mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-22 11:17:19 +00:00
8f214efc9a
ahc_eisa.c: ahc_pci.c: Conform to new aic7xxx IRQ API. Adapt to aic7xxx_freebsd -> aic7xxx_osm changes. aic7770.c: Disable card generated interrupt early in our probe for "extra safety" Commonize some seeprom code with the PCI side of the driver. aic7xxx.c: Correctly initialize a few scratch ram locations during a sequencer restart. This avoids spurious sequencer ram parity errors in some configurations. Include the softc in ahc_update_residual calls. We need it for some diagnostics in this code path. Flag a data overrun on an auto-request sense failure as a CAM_AUTOSENSE_FAIL rather than a CAM_DATA_RUN_ERR. Force a renegotiation after noticing a parity error. This covers targets that lose our negotiation settings but don't bother to give us a unit attention condition. This can happen if a target fails during a reselection of us during a cable pull. Convert some code to using constants. Fix some typos. Correct target mode message loop handling. ahc_clear_msg_state was not clearing the "need to go to message out phase" bit once our loop was over. Simplify some abort handling code. Include tag information in target mode immediate notify events. When shutting down EISA controllers, don't EISA BIOS settings in the high portions of scratch ram. This fixes warm boot issues on some systems. Save a bit of space by only allocating the SCBs that we can use. Avoid some code paths in ahc_abort_scbs() if we are currently acting as a target. Correctly cleanup stranded SCBs in the card's SCB array. These are SCBs who's mapping has already been torn down by code that aborted the SCB by seeing it in another list first. Add a comment about some potential bus reset issues for target mode on Twin (EISA only) controllers. aic7xxx.h: Cleanup the hardware scb definitions a bit. Allocate a ful 256 byte scb mapping index. This simplifies the lookup code since the table covers all possible (and potentially bogus) values. Make AHC_DEBUG work again. aic7xxx.reg: Updates to hardware SCB definition. New definitions for target mode fixes. aic7xxx.seq: In target mode, initialize SAVED_LUN just after we receive the identify message. It may be required in the error recovery path when a normal cdb packet (includes lun) is not sent up to the host for processing. Respond to irregular messages during a selection in target mode. Defer looking for space for a cdb packet until we are about to enter command phase. We want to be able to handle irregular messages even if we would otherwise return QUEUE_FULL or BUSY. Add support for sending Ignore Wide Residue messages as a target. In the disable disconnect case in target mode, set our transfer rate correctly once data are availble. aic7xxx_93cx6.c: aic7xxx_93cx6.h: Add the ability to write and erase the seeprom. aic7xxx_inline.h: Correct Big Endian handling of large cdb sizes (> 12 bytes). Adaptec to changes in the calc_residual API. Correct a target mode bug where we always attempted to service the input queue even if no progress could be made due to lack of ATIOs. aic7xxx_osm.c: Adaptec to new IRQ mapping API. The new API allows the core to only enable our IRQ mapping once it is safe (sufficient initialization) to do so. Slap bootverbose protection around some diagnostics. Only attempt DT phases if we are wide. aic7xxx_osm.h: Enable big endian support. Adjust for IRQ API change. aic7xxx_pci.c: Be more careful about relying on subvendor 9005 information. We now only trust it for HBAs. This should allow the driver to attach to some MBs where the subvendor/device information does not follow the Adaptec spec. Only enable interrupts on the card once we are fully setup. Disable external SCB ram usage on the aic7895. I have not been able to make it 100% reliable. Adjust to seeprom routines being properly prefixed with "ahc". Fix a few bugs in the external SCB ram probing routine. We need to clear any parity errors we've triggered during the probe to avoid future, fatal, interrupts. If we detect an invalid cable combination, pretent there are no cable at all. This will enable all of the terminators which is probably the safest configuration we can "guess". MFC after: 4 days
1238 lines
40 KiB
C
1238 lines
40 KiB
C
/*
|
|
* Core definitions and data structures shareable across OS platforms.
|
|
*
|
|
* Copyright (c) 1994-2001 Justin T. Gibbs.
|
|
* Copyright (c) 2000-2001 Adaptec Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
* substantially similar to the "NO WARRANTY" disclaimer below
|
|
* ("Disclaimer") and any redistribution must be conditioned upon
|
|
* including a substantially similar Disclaimer requirement for further
|
|
* binary redistribution.
|
|
* 3. Neither the names of the above-listed copyright holders nor the names
|
|
* of any contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* Alternatively, this software may be distributed under the terms of the
|
|
* GNU General Public License ("GPL") version 2 as published by the Free
|
|
* Software Foundation.
|
|
*
|
|
* NO WARRANTY
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGES.
|
|
*
|
|
* $Id: //depot/aic7xxx/aic7xxx/aic7xxx.h#40 $
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#ifndef _AIC7XXX_H_
|
|
#define _AIC7XXX_H_
|
|
|
|
/* Register Definitions */
|
|
#include "aic7xxx_reg.h"
|
|
|
|
/************************* Forward Declarations *******************************/
|
|
struct ahc_platform_data;
|
|
struct scb_platform_data;
|
|
struct seeprom_descriptor;
|
|
|
|
/****************************** Useful Macros *********************************/
|
|
#ifndef MAX
|
|
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
|
|
#endif
|
|
|
|
#ifndef MIN
|
|
#define MIN(a,b) (((a) < (b)) ? (a) : (b))
|
|
#endif
|
|
|
|
#ifndef TRUE
|
|
#define TRUE 1
|
|
#endif
|
|
#ifndef FALSE
|
|
#define FALSE 0
|
|
#endif
|
|
|
|
#define NUM_ELEMENTS(array) (sizeof(array) / sizeof(*array))
|
|
|
|
#define ALL_CHANNELS '\0'
|
|
#define ALL_TARGETS_MASK 0xFFFF
|
|
#define INITIATOR_WILDCARD (~0)
|
|
|
|
#define SCSIID_TARGET(ahc, scsiid) \
|
|
(((scsiid) & ((((ahc)->features & AHC_TWIN) != 0) ? TWIN_TID : TID)) \
|
|
>> TID_SHIFT)
|
|
#define SCSIID_OUR_ID(scsiid) \
|
|
((scsiid) & OID)
|
|
#define SCSIID_CHANNEL(ahc, scsiid) \
|
|
((((ahc)->features & AHC_TWIN) != 0) \
|
|
? ((((scsiid) & TWIN_CHNLB) != 0) ? 'B' : 'A') \
|
|
: 'A')
|
|
#define SCB_IS_SCSIBUS_B(ahc, scb) \
|
|
(SCSIID_CHANNEL(ahc, (scb)->hscb->scsiid) == 'B')
|
|
#define SCB_GET_OUR_ID(scb) \
|
|
SCSIID_OUR_ID((scb)->hscb->scsiid)
|
|
#define SCB_GET_TARGET(ahc, scb) \
|
|
SCSIID_TARGET((ahc), (scb)->hscb->scsiid)
|
|
#define SCB_GET_CHANNEL(ahc, scb) \
|
|
SCSIID_CHANNEL(ahc, (scb)->hscb->scsiid)
|
|
#define SCB_GET_LUN(scb) \
|
|
((scb)->hscb->lun)
|
|
#define SCB_GET_TARGET_OFFSET(ahc, scb) \
|
|
(SCB_GET_TARGET(ahc, scb) + (SCB_IS_SCSIBUS_B(ahc, scb) ? 8 : 0))
|
|
#define SCB_GET_TARGET_MASK(ahc, scb) \
|
|
(0x01 << (SCB_GET_TARGET_OFFSET(ahc, scb)))
|
|
#define TCL_TARGET_OFFSET(tcl) \
|
|
((((tcl) >> 4) & TID) >> 4)
|
|
#define TCL_LUN(tcl) \
|
|
(tcl & (AHC_NUM_LUNS - 1))
|
|
#define BUILD_TCL(scsiid, lun) \
|
|
((lun) | (((scsiid) & TID) << 4))
|
|
|
|
#ifndef AHC_TARGET_MODE
|
|
#undef AHC_TMODE_ENABLE
|
|
#define AHC_TMODE_ENABLE 0
|
|
#endif
|
|
|
|
/**************************** Driver Constants ********************************/
|
|
/*
|
|
* The maximum number of supported targets.
|
|
*/
|
|
#define AHC_NUM_TARGETS 16
|
|
|
|
/*
|
|
* The maximum number of supported luns.
|
|
* The identify message only supports 64 luns in SPI3.
|
|
* You can have 2^64 luns when information unit transfers are enabled,
|
|
* but it is doubtful this driver will ever support IUTs.
|
|
*/
|
|
#define AHC_NUM_LUNS 64
|
|
|
|
/*
|
|
* The maximum transfer per S/G segment.
|
|
*/
|
|
#define AHC_MAXTRANSFER_SIZE 0x00ffffff /* limited by 24bit counter */
|
|
|
|
/*
|
|
* The maximum amount of SCB storage in hardware on a controller.
|
|
* This value represents an upper bound. Controllers vary in the number
|
|
* they actually support.
|
|
*/
|
|
#define AHC_SCB_MAX 255
|
|
|
|
/*
|
|
* The maximum number of concurrent transactions supported per driver instance.
|
|
* Sequencer Control Blocks (SCBs) store per-transaction information. Although
|
|
* the space for SCBs on the host adapter varies by model, the driver will
|
|
* page the SCBs between host and controller memory as needed. We are limited
|
|
* to 253 because:
|
|
* 1) The 8bit nature of the RISC engine holds us to an 8bit value.
|
|
* 2) We reserve one value, 255, to represent the invalid element.
|
|
* 3) Our input queue scheme requires one SCB to always be reserved
|
|
* in advance of queuing any SCBs. This takes us down to 254.
|
|
* 4) To handle our output queue correctly on machines that only
|
|
* support 32bit stores, we must clear the array 4 bytes at a
|
|
* time. To avoid colliding with a DMA write from the sequencer,
|
|
* we must be sure that 4 slots are empty when we write to clear
|
|
* the queue. This reduces us to 253 SCBs: 1 that just completed
|
|
* and the known three additional empty slots in the queue that
|
|
* precede it.
|
|
*/
|
|
#define AHC_MAX_QUEUE 253
|
|
|
|
/*
|
|
* The maximum amount of SCB storage we allocate in host memory. This
|
|
* number should reflect the 1 additional SCB we require to handle our
|
|
* qinfifo mechanism.
|
|
*/
|
|
#define AHC_SCB_MAX_ALLOC (AHC_MAX_QUEUE+1)
|
|
|
|
/*
|
|
* Ring Buffer of incoming target commands.
|
|
* We allocate 256 to simplify the logic in the sequencer
|
|
* by using the natural wrap point of an 8bit counter.
|
|
*/
|
|
#define AHC_TMODE_CMDS 256
|
|
|
|
/* Reset line assertion time in us */
|
|
#define AHC_BUSRESET_DELAY 250
|
|
|
|
/******************* Chip Characteristics/Operating Settings *****************/
|
|
/*
|
|
* Chip Type
|
|
* The chip order is from least sophisticated to most sophisticated.
|
|
*/
|
|
typedef enum {
|
|
AHC_NONE = 0x0000,
|
|
AHC_CHIPID_MASK = 0x00FF,
|
|
AHC_AIC7770 = 0x0001,
|
|
AHC_AIC7850 = 0x0002,
|
|
AHC_AIC7855 = 0x0003,
|
|
AHC_AIC7859 = 0x0004,
|
|
AHC_AIC7860 = 0x0005,
|
|
AHC_AIC7870 = 0x0006,
|
|
AHC_AIC7880 = 0x0007,
|
|
AHC_AIC7895 = 0x0008,
|
|
AHC_AIC7895C = 0x0009,
|
|
AHC_AIC7890 = 0x000a,
|
|
AHC_AIC7896 = 0x000b,
|
|
AHC_AIC7892 = 0x000c,
|
|
AHC_AIC7899 = 0x000d,
|
|
AHC_VL = 0x0100, /* Bus type VL */
|
|
AHC_EISA = 0x0200, /* Bus type EISA */
|
|
AHC_PCI = 0x0400, /* Bus type PCI */
|
|
AHC_BUS_MASK = 0x0F00
|
|
} ahc_chip;
|
|
|
|
/*
|
|
* Features available in each chip type.
|
|
*/
|
|
typedef enum {
|
|
AHC_FENONE = 0x00000,
|
|
AHC_ULTRA = 0x00001, /* Supports 20MHz Transfers */
|
|
AHC_ULTRA2 = 0x00002, /* Supports 40MHz Transfers */
|
|
AHC_WIDE = 0x00004, /* Wide Channel */
|
|
AHC_TWIN = 0x00008, /* Twin Channel */
|
|
AHC_MORE_SRAM = 0x00010, /* 80 bytes instead of 64 */
|
|
AHC_CMD_CHAN = 0x00020, /* Has a Command DMA Channel */
|
|
AHC_QUEUE_REGS = 0x00040, /* Has Queue management registers */
|
|
AHC_SG_PRELOAD = 0x00080, /* Can perform auto-SG preload */
|
|
AHC_SPIOCAP = 0x00100, /* Has a Serial Port I/O Cap Register */
|
|
AHC_MULTI_TID = 0x00200, /* Has bitmask of TIDs for select-in */
|
|
AHC_HS_MAILBOX = 0x00400, /* Has HS_MAILBOX register */
|
|
AHC_DT = 0x00800, /* Double Transition transfers */
|
|
AHC_NEW_TERMCTL = 0x01000, /* Newer termination scheme */
|
|
AHC_MULTI_FUNC = 0x02000, /* Multi-Function Twin Channel Device */
|
|
AHC_LARGE_SCBS = 0x04000, /* 64byte SCBs */
|
|
AHC_AUTORATE = 0x08000, /* Automatic update of SCSIRATE/OFFSET*/
|
|
AHC_AUTOPAUSE = 0x10000, /* Automatic pause on register access */
|
|
AHC_TARGETMODE = 0x20000, /* Has tested target mode support */
|
|
AHC_MULTIROLE = 0x40000, /* Space for two roles at a time */
|
|
AHC_REMOVABLE = 0x80000, /* Hot-Swap supported */
|
|
AHC_AIC7770_FE = AHC_FENONE,
|
|
/*
|
|
* The real 7850 does not support Ultra modes, but there are
|
|
* several cards that use the generic 7850 PCI ID even though
|
|
* they are using an Ultra capable chip (7859/7860). We start
|
|
* out with the AHC_ULTRA feature set and then check the DEVSTATUS
|
|
* register to determine if the capability is really present.
|
|
*/
|
|
AHC_AIC7850_FE = AHC_SPIOCAP|AHC_AUTOPAUSE|AHC_TARGETMODE|AHC_ULTRA,
|
|
AHC_AIC7860_FE = AHC_AIC7850_FE,
|
|
AHC_AIC7870_FE = AHC_TARGETMODE,
|
|
AHC_AIC7880_FE = AHC_AIC7870_FE|AHC_ULTRA,
|
|
/*
|
|
* Although we have space for both the initiator and
|
|
* target roles on ULTRA2 chips, we currently disable
|
|
* the initiator role to allow multi-scsi-id target mode
|
|
* configurations. We can only respond on the same SCSI
|
|
* ID as our initiator role if we allow initiator operation.
|
|
* At some point, we should add a configuration knob to
|
|
* allow both roles to be loaded.
|
|
*/
|
|
AHC_AIC7890_FE = AHC_MORE_SRAM|AHC_CMD_CHAN|AHC_ULTRA2
|
|
|AHC_QUEUE_REGS|AHC_SG_PRELOAD|AHC_MULTI_TID
|
|
|AHC_HS_MAILBOX|AHC_NEW_TERMCTL|AHC_LARGE_SCBS
|
|
|AHC_TARGETMODE,
|
|
AHC_AIC7892_FE = AHC_AIC7890_FE|AHC_DT|AHC_AUTORATE|AHC_AUTOPAUSE,
|
|
AHC_AIC7895_FE = AHC_AIC7880_FE|AHC_MORE_SRAM|AHC_AUTOPAUSE
|
|
|AHC_CMD_CHAN|AHC_MULTI_FUNC|AHC_LARGE_SCBS,
|
|
AHC_AIC7895C_FE = AHC_AIC7895_FE|AHC_MULTI_TID,
|
|
AHC_AIC7896_FE = AHC_AIC7890_FE|AHC_MULTI_FUNC,
|
|
AHC_AIC7899_FE = AHC_AIC7892_FE|AHC_MULTI_FUNC
|
|
} ahc_feature;
|
|
|
|
/*
|
|
* Bugs in the silicon that we work around in software.
|
|
*/
|
|
typedef enum {
|
|
AHC_BUGNONE = 0x00,
|
|
/*
|
|
* On all chips prior to the U2 product line,
|
|
* the WIDEODD S/G segment feature does not
|
|
* work during scsi->HostBus transfers.
|
|
*/
|
|
AHC_TMODE_WIDEODD_BUG = 0x01,
|
|
/*
|
|
* On the aic7890/91 Rev 0 chips, the autoflush
|
|
* feature does not work. A manual flush of
|
|
* the DMA FIFO is required.
|
|
*/
|
|
AHC_AUTOFLUSH_BUG = 0x02,
|
|
/*
|
|
* On many chips, cacheline streaming does not work.
|
|
*/
|
|
AHC_CACHETHEN_BUG = 0x04,
|
|
/*
|
|
* On the aic7896/97 chips, cacheline
|
|
* streaming must be enabled.
|
|
*/
|
|
AHC_CACHETHEN_DIS_BUG = 0x08,
|
|
/*
|
|
* PCI 2.1 Retry failure on non-empty data fifo.
|
|
*/
|
|
AHC_PCI_2_1_RETRY_BUG = 0x10,
|
|
/*
|
|
* Controller does not handle cacheline residuals
|
|
* properly on S/G segments if PCI MWI instructions
|
|
* are allowed.
|
|
*/
|
|
AHC_PCI_MWI_BUG = 0x20,
|
|
/*
|
|
* An SCB upload using the SCB channel's
|
|
* auto array entry copy feature may
|
|
* corrupt data. This appears to only
|
|
* occur on 66MHz systems.
|
|
*/
|
|
AHC_SCBCHAN_UPLOAD_BUG = 0x40
|
|
} ahc_bug;
|
|
|
|
/*
|
|
* Configuration specific settings.
|
|
* The driver determines these settings by probing the
|
|
* chip/controller's configuration.
|
|
*/
|
|
typedef enum {
|
|
AHC_FNONE = 0x000,
|
|
AHC_PRIMARY_CHANNEL = 0x003,/*
|
|
* The channel that should
|
|
* be probed first.
|
|
*/
|
|
AHC_USEDEFAULTS = 0x004,/*
|
|
* For cards without an seeprom
|
|
* or a BIOS to initialize the chip's
|
|
* SRAM, we use the default target
|
|
* settings.
|
|
*/
|
|
AHC_SEQUENCER_DEBUG = 0x008,
|
|
AHC_SHARED_SRAM = 0x010,
|
|
AHC_LARGE_SEEPROM = 0x020,/* Uses C56_66 not C46 */
|
|
AHC_RESET_BUS_A = 0x040,
|
|
AHC_RESET_BUS_B = 0x080,
|
|
AHC_EXTENDED_TRANS_A = 0x100,
|
|
AHC_EXTENDED_TRANS_B = 0x200,
|
|
AHC_TERM_ENB_A = 0x400,
|
|
AHC_TERM_ENB_B = 0x800,
|
|
AHC_INITIATORROLE = 0x1000,/*
|
|
* Allow initiator operations on
|
|
* this controller.
|
|
*/
|
|
AHC_TARGETROLE = 0x2000,/*
|
|
* Allow target operations on this
|
|
* controller.
|
|
*/
|
|
AHC_NEWEEPROM_FMT = 0x4000,
|
|
AHC_RESOURCE_SHORTAGE = 0x8000,
|
|
AHC_TQINFIFO_BLOCKED = 0x10000,/* Blocked waiting for ATIOs */
|
|
AHC_INT50_SPEEDFLEX = 0x20000,/*
|
|
* Internal 50pin connector
|
|
* sits behind an aic3860
|
|
*/
|
|
AHC_SCB_BTT = 0x40000,/*
|
|
* The busy targets table is
|
|
* stored in SCB space rather
|
|
* than SRAM.
|
|
*/
|
|
AHC_BIOS_ENABLED = 0x80000,
|
|
AHC_ALL_INTERRUPTS = 0x100000,
|
|
AHC_PAGESCBS = 0x400000, /* Enable SCB paging */
|
|
AHC_EDGE_INTERRUPT = 0x800000, /* Device uses edge triggered ints */
|
|
AHC_39BIT_ADDRESSING = 0x1000000 /* Use 39 bit addressing scheme. */
|
|
} ahc_flag;
|
|
|
|
/************************* Hardware SCB Definition ***************************/
|
|
|
|
/*
|
|
* The driver keeps up to MAX_SCB scb structures per card in memory. The SCB
|
|
* consists of a "hardware SCB" mirroring the fields availible on the card
|
|
* and additional information the kernel stores for each transaction.
|
|
*
|
|
* To minimize space utilization, a portion of the hardware scb stores
|
|
* different data during different portions of a SCSI transaction.
|
|
* As initialized by the host driver for the initiator role, this area
|
|
* contains the SCSI cdb (or a pointer to the cdb) to be executed. After
|
|
* the cdb has been presented to the target, this area serves to store
|
|
* residual transfer information and the SCSI status byte.
|
|
* For the target role, the contents of this area do not change, but
|
|
* still serve a different purpose than for the initiator role. See
|
|
* struct target_data for details.
|
|
*/
|
|
|
|
/*
|
|
* Status information embedded in the shared poriton of
|
|
* an SCB after passing the cdb to the target. The kernel
|
|
* driver will only read this data for transactions that
|
|
* complete abnormally (non-zero status byte).
|
|
*/
|
|
struct status_pkt {
|
|
uint32_t residual_datacnt; /* Residual in the current S/G seg */
|
|
uint32_t residual_sg_ptr; /* The next S/G for this transfer */
|
|
uint8_t scsi_status; /* Standard SCSI status byte */
|
|
};
|
|
|
|
/*
|
|
* Target mode version of the shared data SCB segment.
|
|
*/
|
|
struct target_data {
|
|
uint32_t residual_datacnt; /* Residual in the current S/G seg */
|
|
uint32_t residual_sg_ptr; /* The next S/G for this transfer */
|
|
uint8_t scsi_status; /* SCSI status to give to initiator */
|
|
uint8_t target_phases; /* Bitmap of phases to execute */
|
|
uint8_t data_phase; /* Data-In or Data-Out */
|
|
uint8_t initiator_tag; /* Initiator's transaction tag */
|
|
};
|
|
|
|
struct hardware_scb {
|
|
/*0*/ union {
|
|
/*
|
|
* If the cdb is 12 bytes or less, we embed it directly
|
|
* in the SCB. For longer cdbs, we embed the address
|
|
* of the cdb payload as seen by the chip and a DMA
|
|
* is used to pull it in.
|
|
*/
|
|
uint8_t cdb[12];
|
|
uint32_t cdb_ptr;
|
|
struct status_pkt status;
|
|
struct target_data tdata;
|
|
} shared_data;
|
|
/*
|
|
* A word about residuals.
|
|
* The scb is presented to the sequencer with the dataptr and datacnt
|
|
* fields initialized to the contents of the first S/G element to
|
|
* transfer. The sgptr field is initialized to the bus address for
|
|
* the S/G element that follows the first in the in core S/G array
|
|
* or'ed with the SG_FULL_RESID flag. Sgptr may point to an invalid
|
|
* S/G entry for this transfer (single S/G element transfer with the
|
|
* first elements address and length preloaded in the dataptr/datacnt
|
|
* fields). If no transfer is to occur, sgptr is set to SG_LIST_NULL.
|
|
* The SG_FULL_RESID flag ensures that the residual will be correctly
|
|
* noted even if no data transfers occur. Once the data phase is entered,
|
|
* the residual sgptr and datacnt are loaded from the sgptr and the
|
|
* datacnt fields. After each S/G element's dataptr and length are
|
|
* loaded into the hardware, the residual sgptr is advanced. After
|
|
* each S/G element is expired, its datacnt field is checked to see
|
|
* if the LAST_SEG flag is set. If so, SG_LIST_NULL is set in the
|
|
* residual sg ptr and the transfer is considered complete. If the
|
|
* sequencer determines that there is a residual in the tranfer, it
|
|
* will set the SG_RESID_VALID flag in sgptr and dma the scb back into
|
|
* host memory. To sumarize:
|
|
*
|
|
* Sequencer:
|
|
* o A residual has occurred if SG_FULL_RESID is set in sgptr,
|
|
* or residual_sgptr does not have SG_LIST_NULL set.
|
|
*
|
|
* o We are transfering the last segment if residual_datacnt has
|
|
* the SG_LAST_SEG flag set.
|
|
*
|
|
* Host:
|
|
* o A residual has occurred if a completed scb has the
|
|
* SG_RESID_VALID flag set.
|
|
*
|
|
* o residual_sgptr and sgptr refer to the "next" sg entry
|
|
* and so may point beyond the last valid sg entry for the
|
|
* transfer.
|
|
*/
|
|
/*12*/ uint32_t dataptr;
|
|
/*16*/ uint32_t datacnt; /*
|
|
* Byte 3 (numbered from 0) of
|
|
* the datacnt is really the
|
|
* 4th byte in that data address.
|
|
*/
|
|
/*20*/ uint32_t sgptr;
|
|
#define SG_PTR_MASK 0xFFFFFFF8
|
|
/*24*/ uint8_t control; /* See SCB_CONTROL in aic7xxx.reg for details */
|
|
/*25*/ uint8_t scsiid; /* what to load in the SCSIID register */
|
|
/*26*/ uint8_t lun;
|
|
/*27*/ uint8_t tag; /*
|
|
* Index into our kernel SCB array.
|
|
* Also used as the tag for tagged I/O
|
|
*/
|
|
/*28*/ uint8_t cdb_len;
|
|
/*29*/ uint8_t scsirate; /* Value for SCSIRATE register */
|
|
/*30*/ uint8_t scsioffset; /* Value for SCSIOFFSET register */
|
|
/*31*/ uint8_t next; /*
|
|
* Used for threading SCBs in the
|
|
* "Waiting for Selection" and
|
|
* "Disconnected SCB" lists down
|
|
* in the sequencer.
|
|
*/
|
|
/*32*/ uint8_t cdb32[32]; /*
|
|
* CDB storage for cdbs of size
|
|
* 13->32. We store them here
|
|
* because hardware scbs are
|
|
* allocated from DMA safe
|
|
* memory so we are guaranteed
|
|
* the controller can access
|
|
* this data.
|
|
*/
|
|
};
|
|
|
|
/************************ Kernel SCB Definitions ******************************/
|
|
/*
|
|
* Some fields of the SCB are OS dependent. Here we collect the
|
|
* definitions for elements that all OS platforms need to include
|
|
* in there SCB definition.
|
|
*/
|
|
|
|
/*
|
|
* Definition of a scatter/gather element as transfered to the controller.
|
|
* The aic7xxx chips only support a 24bit length. We use the top byte of
|
|
* the length to store additional address bits and a flag to indicate
|
|
* that a given segment terminates the transfer. This gives us an
|
|
* addressable range of 512GB on machines with 64bit PCI or with chips
|
|
* that can support dual address cycles on 32bit PCI busses.
|
|
*/
|
|
struct ahc_dma_seg {
|
|
uint32_t addr;
|
|
uint32_t len;
|
|
#define AHC_DMA_LAST_SEG 0x80000000
|
|
#define AHC_SG_HIGH_ADDR_MASK 0x7F000000
|
|
#define AHC_SG_LEN_MASK 0x00FFFFFF
|
|
};
|
|
|
|
struct sg_map_node {
|
|
bus_dmamap_t sg_dmamap;
|
|
bus_addr_t sg_physaddr;
|
|
struct ahc_dma_seg* sg_vaddr;
|
|
SLIST_ENTRY(sg_map_node) links;
|
|
};
|
|
|
|
/*
|
|
* The current state of this SCB.
|
|
*/
|
|
typedef enum {
|
|
SCB_FREE = 0x0000,
|
|
SCB_OTHERTCL_TIMEOUT = 0x0002,/*
|
|
* Another device was active
|
|
* during the first timeout for
|
|
* this SCB so we gave ourselves
|
|
* an additional timeout period
|
|
* in case it was hogging the
|
|
* bus.
|
|
*/
|
|
SCB_DEVICE_RESET = 0x0004,
|
|
SCB_SENSE = 0x0008,
|
|
SCB_CDB32_PTR = 0x0010,
|
|
SCB_RECOVERY_SCB = 0x0020,
|
|
SCB_AUTO_NEGOTIATE = 0x0040,/* Negotiate to achieve goal. */
|
|
SCB_NEGOTIATE = 0x0080,/* Negotiation forced for command. */
|
|
SCB_ABORT = 0x1000,
|
|
SCB_UNTAGGEDQ = 0x2000,
|
|
SCB_ACTIVE = 0x4000,
|
|
SCB_TARGET_IMMEDIATE = 0x8000
|
|
} scb_flag;
|
|
|
|
struct scb {
|
|
struct hardware_scb *hscb;
|
|
union {
|
|
SLIST_ENTRY(scb) sle;
|
|
TAILQ_ENTRY(scb) tqe;
|
|
} links;
|
|
LIST_ENTRY(scb) pending_links;
|
|
ahc_io_ctx_t io_ctx;
|
|
struct ahc_softc *ahc_softc;
|
|
scb_flag flags;
|
|
#ifndef __linux__
|
|
bus_dmamap_t dmamap;
|
|
#endif
|
|
struct scb_platform_data *platform_data;
|
|
struct sg_map_node *sg_map;
|
|
struct ahc_dma_seg *sg_list;
|
|
bus_addr_t sg_list_phys;
|
|
u_int sg_count;/* How full ahc_dma_seg is */
|
|
};
|
|
|
|
struct scb_data {
|
|
SLIST_HEAD(, scb) free_scbs; /*
|
|
* Pool of SCBs ready to be assigned
|
|
* commands to execute.
|
|
*/
|
|
struct scb *scbindex[256]; /*
|
|
* Mapping from tag to SCB.
|
|
* As tag identifiers are an
|
|
* 8bit value, we provide space
|
|
* for all possible tag values.
|
|
* Any lookups to entries at or
|
|
* above AHC_SCB_MAX_ALLOC will
|
|
* always fail.
|
|
*/
|
|
struct hardware_scb *hscbs; /* Array of hardware SCBs */
|
|
struct scb *scbarray; /* Array of kernel SCBs */
|
|
struct scsi_sense_data *sense; /* Per SCB sense data */
|
|
|
|
/*
|
|
* "Bus" addresses of our data structures.
|
|
*/
|
|
bus_dma_tag_t hscb_dmat; /* dmat for our hardware SCB array */
|
|
bus_dmamap_t hscb_dmamap;
|
|
bus_addr_t hscb_busaddr;
|
|
bus_dma_tag_t sense_dmat;
|
|
bus_dmamap_t sense_dmamap;
|
|
bus_addr_t sense_busaddr;
|
|
bus_dma_tag_t sg_dmat; /* dmat for our sg segments */
|
|
SLIST_HEAD(, sg_map_node) sg_maps;
|
|
uint8_t numscbs;
|
|
uint8_t maxhscbs; /* Number of SCBs on the card */
|
|
uint8_t init_level; /*
|
|
* How far we've initialized
|
|
* this structure.
|
|
*/
|
|
};
|
|
|
|
/************************ Target Mode Definitions *****************************/
|
|
|
|
/*
|
|
* Connection desciptor for select-in requests in target mode.
|
|
*/
|
|
struct target_cmd {
|
|
uint8_t scsiid; /* Our ID and the initiator's ID */
|
|
uint8_t identify; /* Identify message */
|
|
uint8_t bytes[22]; /*
|
|
* Bytes contains any additional message
|
|
* bytes terminated by 0xFF. The remainder
|
|
* is the cdb to execute.
|
|
*/
|
|
uint8_t cmd_valid; /*
|
|
* When a command is complete, the firmware
|
|
* will set cmd_valid to all bits set.
|
|
* After the host has seen the command,
|
|
* the bits are cleared. This allows us
|
|
* to just peek at host memory to determine
|
|
* if more work is complete. cmd_valid is on
|
|
* an 8 byte boundary to simplify setting
|
|
* it on aic7880 hardware which only has
|
|
* limited direct access to the DMA FIFO.
|
|
*/
|
|
uint8_t pad[7];
|
|
};
|
|
|
|
/*
|
|
* Number of events we can buffer up if we run out
|
|
* of immediate notify ccbs.
|
|
*/
|
|
#define AHC_TMODE_EVENT_BUFFER_SIZE 8
|
|
struct ahc_tmode_event {
|
|
uint8_t initiator_id;
|
|
uint8_t event_type; /* MSG type or EVENT_TYPE_BUS_RESET */
|
|
#define EVENT_TYPE_BUS_RESET 0xFF
|
|
uint8_t event_arg;
|
|
};
|
|
|
|
/*
|
|
* Per enabled lun target mode state.
|
|
* As this state is directly influenced by the host OS'es target mode
|
|
* environment, we let the OS module define it. Forward declare the
|
|
* structure here so we can store arrays of them, etc. in OS neutral
|
|
* data structures.
|
|
*/
|
|
#ifdef AHC_TARGET_MODE
|
|
struct ahc_tmode_lstate {
|
|
struct cam_path *path;
|
|
struct ccb_hdr_slist accept_tios;
|
|
struct ccb_hdr_slist immed_notifies;
|
|
struct ahc_tmode_event event_buffer[AHC_TMODE_EVENT_BUFFER_SIZE];
|
|
uint8_t event_r_idx;
|
|
uint8_t event_w_idx;
|
|
};
|
|
#else
|
|
struct ahc_tmode_lstate;
|
|
#endif
|
|
|
|
/******************** Transfer Negotiation Datastructures *********************/
|
|
#define AHC_TRANS_CUR 0x01 /* Modify current neogtiation status */
|
|
#define AHC_TRANS_ACTIVE 0x03 /* Assume this target is on the bus */
|
|
#define AHC_TRANS_GOAL 0x04 /* Modify negotiation goal */
|
|
#define AHC_TRANS_USER 0x08 /* Modify user negotiation settings */
|
|
|
|
/*
|
|
* Transfer Negotiation Information.
|
|
*/
|
|
struct ahc_transinfo {
|
|
uint8_t protocol_version; /* SCSI Revision level */
|
|
uint8_t transport_version; /* SPI Revision level */
|
|
uint8_t width; /* Bus width */
|
|
uint8_t period; /* Sync rate factor */
|
|
uint8_t offset; /* Sync offset */
|
|
uint8_t ppr_options; /* Parallel Protocol Request options */
|
|
};
|
|
|
|
/*
|
|
* Per-initiator current, goal and user transfer negotiation information. */
|
|
struct ahc_initiator_tinfo {
|
|
uint8_t scsirate; /* Computed value for SCSIRATE reg */
|
|
struct ahc_transinfo curr;
|
|
struct ahc_transinfo goal;
|
|
struct ahc_transinfo user;
|
|
};
|
|
|
|
/*
|
|
* Per enabled target ID state.
|
|
* Pointers to lun target state as well as sync/wide negotiation information
|
|
* for each initiator<->target mapping. For the initiator role we pretend
|
|
* that we are the target and the targets are the initiators since the
|
|
* negotiation is the same regardless of role.
|
|
*/
|
|
struct ahc_tmode_tstate {
|
|
struct ahc_tmode_lstate* enabled_luns[AHC_NUM_LUNS];
|
|
struct ahc_initiator_tinfo transinfo[AHC_NUM_TARGETS];
|
|
|
|
/*
|
|
* Per initiator state bitmasks.
|
|
*/
|
|
uint16_t auto_negotiate;/* Auto Negotiation Required */
|
|
uint16_t ultraenb; /* Using ultra sync rate */
|
|
uint16_t discenable; /* Disconnection allowed */
|
|
uint16_t tagenable; /* Tagged Queuing allowed */
|
|
};
|
|
|
|
/*
|
|
* Data structure for our table of allowed synchronous transfer rates.
|
|
*/
|
|
struct ahc_syncrate {
|
|
u_int sxfr_u2; /* Value of the SXFR parameter for Ultra2+ Chips */
|
|
u_int sxfr; /* Value of the SXFR parameter for <= Ultra Chips */
|
|
#define ULTRA_SXFR 0x100 /* Rate Requires Ultra Mode set */
|
|
#define ST_SXFR 0x010 /* Rate Single Transition Only */
|
|
#define DT_SXFR 0x040 /* Rate Double Transition Only */
|
|
uint8_t period; /* Period to send to SCSI target */
|
|
char *rate;
|
|
};
|
|
|
|
/*
|
|
* The synchronouse transfer rate table.
|
|
*/
|
|
extern struct ahc_syncrate ahc_syncrates[];
|
|
|
|
/*
|
|
* Indexes into our table of syncronous transfer rates.
|
|
*/
|
|
#define AHC_SYNCRATE_DT 0
|
|
#define AHC_SYNCRATE_ULTRA2 1
|
|
#define AHC_SYNCRATE_ULTRA 3
|
|
#define AHC_SYNCRATE_FAST 6
|
|
|
|
/***************************** Lookup Tables **********************************/
|
|
/*
|
|
* Phase -> name and message out response
|
|
* to parity errors in each phase table.
|
|
*/
|
|
struct ahc_phase_table_entry {
|
|
uint8_t phase;
|
|
uint8_t mesg_out; /* Message response to parity errors */
|
|
char *phasemsg;
|
|
};
|
|
|
|
/************************** Serial EEPROM Format ******************************/
|
|
|
|
struct seeprom_config {
|
|
/*
|
|
* Per SCSI ID Configuration Flags
|
|
*/
|
|
uint16_t device_flags[16]; /* words 0-15 */
|
|
#define CFXFER 0x0007 /* synchronous transfer rate */
|
|
#define CFSYNCH 0x0008 /* enable synchronous transfer */
|
|
#define CFDISC 0x0010 /* enable disconnection */
|
|
#define CFWIDEB 0x0020 /* wide bus device */
|
|
#define CFSYNCHISULTRA 0x0040 /* CFSYNCH is an ultra offset (2940AU)*/
|
|
#define CFSYNCSINGLE 0x0080 /* Single-Transition signalling */
|
|
#define CFSTART 0x0100 /* send start unit SCSI command */
|
|
#define CFINCBIOS 0x0200 /* include in BIOS scan */
|
|
#define CFRNFOUND 0x0400 /* report even if not found */
|
|
#define CFMULTILUNDEV 0x0800 /* Probe multiple luns in BIOS scan */
|
|
#define CFWBCACHEENB 0x4000 /* Enable W-Behind Cache on disks */
|
|
#define CFWBCACHENOP 0xc000 /* Don't touch W-Behind Cache */
|
|
|
|
/*
|
|
* BIOS Control Bits
|
|
*/
|
|
uint16_t bios_control; /* word 16 */
|
|
#define CFSUPREM 0x0001 /* support all removeable drives */
|
|
#define CFSUPREMB 0x0002 /* support removeable boot drives */
|
|
#define CFBIOSEN 0x0004 /* BIOS enabled */
|
|
#define CFBIOS_BUSSCAN 0x0008 /* Have the BIOS Scan the Bus */
|
|
#define CFSM2DRV 0x0010 /* support more than two drives */
|
|
#define CFSTPWLEVEL 0x0010 /* Termination level control */
|
|
#define CF284XEXTEND 0x0020 /* extended translation (284x cards) */
|
|
#define CFCTRL_A 0x0020 /* BIOS displays Ctrl-A message */
|
|
#define CFTERM_MENU 0x0040 /* BIOS displays termination menu */
|
|
#define CFEXTEND 0x0080 /* extended translation enabled */
|
|
#define CFSCAMEN 0x0100 /* SCAM enable */
|
|
#define CFMSG_LEVEL 0x0600 /* BIOS Message Level */
|
|
#define CFMSG_VERBOSE 0x0000
|
|
#define CFMSG_SILENT 0x0200
|
|
#define CFMSG_DIAG 0x0400
|
|
#define CFBOOTCD 0x0800 /* Support Bootable CD-ROM */
|
|
/* UNUSED 0xff00 */
|
|
|
|
/*
|
|
* Host Adapter Control Bits
|
|
*/
|
|
uint16_t adapter_control; /* word 17 */
|
|
#define CFAUTOTERM 0x0001 /* Perform Auto termination */
|
|
#define CFULTRAEN 0x0002 /* Ultra SCSI speed enable */
|
|
#define CF284XSELTO 0x0003 /* Selection timeout (284x cards) */
|
|
#define CF284XFIFO 0x000C /* FIFO Threshold (284x cards) */
|
|
#define CFSTERM 0x0004 /* SCSI low byte termination */
|
|
#define CFWSTERM 0x0008 /* SCSI high byte termination */
|
|
#define CFSPARITY 0x0010 /* SCSI parity */
|
|
#define CF284XSTERM 0x0020 /* SCSI low byte term (284x cards) */
|
|
#define CFMULTILUN 0x0020
|
|
#define CFRESETB 0x0040 /* reset SCSI bus at boot */
|
|
#define CFCLUSTERENB 0x0080 /* Cluster Enable */
|
|
#define CFBOOTCHAN 0x0300 /* probe this channel first */
|
|
#define CFBOOTCHANSHIFT 8
|
|
#define CFSEAUTOTERM 0x0400 /* Ultra2 Perform secondary Auto Term*/
|
|
#define CFSELOWTERM 0x0800 /* Ultra2 secondary low term */
|
|
#define CFSEHIGHTERM 0x1000 /* Ultra2 secondary high term */
|
|
#define CFDOMAINVAL 0x4000 /* Perform Domain Validation*/
|
|
|
|
/*
|
|
* Bus Release Time, Host Adapter ID
|
|
*/
|
|
uint16_t brtime_id; /* word 18 */
|
|
#define CFSCSIID 0x000f /* host adapter SCSI ID */
|
|
/* UNUSED 0x00f0 */
|
|
#define CFBRTIME 0xff00 /* bus release time */
|
|
|
|
/*
|
|
* Maximum targets
|
|
*/
|
|
uint16_t max_targets; /* word 19 */
|
|
#define CFMAXTARG 0x00ff /* maximum targets */
|
|
#define CFBOOTLUN 0x0f00 /* Lun to boot from */
|
|
#define CFBOOTID 0xf000 /* Target to boot from */
|
|
uint16_t res_1[10]; /* words 20-29 */
|
|
uint16_t signature; /* Signature == 0x250 */
|
|
#define CFSIGNATURE 0x250
|
|
#define CFSIGNATURE2 0x300
|
|
uint16_t checksum; /* word 31 */
|
|
};
|
|
|
|
/**************************** Message Buffer *********************************/
|
|
typedef enum {
|
|
MSG_TYPE_NONE = 0x00,
|
|
MSG_TYPE_INITIATOR_MSGOUT = 0x01,
|
|
MSG_TYPE_INITIATOR_MSGIN = 0x02,
|
|
MSG_TYPE_TARGET_MSGOUT = 0x03,
|
|
MSG_TYPE_TARGET_MSGIN = 0x04
|
|
} ahc_msg_type;
|
|
|
|
typedef enum {
|
|
MSGLOOP_IN_PROG,
|
|
MSGLOOP_MSGCOMPLETE,
|
|
MSGLOOP_TERMINATED
|
|
} msg_loop_stat;
|
|
|
|
/*********************** Software Configuration Structure *********************/
|
|
TAILQ_HEAD(scb_tailq, scb);
|
|
|
|
struct ahc_suspend_channel_state {
|
|
uint8_t scsiseq;
|
|
uint8_t sxfrctl0;
|
|
uint8_t sxfrctl1;
|
|
uint8_t simode0;
|
|
uint8_t simode1;
|
|
uint8_t seltimer;
|
|
uint8_t seqctl;
|
|
};
|
|
|
|
struct ahc_suspend_state {
|
|
struct ahc_suspend_channel_state channel[2];
|
|
uint8_t optionmode;
|
|
uint8_t dscommand0;
|
|
uint8_t dspcistatus;
|
|
/* hsmailbox */
|
|
uint8_t crccontrol1;
|
|
uint8_t scbbaddr;
|
|
/* Host and sequencer SCB counts */
|
|
uint8_t dff_thrsh;
|
|
uint8_t *scratch_ram;
|
|
uint8_t *btt;
|
|
};
|
|
|
|
typedef void (*ahc_bus_intr_t)(struct ahc_softc *);
|
|
|
|
struct ahc_softc {
|
|
bus_space_tag_t tag;
|
|
bus_space_handle_t bsh;
|
|
#ifndef __linux__
|
|
bus_dma_tag_t buffer_dmat; /* dmat for buffer I/O */
|
|
#endif
|
|
struct scb_data *scb_data;
|
|
|
|
struct scb *next_queued_scb;
|
|
|
|
/*
|
|
* SCBs that have been sent to the controller
|
|
*/
|
|
LIST_HEAD(, scb) pending_scbs;
|
|
|
|
/*
|
|
* Counting lock for deferring the release of additional
|
|
* untagged transactions from the untagged_queues. When
|
|
* the lock is decremented to 0, all queues in the
|
|
* untagged_queues array are run.
|
|
*/
|
|
u_int untagged_queue_lock;
|
|
|
|
/*
|
|
* Per-target queue of untagged-transactions. The
|
|
* transaction at the head of the queue is the
|
|
* currently pending untagged transaction for the
|
|
* target. The driver only allows a single untagged
|
|
* transaction per target.
|
|
*/
|
|
struct scb_tailq untagged_queues[AHC_NUM_TARGETS];
|
|
|
|
/*
|
|
* Platform specific data.
|
|
*/
|
|
struct ahc_platform_data *platform_data;
|
|
|
|
/*
|
|
* Platform specific device information.
|
|
*/
|
|
ahc_dev_softc_t dev_softc;
|
|
|
|
/*
|
|
* Bus specific device information.
|
|
*/
|
|
ahc_bus_intr_t bus_intr;
|
|
|
|
/*
|
|
* Target mode related state kept on a per enabled lun basis.
|
|
* Targets that are not enabled will have null entries.
|
|
* As an initiator, we keep one target entry for our initiator
|
|
* ID to store our sync/wide transfer settings.
|
|
*/
|
|
struct ahc_tmode_tstate *enabled_targets[AHC_NUM_TARGETS];
|
|
|
|
/*
|
|
* The black hole device responsible for handling requests for
|
|
* disabled luns on enabled targets.
|
|
*/
|
|
struct ahc_tmode_lstate *black_hole;
|
|
|
|
/*
|
|
* Device instance currently on the bus awaiting a continue TIO
|
|
* for a command that was not given the disconnect priveledge.
|
|
*/
|
|
struct ahc_tmode_lstate *pending_device;
|
|
|
|
/*
|
|
* Card characteristics
|
|
*/
|
|
ahc_chip chip;
|
|
ahc_feature features;
|
|
ahc_bug bugs;
|
|
ahc_flag flags;
|
|
|
|
/* Values to store in the SEQCTL register for pause and unpause */
|
|
uint8_t unpause;
|
|
uint8_t pause;
|
|
|
|
/* Command Queues */
|
|
uint8_t qoutfifonext;
|
|
uint8_t qinfifonext;
|
|
uint8_t *qoutfifo;
|
|
uint8_t *qinfifo;
|
|
|
|
/* Critical Section Data */
|
|
struct cs *critical_sections;
|
|
u_int num_critical_sections;
|
|
|
|
/* Links for chaining softcs */
|
|
TAILQ_ENTRY(ahc_softc) links;
|
|
|
|
/* Channel Names ('A', 'B', etc.) */
|
|
char channel;
|
|
char channel_b;
|
|
|
|
/* Initiator Bus ID */
|
|
uint8_t our_id;
|
|
uint8_t our_id_b;
|
|
|
|
/*
|
|
* PCI error detection.
|
|
*/
|
|
int unsolicited_ints;
|
|
|
|
/*
|
|
* Target incoming command FIFO.
|
|
*/
|
|
struct target_cmd *targetcmds;
|
|
uint8_t tqinfifonext;
|
|
|
|
/*
|
|
* Incoming and outgoing message handling.
|
|
*/
|
|
uint8_t send_msg_perror;
|
|
ahc_msg_type msg_type;
|
|
uint8_t msgout_buf[12];/* Message we are sending */
|
|
uint8_t msgin_buf[12];/* Message we are receiving */
|
|
u_int msgout_len; /* Length of message to send */
|
|
u_int msgout_index; /* Current index in msgout */
|
|
u_int msgin_index; /* Current index in msgin */
|
|
|
|
/*
|
|
* Mapping information for data structures shared
|
|
* between the sequencer and kernel.
|
|
*/
|
|
bus_dma_tag_t parent_dmat;
|
|
bus_dma_tag_t shared_data_dmat;
|
|
bus_dmamap_t shared_data_dmamap;
|
|
bus_addr_t shared_data_busaddr;
|
|
|
|
/*
|
|
* Bus address of the one byte buffer used to
|
|
* work-around a DMA bug for chips <= aic7880
|
|
* in target mode.
|
|
*/
|
|
bus_addr_t dma_bug_buf;
|
|
|
|
/* Information saved through suspend/resume cycles */
|
|
struct ahc_suspend_state suspend_state;
|
|
|
|
/* Number of enabled target mode device on this card */
|
|
u_int enabled_luns;
|
|
|
|
/* Initialization level of this data structure */
|
|
u_int init_level;
|
|
|
|
/* PCI cacheline size. */
|
|
u_int pci_cachesize;
|
|
|
|
/* Per-Unit descriptive information */
|
|
const char *description;
|
|
char *name;
|
|
int unit;
|
|
|
|
/* Selection Timer settings */
|
|
int seltime;
|
|
int seltime_b;
|
|
|
|
uint16_t user_discenable;/* Disconnection allowed */
|
|
uint16_t user_tagenable;/* Tagged Queuing allowed */
|
|
};
|
|
|
|
TAILQ_HEAD(ahc_softc_tailq, ahc_softc);
|
|
extern struct ahc_softc_tailq ahc_tailq;
|
|
|
|
/************************ Active Device Information ***************************/
|
|
typedef enum {
|
|
ROLE_UNKNOWN,
|
|
ROLE_INITIATOR,
|
|
ROLE_TARGET
|
|
} role_t;
|
|
|
|
struct ahc_devinfo {
|
|
int our_scsiid;
|
|
int target_offset;
|
|
uint16_t target_mask;
|
|
u_int target;
|
|
u_int lun;
|
|
char channel;
|
|
role_t role; /*
|
|
* Only guaranteed to be correct if not
|
|
* in the busfree state.
|
|
*/
|
|
};
|
|
|
|
/****************************** PCI Structures ********************************/
|
|
typedef int (ahc_device_setup_t)(struct ahc_softc *);
|
|
|
|
struct ahc_pci_identity {
|
|
uint64_t full_id;
|
|
uint64_t id_mask;
|
|
char *name;
|
|
ahc_device_setup_t *setup;
|
|
};
|
|
extern struct ahc_pci_identity ahc_pci_ident_table [];
|
|
extern const u_int ahc_num_pci_devs;
|
|
|
|
/***************************** VL/EISA Declarations ***************************/
|
|
struct aic7770_identity {
|
|
uint32_t full_id;
|
|
uint32_t id_mask;
|
|
char *name;
|
|
ahc_device_setup_t *setup;
|
|
};
|
|
extern struct aic7770_identity aic7770_ident_table [];
|
|
extern const int ahc_num_aic7770_devs;
|
|
|
|
#define AHC_EISA_SLOT_OFFSET 0xc00
|
|
#define AHC_EISA_IOSIZE 0x100
|
|
|
|
/*************************** Function Declarations ****************************/
|
|
/******************************************************************************/
|
|
u_int ahc_index_busy_tcl(struct ahc_softc *ahc, u_int tcl);
|
|
void ahc_unbusy_tcl(struct ahc_softc *ahc, u_int tcl);
|
|
void ahc_busy_tcl(struct ahc_softc *ahc,
|
|
u_int tcl, u_int busyid);
|
|
|
|
/***************************** PCI Front End *********************************/
|
|
struct ahc_pci_identity *ahc_find_pci_device(ahc_dev_softc_t);
|
|
int ahc_pci_config(struct ahc_softc *,
|
|
struct ahc_pci_identity *);
|
|
|
|
/*************************** EISA/VL Front End ********************************/
|
|
struct aic7770_identity *aic7770_find_device(uint32_t);
|
|
int aic7770_config(struct ahc_softc *ahc,
|
|
struct aic7770_identity *,
|
|
u_int port);
|
|
|
|
/************************** SCB and SCB queue management **********************/
|
|
int ahc_probe_scbs(struct ahc_softc *);
|
|
void ahc_run_untagged_queues(struct ahc_softc *ahc);
|
|
void ahc_run_untagged_queue(struct ahc_softc *ahc,
|
|
struct scb_tailq *queue);
|
|
void ahc_qinfifo_requeue_tail(struct ahc_softc *ahc,
|
|
struct scb *scb);
|
|
int ahc_match_scb(struct ahc_softc *ahc, struct scb *scb,
|
|
int target, char channel, int lun,
|
|
u_int tag, role_t role);
|
|
|
|
/****************************** Initialization ********************************/
|
|
struct ahc_softc *ahc_alloc(void *platform_arg, char *name);
|
|
int ahc_softc_init(struct ahc_softc *);
|
|
void ahc_controller_info(struct ahc_softc *ahc, char *buf);
|
|
int ahc_init(struct ahc_softc *ahc);
|
|
void ahc_intr_enable(struct ahc_softc *ahc, int enable);
|
|
void ahc_pause_and_flushwork(struct ahc_softc *ahc);
|
|
int ahc_suspend(struct ahc_softc *ahc);
|
|
int ahc_resume(struct ahc_softc *ahc);
|
|
void ahc_softc_insert(struct ahc_softc *);
|
|
struct ahc_softc *ahc_find_softc(struct ahc_softc *ahc);
|
|
void ahc_set_unit(struct ahc_softc *, int);
|
|
void ahc_set_name(struct ahc_softc *, char *);
|
|
void ahc_alloc_scbs(struct ahc_softc *ahc);
|
|
void ahc_free(struct ahc_softc *ahc);
|
|
int ahc_reset(struct ahc_softc *ahc);
|
|
void ahc_shutdown(void *arg);
|
|
|
|
/*************************** Interrupt Services *******************************/
|
|
void ahc_pci_intr(struct ahc_softc *ahc);
|
|
void ahc_clear_intstat(struct ahc_softc *ahc);
|
|
void ahc_run_qoutfifo(struct ahc_softc *ahc);
|
|
#ifdef AHC_TARGET_MODE
|
|
void ahc_run_tqinfifo(struct ahc_softc *ahc, int paused);
|
|
#endif
|
|
void ahc_handle_brkadrint(struct ahc_softc *ahc);
|
|
void ahc_handle_seqint(struct ahc_softc *ahc, u_int intstat);
|
|
void ahc_handle_scsiint(struct ahc_softc *ahc,
|
|
u_int intstat);
|
|
void ahc_clear_critical_section(struct ahc_softc *ahc);
|
|
|
|
/***************************** Error Recovery *********************************/
|
|
typedef enum {
|
|
SEARCH_COMPLETE,
|
|
SEARCH_COUNT,
|
|
SEARCH_REMOVE
|
|
} ahc_search_action;
|
|
int ahc_search_qinfifo(struct ahc_softc *ahc, int target,
|
|
char channel, int lun, u_int tag,
|
|
role_t role, uint32_t status,
|
|
ahc_search_action action);
|
|
int ahc_search_disc_list(struct ahc_softc *ahc, int target,
|
|
char channel, int lun, u_int tag,
|
|
int stop_on_first, int remove,
|
|
int save_state);
|
|
void ahc_freeze_devq(struct ahc_softc *ahc, struct scb *scb);
|
|
int ahc_reset_channel(struct ahc_softc *ahc, char channel,
|
|
int initiate_reset);
|
|
int ahc_abort_scbs(struct ahc_softc *ahc, int target,
|
|
char channel, int lun, u_int tag,
|
|
role_t role, uint32_t status);
|
|
void ahc_restart(struct ahc_softc *ahc);
|
|
void ahc_calc_residual(struct ahc_softc *ahc,
|
|
struct scb *scb);
|
|
/*************************** Utility Functions ********************************/
|
|
struct ahc_phase_table_entry*
|
|
ahc_lookup_phase_entry(int phase);
|
|
void ahc_compile_devinfo(struct ahc_devinfo *devinfo,
|
|
u_int our_id, u_int target,
|
|
u_int lun, char channel,
|
|
role_t role);
|
|
/************************** Transfer Negotiation ******************************/
|
|
struct ahc_syncrate* ahc_find_syncrate(struct ahc_softc *ahc, u_int *period,
|
|
u_int *ppr_options, u_int maxsync);
|
|
u_int ahc_find_period(struct ahc_softc *ahc,
|
|
u_int scsirate, u_int maxsync);
|
|
void ahc_validate_offset(struct ahc_softc *ahc,
|
|
struct ahc_initiator_tinfo *tinfo,
|
|
struct ahc_syncrate *syncrate,
|
|
u_int *offset, int wide,
|
|
role_t role);
|
|
void ahc_validate_width(struct ahc_softc *ahc,
|
|
struct ahc_initiator_tinfo *tinfo,
|
|
u_int *bus_width,
|
|
role_t role);
|
|
int ahc_update_neg_request(struct ahc_softc*,
|
|
struct ahc_devinfo*,
|
|
struct ahc_tmode_tstate*,
|
|
struct ahc_initiator_tinfo*,
|
|
int /*force*/);
|
|
void ahc_set_width(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo,
|
|
u_int width, u_int type, int paused);
|
|
void ahc_set_syncrate(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo,
|
|
struct ahc_syncrate *syncrate,
|
|
u_int period, u_int offset,
|
|
u_int ppr_options,
|
|
u_int type, int paused);
|
|
typedef enum {
|
|
AHC_QUEUE_NONE,
|
|
AHC_QUEUE_BASIC,
|
|
AHC_QUEUE_TAGGED
|
|
} ahc_queue_alg;
|
|
|
|
void ahc_set_tags(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo,
|
|
ahc_queue_alg alg);
|
|
|
|
/**************************** Target Mode *************************************/
|
|
#ifdef AHC_TARGET_MODE
|
|
void ahc_send_lstate_events(struct ahc_softc *,
|
|
struct ahc_tmode_lstate *);
|
|
void ahc_handle_en_lun(struct ahc_softc *ahc,
|
|
struct cam_sim *sim, union ccb *ccb);
|
|
cam_status ahc_find_tmode_devs(struct ahc_softc *ahc,
|
|
struct cam_sim *sim, union ccb *ccb,
|
|
struct ahc_tmode_tstate **tstate,
|
|
struct ahc_tmode_lstate **lstate,
|
|
int notfound_failure);
|
|
#ifndef AHC_TMODE_ENABLE
|
|
#define AHC_TMODE_ENABLE 0
|
|
#endif
|
|
#endif
|
|
/******************************* Debug ***************************************/
|
|
#ifdef AHC_DEBUG
|
|
extern int ahc_debug;
|
|
#define AHC_SHOWMISC 0x1
|
|
#define AHC_SHOWSENSE 0x2
|
|
#endif
|
|
void ahc_print_scb(struct scb *scb);
|
|
void ahc_dump_card_state(struct ahc_softc *ahc);
|
|
/******************************* SEEPROM *************************************/
|
|
int ahc_acquire_seeprom(struct ahc_softc *ahc,
|
|
struct seeprom_descriptor *sd);
|
|
void ahc_release_seeprom(struct seeprom_descriptor *sd);
|
|
#endif /* _AIC7XXX_H_ */
|