break;
case TOK_COMMENT:
fill_comment(cmd, ac, av);
av += ac;
ac = 0;
break;
case TOK_TAGGED:
if (ac > 0 && strpbrk(*av, "-,")) {
if (!add_ports(cmd, *av, 0, O_TAGGED))
errx(EX_DATAERR, "tagged: invalid tag"
" list: %s", *av);
}
else {
uint16_t tag;
GET_UINT_ARG(tag, 1, IPFW_DEFAULT_RULE - 1,
TOK_TAGGED, rule_options);
fill_cmd(cmd, O_TAGGED, 0, tag);
}
ac--; av++;
break;
case TOK_FIB:
NEED1("fib requires fib number");
fill_cmd(cmd, O_FIB, 0, strtoul(*av, NULL, 0));
ac--; av++;
break;
default:
errx(EX_USAGE, "unrecognised option [%d] %s\n", i, s);
}
if (F_LEN(cmd) > 0) { /* prepare to advance */
prev = cmd;
cmd = next_cmd(cmd);
}
}
done:
/*
* Now copy stuff into the rule.
* If we have a keep-state option, the first instruction
* must be a PROBE_STATE (which is generated here).
* If we have a LOG option, it was stored as the first command,
* and now must be moved to the top of the action part.
*/
dst = (ipfw_insn *)rule->cmd;
/*
* First thing to write into the command stream is the match probability.
*/
if (match_prob != 1) { /* 1 means always match */
dst->opcode = O_PROB;
dst->len = 2;
*((int32_t *)(dst+1)) = (int32_t)(match_prob * 0x7fffffff);
dst += dst->len;
}
/*
* generate O_PROBE_STATE if necessary
*/
if (have_state && have_state->opcode != O_CHECK_STATE) {
fill_cmd(dst, O_PROBE_STATE, 0, 0);
dst = next_cmd(dst);
}
/* copy all commands but O_LOG, O_KEEP_STATE, O_LIMIT, O_ALTQ, O_TAG */
for (src = (ipfw_insn *)cmdbuf; src != cmd; src += i) {
i = F_LEN(src);
switch (src->opcode) {
case O_LOG:
case O_KEEP_STATE:
case O_LIMIT:
case O_ALTQ:
case O_TAG:
break;
default:
bcopy(src, dst, i * sizeof(uint32_t));
dst += i;
}
}
/*
* put back the have_state command as last opcode
*/
if (have_state && have_state->opcode != O_CHECK_STATE) {
i = F_LEN(have_state);
bcopy(have_state, dst, i * sizeof(uint32_t));
dst += i;
}
/*
* start action section
*/
rule->act_ofs = dst - rule->cmd;
/* put back O_LOG, O_ALTQ, O_TAG if necessary */
if (have_log) {
i = F_LEN(have_log);
bcopy(have_log, dst, i * sizeof(uint32_t));
dst += i;
}
if (have_altq) {
i = F_LEN(have_altq);
bcopy(have_altq, dst, i * sizeof(uint32_t));
dst += i;
}
if (have_tag) {
i = F_LEN(have_tag);
bcopy(have_tag, dst, i * sizeof(uint32_t));
dst += i;
}
/*
* copy all other actions
*/
for (src = (ipfw_insn *)actbuf; src != action; src += i) {
i = F_LEN(src);
bcopy(src, dst, i * sizeof(uint32_t));
dst += i;
}
rule->cmd_len = (uint32_t *)dst - (uint32_t *)(rule->cmd);
i = (char *)dst - (char *)rule;
if (do_cmd(IP_FW_ADD, rule, (uintptr_t)&i) == -1)
err(EX_UNAVAILABLE, "getsockopt(%s)", "IP_FW_ADD");
if (!do_quiet)
show_ipfw(rule, 0, 0);
}
static void
zero(int ac, char *av[], int optname /* IP_FW_ZERO or IP_FW_RESETLOG */)
{
uint32_t arg, saved_arg;
int failed = EX_OK;
char const *name = optname == IP_FW_ZERO ? "ZERO" : "RESETLOG";
char const *errstr;
av++; ac--;
if (!ac) {
/* clear all entries */
if (do_cmd(optname, NULL, 0) < 0)
err(EX_UNAVAILABLE, "setsockopt(IP_FW_%s)", name);
if (!do_quiet)
printf("%s.\n", optname == IP_FW_ZERO ?
"Accounting cleared":"Logging counts reset");
return;
}
while (ac) {
/* Rule number */
if (isdigit(**av)) {
arg = strtonum(*av, 0, 0xffff, &errstr);
if (errstr)
errx(EX_DATAERR,
"invalid rule number %s\n", *av);
saved_arg = arg;
if (use_set)
arg |= (1 << 24) | ((use_set - 1) << 16);
av++;
ac--;
if (do_cmd(optname, &arg, sizeof(arg))) {
warn("rule %u: setsockopt(IP_FW_%s)",
saved_arg, name);
failed = EX_UNAVAILABLE;
} else if (!do_quiet)
printf("Entry %d %s.\n", saved_arg,
optname == IP_FW_ZERO ?
"cleared" : "logging count reset");
} else {
errx(EX_USAGE, "invalid rule number ``%s''", *av);
}
}
if (failed != EX_OK)
exit(failed);
}
static void
flush(int force)
{
int cmd = do_pipe ? IP_DUMMYNET_FLUSH : IP_FW_FLUSH;
if (!force && !do_quiet) { /* need to ask user */
int c;
printf("Are you sure? [yn] ");
fflush(stdout);
do {
c = toupper(getc(stdin));
while (c != '\n' && getc(stdin) != '\n')
if (feof(stdin))
return; /* and do not flush */
} while (c != 'Y' && c != 'N');
printf("\n");
if (c == 'N') /* user said no */
return;
}
/* `ipfw set N flush` - is the same that `ipfw delete set N` */
if (use_set) {
uint32_t arg = ((use_set - 1) & 0xffff) | (1 << 24);
if (do_cmd(IP_FW_DEL, &arg, sizeof(arg)) < 0)
err(EX_UNAVAILABLE, "setsockopt(IP_FW_DEL)");
} else if (do_cmd(cmd, NULL, 0) < 0)
err(EX_UNAVAILABLE, "setsockopt(IP_%s_FLUSH)",
do_pipe ? "DUMMYNET" : "FW");
if (!do_quiet)
printf("Flushed all %s.\n", do_pipe ? "pipes" : "rules");
}
/*
* Free a the (locally allocated) copy of command line arguments.
*/
static void
free_args(int ac, char **av)
{
int i;
for (i=0; i < ac; i++)
free(av[i]);
free(av);
}
static void table_list(ipfw_table_entry ent, int need_header);
/*
* This one handles all table-related commands
* ipfw table N add addr[/masklen] [value]
* ipfw table N delete addr[/masklen]
* ipfw table {N | all} flush
* ipfw table {N | all} list
*/
static void
table_handler(int ac, char *av[])
{
ipfw_table_entry ent;
int do_add;
int is_all;
size_t len;
char *p;
uint32_t a;
uint32_t tables_max;
len = sizeof(tables_max);
if (sysctlbyname("net.inet.ip.fw.tables_max", &tables_max, &len,
NULL, 0) == -1) {
#ifdef IPFW_TABLES_MAX
warn("Warn: Failed to get the max tables number via sysctl. "
"Using the compiled in defaults. \nThe reason was");
tables_max = IPFW_TABLES_MAX;
#else
errx(1, "Failed sysctlbyname(\"net.inet.ip.fw.tables_max\")");
#endif
}
ac--; av++;
if (ac && isdigit(**av)) {
ent.tbl = atoi(*av);
is_all = 0;
ac--; av++;
} else if (ac && _substrcmp(*av, "all") == 0) {
ent.tbl = 0;
is_all = 1;
ac--; av++;
} else
errx(EX_USAGE, "table number or 'all' keyword required");
if (ent.tbl >= tables_max)
errx(EX_USAGE, "The table number exceeds the maximum allowed "
"value (%d)", tables_max - 1);
NEED1("table needs command");
if (is_all && _substrcmp(*av, "list") != 0
&& _substrcmp(*av, "flush") != 0)
errx(EX_USAGE, "table number required");
if (_substrcmp(*av, "add") == 0 ||
_substrcmp(*av, "delete") == 0) {
do_add = **av == 'a';
ac--; av++;
if (!ac)
errx(EX_USAGE, "IP address required");
p = strchr(*av, '/');
if (p) {
*p++ = '\0';
ent.masklen = atoi(p);
if (ent.masklen > 32)
errx(EX_DATAERR, "bad width ``%s''", p);
} else
ent.masklen = 32;
if (lookup_host(*av, (struct in_addr *)&ent.addr) != 0)
errx(EX_NOHOST, "hostname ``%s'' unknown", *av);
ac--; av++;
if (do_add && ac) {
unsigned int tval;
/* isdigit is a bit of a hack here.. */
if (strchr(*av, (int)'.') == NULL && isdigit(**av)) {
ent.value = strtoul(*av, NULL, 0);
} else {
if (lookup_host(*av, (struct in_addr *)&tval) == 0) {
/* The value must be stored in host order *
* so that the values < 65k can be distinguished */
ent.value = ntohl(tval);
} else {
errx(EX_NOHOST, "hostname ``%s'' unknown", *av);
}
}
} else
ent.value = 0;
if (do_cmd(do_add ? IP_FW_TABLE_ADD : IP_FW_TABLE_DEL,
&ent, sizeof(ent)) < 0) {
/* If running silent, don't bomb out on these errors. */
if (!(do_quiet && (errno == (do_add ? EEXIST : ESRCH))))
err(EX_OSERR, "setsockopt(IP_FW_TABLE_%s)",
do_add ? "ADD" : "DEL");
/* In silent mode, react to a failed add by deleting */
if (do_add) {
do_cmd(IP_FW_TABLE_DEL, &ent, sizeof(ent));
if (do_cmd(IP_FW_TABLE_ADD,
&ent, sizeof(ent)) < 0)
err(EX_OSERR,
"setsockopt(IP_FW_TABLE_ADD)");
}
}
} else if (_substrcmp(*av, "flush") == 0) {
a = is_all ? tables_max : (ent.tbl + 1);
do {
if (do_cmd(IP_FW_TABLE_FLUSH, &ent.tbl,
sizeof(ent.tbl)) < 0)
err(EX_OSERR, "setsockopt(IP_FW_TABLE_FLUSH)");
} while (++ent.tbl < a);
} else if (_substrcmp(*av, "list") == 0) {
a = is_all ? tables_max : (ent.tbl + 1);
do {
table_list(ent, is_all);
} while (++ent.tbl < a);
} else
errx(EX_USAGE, "invalid table command %s", *av);
}
static void
table_list(ipfw_table_entry ent, int need_header)
{
ipfw_table *tbl;
socklen_t l;
uint32_t a;
a = ent.tbl;
l = sizeof(a);
if (do_cmd(IP_FW_TABLE_GETSIZE, &a, (uintptr_t)&l) < 0)
err(EX_OSERR, "getsockopt(IP_FW_TABLE_GETSIZE)");
/* If a is zero we have nothing to do, the table is empty. */
if (a == 0)
return;
l = sizeof(*tbl) + a * sizeof(ipfw_table_entry);
tbl = malloc(l);
if (tbl == NULL)
err(EX_OSERR, "malloc");
tbl->tbl = ent.tbl;
if (do_cmd(IP_FW_TABLE_LIST, tbl, (uintptr_t)&l) < 0)
err(EX_OSERR, "getsockopt(IP_FW_TABLE_LIST)");
if (tbl->cnt && need_header)
printf("---table(%d)---\n", tbl->tbl);
for (a = 0; a < tbl->cnt; a++) {
unsigned int tval;
tval = tbl->ent[a].value;
if (do_value_as_ip) {
char tbuf[128];
strncpy(tbuf, inet_ntoa(*(struct in_addr *)
&tbl->ent[a].addr), 127);
/* inet_ntoa expects network order */
tval = htonl(tval);
printf("%s/%u %s\n", tbuf, tbl->ent[a].masklen,
inet_ntoa(*(struct in_addr *)&tval));
} else {
printf("%s/%u %u\n",
inet_ntoa(*(struct in_addr *)&tbl->ent[a].addr),
tbl->ent[a].masklen, tval);
}
}
free(tbl);
}
static void
show_nat(int ac, char **av)
{
struct cfg_nat *n;
struct cfg_redir *e;
int cmd, i, nbytes, do_cfg, do_rule, frule, lrule, nalloc, size;
int nat_cnt, redir_cnt, r;
uint8_t *data, *p;
char *endptr;
do_rule = 0;
nalloc = 1024;
size = 0;
data = NULL;
frule = 0;
lrule = IPFW_DEFAULT_RULE; /* max ipfw rule number */
ac--; av++;
if (test_only)
return;
/* Parse parameters. */
for (cmd = IP_FW_NAT_GET_LOG, do_cfg = 0; ac != 0; ac--, av++) {
if (!strncmp(av[0], "config", strlen(av[0]))) {
cmd = IP_FW_NAT_GET_CONFIG, do_cfg = 1;
continue;
}
/* Convert command line rule #. */
frule = lrule = strtoul(av[0], &endptr, 10);
if (*endptr == '-')
lrule = strtoul(endptr+1, &endptr, 10);
if (lrule == 0)
err(EX_USAGE, "invalid rule number: %s", av[0]);
do_rule = 1;
}
nbytes = nalloc;
while (nbytes >= nalloc) {
nalloc = nalloc * 2;
nbytes = nalloc;
if ((data = realloc(data, nbytes)) == NULL)
err(EX_OSERR, "realloc");
if (do_cmd(cmd, data, (uintptr_t)&nbytes) < 0)
err(EX_OSERR, "getsockopt(IP_FW_GET_%s)",
(cmd == IP_FW_NAT_GET_LOG) ? "LOG" : "CONFIG");
}
if (nbytes == 0)
exit(0);
if (do_cfg) {
nat_cnt = *((int *)data);
for (i = sizeof(nat_cnt); nat_cnt; nat_cnt--) {
n = (struct cfg_nat *)&data[i];
if (frule <= n->id && lrule >= n->id)
print_nat_config(&data[i]);
i += sizeof(struct cfg_nat);
for (redir_cnt = 0; redir_cnt < n->redir_cnt; redir_cnt++) {
e = (struct cfg_redir *)&data[i];
i += sizeof(struct cfg_redir) + e->spool_cnt *
sizeof(struct cfg_spool);
}
}
} else {
for (i = 0; 1; i += LIBALIAS_BUF_SIZE + sizeof(int)) {
p = &data[i];
if (p == data + nbytes)
break;
bcopy(p, &r, sizeof(int));
if (do_rule) {
if (!(frule <= r && lrule >= r))
continue;
}
printf("nat %u: %s\n", r, p+sizeof(int));
}
}
}
/*
* Called with the arguments (excluding program name).
* Returns 0 if successful, 1 if empty command, errx() in case of errors.
*/
static int
ipfw_main(int oldac, char **oldav)
{
int ch, ac, save_ac;
const char *errstr;
char **av, **save_av;
int do_acct = 0; /* Show packet/byte count */
#define WHITESP " \t\f\v\n\r"
if (oldac == 0)
return 1;
else if (oldac == 1) {
/*
* If we are called with a single string, try to split it into
* arguments for subsequent parsing.
* But first, remove spaces after a ',', by copying the string
* in-place.
*/
char *arg = oldav[0]; /* The string... */
int l = strlen(arg);
int copy = 0; /* 1 if we need to copy, 0 otherwise */
int i, j;
for (i = j = 0; i < l; i++) {
if (arg[i] == '#') /* comment marker */
break;
if (copy) {
arg[j++] = arg[i];
copy = !index("," WHITESP, arg[i]);
} else {
copy = !index(WHITESP, arg[i]);
if (copy)
arg[j++] = arg[i];
}
}
if (!copy && j > 0) /* last char was a 'blank', remove it */
j--;
l = j; /* the new argument length */
arg[j++] = '\0';
if (l == 0) /* empty string! */
return 1;
/*
* First, count number of arguments. Because of the previous
* processing, this is just the number of blanks plus 1.
*/
for (i = 0, ac = 1; i < l; i++)
if (index(WHITESP, arg[i]) != NULL)
ac++;
av = calloc(ac, sizeof(char *));
/*
* Second, copy arguments from cmd[] to av[]. For each one,
* j is the initial character, i is the one past the end.
*/
for (ac = 0, i = j = 0; i < l; i++)
if (index(WHITESP, arg[i]) != NULL || i == l-1) {
if (i == l-1)
i++;
av[ac] = calloc(i-j+1, 1);
bcopy(arg+j, av[ac], i-j);
ac++;
j = i + 1;
}
} else {
/*
* If an argument ends with ',' join with the next one.
*/
int first, i, l;
av = calloc(oldac, sizeof(char *));
for (first = i = ac = 0, l = 0; i < oldac; i++) {
char *arg = oldav[i];
int k = strlen(arg);
l += k;
if (arg[k-1] != ',' || i == oldac-1) {
/* Time to copy. */
av[ac] = calloc(l+1, 1);
for (l=0; first <= i; first++) {
strcat(av[ac]+l, oldav[first]);
l += strlen(oldav[first]);
}
ac++;
l = 0;
first = i+1;
}
}
}
/* Set the force flag for non-interactive processes */
if (!do_force)
do_force = !isatty(STDIN_FILENO);
/* Save arguments for final freeing of memory. */
save_ac = ac;
save_av = av;
optind = optreset = 0;
while ((ch = getopt(ac, av, "abcdefhinNqs:STtv")) != -1)
switch (ch) {
case 'a':
do_acct = 1;
break;
case 'b':
comment_only = 1;
do_compact = 1;
break;
case 'c':
do_compact = 1;
break;
case 'd':
do_dynamic = 1;
break;
case 'e':
do_expired = 1;
break;
case 'f':
do_force = 1;
break;
case 'h': /* help */
free_args(save_ac, save_av);
help();
break; /* NOTREACHED */
case 'i':
do_value_as_ip = 1;
break;
case 'n':
test_only = 1;
break;
case 'N':
do_resolv = 1;
break;
case 'q':
do_quiet = 1;
break;
case 's': /* sort */
do_sort = atoi(optarg);
break;
case 'S':
show_sets = 1;
break;
case 't':
do_time = 1;
break;
case 'T':
do_time = 2; /* numeric timestamp */
break;
case 'v': /* verbose */
verbose = 1;
break;
default:
free_args(save_ac, save_av);
return 1;
}
ac -= optind;
av += optind;
NEED1("bad arguments, for usage summary ``ipfw''");
/*
* An undocumented behaviour of ipfw1 was to allow rule numbers first,
* e.g. "100 add allow ..." instead of "add 100 allow ...".
* In case, swap first and second argument to get the normal form.
*/
if (ac > 1 && isdigit(*av[0])) {
char *p = av[0];
av[0] = av[1];
av[1] = p;
}
/*
* Optional: pipe, queue or nat.
*/
do_nat = 0;
do_pipe = 0;
if (!strncmp(*av, "nat", strlen(*av)))
do_nat = 1;
else if (!strncmp(*av, "pipe", strlen(*av)))
do_pipe = 1;
else if (_substrcmp(*av, "queue") == 0)
do_pipe = 2;
else if (!strncmp(*av, "set", strlen(*av))) {
if (ac > 1 && isdigit(av[1][0])) {
use_set = strtonum(av[1], 0, RESVD_SET, &errstr);
if (errstr)
errx(EX_DATAERR,
"invalid set number %s\n", av[1]);
ac -= 2; av += 2; use_set++;
}
}
if (do_pipe || do_nat) {
ac--;
av++;
}
NEED1("missing command");
/*
* For pipes, queues and nats we normally say 'nat|pipe NN config'
* but the code is easier to parse as 'nat|pipe config NN'
* so we swap the two arguments.
*/
if ((do_pipe || do_nat) && ac > 1 && isdigit(*av[0])) {
char *p = av[0];
av[0] = av[1];
av[1] = p;
}
int try_next = 0;
if (use_set == 0) {
if (_substrcmp(*av, "add") == 0)
add(ac, av);
else if (do_nat && _substrcmp(*av, "show") == 0)
show_nat(ac, av);
else if (do_pipe && _substrcmp(*av, "config") == 0)
config_pipe(ac, av);
else if (do_nat && _substrcmp(*av, "config") == 0)
config_nat(ac, av);
else if (_substrcmp(*av, "set") == 0)
sets_handler(ac, av);
else if (_substrcmp(*av, "table") == 0)
table_handler(ac, av);
else if (_substrcmp(*av, "enable") == 0)
sysctl_handler(ac, av, 1);
else if (_substrcmp(*av, "disable") == 0)
sysctl_handler(ac, av, 0);
else
try_next = 1;
}
if (use_set || try_next) {
if (_substrcmp(*av, "delete") == 0)
delete(ac, av);
else if (_substrcmp(*av, "flush") == 0)
flush(do_force);
else if (_substrcmp(*av, "zero") == 0)
zero(ac, av, IP_FW_ZERO);
else if (_substrcmp(*av, "resetlog") == 0)
zero(ac, av, IP_FW_RESETLOG);
else if (_substrcmp(*av, "print") == 0 ||
_substrcmp(*av, "list") == 0)
list(ac, av, do_acct);
else if (_substrcmp(*av, "show") == 0)
list(ac, av, 1 /* show counters */);
else
errx(EX_USAGE, "bad command `%s'", *av);
}
/* Free memory allocated in the argument parsing. */
free_args(save_ac, save_av);
return 0;
}
static void
ipfw_readfile(int ac, char *av[])
{
#define MAX_ARGS 32
char buf[BUFSIZ];
char *cmd = NULL, *filename = av[ac-1];
int c, lineno=0;
FILE *f = NULL;
pid_t preproc = 0;
filename = av[ac-1];
while ((c = getopt(ac, av, "cfNnp:qS")) != -1) {
switch(c) {
case 'c':
do_compact = 1;
break;
case 'f':
do_force = 1;
break;
case 'N':
do_resolv = 1;
break;
case 'n':
test_only = 1;
break;
case 'p':
cmd = optarg;
/*
* Skip previous args and delete last one, so we
* pass all but the last argument to the preprocessor
* via av[optind-1]
*/
av += optind - 1;
ac -= optind - 1;
if (ac < 2)
errx(EX_USAGE, "no filename argument");
av[ac-1] = NULL;
fprintf(stderr, "command is %s\n", av[0]);
break;
case 'q':
do_quiet = 1;
break;
case 'S':
show_sets = 1;
break;
default:
errx(EX_USAGE, "bad arguments, for usage"
" summary ``ipfw''");
}
if (cmd != NULL)
break;
}
if (cmd == NULL && ac != optind + 1) {
fprintf(stderr, "ac %d, optind %d\n", ac, optind);
errx(EX_USAGE, "extraneous filename arguments");
}
if ((f = fopen(filename, "r")) == NULL)
err(EX_UNAVAILABLE, "fopen: %s", filename);
if (cmd != NULL) { /* pipe through preprocessor */
int pipedes[2];
if (pipe(pipedes) == -1)
err(EX_OSERR, "cannot create pipe");
preproc = fork();
if (preproc == -1)
err(EX_OSERR, "cannot fork");
if (preproc == 0) {
/*
* Child, will run the preprocessor with the
* file on stdin and the pipe on stdout.
*/
if (dup2(fileno(f), 0) == -1
|| dup2(pipedes[1], 1) == -1)
err(EX_OSERR, "dup2()");
fclose(f);
close(pipedes[1]);
close(pipedes[0]);
execvp(cmd, av);
err(EX_OSERR, "execvp(%s) failed", cmd);
} else { /* parent, will reopen f as the pipe */
fclose(f);
close(pipedes[1]);
if ((f = fdopen(pipedes[0], "r")) == NULL) {
int savederrno = errno;
(void)kill(preproc, SIGTERM);
errno = savederrno;
err(EX_OSERR, "fdopen()");
}
}
}
while (fgets(buf, BUFSIZ, f)) { /* read commands */
char linename[10];
char *args[1];
lineno++;
sprintf(linename, "Line %d", lineno);
setprogname(linename); /* XXX */
args[0] = buf;
ipfw_main(1, args);
}
fclose(f);
if (cmd != NULL) {
int status;
if (waitpid(preproc, &status, 0) == -1)
errx(EX_OSERR, "waitpid()");
if (WIFEXITED(status) && WEXITSTATUS(status) != EX_OK)
errx(EX_UNAVAILABLE,
"preprocessor exited with status %d",
WEXITSTATUS(status));
else if (WIFSIGNALED(status))
errx(EX_UNAVAILABLE,
"preprocessor exited with signal %d",
WTERMSIG(status));
}
}
int
main(int ac, char *av[])
{
/*
* If the last argument is an absolute pathname, interpret it
* as a file to be preprocessed.
*/
if (ac > 1 && av[ac - 1][0] == '/' && access(av[ac - 1], R_OK) == 0)
ipfw_readfile(ac, av);
else {
if (ipfw_main(ac-1, av+1))
show_usage();
}
return EX_OK;
}