1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-28 11:57:28 +00:00
freebsd/sys/netgraph/ng_ppp.c
Alexander Motin aa559f63d1 Remove strict limitation on minimal multilink MRRU. RFC claims that MRRU
of 1500 must be supported, but allows smaller values to be negotiated.
Enforce specified MRRU for outgoing frames.

MFC after:	2 weeks
2009-01-18 12:03:43 +00:00

2606 lines
71 KiB
C

/*-
* Copyright (c) 1996-2000 Whistle Communications, Inc.
* All rights reserved.
*
* Subject to the following obligations and disclaimer of warranty, use and
* redistribution of this software, in source or object code forms, with or
* without modifications are expressly permitted by Whistle Communications;
* provided, however, that:
* 1. Any and all reproductions of the source or object code must include the
* copyright notice above and the following disclaimer of warranties; and
* 2. No rights are granted, in any manner or form, to use Whistle
* Communications, Inc. trademarks, including the mark "WHISTLE
* COMMUNICATIONS" on advertising, endorsements, or otherwise except as
* such appears in the above copyright notice or in the software.
*
* THIS SOFTWARE IS BEING PROVIDED BY WHISTLE COMMUNICATIONS "AS IS", AND
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, WHISTLE COMMUNICATIONS MAKES NO
* REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS SOFTWARE,
* INCLUDING WITHOUT LIMITATION, ANY AND ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
* WHISTLE COMMUNICATIONS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
* REPRESENTATIONS REGARDING THE USE OF, OR THE RESULTS OF THE USE OF THIS
* SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY OR OTHERWISE.
* IN NO EVENT SHALL WHISTLE COMMUNICATIONS BE LIABLE FOR ANY DAMAGES
* RESULTING FROM OR ARISING OUT OF ANY USE OF THIS SOFTWARE, INCLUDING
* WITHOUT LIMITATION, ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* PUNITIVE, OR CONSEQUENTIAL DAMAGES, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES, LOSS OF USE, DATA OR PROFITS, HOWEVER CAUSED AND UNDER ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF WHISTLE COMMUNICATIONS IS ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
* Copyright (c) 2007 Alexander Motin <mav@alkar.net>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Authors: Archie Cobbs <archie@freebsd.org>, Alexander Motin <mav@alkar.net>
*
* $FreeBSD$
* $Whistle: ng_ppp.c,v 1.24 1999/11/01 09:24:52 julian Exp $
*/
/*
* PPP node type data-flow.
*
* hook xmit layer recv hook
* ------------------------------------
* inet -> -> inet
* ipv6 -> -> ipv6
* ipx -> proto -> ipx
* atalk -> -> atalk
* bypass -> -> bypass
* -hcomp_xmit()----------proto_recv()-
* vjc_ip <- <- vjc_ip
* vjc_comp -> header compression -> vjc_comp
* vjc_uncomp -> -> vjc_uncomp
* vjc_vjip ->
* -comp_xmit()-----------hcomp_recv()-
* compress <- compression <- decompress
* compress -> -> decompress
* -crypt_xmit()-----------comp_recv()-
* encrypt <- encryption <- decrypt
* encrypt -> -> decrypt
* -ml_xmit()-------------crypt_recv()-
* multilink
* -link_xmit()--------------ml_recv()-
* linkX <- link <- linkX
*
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/time.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/errno.h>
#include <sys/ctype.h>
#include <netgraph/ng_message.h>
#include <netgraph/netgraph.h>
#include <netgraph/ng_parse.h>
#include <netgraph/ng_ppp.h>
#include <netgraph/ng_vjc.h>
#ifdef NG_SEPARATE_MALLOC
MALLOC_DEFINE(M_NETGRAPH_PPP, "netgraph_ppp", "netgraph ppp node");
#else
#define M_NETGRAPH_PPP M_NETGRAPH
#endif
#define PROT_VALID(p) (((p) & 0x0101) == 0x0001)
#define PROT_COMPRESSABLE(p) (((p) & 0xff00) == 0x0000)
/* Some PPP protocol numbers we're interested in */
#define PROT_ATALK 0x0029
#define PROT_COMPD 0x00fd
#define PROT_CRYPTD 0x0053
#define PROT_IP 0x0021
#define PROT_IPV6 0x0057
#define PROT_IPX 0x002b
#define PROT_LCP 0xc021
#define PROT_MP 0x003d
#define PROT_VJCOMP 0x002d
#define PROT_VJUNCOMP 0x002f
/* Multilink PPP definitions */
#define MP_INITIAL_SEQ 0 /* per RFC 1990 */
#define MP_MIN_LINK_MRU 32
#define MP_SHORT_SEQ_MASK 0x00000fff /* short seq # mask */
#define MP_SHORT_SEQ_HIBIT 0x00000800 /* short seq # high bit */
#define MP_SHORT_FIRST_FLAG 0x00008000 /* first fragment in frame */
#define MP_SHORT_LAST_FLAG 0x00004000 /* last fragment in frame */
#define MP_LONG_SEQ_MASK 0x00ffffff /* long seq # mask */
#define MP_LONG_SEQ_HIBIT 0x00800000 /* long seq # high bit */
#define MP_LONG_FIRST_FLAG 0x80000000 /* first fragment in frame */
#define MP_LONG_LAST_FLAG 0x40000000 /* last fragment in frame */
#define MP_NOSEQ 0x7fffffff /* impossible sequence number */
/* Sign extension of MP sequence numbers */
#define MP_SHORT_EXTEND(s) (((s) & MP_SHORT_SEQ_HIBIT) ? \
((s) | ~MP_SHORT_SEQ_MASK) \
: ((s) & MP_SHORT_SEQ_MASK))
#define MP_LONG_EXTEND(s) (((s) & MP_LONG_SEQ_HIBIT) ? \
((s) | ~MP_LONG_SEQ_MASK) \
: ((s) & MP_LONG_SEQ_MASK))
/* Comparision of MP sequence numbers. Note: all sequence numbers
except priv->xseq are stored with the sign bit extended. */
#define MP_SHORT_SEQ_DIFF(x,y) MP_SHORT_EXTEND((x) - (y))
#define MP_LONG_SEQ_DIFF(x,y) MP_LONG_EXTEND((x) - (y))
#define MP_RECV_SEQ_DIFF(priv,x,y) \
((priv)->conf.recvShortSeq ? \
MP_SHORT_SEQ_DIFF((x), (y)) : \
MP_LONG_SEQ_DIFF((x), (y)))
/* Increment receive sequence number */
#define MP_NEXT_RECV_SEQ(priv,seq) \
((priv)->conf.recvShortSeq ? \
MP_SHORT_EXTEND((seq) + 1) : \
MP_LONG_EXTEND((seq) + 1))
/* Don't fragment transmitted packets to parts smaller than this */
#define MP_MIN_FRAG_LEN 32
/* Maximum fragment reasssembly queue length */
#define MP_MAX_QUEUE_LEN 128
/* Fragment queue scanner period */
#define MP_FRAGTIMER_INTERVAL (hz/2)
/* Average link overhead. XXX: Should be given by user-level */
#define MP_AVERAGE_LINK_OVERHEAD 16
/* Keep this equal to ng_ppp_hook_names lower! */
#define HOOK_INDEX_MAX 13
/* We store incoming fragments this way */
struct ng_ppp_frag {
int seq; /* fragment seq# */
uint8_t first; /* First in packet? */
uint8_t last; /* Last in packet? */
struct timeval timestamp; /* time of reception */
struct mbuf *data; /* Fragment data */
TAILQ_ENTRY(ng_ppp_frag) f_qent; /* Fragment queue */
};
/* Per-link private information */
struct ng_ppp_link {
struct ng_ppp_link_conf conf; /* link configuration */
struct ng_ppp_link_stat64 stats; /* link stats */
hook_p hook; /* connection to link data */
int32_t seq; /* highest rec'd seq# - MSEQ */
uint32_t latency; /* calculated link latency */
struct timeval lastWrite; /* time of last write for MP */
int bytesInQueue; /* bytes in the output queue for MP */
};
/* Total per-node private information */
struct ng_ppp_private {
struct ng_ppp_bund_conf conf; /* bundle config */
struct ng_ppp_link_stat64 bundleStats; /* bundle stats */
struct ng_ppp_link links[NG_PPP_MAX_LINKS];/* per-link info */
int32_t xseq; /* next out MP seq # */
int32_t mseq; /* min links[i].seq */
uint16_t activeLinks[NG_PPP_MAX_LINKS]; /* indicies */
uint16_t numActiveLinks; /* how many links up */
uint16_t lastLink; /* for round robin */
uint8_t vjCompHooked; /* VJ comp hooked up? */
uint8_t allLinksEqual; /* all xmit the same? */
hook_p hooks[HOOK_INDEX_MAX]; /* non-link hooks */
struct ng_ppp_frag fragsmem[MP_MAX_QUEUE_LEN]; /* fragments storage */
TAILQ_HEAD(ng_ppp_fraglist, ng_ppp_frag) /* fragment queue */
frags;
TAILQ_HEAD(ng_ppp_fragfreelist, ng_ppp_frag) /* free fragment queue */
fragsfree;
struct callout fragTimer; /* fraq queue check */
struct mtx rmtx; /* recv mutex */
struct mtx xmtx; /* xmit mutex */
};
typedef struct ng_ppp_private *priv_p;
/* Netgraph node methods */
static ng_constructor_t ng_ppp_constructor;
static ng_rcvmsg_t ng_ppp_rcvmsg;
static ng_shutdown_t ng_ppp_shutdown;
static ng_newhook_t ng_ppp_newhook;
static ng_rcvdata_t ng_ppp_rcvdata;
static ng_disconnect_t ng_ppp_disconnect;
static ng_rcvdata_t ng_ppp_rcvdata_inet;
static ng_rcvdata_t ng_ppp_rcvdata_ipv6;
static ng_rcvdata_t ng_ppp_rcvdata_ipx;
static ng_rcvdata_t ng_ppp_rcvdata_atalk;
static ng_rcvdata_t ng_ppp_rcvdata_bypass;
static ng_rcvdata_t ng_ppp_rcvdata_vjc_ip;
static ng_rcvdata_t ng_ppp_rcvdata_vjc_comp;
static ng_rcvdata_t ng_ppp_rcvdata_vjc_uncomp;
static ng_rcvdata_t ng_ppp_rcvdata_vjc_vjip;
static ng_rcvdata_t ng_ppp_rcvdata_compress;
static ng_rcvdata_t ng_ppp_rcvdata_decompress;
static ng_rcvdata_t ng_ppp_rcvdata_encrypt;
static ng_rcvdata_t ng_ppp_rcvdata_decrypt;
/* We use integer indicies to refer to the non-link hooks. */
static const struct {
char *const name;
ng_rcvdata_t *fn;
} ng_ppp_hook_names[] = {
#define HOOK_INDEX_ATALK 0
{ NG_PPP_HOOK_ATALK, ng_ppp_rcvdata_atalk },
#define HOOK_INDEX_BYPASS 1
{ NG_PPP_HOOK_BYPASS, ng_ppp_rcvdata_bypass },
#define HOOK_INDEX_COMPRESS 2
{ NG_PPP_HOOK_COMPRESS, ng_ppp_rcvdata_compress },
#define HOOK_INDEX_ENCRYPT 3
{ NG_PPP_HOOK_ENCRYPT, ng_ppp_rcvdata_encrypt },
#define HOOK_INDEX_DECOMPRESS 4
{ NG_PPP_HOOK_DECOMPRESS, ng_ppp_rcvdata_decompress },
#define HOOK_INDEX_DECRYPT 5
{ NG_PPP_HOOK_DECRYPT, ng_ppp_rcvdata_decrypt },
#define HOOK_INDEX_INET 6
{ NG_PPP_HOOK_INET, ng_ppp_rcvdata_inet },
#define HOOK_INDEX_IPX 7
{ NG_PPP_HOOK_IPX, ng_ppp_rcvdata_ipx },
#define HOOK_INDEX_VJC_COMP 8
{ NG_PPP_HOOK_VJC_COMP, ng_ppp_rcvdata_vjc_comp },
#define HOOK_INDEX_VJC_IP 9
{ NG_PPP_HOOK_VJC_IP, ng_ppp_rcvdata_vjc_ip },
#define HOOK_INDEX_VJC_UNCOMP 10
{ NG_PPP_HOOK_VJC_UNCOMP, ng_ppp_rcvdata_vjc_uncomp },
#define HOOK_INDEX_VJC_VJIP 11
{ NG_PPP_HOOK_VJC_VJIP, ng_ppp_rcvdata_vjc_vjip },
#define HOOK_INDEX_IPV6 12
{ NG_PPP_HOOK_IPV6, ng_ppp_rcvdata_ipv6 },
{ NULL, NULL }
};
/* Helper functions */
static int ng_ppp_proto_recv(node_p node, item_p item, uint16_t proto,
uint16_t linkNum);
static int ng_ppp_hcomp_xmit(node_p node, item_p item, uint16_t proto);
static int ng_ppp_hcomp_recv(node_p node, item_p item, uint16_t proto,
uint16_t linkNum);
static int ng_ppp_comp_xmit(node_p node, item_p item, uint16_t proto);
static int ng_ppp_comp_recv(node_p node, item_p item, uint16_t proto,
uint16_t linkNum);
static int ng_ppp_crypt_xmit(node_p node, item_p item, uint16_t proto);
static int ng_ppp_crypt_recv(node_p node, item_p item, uint16_t proto,
uint16_t linkNum);
static int ng_ppp_mp_xmit(node_p node, item_p item, uint16_t proto);
static int ng_ppp_mp_recv(node_p node, item_p item, uint16_t proto,
uint16_t linkNum);
static int ng_ppp_link_xmit(node_p node, item_p item, uint16_t proto,
uint16_t linkNum, int plen);
static int ng_ppp_bypass(node_p node, item_p item, uint16_t proto,
uint16_t linkNum);
static void ng_ppp_bump_mseq(node_p node, int32_t new_mseq);
static int ng_ppp_frag_drop(node_p node);
static int ng_ppp_check_packet(node_p node);
static void ng_ppp_get_packet(node_p node, struct mbuf **mp);
static int ng_ppp_frag_process(node_p node, item_p oitem);
static int ng_ppp_frag_trim(node_p node);
static void ng_ppp_frag_timeout(node_p node, hook_p hook, void *arg1,
int arg2);
static void ng_ppp_frag_checkstale(node_p node);
static void ng_ppp_frag_reset(node_p node);
static void ng_ppp_mp_strategy(node_p node, int len, int *distrib);
static int ng_ppp_intcmp(void *latency, const void *v1, const void *v2);
static struct mbuf *ng_ppp_addproto(struct mbuf *m, uint16_t proto, int compOK);
static struct mbuf *ng_ppp_cutproto(struct mbuf *m, uint16_t *proto);
static struct mbuf *ng_ppp_prepend(struct mbuf *m, const void *buf, int len);
static int ng_ppp_config_valid(node_p node,
const struct ng_ppp_node_conf *newConf);
static void ng_ppp_update(node_p node, int newConf);
static void ng_ppp_start_frag_timer(node_p node);
static void ng_ppp_stop_frag_timer(node_p node);
/* Parse type for struct ng_ppp_mp_state_type */
static const struct ng_parse_fixedarray_info ng_ppp_rseq_array_info = {
&ng_parse_hint32_type,
NG_PPP_MAX_LINKS
};
static const struct ng_parse_type ng_ppp_rseq_array_type = {
&ng_parse_fixedarray_type,
&ng_ppp_rseq_array_info,
};
static const struct ng_parse_struct_field ng_ppp_mp_state_type_fields[]
= NG_PPP_MP_STATE_TYPE_INFO(&ng_ppp_rseq_array_type);
static const struct ng_parse_type ng_ppp_mp_state_type = {
&ng_parse_struct_type,
&ng_ppp_mp_state_type_fields
};
/* Parse type for struct ng_ppp_link_conf */
static const struct ng_parse_struct_field ng_ppp_link_type_fields[]
= NG_PPP_LINK_TYPE_INFO;
static const struct ng_parse_type ng_ppp_link_type = {
&ng_parse_struct_type,
&ng_ppp_link_type_fields
};
/* Parse type for struct ng_ppp_bund_conf */
static const struct ng_parse_struct_field ng_ppp_bund_type_fields[]
= NG_PPP_BUND_TYPE_INFO;
static const struct ng_parse_type ng_ppp_bund_type = {
&ng_parse_struct_type,
&ng_ppp_bund_type_fields
};
/* Parse type for struct ng_ppp_node_conf */
static const struct ng_parse_fixedarray_info ng_ppp_array_info = {
&ng_ppp_link_type,
NG_PPP_MAX_LINKS
};
static const struct ng_parse_type ng_ppp_link_array_type = {
&ng_parse_fixedarray_type,
&ng_ppp_array_info,
};
static const struct ng_parse_struct_field ng_ppp_conf_type_fields[]
= NG_PPP_CONFIG_TYPE_INFO(&ng_ppp_bund_type, &ng_ppp_link_array_type);
static const struct ng_parse_type ng_ppp_conf_type = {
&ng_parse_struct_type,
&ng_ppp_conf_type_fields
};
/* Parse type for struct ng_ppp_link_stat */
static const struct ng_parse_struct_field ng_ppp_stats_type_fields[]
= NG_PPP_STATS_TYPE_INFO;
static const struct ng_parse_type ng_ppp_stats_type = {
&ng_parse_struct_type,
&ng_ppp_stats_type_fields
};
/* Parse type for struct ng_ppp_link_stat64 */
static const struct ng_parse_struct_field ng_ppp_stats64_type_fields[]
= NG_PPP_STATS64_TYPE_INFO;
static const struct ng_parse_type ng_ppp_stats64_type = {
&ng_parse_struct_type,
&ng_ppp_stats64_type_fields
};
/* List of commands and how to convert arguments to/from ASCII */
static const struct ng_cmdlist ng_ppp_cmds[] = {
{
NGM_PPP_COOKIE,
NGM_PPP_SET_CONFIG,
"setconfig",
&ng_ppp_conf_type,
NULL
},
{
NGM_PPP_COOKIE,
NGM_PPP_GET_CONFIG,
"getconfig",
NULL,
&ng_ppp_conf_type
},
{
NGM_PPP_COOKIE,
NGM_PPP_GET_MP_STATE,
"getmpstate",
NULL,
&ng_ppp_mp_state_type
},
{
NGM_PPP_COOKIE,
NGM_PPP_GET_LINK_STATS,
"getstats",
&ng_parse_int16_type,
&ng_ppp_stats_type
},
{
NGM_PPP_COOKIE,
NGM_PPP_CLR_LINK_STATS,
"clrstats",
&ng_parse_int16_type,
NULL
},
{
NGM_PPP_COOKIE,
NGM_PPP_GETCLR_LINK_STATS,
"getclrstats",
&ng_parse_int16_type,
&ng_ppp_stats_type
},
{
NGM_PPP_COOKIE,
NGM_PPP_GET_LINK_STATS64,
"getstats64",
&ng_parse_int16_type,
&ng_ppp_stats64_type
},
{
NGM_PPP_COOKIE,
NGM_PPP_GETCLR_LINK_STATS64,
"getclrstats64",
&ng_parse_int16_type,
&ng_ppp_stats64_type
},
{ 0 }
};
/* Node type descriptor */
static struct ng_type ng_ppp_typestruct = {
.version = NG_ABI_VERSION,
.name = NG_PPP_NODE_TYPE,
.constructor = ng_ppp_constructor,
.rcvmsg = ng_ppp_rcvmsg,
.shutdown = ng_ppp_shutdown,
.newhook = ng_ppp_newhook,
.rcvdata = ng_ppp_rcvdata,
.disconnect = ng_ppp_disconnect,
.cmdlist = ng_ppp_cmds,
};
NETGRAPH_INIT(ppp, &ng_ppp_typestruct);
/* Address and control field header */
static const uint8_t ng_ppp_acf[2] = { 0xff, 0x03 };
/* Maximum time we'll let a complete incoming packet sit in the queue */
static const struct timeval ng_ppp_max_staleness = { 2, 0 }; /* 2 seconds */
#define ERROUT(x) do { error = (x); goto done; } while (0)
/************************************************************************
NETGRAPH NODE STUFF
************************************************************************/
/*
* Node type constructor
*/
static int
ng_ppp_constructor(node_p node)
{
priv_p priv;
int i;
/* Allocate private structure */
priv = malloc(sizeof(*priv), M_NETGRAPH_PPP, M_NOWAIT | M_ZERO);
if (priv == NULL)
return (ENOMEM);
NG_NODE_SET_PRIVATE(node, priv);
/* Initialize state */
TAILQ_INIT(&priv->frags);
TAILQ_INIT(&priv->fragsfree);
for (i = 0; i < MP_MAX_QUEUE_LEN; i++)
TAILQ_INSERT_TAIL(&priv->fragsfree, &priv->fragsmem[i], f_qent);
for (i = 0; i < NG_PPP_MAX_LINKS; i++)
priv->links[i].seq = MP_NOSEQ;
ng_callout_init(&priv->fragTimer);
mtx_init(&priv->rmtx, "ng_ppp_recv", NULL, MTX_DEF);
mtx_init(&priv->xmtx, "ng_ppp_xmit", NULL, MTX_DEF);
/* Done */
return (0);
}
/*
* Give our OK for a hook to be added
*/
static int
ng_ppp_newhook(node_p node, hook_p hook, const char *name)
{
const priv_p priv = NG_NODE_PRIVATE(node);
hook_p *hookPtr = NULL;
int linkNum = -1;
int hookIndex = -1;
/* Figure out which hook it is */
if (strncmp(name, NG_PPP_HOOK_LINK_PREFIX, /* a link hook? */
strlen(NG_PPP_HOOK_LINK_PREFIX)) == 0) {
const char *cp;
char *eptr;
cp = name + strlen(NG_PPP_HOOK_LINK_PREFIX);
if (!isdigit(*cp) || (cp[0] == '0' && cp[1] != '\0'))
return (EINVAL);
linkNum = (int)strtoul(cp, &eptr, 10);
if (*eptr != '\0' || linkNum < 0 || linkNum >= NG_PPP_MAX_LINKS)
return (EINVAL);
hookPtr = &priv->links[linkNum].hook;
hookIndex = ~linkNum;
/* See if hook is already connected. */
if (*hookPtr != NULL)
return (EISCONN);
/* Disallow more than one link unless multilink is enabled. */
if (priv->links[linkNum].conf.enableLink &&
!priv->conf.enableMultilink && priv->numActiveLinks >= 1)
return (ENODEV);
} else { /* must be a non-link hook */
int i;
for (i = 0; ng_ppp_hook_names[i].name != NULL; i++) {
if (strcmp(name, ng_ppp_hook_names[i].name) == 0) {
hookPtr = &priv->hooks[i];
hookIndex = i;
break;
}
}
if (ng_ppp_hook_names[i].name == NULL)
return (EINVAL); /* no such hook */
/* See if hook is already connected */
if (*hookPtr != NULL)
return (EISCONN);
/* Every non-linkX hook have it's own function. */
NG_HOOK_SET_RCVDATA(hook, ng_ppp_hook_names[i].fn);
}
/* OK */
*hookPtr = hook;
NG_HOOK_SET_PRIVATE(hook, (void *)(intptr_t)hookIndex);
ng_ppp_update(node, 0);
return (0);
}
/*
* Receive a control message
*/
static int
ng_ppp_rcvmsg(node_p node, item_p item, hook_p lasthook)
{
const priv_p priv = NG_NODE_PRIVATE(node);
struct ng_mesg *resp = NULL;
int error = 0;
struct ng_mesg *msg;
NGI_GET_MSG(item, msg);
switch (msg->header.typecookie) {
case NGM_PPP_COOKIE:
switch (msg->header.cmd) {
case NGM_PPP_SET_CONFIG:
{
struct ng_ppp_node_conf *const conf =
(struct ng_ppp_node_conf *)msg->data;
int i;
/* Check for invalid or illegal config */
if (msg->header.arglen != sizeof(*conf))
ERROUT(EINVAL);
if (!ng_ppp_config_valid(node, conf))
ERROUT(EINVAL);
/* Copy config */
priv->conf = conf->bund;
for (i = 0; i < NG_PPP_MAX_LINKS; i++)
priv->links[i].conf = conf->links[i];
ng_ppp_update(node, 1);
break;
}
case NGM_PPP_GET_CONFIG:
{
struct ng_ppp_node_conf *conf;
int i;
NG_MKRESPONSE(resp, msg, sizeof(*conf), M_NOWAIT);
if (resp == NULL)
ERROUT(ENOMEM);
conf = (struct ng_ppp_node_conf *)resp->data;
conf->bund = priv->conf;
for (i = 0; i < NG_PPP_MAX_LINKS; i++)
conf->links[i] = priv->links[i].conf;
break;
}
case NGM_PPP_GET_MP_STATE:
{
struct ng_ppp_mp_state *info;
int i;
NG_MKRESPONSE(resp, msg, sizeof(*info), M_NOWAIT);
if (resp == NULL)
ERROUT(ENOMEM);
info = (struct ng_ppp_mp_state *)resp->data;
bzero(info, sizeof(*info));
for (i = 0; i < NG_PPP_MAX_LINKS; i++) {
if (priv->links[i].seq != MP_NOSEQ)
info->rseq[i] = priv->links[i].seq;
}
info->mseq = priv->mseq;
info->xseq = priv->xseq;
break;
}
case NGM_PPP_GET_LINK_STATS:
case NGM_PPP_CLR_LINK_STATS:
case NGM_PPP_GETCLR_LINK_STATS:
case NGM_PPP_GET_LINK_STATS64:
case NGM_PPP_GETCLR_LINK_STATS64:
{
struct ng_ppp_link_stat64 *stats;
uint16_t linkNum;
/* Process request. */
if (msg->header.arglen != sizeof(uint16_t))
ERROUT(EINVAL);
linkNum = *((uint16_t *) msg->data);
if (linkNum >= NG_PPP_MAX_LINKS
&& linkNum != NG_PPP_BUNDLE_LINKNUM)
ERROUT(EINVAL);
stats = (linkNum == NG_PPP_BUNDLE_LINKNUM) ?
&priv->bundleStats : &priv->links[linkNum].stats;
/* Make 64bit reply. */
if (msg->header.cmd == NGM_PPP_GET_LINK_STATS64 ||
msg->header.cmd == NGM_PPP_GETCLR_LINK_STATS64) {
NG_MKRESPONSE(resp, msg,
sizeof(struct ng_ppp_link_stat64), M_NOWAIT);
if (resp == NULL)
ERROUT(ENOMEM);
bcopy(stats, resp->data, sizeof(*stats));
} else
/* Make 32bit reply. */
if (msg->header.cmd == NGM_PPP_GET_LINK_STATS ||
msg->header.cmd == NGM_PPP_GETCLR_LINK_STATS) {
struct ng_ppp_link_stat *rs;
NG_MKRESPONSE(resp, msg,
sizeof(struct ng_ppp_link_stat), M_NOWAIT);
if (resp == NULL)
ERROUT(ENOMEM);
rs = (struct ng_ppp_link_stat *)resp->data;
/* Truncate 64->32 bits. */
rs->xmitFrames = stats->xmitFrames;
rs->xmitOctets = stats->xmitOctets;
rs->recvFrames = stats->recvFrames;
rs->recvOctets = stats->recvOctets;
rs->badProtos = stats->badProtos;
rs->runts = stats->runts;
rs->dupFragments = stats->dupFragments;
rs->dropFragments = stats->dropFragments;
}
/* Clear stats. */
if (msg->header.cmd != NGM_PPP_GET_LINK_STATS &&
msg->header.cmd != NGM_PPP_GET_LINK_STATS64)
bzero(stats, sizeof(*stats));
break;
}
default:
error = EINVAL;
break;
}
break;
case NGM_VJC_COOKIE:
{
/*
* Forward it to the vjc node. leave the
* old return address alone.
* If we have no hook, let NG_RESPOND_MSG
* clean up any remaining resources.
* Because we have no resp, the item will be freed
* along with anything it references. Don't
* let msg be freed twice.
*/
NGI_MSG(item) = msg; /* put it back in the item */
msg = NULL;
if ((lasthook = priv->hooks[HOOK_INDEX_VJC_IP])) {
NG_FWD_ITEM_HOOK(error, item, lasthook);
}
return (error);
}
default:
error = EINVAL;
break;
}
done:
NG_RESPOND_MSG(error, node, item, resp);
NG_FREE_MSG(msg);
return (error);
}
/*
* Destroy node
*/
static int
ng_ppp_shutdown(node_p node)
{
const priv_p priv = NG_NODE_PRIVATE(node);
/* Stop fragment queue timer */
ng_ppp_stop_frag_timer(node);
/* Take down netgraph node */
ng_ppp_frag_reset(node);
mtx_destroy(&priv->rmtx);
mtx_destroy(&priv->xmtx);
bzero(priv, sizeof(*priv));
free(priv, M_NETGRAPH_PPP);
NG_NODE_SET_PRIVATE(node, NULL);
NG_NODE_UNREF(node); /* let the node escape */
return (0);
}
/*
* Hook disconnection
*/
static int
ng_ppp_disconnect(hook_p hook)
{
const node_p node = NG_HOOK_NODE(hook);
const priv_p priv = NG_NODE_PRIVATE(node);
const int index = (intptr_t)NG_HOOK_PRIVATE(hook);
/* Zero out hook pointer */
if (index < 0)
priv->links[~index].hook = NULL;
else
priv->hooks[index] = NULL;
/* Update derived info (or go away if no hooks left). */
if (NG_NODE_NUMHOOKS(node) > 0)
ng_ppp_update(node, 0);
else if (NG_NODE_IS_VALID(node))
ng_rmnode_self(node);
return (0);
}
/*
* Proto layer
*/
/*
* Receive data on a hook inet.
*/
static int
ng_ppp_rcvdata_inet(hook_p hook, item_p item)
{
const node_p node = NG_HOOK_NODE(hook);
const priv_p priv = NG_NODE_PRIVATE(node);
if (!priv->conf.enableIP) {
NG_FREE_ITEM(item);
return (ENXIO);
}
return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_IP));
}
/*
* Receive data on a hook ipv6.
*/
static int
ng_ppp_rcvdata_ipv6(hook_p hook, item_p item)
{
const node_p node = NG_HOOK_NODE(hook);
const priv_p priv = NG_NODE_PRIVATE(node);
if (!priv->conf.enableIPv6) {
NG_FREE_ITEM(item);
return (ENXIO);
}
return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_IPV6));
}
/*
* Receive data on a hook atalk.
*/
static int
ng_ppp_rcvdata_atalk(hook_p hook, item_p item)
{
const node_p node = NG_HOOK_NODE(hook);
const priv_p priv = NG_NODE_PRIVATE(node);
if (!priv->conf.enableAtalk) {
NG_FREE_ITEM(item);
return (ENXIO);
}
return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_ATALK));
}
/*
* Receive data on a hook ipx
*/
static int
ng_ppp_rcvdata_ipx(hook_p hook, item_p item)
{
const node_p node = NG_HOOK_NODE(hook);
const priv_p priv = NG_NODE_PRIVATE(node);
if (!priv->conf.enableIPX) {
NG_FREE_ITEM(item);
return (ENXIO);
}
return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, PROT_IPX));
}
/*
* Receive data on a hook bypass
*/
static int
ng_ppp_rcvdata_bypass(hook_p hook, item_p item)
{
uint16_t linkNum;
uint16_t proto;
struct mbuf *m;
NGI_GET_M(item, m);
if (m->m_pkthdr.len < 4) {
NG_FREE_ITEM(item);
return (EINVAL);
}
if (m->m_len < 4 && (m = m_pullup(m, 4)) == NULL) {
NG_FREE_ITEM(item);
return (ENOBUFS);
}
linkNum = ntohs(mtod(m, uint16_t *)[0]);
proto = ntohs(mtod(m, uint16_t *)[1]);
m_adj(m, 4);
NGI_M(item) = m;
if (linkNum == NG_PPP_BUNDLE_LINKNUM)
return (ng_ppp_hcomp_xmit(NG_HOOK_NODE(hook), item, proto));
else
return (ng_ppp_link_xmit(NG_HOOK_NODE(hook), item, proto,
linkNum, 0));
}
static int
ng_ppp_bypass(node_p node, item_p item, uint16_t proto, uint16_t linkNum)
{
const priv_p priv = NG_NODE_PRIVATE(node);
uint16_t hdr[2];
struct mbuf *m;
int error;
if (priv->hooks[HOOK_INDEX_BYPASS] == NULL) {
NG_FREE_ITEM(item);
return (ENXIO);
}
/* Add 4-byte bypass header. */
hdr[0] = htons(linkNum);
hdr[1] = htons(proto);
NGI_GET_M(item, m);
if ((m = ng_ppp_prepend(m, &hdr, 4)) == NULL) {
NG_FREE_ITEM(item);
return (ENOBUFS);
}
NGI_M(item) = m;
/* Send packet out hook. */
NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_BYPASS]);
return (error);
}
static int
ng_ppp_proto_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum)
{
const priv_p priv = NG_NODE_PRIVATE(node);
hook_p outHook = NULL;
int error;
switch (proto) {
case PROT_IP:
if (priv->conf.enableIP)
outHook = priv->hooks[HOOK_INDEX_INET];
break;
case PROT_IPV6:
if (priv->conf.enableIPv6)
outHook = priv->hooks[HOOK_INDEX_IPV6];
break;
case PROT_ATALK:
if (priv->conf.enableAtalk)
outHook = priv->hooks[HOOK_INDEX_ATALK];
break;
case PROT_IPX:
if (priv->conf.enableIPX)
outHook = priv->hooks[HOOK_INDEX_IPX];
break;
}
if (outHook == NULL)
return (ng_ppp_bypass(node, item, proto, linkNum));
/* Send packet out hook. */
NG_FWD_ITEM_HOOK(error, item, outHook);
return (error);
}
/*
* Header compression layer
*/
static int
ng_ppp_hcomp_xmit(node_p node, item_p item, uint16_t proto)
{
const priv_p priv = NG_NODE_PRIVATE(node);
if (proto == PROT_IP &&
priv->conf.enableVJCompression &&
priv->vjCompHooked) {
int error;
/* Send packet out hook. */
NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_VJC_IP]);
return (error);
}
return (ng_ppp_comp_xmit(node, item, proto));
}
/*
* Receive data on a hook vjc_comp.
*/
static int
ng_ppp_rcvdata_vjc_comp(hook_p hook, item_p item)
{
const node_p node = NG_HOOK_NODE(hook);
const priv_p priv = NG_NODE_PRIVATE(node);
if (!priv->conf.enableVJCompression) {
NG_FREE_ITEM(item);
return (ENXIO);
}
return (ng_ppp_comp_xmit(node, item, PROT_VJCOMP));
}
/*
* Receive data on a hook vjc_uncomp.
*/
static int
ng_ppp_rcvdata_vjc_uncomp(hook_p hook, item_p item)
{
const node_p node = NG_HOOK_NODE(hook);
const priv_p priv = NG_NODE_PRIVATE(node);
if (!priv->conf.enableVJCompression) {
NG_FREE_ITEM(item);
return (ENXIO);
}
return (ng_ppp_comp_xmit(node, item, PROT_VJUNCOMP));
}
/*
* Receive data on a hook vjc_vjip.
*/
static int
ng_ppp_rcvdata_vjc_vjip(hook_p hook, item_p item)
{
const node_p node = NG_HOOK_NODE(hook);
const priv_p priv = NG_NODE_PRIVATE(node);
if (!priv->conf.enableVJCompression) {
NG_FREE_ITEM(item);
return (ENXIO);
}
return (ng_ppp_comp_xmit(node, item, PROT_IP));
}
static int
ng_ppp_hcomp_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum)
{
const priv_p priv = NG_NODE_PRIVATE(node);
if (priv->conf.enableVJDecompression && priv->vjCompHooked) {
hook_p outHook = NULL;
switch (proto) {
case PROT_VJCOMP:
outHook = priv->hooks[HOOK_INDEX_VJC_COMP];
break;
case PROT_VJUNCOMP:
outHook = priv->hooks[HOOK_INDEX_VJC_UNCOMP];
break;
}
if (outHook) {
int error;
/* Send packet out hook. */
NG_FWD_ITEM_HOOK(error, item, outHook);
return (error);
}
}
return (ng_ppp_proto_recv(node, item, proto, linkNum));
}
/*
* Receive data on a hook vjc_ip.
*/
static int
ng_ppp_rcvdata_vjc_ip(hook_p hook, item_p item)
{
const node_p node = NG_HOOK_NODE(hook);
const priv_p priv = NG_NODE_PRIVATE(node);
if (!priv->conf.enableVJDecompression) {
NG_FREE_ITEM(item);
return (ENXIO);
}
return (ng_ppp_proto_recv(node, item, PROT_IP, NG_PPP_BUNDLE_LINKNUM));
}
/*
* Compression layer
*/
static int
ng_ppp_comp_xmit(node_p node, item_p item, uint16_t proto)
{
const priv_p priv = NG_NODE_PRIVATE(node);
if (priv->conf.enableCompression &&
proto < 0x4000 &&
proto != PROT_COMPD &&
proto != PROT_CRYPTD &&
priv->hooks[HOOK_INDEX_COMPRESS] != NULL) {
struct mbuf *m;
int error;
NGI_GET_M(item, m);
if ((m = ng_ppp_addproto(m, proto, 0)) == NULL) {
NG_FREE_ITEM(item);
return (ENOBUFS);
}
NGI_M(item) = m;
/* Send packet out hook. */
NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_COMPRESS]);
return (error);
}
return (ng_ppp_crypt_xmit(node, item, proto));
}
/*
* Receive data on a hook compress.
*/
static int
ng_ppp_rcvdata_compress(hook_p hook, item_p item)
{
const node_p node = NG_HOOK_NODE(hook);
const priv_p priv = NG_NODE_PRIVATE(node);
uint16_t proto;
switch (priv->conf.enableCompression) {
case NG_PPP_COMPRESS_NONE:
NG_FREE_ITEM(item);
return (ENXIO);
case NG_PPP_COMPRESS_FULL:
{
struct mbuf *m;
NGI_GET_M(item, m);
if ((m = ng_ppp_cutproto(m, &proto)) == NULL) {
NG_FREE_ITEM(item);
return (EIO);
}
NGI_M(item) = m;
if (!PROT_VALID(proto)) {
NG_FREE_ITEM(item);
return (EIO);
}
}
break;
default:
proto = PROT_COMPD;
break;
}
return (ng_ppp_crypt_xmit(node, item, proto));
}
static int
ng_ppp_comp_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum)
{
const priv_p priv = NG_NODE_PRIVATE(node);
if (proto < 0x4000 &&
((proto == PROT_COMPD && priv->conf.enableDecompression) ||
priv->conf.enableDecompression == NG_PPP_DECOMPRESS_FULL) &&
priv->hooks[HOOK_INDEX_DECOMPRESS] != NULL) {
int error;
if (priv->conf.enableDecompression == NG_PPP_DECOMPRESS_FULL) {
struct mbuf *m;
NGI_GET_M(item, m);
if ((m = ng_ppp_addproto(m, proto, 0)) == NULL) {
NG_FREE_ITEM(item);
return (EIO);
}
NGI_M(item) = m;
}
/* Send packet out hook. */
NG_FWD_ITEM_HOOK(error, item,
priv->hooks[HOOK_INDEX_DECOMPRESS]);
return (error);
} else if (proto == PROT_COMPD) {
/* Disabled protos MUST be silently discarded, but
* unsupported MUST not. Let user-level decide this. */
return (ng_ppp_bypass(node, item, proto, linkNum));
}
return (ng_ppp_hcomp_recv(node, item, proto, linkNum));
}
/*
* Receive data on a hook decompress.
*/
static int
ng_ppp_rcvdata_decompress(hook_p hook, item_p item)
{
const node_p node = NG_HOOK_NODE(hook);
const priv_p priv = NG_NODE_PRIVATE(node);
uint16_t proto;
struct mbuf *m;
if (!priv->conf.enableDecompression) {
NG_FREE_ITEM(item);
return (ENXIO);
}
NGI_GET_M(item, m);
if ((m = ng_ppp_cutproto(m, &proto)) == NULL) {
NG_FREE_ITEM(item);
return (EIO);
}
NGI_M(item) = m;
if (!PROT_VALID(proto)) {
priv->bundleStats.badProtos++;
NG_FREE_ITEM(item);
return (EIO);
}
return (ng_ppp_hcomp_recv(node, item, proto, NG_PPP_BUNDLE_LINKNUM));
}
/*
* Encryption layer
*/
static int
ng_ppp_crypt_xmit(node_p node, item_p item, uint16_t proto)
{
const priv_p priv = NG_NODE_PRIVATE(node);
if (priv->conf.enableEncryption &&
proto < 0x4000 &&
proto != PROT_CRYPTD &&
priv->hooks[HOOK_INDEX_ENCRYPT] != NULL) {
struct mbuf *m;
int error;
NGI_GET_M(item, m);
if ((m = ng_ppp_addproto(m, proto, 0)) == NULL) {
NG_FREE_ITEM(item);
return (ENOBUFS);
}
NGI_M(item) = m;
/* Send packet out hook. */
NG_FWD_ITEM_HOOK(error, item, priv->hooks[HOOK_INDEX_ENCRYPT]);
return (error);
}
return (ng_ppp_mp_xmit(node, item, proto));
}
/*
* Receive data on a hook encrypt.
*/
static int
ng_ppp_rcvdata_encrypt(hook_p hook, item_p item)
{
const node_p node = NG_HOOK_NODE(hook);
const priv_p priv = NG_NODE_PRIVATE(node);
if (!priv->conf.enableEncryption) {
NG_FREE_ITEM(item);
return (ENXIO);
}
return (ng_ppp_mp_xmit(node, item, PROT_CRYPTD));
}
static int
ng_ppp_crypt_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum)
{
const priv_p priv = NG_NODE_PRIVATE(node);
if (proto == PROT_CRYPTD) {
if (priv->conf.enableDecryption &&
priv->hooks[HOOK_INDEX_DECRYPT] != NULL) {
int error;
/* Send packet out hook. */
NG_FWD_ITEM_HOOK(error, item,
priv->hooks[HOOK_INDEX_DECRYPT]);
return (error);
} else {
/* Disabled protos MUST be silently discarded, but
* unsupported MUST not. Let user-level decide this. */
return (ng_ppp_bypass(node, item, proto, linkNum));
}
}
return (ng_ppp_comp_recv(node, item, proto, linkNum));
}
/*
* Receive data on a hook decrypt.
*/
static int
ng_ppp_rcvdata_decrypt(hook_p hook, item_p item)
{
const node_p node = NG_HOOK_NODE(hook);
const priv_p priv = NG_NODE_PRIVATE(node);
uint16_t proto;
struct mbuf *m;
if (!priv->conf.enableDecryption) {
NG_FREE_ITEM(item);
return (ENXIO);
}
NGI_GET_M(item, m);
if ((m = ng_ppp_cutproto(m, &proto)) == NULL) {
NG_FREE_ITEM(item);
return (EIO);
}
NGI_M(item) = m;
if (!PROT_VALID(proto)) {
priv->bundleStats.badProtos++;
NG_FREE_ITEM(item);
return (EIO);
}
return (ng_ppp_comp_recv(node, item, proto, NG_PPP_BUNDLE_LINKNUM));
}
/*
* Link layer
*/
static int
ng_ppp_link_xmit(node_p node, item_p item, uint16_t proto, uint16_t linkNum, int plen)
{
const priv_p priv = NG_NODE_PRIVATE(node);
struct ng_ppp_link *link;
int len, error;
struct mbuf *m;
uint16_t mru;
/* Check if link correct. */
if (linkNum >= NG_PPP_MAX_LINKS) {
ERROUT(ENETDOWN);
}
/* Get link pointer (optimization). */
link = &priv->links[linkNum];
/* Check link status (if real). */
if (link->hook == NULL) {
ERROUT(ENETDOWN);
}
/* Extract mbuf. */
NGI_GET_M(item, m);
/* Check peer's MRU for this link. */
mru = link->conf.mru;
if (mru != 0 && m->m_pkthdr.len > mru) {
NG_FREE_M(m);
ERROUT(EMSGSIZE);
}
/* Prepend protocol number, possibly compressed. */
if ((m = ng_ppp_addproto(m, proto, link->conf.enableProtoComp)) ==
NULL) {
ERROUT(ENOBUFS);
}
/* Prepend address and control field (unless compressed). */
if (proto == PROT_LCP || !link->conf.enableACFComp) {
if ((m = ng_ppp_prepend(m, &ng_ppp_acf, 2)) == NULL)
ERROUT(ENOBUFS);
}
/* Deliver frame. */
len = m->m_pkthdr.len;
NG_FWD_NEW_DATA(error, item, link->hook, m);
mtx_lock(&priv->xmtx);
/* Update link stats. */
link->stats.xmitFrames++;
link->stats.xmitOctets += len;
/* Update bundle stats. */
if (plen > 0) {
priv->bundleStats.xmitFrames++;
priv->bundleStats.xmitOctets += plen;
}
/* Update 'bytes in queue' counter. */
if (error == 0) {
/* bytesInQueue and lastWrite required only for mp_strategy. */
if (priv->conf.enableMultilink && !priv->allLinksEqual &&
!priv->conf.enableRoundRobin) {
/* If queue was empty, then mark this time. */
if (link->bytesInQueue == 0)
getmicrouptime(&link->lastWrite);
link->bytesInQueue += len + MP_AVERAGE_LINK_OVERHEAD;
/* Limit max queue length to 50 pkts. BW can be defined
incorrectly and link may not signal overload. */
if (link->bytesInQueue > 50 * 1600)
link->bytesInQueue = 50 * 1600;
}
}
mtx_unlock(&priv->xmtx);
return (error);
done:
NG_FREE_ITEM(item);
return (error);
}
/*
* Receive data on a hook linkX.
*/
static int
ng_ppp_rcvdata(hook_p hook, item_p item)
{
const node_p node = NG_HOOK_NODE(hook);
const priv_p priv = NG_NODE_PRIVATE(node);
const int index = (intptr_t)NG_HOOK_PRIVATE(hook);
const uint16_t linkNum = (uint16_t)~index;
struct ng_ppp_link * const link = &priv->links[linkNum];
uint16_t proto;
struct mbuf *m;
int error = 0;
KASSERT(linkNum < NG_PPP_MAX_LINKS,
("%s: bogus index 0x%x", __func__, index));
NGI_GET_M(item, m);
mtx_lock(&priv->rmtx);
/* Stats */
link->stats.recvFrames++;
link->stats.recvOctets += m->m_pkthdr.len;
/* Strip address and control fields, if present. */
if (m->m_len < 2 && (m = m_pullup(m, 2)) == NULL)
ERROUT(ENOBUFS);
if (mtod(m, uint8_t *)[0] == 0xff &&
mtod(m, uint8_t *)[1] == 0x03)
m_adj(m, 2);
/* Get protocol number */
if ((m = ng_ppp_cutproto(m, &proto)) == NULL)
ERROUT(ENOBUFS);
NGI_M(item) = m; /* Put changed m back into item. */
if (!PROT_VALID(proto)) {
link->stats.badProtos++;
ERROUT(EIO);
}
/* LCP packets must go directly to bypass. */
if (proto >= 0xB000) {
mtx_unlock(&priv->rmtx);
return (ng_ppp_bypass(node, item, proto, linkNum));
}
/* Other packets are denied on a disabled link. */
if (!link->conf.enableLink)
ERROUT(ENXIO);
/* Proceed to multilink layer. Mutex will be unlocked inside. */
error = ng_ppp_mp_recv(node, item, proto, linkNum);
mtx_assert(&priv->rmtx, MA_NOTOWNED);
return (error);
done:
mtx_unlock(&priv->rmtx);
NG_FREE_ITEM(item);
return (error);
}
/*
* Multilink layer
*/
/*
* Handle an incoming multi-link fragment
*
* The fragment reassembly algorithm is somewhat complex. This is mainly
* because we are required not to reorder the reconstructed packets, yet
* fragments are only guaranteed to arrive in order on a per-link basis.
* In other words, when we have a complete packet ready, but the previous
* packet is still incomplete, we have to decide between delivering the
* complete packet and throwing away the incomplete one, or waiting to
* see if the remainder of the incomplete one arrives, at which time we
* can deliver both packets, in order.
*
* This problem is exacerbated by "sequence number slew", which is when
* the sequence numbers coming in from different links are far apart from
* each other. In particular, certain unnamed equipment (*cough* Ascend)
* has been seen to generate sequence number slew of up to 10 on an ISDN
* 2B-channel MP link. There is nothing invalid about sequence number slew
* but it makes the reasssembly process have to work harder.
*
* However, the peer is required to transmit fragments in order on each
* link. That means if we define MSEQ as the minimum over all links of
* the highest sequence number received on that link, then we can always
* give up any hope of receiving a fragment with sequence number < MSEQ in
* the future (all of this using 'wraparound' sequence number space).
* Therefore we can always immediately throw away incomplete packets
* missing fragments with sequence numbers < MSEQ.
*
* Here is an overview of our algorithm:
*
* o Received fragments are inserted into a queue, for which we
* maintain these invariants between calls to this function:
*
* - Fragments are ordered in the queue by sequence number
* - If a complete packet is at the head of the queue, then
* the first fragment in the packet has seq# > MSEQ + 1
* (otherwise, we could deliver it immediately)
* - If any fragments have seq# < MSEQ, then they are necessarily
* part of a packet whose missing seq#'s are all > MSEQ (otherwise,
* we can throw them away because they'll never be completed)
* - The queue contains at most MP_MAX_QUEUE_LEN fragments
*
* o We have a periodic timer that checks the queue for the first
* complete packet that has been sitting in the queue "too long".
* When one is detected, all previous (incomplete) fragments are
* discarded, their missing fragments are declared lost and MSEQ
* is increased.
*
* o If we recieve a fragment with seq# < MSEQ, we throw it away
* because we've already delcared it lost.
*
* This assumes linkNum != NG_PPP_BUNDLE_LINKNUM.
*/
static int
ng_ppp_mp_recv(node_p node, item_p item, uint16_t proto, uint16_t linkNum)
{
const priv_p priv = NG_NODE_PRIVATE(node);
struct ng_ppp_link *const link = &priv->links[linkNum];
struct ng_ppp_frag *frag;
struct ng_ppp_frag *qent;
int i, diff, inserted;
struct mbuf *m;
int error = 0;
if ((!priv->conf.enableMultilink) || proto != PROT_MP) {
/* Stats */
priv->bundleStats.recvFrames++;
priv->bundleStats.recvOctets += NGI_M(item)->m_pkthdr.len;
mtx_unlock(&priv->rmtx);
return (ng_ppp_crypt_recv(node, item, proto, linkNum));
}
NGI_GET_M(item, m);
/* Get a new frag struct from the free queue */
if ((frag = TAILQ_FIRST(&priv->fragsfree)) == NULL) {
printf("No free fragments headers in ng_ppp!\n");
NG_FREE_M(m);
goto process;
}
/* Extract fragment information from MP header */
if (priv->conf.recvShortSeq) {
uint16_t shdr;
if (m->m_pkthdr.len < 2) {
link->stats.runts++;
NG_FREE_M(m);
ERROUT(EINVAL);
}
if (m->m_len < 2 && (m = m_pullup(m, 2)) == NULL)
ERROUT(ENOBUFS);
shdr = ntohs(*mtod(m, uint16_t *));
frag->seq = MP_SHORT_EXTEND(shdr);
frag->first = (shdr & MP_SHORT_FIRST_FLAG) != 0;
frag->last = (shdr & MP_SHORT_LAST_FLAG) != 0;
diff = MP_SHORT_SEQ_DIFF(frag->seq, priv->mseq);
m_adj(m, 2);
} else {
uint32_t lhdr;
if (m->m_pkthdr.len < 4) {
link->stats.runts++;
NG_FREE_M(m);
ERROUT(EINVAL);
}
if (m->m_len < 4 && (m = m_pullup(m, 4)) == NULL)
ERROUT(ENOBUFS);
lhdr = ntohl(*mtod(m, uint32_t *));
frag->seq = MP_LONG_EXTEND(lhdr);
frag->first = (lhdr & MP_LONG_FIRST_FLAG) != 0;
frag->last = (lhdr & MP_LONG_LAST_FLAG) != 0;
diff = MP_LONG_SEQ_DIFF(frag->seq, priv->mseq);
m_adj(m, 4);
}
frag->data = m;
getmicrouptime(&frag->timestamp);
/* If sequence number is < MSEQ, we've already declared this
fragment as lost, so we have no choice now but to drop it */
if (diff < 0) {
link->stats.dropFragments++;
NG_FREE_M(m);
ERROUT(0);
}
/* Update highest received sequence number on this link and MSEQ */
priv->mseq = link->seq = frag->seq;
for (i = 0; i < priv->numActiveLinks; i++) {
struct ng_ppp_link *const alink =
&priv->links[priv->activeLinks[i]];
if (MP_RECV_SEQ_DIFF(priv, alink->seq, priv->mseq) < 0)
priv->mseq = alink->seq;
}
/* Remove frag struct from free queue. */
TAILQ_REMOVE(&priv->fragsfree, frag, f_qent);
/* Add fragment to queue, which is sorted by sequence number */
inserted = 0;
TAILQ_FOREACH_REVERSE(qent, &priv->frags, ng_ppp_fraglist, f_qent) {
diff = MP_RECV_SEQ_DIFF(priv, frag->seq, qent->seq);
if (diff > 0) {
TAILQ_INSERT_AFTER(&priv->frags, qent, frag, f_qent);
inserted = 1;
break;
} else if (diff == 0) { /* should never happen! */
link->stats.dupFragments++;
NG_FREE_M(frag->data);
TAILQ_INSERT_HEAD(&priv->fragsfree, frag, f_qent);
ERROUT(EINVAL);
}
}
if (!inserted)
TAILQ_INSERT_HEAD(&priv->frags, frag, f_qent);
process:
/* Process the queue */
/* NOTE: rmtx will be unlocked for sending time! */
error = ng_ppp_frag_process(node, item);
mtx_unlock(&priv->rmtx);
return (error);
done:
mtx_unlock(&priv->rmtx);
NG_FREE_ITEM(item);
return (error);
}
/************************************************************************
HELPER STUFF
************************************************************************/
/*
* If new mseq > current then set it and update all active links
*/
static void
ng_ppp_bump_mseq(node_p node, int32_t new_mseq)
{
const priv_p priv = NG_NODE_PRIVATE(node);
int i;
if (MP_RECV_SEQ_DIFF(priv, priv->mseq, new_mseq) < 0) {
priv->mseq = new_mseq;
for (i = 0; i < priv->numActiveLinks; i++) {
struct ng_ppp_link *const alink =
&priv->links[priv->activeLinks[i]];
if (MP_RECV_SEQ_DIFF(priv,
alink->seq, new_mseq) < 0)
alink->seq = new_mseq;
}
}
}
/*
* Examine our list of fragments, and determine if there is a
* complete and deliverable packet at the head of the list.
* Return 1 if so, zero otherwise.
*/
static int
ng_ppp_check_packet(node_p node)
{
const priv_p priv = NG_NODE_PRIVATE(node);
struct ng_ppp_frag *qent, *qnext;
/* Check for empty queue */
if (TAILQ_EMPTY(&priv->frags))
return (0);
/* Check first fragment is the start of a deliverable packet */
qent = TAILQ_FIRST(&priv->frags);
if (!qent->first || MP_RECV_SEQ_DIFF(priv, qent->seq, priv->mseq) > 1)
return (0);
/* Check that all the fragments are there */
while (!qent->last) {
qnext = TAILQ_NEXT(qent, f_qent);
if (qnext == NULL) /* end of queue */
return (0);
if (qnext->seq != MP_NEXT_RECV_SEQ(priv, qent->seq))
return (0);
qent = qnext;
}
/* Got one */
return (1);
}
/*
* Pull a completed packet off the head of the incoming fragment queue.
* This assumes there is a completed packet there to pull off.
*/
static void
ng_ppp_get_packet(node_p node, struct mbuf **mp)
{
const priv_p priv = NG_NODE_PRIVATE(node);
struct ng_ppp_frag *qent, *qnext;
struct mbuf *m = NULL, *tail;
qent = TAILQ_FIRST(&priv->frags);
KASSERT(!TAILQ_EMPTY(&priv->frags) && qent->first,
("%s: no packet", __func__));
for (tail = NULL; qent != NULL; qent = qnext) {
qnext = TAILQ_NEXT(qent, f_qent);
KASSERT(!TAILQ_EMPTY(&priv->frags),
("%s: empty q", __func__));
TAILQ_REMOVE(&priv->frags, qent, f_qent);
if (tail == NULL)
tail = m = qent->data;
else {
m->m_pkthdr.len += qent->data->m_pkthdr.len;
tail->m_next = qent->data;
}
while (tail->m_next != NULL)
tail = tail->m_next;
if (qent->last) {
qnext = NULL;
/* Bump MSEQ if necessary */
ng_ppp_bump_mseq(node, qent->seq);
}
TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent);
}
*mp = m;
}
/*
* Trim fragments from the queue whose packets can never be completed.
* This assumes a complete packet is NOT at the beginning of the queue.
* Returns 1 if fragments were removed, zero otherwise.
*/
static int
ng_ppp_frag_trim(node_p node)
{
const priv_p priv = NG_NODE_PRIVATE(node);
struct ng_ppp_frag *qent, *qnext = NULL;
int removed = 0;
/* Scan for "dead" fragments and remove them */
while (1) {
int dead = 0;
/* If queue is empty, we're done */
if (TAILQ_EMPTY(&priv->frags))
break;
/* Determine whether first fragment can ever be completed */
TAILQ_FOREACH(qent, &priv->frags, f_qent) {
if (MP_RECV_SEQ_DIFF(priv, qent->seq, priv->mseq) >= 0)
break;
qnext = TAILQ_NEXT(qent, f_qent);
KASSERT(qnext != NULL,
("%s: last frag < MSEQ?", __func__));
if (qnext->seq != MP_NEXT_RECV_SEQ(priv, qent->seq)
|| qent->last || qnext->first) {
dead = 1;
break;
}
}
if (!dead)
break;
/* Remove fragment and all others in the same packet */
while ((qent = TAILQ_FIRST(&priv->frags)) != qnext) {
KASSERT(!TAILQ_EMPTY(&priv->frags),
("%s: empty q", __func__));
priv->bundleStats.dropFragments++;
TAILQ_REMOVE(&priv->frags, qent, f_qent);
NG_FREE_M(qent->data);
TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent);
removed = 1;
}
}
return (removed);
}
/*
* Drop fragments on queue overflow.
* Returns 1 if fragments were removed, zero otherwise.
*/
static int
ng_ppp_frag_drop(node_p node)
{
const priv_p priv = NG_NODE_PRIVATE(node);
/* Check queue length */
if (TAILQ_EMPTY(&priv->fragsfree)) {
struct ng_ppp_frag *qent;
/* Get oldest fragment */
KASSERT(!TAILQ_EMPTY(&priv->frags),
("%s: empty q", __func__));
qent = TAILQ_FIRST(&priv->frags);
/* Bump MSEQ if necessary */
ng_ppp_bump_mseq(node, qent->seq);
/* Drop it */
priv->bundleStats.dropFragments++;
TAILQ_REMOVE(&priv->frags, qent, f_qent);
NG_FREE_M(qent->data);
TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent);
return (1);
}
return (0);
}
/*
* Run the queue, restoring the queue invariants
*/
static int
ng_ppp_frag_process(node_p node, item_p oitem)
{
const priv_p priv = NG_NODE_PRIVATE(node);
struct mbuf *m;
item_p item;
uint16_t proto;
do {
/* Deliver any deliverable packets */
while (ng_ppp_check_packet(node)) {
ng_ppp_get_packet(node, &m);
if ((m = ng_ppp_cutproto(m, &proto)) == NULL)
continue;
if (!PROT_VALID(proto)) {
priv->bundleStats.badProtos++;
NG_FREE_M(m);
continue;
}
if (oitem) { /* If original item present - reuse it. */
item = oitem;
oitem = NULL;
NGI_M(item) = m;
} else {
item = ng_package_data(m, NG_NOFLAGS);
}
if (item != NULL) {
/* Stats */
priv->bundleStats.recvFrames++;
priv->bundleStats.recvOctets +=
NGI_M(item)->m_pkthdr.len;
/* Drop mutex for the sending time.
* Priv may change, but we are ready!
*/
mtx_unlock(&priv->rmtx);
ng_ppp_crypt_recv(node, item, proto,
NG_PPP_BUNDLE_LINKNUM);
mtx_lock(&priv->rmtx);
}
}
/* Delete dead fragments and try again */
} while (ng_ppp_frag_trim(node) || ng_ppp_frag_drop(node));
/* If we haven't reused original item - free it. */
if (oitem) NG_FREE_ITEM(oitem);
/* Done */
return (0);
}
/*
* Check for 'stale' completed packets that need to be delivered
*
* If a link goes down or has a temporary failure, MSEQ can get
* "stuck", because no new incoming fragments appear on that link.
* This can cause completed packets to never get delivered if
* their sequence numbers are all > MSEQ + 1.
*
* This routine checks how long all of the completed packets have
* been sitting in the queue, and if too long, removes fragments
* from the queue and increments MSEQ to allow them to be delivered.
*/
static void
ng_ppp_frag_checkstale(node_p node)
{
const priv_p priv = NG_NODE_PRIVATE(node);
struct ng_ppp_frag *qent, *beg, *end;
struct timeval now, age;
struct mbuf *m;
int seq;
item_p item;
int endseq;
uint16_t proto;
now.tv_sec = 0; /* uninitialized state */
while (1) {
/* If queue is empty, we're done */
if (TAILQ_EMPTY(&priv->frags))
break;
/* Find the first complete packet in the queue */
beg = end = NULL;
seq = TAILQ_FIRST(&priv->frags)->seq;
TAILQ_FOREACH(qent, &priv->frags, f_qent) {
if (qent->first)
beg = qent;
else if (qent->seq != seq)
beg = NULL;
if (beg != NULL && qent->last) {
end = qent;
break;
}
seq = MP_NEXT_RECV_SEQ(priv, seq);
}
/* If none found, exit */
if (end == NULL)
break;
/* Get current time (we assume we've been up for >= 1 second) */
if (now.tv_sec == 0)
getmicrouptime(&now);
/* Check if packet has been queued too long */
age = now;
timevalsub(&age, &beg->timestamp);
if (timevalcmp(&age, &ng_ppp_max_staleness, < ))
break;
/* Throw away junk fragments in front of the completed packet */
while ((qent = TAILQ_FIRST(&priv->frags)) != beg) {
KASSERT(!TAILQ_EMPTY(&priv->frags),
("%s: empty q", __func__));
priv->bundleStats.dropFragments++;
TAILQ_REMOVE(&priv->frags, qent, f_qent);
NG_FREE_M(qent->data);
TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent);
}
/* Extract completed packet */
endseq = end->seq;
ng_ppp_get_packet(node, &m);
if ((m = ng_ppp_cutproto(m, &proto)) == NULL)
continue;
if (!PROT_VALID(proto)) {
priv->bundleStats.badProtos++;
NG_FREE_M(m);
continue;
}
/* Deliver packet */
if ((item = ng_package_data(m, NG_NOFLAGS)) != NULL) {
/* Stats */
priv->bundleStats.recvFrames++;
priv->bundleStats.recvOctets += NGI_M(item)->m_pkthdr.len;
ng_ppp_crypt_recv(node, item, proto,
NG_PPP_BUNDLE_LINKNUM);
}
}
}
/*
* Periodically call ng_ppp_frag_checkstale()
*/
static void
ng_ppp_frag_timeout(node_p node, hook_p hook, void *arg1, int arg2)
{
/* XXX: is this needed? */
if (NG_NODE_NOT_VALID(node))
return;
/* Scan the fragment queue */
ng_ppp_frag_checkstale(node);
/* Start timer again */
ng_ppp_start_frag_timer(node);
}
/*
* Deliver a frame out on the bundle, i.e., figure out how to fragment
* the frame across the individual PPP links and do so.
*/
static int
ng_ppp_mp_xmit(node_p node, item_p item, uint16_t proto)
{
const priv_p priv = NG_NODE_PRIVATE(node);
const int hdr_len = priv->conf.xmitShortSeq ? 2 : 4;
int distrib[NG_PPP_MAX_LINKS];
int firstFragment;
int activeLinkNum;
struct mbuf *m;
int plen;
int frags;
int32_t seq;
/* At least one link must be active */
if (priv->numActiveLinks == 0) {
NG_FREE_ITEM(item);
return (ENETDOWN);
}
/* Save length for later stats. */
plen = NGI_M(item)->m_pkthdr.len;
if (!priv->conf.enableMultilink) {
return (ng_ppp_link_xmit(node, item, proto,
priv->activeLinks[0], plen));
}
/* Check peer's MRRU for this bundle. */
if (plen > priv->conf.mrru) {
NG_FREE_ITEM(item);
return (EMSGSIZE);
}
/* Extract mbuf. */
NGI_GET_M(item, m);
/* Prepend protocol number, possibly compressed. */
if ((m = ng_ppp_addproto(m, proto, 1)) == NULL) {
NG_FREE_ITEM(item);
return (ENOBUFS);
}
/* Clear distribution plan */
bzero(&distrib, priv->numActiveLinks * sizeof(distrib[0]));
mtx_lock(&priv->xmtx);
/* Round-robin strategy */
if (priv->conf.enableRoundRobin) {
activeLinkNum = priv->lastLink++ % priv->numActiveLinks;
distrib[activeLinkNum] = m->m_pkthdr.len;
goto deliver;
}
/* Strategy when all links are equivalent (optimize the common case) */
if (priv->allLinksEqual) {
int numFrags, fraction, remain;
int i;
/* Calculate optimal fragment count */
numFrags = priv->numActiveLinks;
if (numFrags > m->m_pkthdr.len / MP_MIN_FRAG_LEN)
numFrags = m->m_pkthdr.len / MP_MIN_FRAG_LEN;
if (numFrags == 0)
numFrags = 1;
fraction = m->m_pkthdr.len / numFrags;
remain = m->m_pkthdr.len - (fraction * numFrags);
/* Assign distribution */
for (i = 0; i < numFrags; i++) {
distrib[priv->lastLink++ % priv->numActiveLinks]
= fraction + (((remain--) > 0)?1:0);
}
goto deliver;
}
/* Strategy when all links are not equivalent */
ng_ppp_mp_strategy(node, m->m_pkthdr.len, distrib);
deliver:
/* Estimate fragments count */
frags = 0;
for (activeLinkNum = priv->numActiveLinks - 1;
activeLinkNum >= 0; activeLinkNum--) {
const uint16_t linkNum = priv->activeLinks[activeLinkNum];
struct ng_ppp_link *const link = &priv->links[linkNum];
frags += (distrib[activeLinkNum] + link->conf.mru - hdr_len - 1) /
(link->conf.mru - hdr_len);
}
/* Get out initial sequence number */
seq = priv->xseq;
/* Update next sequence number */
if (priv->conf.xmitShortSeq) {
priv->xseq = (seq + frags) & MP_SHORT_SEQ_MASK;
} else {
priv->xseq = (seq + frags) & MP_LONG_SEQ_MASK;
}
mtx_unlock(&priv->xmtx);
/* Send alloted portions of frame out on the link(s) */
for (firstFragment = 1, activeLinkNum = priv->numActiveLinks - 1;
activeLinkNum >= 0; activeLinkNum--) {
const uint16_t linkNum = priv->activeLinks[activeLinkNum];
struct ng_ppp_link *const link = &priv->links[linkNum];
/* Deliver fragment(s) out the next link */
for ( ; distrib[activeLinkNum] > 0; firstFragment = 0) {
int len, lastFragment, error;
struct mbuf *m2;
/* Calculate fragment length; don't exceed link MTU */
len = distrib[activeLinkNum];
if (len > link->conf.mru - hdr_len)
len = link->conf.mru - hdr_len;
distrib[activeLinkNum] -= len;
lastFragment = (len == m->m_pkthdr.len);
/* Split off next fragment as "m2" */
m2 = m;
if (!lastFragment) {
struct mbuf *n = m_split(m, len, M_DONTWAIT);
if (n == NULL) {
NG_FREE_M(m);
if (firstFragment)
NG_FREE_ITEM(item);
return (ENOMEM);
}
m_tag_copy_chain(n, m, M_DONTWAIT);
m = n;
}
/* Prepend MP header */
if (priv->conf.xmitShortSeq) {
uint16_t shdr;
shdr = seq;
seq = (seq + 1) & MP_SHORT_SEQ_MASK;
if (firstFragment)
shdr |= MP_SHORT_FIRST_FLAG;
if (lastFragment)
shdr |= MP_SHORT_LAST_FLAG;
shdr = htons(shdr);
m2 = ng_ppp_prepend(m2, &shdr, 2);
} else {
uint32_t lhdr;
lhdr = seq;
seq = (seq + 1) & MP_LONG_SEQ_MASK;
if (firstFragment)
lhdr |= MP_LONG_FIRST_FLAG;
if (lastFragment)
lhdr |= MP_LONG_LAST_FLAG;
lhdr = htonl(lhdr);
m2 = ng_ppp_prepend(m2, &lhdr, 4);
}
if (m2 == NULL) {
if (!lastFragment)
m_freem(m);
if (firstFragment)
NG_FREE_ITEM(item);
return (ENOBUFS);
}
/* Send fragment */
if (firstFragment) {
NGI_M(item) = m2; /* Reuse original item. */
} else {
item = ng_package_data(m2, NG_NOFLAGS);
}
if (item != NULL) {
error = ng_ppp_link_xmit(node, item, PROT_MP,
linkNum, (firstFragment?plen:0));
if (error != 0) {
if (!lastFragment)
NG_FREE_M(m);
return (error);
}
}
}
}
/* Done */
return (0);
}
/*
* Computing the optimal fragmentation
* -----------------------------------
*
* This routine tries to compute the optimal fragmentation pattern based
* on each link's latency, bandwidth, and calculated additional latency.
* The latter quantity is the additional latency caused by previously
* written data that has not been transmitted yet.
*
* This algorithm is only useful when not all of the links have the
* same latency and bandwidth values.
*
* The essential idea is to make the last bit of each fragment of the
* frame arrive at the opposite end at the exact same time. This greedy
* algorithm is optimal, in that no other scheduling could result in any
* packet arriving any sooner unless packets are delivered out of order.
*
* Suppose link i has bandwidth b_i (in tens of bytes per milisecond) and
* latency l_i (in miliseconds). Consider the function function f_i(t)
* which is equal to the number of bytes that will have arrived at
* the peer after t miliseconds if we start writing continuously at
* time t = 0. Then f_i(t) = b_i * (t - l_i) = ((b_i * t) - (l_i * b_i).
* That is, f_i(t) is a line with slope b_i and y-intersect -(l_i * b_i).
* Note that the y-intersect is always <= zero because latency can't be
* negative. Note also that really the function is f_i(t) except when
* f_i(t) is negative, in which case the function is zero. To take
* care of this, let Q_i(t) = { if (f_i(t) > 0) return 1; else return 0; }.
* So the actual number of bytes that will have arrived at the peer after
* t miliseconds is f_i(t) * Q_i(t).
*
* At any given time, each link has some additional latency a_i >= 0
* due to previously written fragment(s) which are still in the queue.
* This value is easily computed from the time since last transmission,
* the previous latency value, the number of bytes written, and the
* link's bandwidth.
*
* Assume that l_i includes any a_i already, and that the links are
* sorted by latency, so that l_i <= l_{i+1}.
*
* Let N be the total number of bytes in the current frame we are sending.
*
* Suppose we were to start writing bytes at time t = 0 on all links
* simultaneously, which is the most we can possibly do. Then let
* F(t) be equal to the total number of bytes received by the peer
* after t miliseconds. Then F(t) = Sum_i (f_i(t) * Q_i(t)).
*
* Our goal is simply this: fragment the frame across the links such
* that the peer is able to reconstruct the completed frame as soon as
* possible, i.e., at the least possible value of t. Call this value t_0.
*
* Then it follows that F(t_0) = N. Our strategy is first to find the value
* of t_0, and then deduce how many bytes to write to each link.
*
* Rewriting F(t_0):
*
* t_0 = ( N + Sum_i ( l_i * b_i * Q_i(t_0) ) ) / Sum_i ( b_i * Q_i(t_0) )
*
* Now, we note that Q_i(t) is constant for l_i <= t <= l_{i+1}. t_0 will
* lie in one of these ranges. To find it, we just need to find the i such
* that F(l_i) <= N <= F(l_{i+1}). Then we compute all the constant values
* for Q_i() in this range, plug in the remaining values, solving for t_0.
*
* Once t_0 is known, then the number of bytes to send on link i is
* just f_i(t_0) * Q_i(t_0).
*
* In other words, we start allocating bytes to the links one at a time.
* We keep adding links until the frame is completely sent. Some links
* may not get any bytes because their latency is too high.
*
* Is all this work really worth the trouble? Depends on the situation.
* The bigger the ratio of computer speed to link speed, and the more
* important total bundle latency is (e.g., for interactive response time),
* the more it's worth it. There is however the cost of calling this
* function for every frame. The running time is O(n^2) where n is the
* number of links that receive a non-zero number of bytes.
*
* Since latency is measured in miliseconds, the "resolution" of this
* algorithm is one milisecond.
*
* To avoid this algorithm altogether, configure all links to have the
* same latency and bandwidth.
*/
static void
ng_ppp_mp_strategy(node_p node, int len, int *distrib)
{
const priv_p priv = NG_NODE_PRIVATE(node);
int latency[NG_PPP_MAX_LINKS];
int sortByLatency[NG_PPP_MAX_LINKS];
int activeLinkNum;
int t0, total, topSum, botSum;
struct timeval now;
int i, numFragments;
/* If only one link, this gets real easy */
if (priv->numActiveLinks == 1) {
distrib[0] = len;
return;
}
/* Get current time */
getmicrouptime(&now);
/* Compute latencies for each link at this point in time */
for (activeLinkNum = 0;
activeLinkNum < priv->numActiveLinks; activeLinkNum++) {
struct ng_ppp_link *alink;
struct timeval diff;
int xmitBytes;
/* Start with base latency value */
alink = &priv->links[priv->activeLinks[activeLinkNum]];
latency[activeLinkNum] = alink->latency;
sortByLatency[activeLinkNum] = activeLinkNum; /* see below */
/* Any additional latency? */
if (alink->bytesInQueue == 0)
continue;
/* Compute time delta since last write */
diff = now;
timevalsub(&diff, &alink->lastWrite);
/* alink->bytesInQueue will be changed, mark change time. */
alink->lastWrite = now;
if (now.tv_sec < 0 || diff.tv_sec >= 10) { /* sanity */
alink->bytesInQueue = 0;
continue;
}
/* How many bytes could have transmitted since last write? */
xmitBytes = (alink->conf.bandwidth * 10 * diff.tv_sec)
+ (alink->conf.bandwidth * (diff.tv_usec / 1000)) / 100;
alink->bytesInQueue -= xmitBytes;
if (alink->bytesInQueue < 0)
alink->bytesInQueue = 0;
else
latency[activeLinkNum] +=
(100 * alink->bytesInQueue) / alink->conf.bandwidth;
}
/* Sort active links by latency */
qsort_r(sortByLatency,
priv->numActiveLinks, sizeof(*sortByLatency), latency, ng_ppp_intcmp);
/* Find the interval we need (add links in sortByLatency[] order) */
for (numFragments = 1;
numFragments < priv->numActiveLinks; numFragments++) {
for (total = i = 0; i < numFragments; i++) {
int flowTime;
flowTime = latency[sortByLatency[numFragments]]
- latency[sortByLatency[i]];
total += ((flowTime * priv->links[
priv->activeLinks[sortByLatency[i]]].conf.bandwidth)
+ 99) / 100;
}
if (total >= len)
break;
}
/* Solve for t_0 in that interval */
for (topSum = botSum = i = 0; i < numFragments; i++) {
int bw = priv->links[
priv->activeLinks[sortByLatency[i]]].conf.bandwidth;
topSum += latency[sortByLatency[i]] * bw; /* / 100 */
botSum += bw; /* / 100 */
}
t0 = ((len * 100) + topSum + botSum / 2) / botSum;
/* Compute f_i(t_0) all i */
for (total = i = 0; i < numFragments; i++) {
int bw = priv->links[
priv->activeLinks[sortByLatency[i]]].conf.bandwidth;
distrib[sortByLatency[i]] =
(bw * (t0 - latency[sortByLatency[i]]) + 50) / 100;
total += distrib[sortByLatency[i]];
}
/* Deal with any rounding error */
if (total < len) {
struct ng_ppp_link *fastLink =
&priv->links[priv->activeLinks[sortByLatency[0]]];
int fast = 0;
/* Find the fastest link */
for (i = 1; i < numFragments; i++) {
struct ng_ppp_link *const link =
&priv->links[priv->activeLinks[sortByLatency[i]]];
if (link->conf.bandwidth > fastLink->conf.bandwidth) {
fast = i;
fastLink = link;
}
}
distrib[sortByLatency[fast]] += len - total;
} else while (total > len) {
struct ng_ppp_link *slowLink =
&priv->links[priv->activeLinks[sortByLatency[0]]];
int delta, slow = 0;
/* Find the slowest link that still has bytes to remove */
for (i = 1; i < numFragments; i++) {
struct ng_ppp_link *const link =
&priv->links[priv->activeLinks[sortByLatency[i]]];
if (distrib[sortByLatency[slow]] == 0
|| (distrib[sortByLatency[i]] > 0
&& link->conf.bandwidth <
slowLink->conf.bandwidth)) {
slow = i;
slowLink = link;
}
}
delta = total - len;
if (delta > distrib[sortByLatency[slow]])
delta = distrib[sortByLatency[slow]];
distrib[sortByLatency[slow]] -= delta;
total -= delta;
}
}
/*
* Compare two integers
*/
static int
ng_ppp_intcmp(void *latency, const void *v1, const void *v2)
{
const int index1 = *((const int *) v1);
const int index2 = *((const int *) v2);
return ((int *)latency)[index1] - ((int *)latency)[index2];
}
/*
* Prepend a possibly compressed PPP protocol number in front of a frame
*/
static struct mbuf *
ng_ppp_addproto(struct mbuf *m, uint16_t proto, int compOK)
{
if (compOK && PROT_COMPRESSABLE(proto)) {
uint8_t pbyte = (uint8_t)proto;
return ng_ppp_prepend(m, &pbyte, 1);
} else {
uint16_t pword = htons((uint16_t)proto);
return ng_ppp_prepend(m, &pword, 2);
}
}
/*
* Cut a possibly compressed PPP protocol number from the front of a frame.
*/
static struct mbuf *
ng_ppp_cutproto(struct mbuf *m, uint16_t *proto)
{
*proto = 0;
if (m->m_len < 1 && (m = m_pullup(m, 1)) == NULL)
return (NULL);
*proto = *mtod(m, uint8_t *);
m_adj(m, 1);
if (!PROT_VALID(*proto)) {
if (m->m_len < 1 && (m = m_pullup(m, 1)) == NULL)
return (NULL);
*proto = (*proto << 8) + *mtod(m, uint8_t *);
m_adj(m, 1);
}
return (m);
}
/*
* Prepend some bytes to an mbuf.
*/
static struct mbuf *
ng_ppp_prepend(struct mbuf *m, const void *buf, int len)
{
M_PREPEND(m, len, M_DONTWAIT);
if (m == NULL || (m->m_len < len && (m = m_pullup(m, len)) == NULL))
return (NULL);
bcopy(buf, mtod(m, uint8_t *), len);
return (m);
}
/*
* Update private information that is derived from other private information
*/
static void
ng_ppp_update(node_p node, int newConf)
{
const priv_p priv = NG_NODE_PRIVATE(node);
int i;
/* Update active status for VJ Compression */
priv->vjCompHooked = priv->hooks[HOOK_INDEX_VJC_IP] != NULL
&& priv->hooks[HOOK_INDEX_VJC_COMP] != NULL
&& priv->hooks[HOOK_INDEX_VJC_UNCOMP] != NULL
&& priv->hooks[HOOK_INDEX_VJC_VJIP] != NULL;
/* Increase latency for each link an amount equal to one MP header */
if (newConf) {
for (i = 0; i < NG_PPP_MAX_LINKS; i++) {
int hdrBytes;
if (priv->links[i].conf.bandwidth == 0)
continue;
hdrBytes = MP_AVERAGE_LINK_OVERHEAD
+ (priv->links[i].conf.enableACFComp ? 0 : 2)
+ (priv->links[i].conf.enableProtoComp ? 1 : 2)
+ (priv->conf.xmitShortSeq ? 2 : 4);
priv->links[i].latency =
priv->links[i].conf.latency +
(hdrBytes / priv->links[i].conf.bandwidth + 50) / 100;
}
}
/* Update list of active links */
bzero(&priv->activeLinks, sizeof(priv->activeLinks));
priv->numActiveLinks = 0;
priv->allLinksEqual = 1;
for (i = 0; i < NG_PPP_MAX_LINKS; i++) {
struct ng_ppp_link *const link = &priv->links[i];
/* Is link active? */
if (link->conf.enableLink && link->hook != NULL) {
struct ng_ppp_link *link0;
/* Add link to list of active links */
priv->activeLinks[priv->numActiveLinks++] = i;
link0 = &priv->links[priv->activeLinks[0]];
/* Determine if all links are still equal */
if (link->latency != link0->latency
|| link->conf.bandwidth != link0->conf.bandwidth)
priv->allLinksEqual = 0;
/* Initialize rec'd sequence number */
if (link->seq == MP_NOSEQ) {
link->seq = (link == link0) ?
MP_INITIAL_SEQ : link0->seq;
}
} else
link->seq = MP_NOSEQ;
}
/* Update MP state as multi-link is active or not */
if (priv->conf.enableMultilink && priv->numActiveLinks > 0)
ng_ppp_start_frag_timer(node);
else {
ng_ppp_stop_frag_timer(node);
ng_ppp_frag_reset(node);
priv->xseq = MP_INITIAL_SEQ;
priv->mseq = MP_INITIAL_SEQ;
for (i = 0; i < NG_PPP_MAX_LINKS; i++) {
struct ng_ppp_link *const link = &priv->links[i];
bzero(&link->lastWrite, sizeof(link->lastWrite));
link->bytesInQueue = 0;
link->seq = MP_NOSEQ;
}
}
}
/*
* Determine if a new configuration would represent a valid change
* from the current configuration and link activity status.
*/
static int
ng_ppp_config_valid(node_p node, const struct ng_ppp_node_conf *newConf)
{
const priv_p priv = NG_NODE_PRIVATE(node);
int i, newNumLinksActive;
/* Check per-link config and count how many links would be active */
for (newNumLinksActive = i = 0; i < NG_PPP_MAX_LINKS; i++) {
if (newConf->links[i].enableLink && priv->links[i].hook != NULL)
newNumLinksActive++;
if (!newConf->links[i].enableLink)
continue;
if (newConf->links[i].mru < MP_MIN_LINK_MRU)
return (0);
if (newConf->links[i].bandwidth == 0)
return (0);
if (newConf->links[i].bandwidth > NG_PPP_MAX_BANDWIDTH)
return (0);
if (newConf->links[i].latency > NG_PPP_MAX_LATENCY)
return (0);
}
/* Disallow changes to multi-link configuration while MP is active */
if (priv->numActiveLinks > 0 && newNumLinksActive > 0) {
if (!priv->conf.enableMultilink
!= !newConf->bund.enableMultilink
|| !priv->conf.xmitShortSeq != !newConf->bund.xmitShortSeq
|| !priv->conf.recvShortSeq != !newConf->bund.recvShortSeq)
return (0);
}
/* At most one link can be active unless multi-link is enabled */
if (!newConf->bund.enableMultilink && newNumLinksActive > 1)
return (0);
/* Configuration change would be valid */
return (1);
}
/*
* Free all entries in the fragment queue
*/
static void
ng_ppp_frag_reset(node_p node)
{
const priv_p priv = NG_NODE_PRIVATE(node);
struct ng_ppp_frag *qent, *qnext;
for (qent = TAILQ_FIRST(&priv->frags); qent; qent = qnext) {
qnext = TAILQ_NEXT(qent, f_qent);
NG_FREE_M(qent->data);
TAILQ_INSERT_HEAD(&priv->fragsfree, qent, f_qent);
}
TAILQ_INIT(&priv->frags);
}
/*
* Start fragment queue timer
*/
static void
ng_ppp_start_frag_timer(node_p node)
{
const priv_p priv = NG_NODE_PRIVATE(node);
if (!(callout_pending(&priv->fragTimer)))
ng_callout(&priv->fragTimer, node, NULL, MP_FRAGTIMER_INTERVAL,
ng_ppp_frag_timeout, NULL, 0);
}
/*
* Stop fragment queue timer
*/
static void
ng_ppp_stop_frag_timer(node_p node)
{
const priv_p priv = NG_NODE_PRIVATE(node);
if (callout_pending(&priv->fragTimer))
ng_uncallout(&priv->fragTimer, node);
}