mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-02 12:20:51 +00:00
fec5229ac0
controllers. sk(4) never reprogrammed station address for Yukon controllers so overriding station address with ifconfig(8) was not possible. Fix the bug by reprogramming all registers that control station address, flow-control and virtual station address. Virtual station address has no use at this moment since driver does not make use of fail over feature. Tested by: "Mikhail T." <mi+thun <> aldan.algebra.com> MFC after: 1 week
3851 lines
102 KiB
C
3851 lines
102 KiB
C
/* $OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1997, 1998, 1999, 2000
|
|
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
/*-
|
|
* Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
|
|
* the SK-984x series adapters, both single port and dual port.
|
|
* References:
|
|
* The XaQti XMAC II datasheet,
|
|
* http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
|
|
* The SysKonnect GEnesis manual, http://www.syskonnect.com
|
|
*
|
|
* Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
|
|
* XMAC II datasheet online. I have put my copy at people.freebsd.org as a
|
|
* convenience to others until Vitesse corrects this problem:
|
|
*
|
|
* http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
|
|
*
|
|
* Written by Bill Paul <wpaul@ee.columbia.edu>
|
|
* Department of Electrical Engineering
|
|
* Columbia University, New York City
|
|
*/
|
|
/*
|
|
* The SysKonnect gigabit ethernet adapters consist of two main
|
|
* components: the SysKonnect GEnesis controller chip and the XaQti Corp.
|
|
* XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
|
|
* components and a PHY while the GEnesis controller provides a PCI
|
|
* interface with DMA support. Each card may have between 512K and
|
|
* 2MB of SRAM on board depending on the configuration.
|
|
*
|
|
* The SysKonnect GEnesis controller can have either one or two XMAC
|
|
* chips connected to it, allowing single or dual port NIC configurations.
|
|
* SysKonnect has the distinction of being the only vendor on the market
|
|
* with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
|
|
* dual DMA queues, packet/MAC/transmit arbiters and direct access to the
|
|
* XMAC registers. This driver takes advantage of these features to allow
|
|
* both XMACs to operate as independent interfaces.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/module.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/in_cksum.h>
|
|
#include <machine/resource.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
#include <dev/mii/brgphyreg.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#if 0
|
|
#define SK_USEIOSPACE
|
|
#endif
|
|
|
|
#include <dev/sk/if_skreg.h>
|
|
#include <dev/sk/xmaciireg.h>
|
|
#include <dev/sk/yukonreg.h>
|
|
|
|
MODULE_DEPEND(sk, pci, 1, 1, 1);
|
|
MODULE_DEPEND(sk, ether, 1, 1, 1);
|
|
MODULE_DEPEND(sk, miibus, 1, 1, 1);
|
|
|
|
/* "device miibus" required. See GENERIC if you get errors here. */
|
|
#include "miibus_if.h"
|
|
|
|
#ifndef lint
|
|
static const char rcsid[] =
|
|
"$FreeBSD$";
|
|
#endif
|
|
|
|
static struct sk_type sk_devs[] = {
|
|
{
|
|
VENDORID_SK,
|
|
DEVICEID_SK_V1,
|
|
"SysKonnect Gigabit Ethernet (V1.0)"
|
|
},
|
|
{
|
|
VENDORID_SK,
|
|
DEVICEID_SK_V2,
|
|
"SysKonnect Gigabit Ethernet (V2.0)"
|
|
},
|
|
{
|
|
VENDORID_MARVELL,
|
|
DEVICEID_SK_V2,
|
|
"Marvell Gigabit Ethernet"
|
|
},
|
|
{
|
|
VENDORID_MARVELL,
|
|
DEVICEID_BELKIN_5005,
|
|
"Belkin F5D5005 Gigabit Ethernet"
|
|
},
|
|
{
|
|
VENDORID_3COM,
|
|
DEVICEID_3COM_3C940,
|
|
"3Com 3C940 Gigabit Ethernet"
|
|
},
|
|
{
|
|
VENDORID_LINKSYS,
|
|
DEVICEID_LINKSYS_EG1032,
|
|
"Linksys EG1032 Gigabit Ethernet"
|
|
},
|
|
{
|
|
VENDORID_DLINK,
|
|
DEVICEID_DLINK_DGE530T_A1,
|
|
"D-Link DGE-530T Gigabit Ethernet"
|
|
},
|
|
{
|
|
VENDORID_DLINK,
|
|
DEVICEID_DLINK_DGE530T_B1,
|
|
"D-Link DGE-530T Gigabit Ethernet"
|
|
},
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
static int skc_probe(device_t);
|
|
static int skc_attach(device_t);
|
|
static int skc_detach(device_t);
|
|
static int skc_shutdown(device_t);
|
|
static int skc_suspend(device_t);
|
|
static int skc_resume(device_t);
|
|
static int sk_detach(device_t);
|
|
static int sk_probe(device_t);
|
|
static int sk_attach(device_t);
|
|
static void sk_tick(void *);
|
|
static void sk_yukon_tick(void *);
|
|
static void sk_intr(void *);
|
|
static void sk_intr_xmac(struct sk_if_softc *);
|
|
static void sk_intr_bcom(struct sk_if_softc *);
|
|
static void sk_intr_yukon(struct sk_if_softc *);
|
|
static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t);
|
|
static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
|
|
static void sk_rxeof(struct sk_if_softc *);
|
|
static void sk_jumbo_rxeof(struct sk_if_softc *);
|
|
static void sk_txeof(struct sk_if_softc *);
|
|
static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *);
|
|
static int sk_encap(struct sk_if_softc *, struct mbuf **);
|
|
static void sk_start(struct ifnet *);
|
|
static void sk_start_locked(struct ifnet *);
|
|
static int sk_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void sk_init(void *);
|
|
static void sk_init_locked(struct sk_if_softc *);
|
|
static void sk_init_xmac(struct sk_if_softc *);
|
|
static void sk_init_yukon(struct sk_if_softc *);
|
|
static void sk_stop(struct sk_if_softc *);
|
|
static void sk_watchdog(void *);
|
|
static int sk_ifmedia_upd(struct ifnet *);
|
|
static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
|
|
static void sk_reset(struct sk_softc *);
|
|
static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
|
|
static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
|
|
static int sk_newbuf(struct sk_if_softc *, int);
|
|
static int sk_jumbo_newbuf(struct sk_if_softc *, int);
|
|
static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
|
|
static int sk_dma_alloc(struct sk_if_softc *);
|
|
static int sk_dma_jumbo_alloc(struct sk_if_softc *);
|
|
static void sk_dma_free(struct sk_if_softc *);
|
|
static void sk_dma_jumbo_free(struct sk_if_softc *);
|
|
static int sk_init_rx_ring(struct sk_if_softc *);
|
|
static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
|
|
static void sk_init_tx_ring(struct sk_if_softc *);
|
|
static u_int32_t sk_win_read_4(struct sk_softc *, int);
|
|
static u_int16_t sk_win_read_2(struct sk_softc *, int);
|
|
static u_int8_t sk_win_read_1(struct sk_softc *, int);
|
|
static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
|
|
static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
|
|
static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
|
|
|
|
static int sk_miibus_readreg(device_t, int, int);
|
|
static int sk_miibus_writereg(device_t, int, int, int);
|
|
static void sk_miibus_statchg(device_t);
|
|
|
|
static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
|
|
static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
|
|
int);
|
|
static void sk_xmac_miibus_statchg(struct sk_if_softc *);
|
|
|
|
static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
|
|
static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
|
|
int);
|
|
static void sk_marv_miibus_statchg(struct sk_if_softc *);
|
|
|
|
static uint32_t sk_xmchash(const uint8_t *);
|
|
static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
|
|
static void sk_rxfilter(struct sk_if_softc *);
|
|
static void sk_rxfilter_genesis(struct sk_if_softc *);
|
|
static void sk_rxfilter_yukon(struct sk_if_softc *);
|
|
|
|
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
|
|
static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
|
|
|
|
/* Tunables. */
|
|
static int jumbo_disable = 0;
|
|
TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable);
|
|
|
|
/*
|
|
* It seems that SK-NET GENESIS supports very simple checksum offload
|
|
* capability for Tx and I believe it can generate 0 checksum value for
|
|
* UDP packets in Tx as the hardware can't differenciate UDP packets from
|
|
* TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
|
|
* means sender didn't perforam checksum computation. For the safety I
|
|
* disabled UDP checksum offload capability at the moment. Alternatively
|
|
* we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum
|
|
* offload routine.
|
|
*/
|
|
#define SK_CSUM_FEATURES (CSUM_TCP)
|
|
|
|
/*
|
|
* Note that we have newbus methods for both the GEnesis controller
|
|
* itself and the XMAC(s). The XMACs are children of the GEnesis, and
|
|
* the miibus code is a child of the XMACs. We need to do it this way
|
|
* so that the miibus drivers can access the PHY registers on the
|
|
* right PHY. It's not quite what I had in mind, but it's the only
|
|
* design that achieves the desired effect.
|
|
*/
|
|
static device_method_t skc_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, skc_probe),
|
|
DEVMETHOD(device_attach, skc_attach),
|
|
DEVMETHOD(device_detach, skc_detach),
|
|
DEVMETHOD(device_suspend, skc_suspend),
|
|
DEVMETHOD(device_resume, skc_resume),
|
|
DEVMETHOD(device_shutdown, skc_shutdown),
|
|
|
|
/* bus interface */
|
|
DEVMETHOD(bus_print_child, bus_generic_print_child),
|
|
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
|
|
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t skc_driver = {
|
|
"skc",
|
|
skc_methods,
|
|
sizeof(struct sk_softc)
|
|
};
|
|
|
|
static devclass_t skc_devclass;
|
|
|
|
static device_method_t sk_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, sk_probe),
|
|
DEVMETHOD(device_attach, sk_attach),
|
|
DEVMETHOD(device_detach, sk_detach),
|
|
DEVMETHOD(device_shutdown, bus_generic_shutdown),
|
|
|
|
/* bus interface */
|
|
DEVMETHOD(bus_print_child, bus_generic_print_child),
|
|
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
|
|
|
|
/* MII interface */
|
|
DEVMETHOD(miibus_readreg, sk_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, sk_miibus_writereg),
|
|
DEVMETHOD(miibus_statchg, sk_miibus_statchg),
|
|
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t sk_driver = {
|
|
"sk",
|
|
sk_methods,
|
|
sizeof(struct sk_if_softc)
|
|
};
|
|
|
|
static devclass_t sk_devclass;
|
|
|
|
DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, 0, 0);
|
|
DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
|
|
|
|
static struct resource_spec sk_res_spec_io[] = {
|
|
{ SYS_RES_IOPORT, PCIR_BAR(1), RF_ACTIVE },
|
|
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
|
|
{ -1, 0, 0 }
|
|
};
|
|
|
|
static struct resource_spec sk_res_spec_mem[] = {
|
|
{ SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },
|
|
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
|
|
{ -1, 0, 0 }
|
|
};
|
|
|
|
#define SK_SETBIT(sc, reg, x) \
|
|
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
|
|
|
|
#define SK_CLRBIT(sc, reg, x) \
|
|
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
|
|
|
|
#define SK_WIN_SETBIT_4(sc, reg, x) \
|
|
sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
|
|
|
|
#define SK_WIN_CLRBIT_4(sc, reg, x) \
|
|
sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
|
|
|
|
#define SK_WIN_SETBIT_2(sc, reg, x) \
|
|
sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
|
|
|
|
#define SK_WIN_CLRBIT_2(sc, reg, x) \
|
|
sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
|
|
|
|
static u_int32_t
|
|
sk_win_read_4(sc, reg)
|
|
struct sk_softc *sc;
|
|
int reg;
|
|
{
|
|
#ifdef SK_USEIOSPACE
|
|
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
|
|
return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
|
|
#else
|
|
return(CSR_READ_4(sc, reg));
|
|
#endif
|
|
}
|
|
|
|
static u_int16_t
|
|
sk_win_read_2(sc, reg)
|
|
struct sk_softc *sc;
|
|
int reg;
|
|
{
|
|
#ifdef SK_USEIOSPACE
|
|
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
|
|
return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
|
|
#else
|
|
return(CSR_READ_2(sc, reg));
|
|
#endif
|
|
}
|
|
|
|
static u_int8_t
|
|
sk_win_read_1(sc, reg)
|
|
struct sk_softc *sc;
|
|
int reg;
|
|
{
|
|
#ifdef SK_USEIOSPACE
|
|
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
|
|
return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
|
|
#else
|
|
return(CSR_READ_1(sc, reg));
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
sk_win_write_4(sc, reg, val)
|
|
struct sk_softc *sc;
|
|
int reg;
|
|
u_int32_t val;
|
|
{
|
|
#ifdef SK_USEIOSPACE
|
|
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
|
|
CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
|
|
#else
|
|
CSR_WRITE_4(sc, reg, val);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
static void
|
|
sk_win_write_2(sc, reg, val)
|
|
struct sk_softc *sc;
|
|
int reg;
|
|
u_int32_t val;
|
|
{
|
|
#ifdef SK_USEIOSPACE
|
|
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
|
|
CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
|
|
#else
|
|
CSR_WRITE_2(sc, reg, val);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
static void
|
|
sk_win_write_1(sc, reg, val)
|
|
struct sk_softc *sc;
|
|
int reg;
|
|
u_int32_t val;
|
|
{
|
|
#ifdef SK_USEIOSPACE
|
|
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
|
|
CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
|
|
#else
|
|
CSR_WRITE_1(sc, reg, val);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
static int
|
|
sk_miibus_readreg(dev, phy, reg)
|
|
device_t dev;
|
|
int phy, reg;
|
|
{
|
|
struct sk_if_softc *sc_if;
|
|
int v;
|
|
|
|
sc_if = device_get_softc(dev);
|
|
|
|
SK_IF_MII_LOCK(sc_if);
|
|
switch(sc_if->sk_softc->sk_type) {
|
|
case SK_GENESIS:
|
|
v = sk_xmac_miibus_readreg(sc_if, phy, reg);
|
|
break;
|
|
case SK_YUKON:
|
|
case SK_YUKON_LITE:
|
|
case SK_YUKON_LP:
|
|
v = sk_marv_miibus_readreg(sc_if, phy, reg);
|
|
break;
|
|
default:
|
|
v = 0;
|
|
break;
|
|
}
|
|
SK_IF_MII_UNLOCK(sc_if);
|
|
|
|
return (v);
|
|
}
|
|
|
|
static int
|
|
sk_miibus_writereg(dev, phy, reg, val)
|
|
device_t dev;
|
|
int phy, reg, val;
|
|
{
|
|
struct sk_if_softc *sc_if;
|
|
int v;
|
|
|
|
sc_if = device_get_softc(dev);
|
|
|
|
SK_IF_MII_LOCK(sc_if);
|
|
switch(sc_if->sk_softc->sk_type) {
|
|
case SK_GENESIS:
|
|
v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
|
|
break;
|
|
case SK_YUKON:
|
|
case SK_YUKON_LITE:
|
|
case SK_YUKON_LP:
|
|
v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
|
|
break;
|
|
default:
|
|
v = 0;
|
|
break;
|
|
}
|
|
SK_IF_MII_UNLOCK(sc_if);
|
|
|
|
return (v);
|
|
}
|
|
|
|
static void
|
|
sk_miibus_statchg(dev)
|
|
device_t dev;
|
|
{
|
|
struct sk_if_softc *sc_if;
|
|
|
|
sc_if = device_get_softc(dev);
|
|
|
|
SK_IF_MII_LOCK(sc_if);
|
|
switch(sc_if->sk_softc->sk_type) {
|
|
case SK_GENESIS:
|
|
sk_xmac_miibus_statchg(sc_if);
|
|
break;
|
|
case SK_YUKON:
|
|
case SK_YUKON_LITE:
|
|
case SK_YUKON_LP:
|
|
sk_marv_miibus_statchg(sc_if);
|
|
break;
|
|
}
|
|
SK_IF_MII_UNLOCK(sc_if);
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
sk_xmac_miibus_readreg(sc_if, phy, reg)
|
|
struct sk_if_softc *sc_if;
|
|
int phy, reg;
|
|
{
|
|
int i;
|
|
|
|
SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
|
|
SK_XM_READ_2(sc_if, XM_PHY_DATA);
|
|
if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
|
|
for (i = 0; i < SK_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
|
|
XM_MMUCMD_PHYDATARDY)
|
|
break;
|
|
}
|
|
|
|
if (i == SK_TIMEOUT) {
|
|
if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
|
|
return(0);
|
|
}
|
|
}
|
|
DELAY(1);
|
|
i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
|
|
|
|
return(i);
|
|
}
|
|
|
|
static int
|
|
sk_xmac_miibus_writereg(sc_if, phy, reg, val)
|
|
struct sk_if_softc *sc_if;
|
|
int phy, reg, val;
|
|
{
|
|
int i;
|
|
|
|
SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
|
|
for (i = 0; i < SK_TIMEOUT; i++) {
|
|
if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
|
|
break;
|
|
}
|
|
|
|
if (i == SK_TIMEOUT) {
|
|
if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
|
|
return (ETIMEDOUT);
|
|
}
|
|
|
|
SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
|
|
for (i = 0; i < SK_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
|
|
break;
|
|
}
|
|
if (i == SK_TIMEOUT)
|
|
if_printf(sc_if->sk_ifp, "phy write timed out\n");
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
sk_xmac_miibus_statchg(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct mii_data *mii;
|
|
|
|
mii = device_get_softc(sc_if->sk_miibus);
|
|
|
|
/*
|
|
* If this is a GMII PHY, manually set the XMAC's
|
|
* duplex mode accordingly.
|
|
*/
|
|
if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
|
|
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
|
|
SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
|
|
} else {
|
|
SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
sk_marv_miibus_readreg(sc_if, phy, reg)
|
|
struct sk_if_softc *sc_if;
|
|
int phy, reg;
|
|
{
|
|
u_int16_t val;
|
|
int i;
|
|
|
|
if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
|
|
sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) {
|
|
return(0);
|
|
}
|
|
|
|
SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
|
|
YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
|
|
|
|
for (i = 0; i < SK_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
val = SK_YU_READ_2(sc_if, YUKON_SMICR);
|
|
if (val & YU_SMICR_READ_VALID)
|
|
break;
|
|
}
|
|
|
|
if (i == SK_TIMEOUT) {
|
|
if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
|
|
return(0);
|
|
}
|
|
|
|
val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
|
|
|
|
return(val);
|
|
}
|
|
|
|
static int
|
|
sk_marv_miibus_writereg(sc_if, phy, reg, val)
|
|
struct sk_if_softc *sc_if;
|
|
int phy, reg, val;
|
|
{
|
|
int i;
|
|
|
|
SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
|
|
SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
|
|
YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
|
|
|
|
for (i = 0; i < SK_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0)
|
|
break;
|
|
}
|
|
if (i == SK_TIMEOUT)
|
|
if_printf(sc_if->sk_ifp, "phy write timeout\n");
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
sk_marv_miibus_statchg(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
return;
|
|
}
|
|
|
|
#define HASH_BITS 6
|
|
|
|
static u_int32_t
|
|
sk_xmchash(addr)
|
|
const uint8_t *addr;
|
|
{
|
|
uint32_t crc;
|
|
|
|
/* Compute CRC for the address value. */
|
|
crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
|
|
|
|
return (~crc & ((1 << HASH_BITS) - 1));
|
|
}
|
|
|
|
static void
|
|
sk_setfilt(sc_if, addr, slot)
|
|
struct sk_if_softc *sc_if;
|
|
u_int16_t *addr;
|
|
int slot;
|
|
{
|
|
int base;
|
|
|
|
base = XM_RXFILT_ENTRY(slot);
|
|
|
|
SK_XM_WRITE_2(sc_if, base, addr[0]);
|
|
SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
|
|
SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
sk_rxfilter(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_softc *sc;
|
|
|
|
SK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
sc = sc_if->sk_softc;
|
|
if (sc->sk_type == SK_GENESIS)
|
|
sk_rxfilter_genesis(sc_if);
|
|
else
|
|
sk_rxfilter_yukon(sc_if);
|
|
}
|
|
|
|
static void
|
|
sk_rxfilter_genesis(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct ifnet *ifp = sc_if->sk_ifp;
|
|
u_int32_t hashes[2] = { 0, 0 }, mode;
|
|
int h = 0, i;
|
|
struct ifmultiaddr *ifma;
|
|
u_int16_t dummy[] = { 0, 0, 0 };
|
|
u_int16_t maddr[(ETHER_ADDR_LEN+1)/2];
|
|
|
|
SK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
mode = SK_XM_READ_4(sc_if, XM_MODE);
|
|
mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH |
|
|
XM_MODE_RX_USE_PERFECT);
|
|
/* First, zot all the existing perfect filters. */
|
|
for (i = 1; i < XM_RXFILT_MAX; i++)
|
|
sk_setfilt(sc_if, dummy, i);
|
|
|
|
/* Now program new ones. */
|
|
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
|
|
if (ifp->if_flags & IFF_ALLMULTI)
|
|
mode |= XM_MODE_RX_USE_HASH;
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
mode |= XM_MODE_RX_PROMISC;
|
|
hashes[0] = 0xFFFFFFFF;
|
|
hashes[1] = 0xFFFFFFFF;
|
|
} else {
|
|
i = 1;
|
|
if_maddr_rlock(ifp);
|
|
TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead,
|
|
ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
/*
|
|
* Program the first XM_RXFILT_MAX multicast groups
|
|
* into the perfect filter.
|
|
*/
|
|
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
|
|
maddr, ETHER_ADDR_LEN);
|
|
if (i < XM_RXFILT_MAX) {
|
|
sk_setfilt(sc_if, maddr, i);
|
|
mode |= XM_MODE_RX_USE_PERFECT;
|
|
i++;
|
|
continue;
|
|
}
|
|
h = sk_xmchash((const uint8_t *)maddr);
|
|
if (h < 32)
|
|
hashes[0] |= (1 << h);
|
|
else
|
|
hashes[1] |= (1 << (h - 32));
|
|
mode |= XM_MODE_RX_USE_HASH;
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
}
|
|
|
|
SK_XM_WRITE_4(sc_if, XM_MODE, mode);
|
|
SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
|
|
SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
|
|
}
|
|
|
|
static void
|
|
sk_rxfilter_yukon(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct ifnet *ifp;
|
|
u_int32_t crc, hashes[2] = { 0, 0 }, mode;
|
|
struct ifmultiaddr *ifma;
|
|
|
|
SK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
ifp = sc_if->sk_ifp;
|
|
mode = SK_YU_READ_2(sc_if, YUKON_RCR);
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
|
|
else if (ifp->if_flags & IFF_ALLMULTI) {
|
|
mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN;
|
|
hashes[0] = 0xFFFFFFFF;
|
|
hashes[1] = 0xFFFFFFFF;
|
|
} else {
|
|
mode |= YU_RCR_UFLEN;
|
|
if_maddr_rlock(ifp);
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
|
|
ifma->ifma_addr), ETHER_ADDR_LEN);
|
|
/* Just want the 6 least significant bits. */
|
|
crc &= 0x3f;
|
|
/* Set the corresponding bit in the hash table. */
|
|
hashes[crc >> 5] |= 1 << (crc & 0x1f);
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
if (hashes[0] != 0 || hashes[1] != 0)
|
|
mode |= YU_RCR_MUFLEN;
|
|
}
|
|
|
|
SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
|
|
SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
|
|
SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
|
|
SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
|
|
SK_YU_WRITE_2(sc_if, YUKON_RCR, mode);
|
|
}
|
|
|
|
static int
|
|
sk_init_rx_ring(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_ring_data *rd;
|
|
bus_addr_t addr;
|
|
u_int32_t csum_start;
|
|
int i;
|
|
|
|
sc_if->sk_cdata.sk_rx_cons = 0;
|
|
|
|
csum_start = (ETHER_HDR_LEN + sizeof(struct ip)) << 16 |
|
|
ETHER_HDR_LEN;
|
|
rd = &sc_if->sk_rdata;
|
|
bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
|
|
for (i = 0; i < SK_RX_RING_CNT; i++) {
|
|
if (sk_newbuf(sc_if, i) != 0)
|
|
return (ENOBUFS);
|
|
if (i == (SK_RX_RING_CNT - 1))
|
|
addr = SK_RX_RING_ADDR(sc_if, 0);
|
|
else
|
|
addr = SK_RX_RING_ADDR(sc_if, i + 1);
|
|
rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
|
|
rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
|
|
}
|
|
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
|
|
sc_if->sk_cdata.sk_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static int
|
|
sk_init_jumbo_rx_ring(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_ring_data *rd;
|
|
bus_addr_t addr;
|
|
u_int32_t csum_start;
|
|
int i;
|
|
|
|
sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
|
|
|
|
csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
|
|
ETHER_HDR_LEN;
|
|
rd = &sc_if->sk_rdata;
|
|
bzero(rd->sk_jumbo_rx_ring,
|
|
sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
|
|
for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
|
|
if (sk_jumbo_newbuf(sc_if, i) != 0)
|
|
return (ENOBUFS);
|
|
if (i == (SK_JUMBO_RX_RING_CNT - 1))
|
|
addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
|
|
else
|
|
addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
|
|
rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
|
|
rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
|
|
}
|
|
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
|
|
sc_if->sk_cdata.sk_jumbo_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
sk_init_tx_ring(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_ring_data *rd;
|
|
struct sk_txdesc *txd;
|
|
bus_addr_t addr;
|
|
int i;
|
|
|
|
STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
|
|
STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
|
|
|
|
sc_if->sk_cdata.sk_tx_prod = 0;
|
|
sc_if->sk_cdata.sk_tx_cons = 0;
|
|
sc_if->sk_cdata.sk_tx_cnt = 0;
|
|
|
|
rd = &sc_if->sk_rdata;
|
|
bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
|
|
for (i = 0; i < SK_TX_RING_CNT; i++) {
|
|
if (i == (SK_TX_RING_CNT - 1))
|
|
addr = SK_TX_RING_ADDR(sc_if, 0);
|
|
else
|
|
addr = SK_TX_RING_ADDR(sc_if, i + 1);
|
|
rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
|
|
txd = &sc_if->sk_cdata.sk_txdesc[i];
|
|
STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
|
|
}
|
|
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
|
|
sc_if->sk_cdata.sk_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
static __inline void
|
|
sk_discard_rxbuf(sc_if, idx)
|
|
struct sk_if_softc *sc_if;
|
|
int idx;
|
|
{
|
|
struct sk_rx_desc *r;
|
|
struct sk_rxdesc *rxd;
|
|
struct mbuf *m;
|
|
|
|
|
|
r = &sc_if->sk_rdata.sk_rx_ring[idx];
|
|
rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
|
|
m = rxd->rx_m;
|
|
r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
|
|
}
|
|
|
|
static __inline void
|
|
sk_discard_jumbo_rxbuf(sc_if, idx)
|
|
struct sk_if_softc *sc_if;
|
|
int idx;
|
|
{
|
|
struct sk_rx_desc *r;
|
|
struct sk_rxdesc *rxd;
|
|
struct mbuf *m;
|
|
|
|
r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
|
|
rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
|
|
m = rxd->rx_m;
|
|
r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
|
|
}
|
|
|
|
static int
|
|
sk_newbuf(sc_if, idx)
|
|
struct sk_if_softc *sc_if;
|
|
int idx;
|
|
{
|
|
struct sk_rx_desc *r;
|
|
struct sk_rxdesc *rxd;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t segs[1];
|
|
bus_dmamap_t map;
|
|
int nsegs;
|
|
|
|
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
m->m_len = m->m_pkthdr.len = MCLBYTES;
|
|
m_adj(m, ETHER_ALIGN);
|
|
|
|
if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
|
|
sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
|
|
|
|
rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
|
|
}
|
|
map = rxd->rx_dmamap;
|
|
rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
|
|
sc_if->sk_cdata.sk_rx_sparemap = map;
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_PREREAD);
|
|
rxd->rx_m = m;
|
|
r = &sc_if->sk_rdata.sk_rx_ring[idx];
|
|
r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
|
|
r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
|
|
r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
sk_jumbo_newbuf(sc_if, idx)
|
|
struct sk_if_softc *sc_if;
|
|
int idx;
|
|
{
|
|
struct sk_rx_desc *r;
|
|
struct sk_rxdesc *rxd;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t segs[1];
|
|
bus_dmamap_t map;
|
|
int nsegs;
|
|
|
|
m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
m->m_pkthdr.len = m->m_len = MJUM9BYTES;
|
|
/*
|
|
* Adjust alignment so packet payload begins on a
|
|
* longword boundary. Mandatory for Alpha, useful on
|
|
* x86 too.
|
|
*/
|
|
m_adj(m, ETHER_ALIGN);
|
|
|
|
if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
|
|
sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
|
|
|
|
rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
|
|
rxd->rx_dmamap);
|
|
}
|
|
map = rxd->rx_dmamap;
|
|
rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
|
|
sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_PREREAD);
|
|
rxd->rx_m = m;
|
|
r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
|
|
r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
|
|
r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
|
|
r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
static int
|
|
sk_ifmedia_upd(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct sk_if_softc *sc_if = ifp->if_softc;
|
|
struct mii_data *mii;
|
|
|
|
mii = device_get_softc(sc_if->sk_miibus);
|
|
sk_init(sc_if);
|
|
mii_mediachg(mii);
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
static void
|
|
sk_ifmedia_sts(ifp, ifmr)
|
|
struct ifnet *ifp;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
struct sk_if_softc *sc_if;
|
|
struct mii_data *mii;
|
|
|
|
sc_if = ifp->if_softc;
|
|
mii = device_get_softc(sc_if->sk_miibus);
|
|
|
|
mii_pollstat(mii);
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
sk_ioctl(ifp, command, data)
|
|
struct ifnet *ifp;
|
|
u_long command;
|
|
caddr_t data;
|
|
{
|
|
struct sk_if_softc *sc_if = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
int error, mask;
|
|
struct mii_data *mii;
|
|
|
|
error = 0;
|
|
switch(command) {
|
|
case SIOCSIFMTU:
|
|
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU)
|
|
error = EINVAL;
|
|
else if (ifp->if_mtu != ifr->ifr_mtu) {
|
|
if (sc_if->sk_jumbo_disable != 0 &&
|
|
ifr->ifr_mtu > SK_MAX_FRAMELEN)
|
|
error = EINVAL;
|
|
else {
|
|
SK_IF_LOCK(sc_if);
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
sk_init_locked(sc_if);
|
|
}
|
|
SK_IF_UNLOCK(sc_if);
|
|
}
|
|
}
|
|
break;
|
|
case SIOCSIFFLAGS:
|
|
SK_IF_LOCK(sc_if);
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
if ((ifp->if_flags ^ sc_if->sk_if_flags)
|
|
& (IFF_PROMISC | IFF_ALLMULTI))
|
|
sk_rxfilter(sc_if);
|
|
} else
|
|
sk_init_locked(sc_if);
|
|
} else {
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
sk_stop(sc_if);
|
|
}
|
|
sc_if->sk_if_flags = ifp->if_flags;
|
|
SK_IF_UNLOCK(sc_if);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
SK_IF_LOCK(sc_if);
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
sk_rxfilter(sc_if);
|
|
SK_IF_UNLOCK(sc_if);
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
mii = device_get_softc(sc_if->sk_miibus);
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
SK_IF_LOCK(sc_if);
|
|
if (sc_if->sk_softc->sk_type == SK_GENESIS) {
|
|
SK_IF_UNLOCK(sc_if);
|
|
break;
|
|
}
|
|
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
|
|
if ((mask & IFCAP_TXCSUM) != 0 &&
|
|
(IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
|
|
ifp->if_capenable ^= IFCAP_TXCSUM;
|
|
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
|
|
ifp->if_hwassist |= SK_CSUM_FEATURES;
|
|
else
|
|
ifp->if_hwassist &= ~SK_CSUM_FEATURES;
|
|
}
|
|
if ((mask & IFCAP_RXCSUM) != 0 &&
|
|
(IFCAP_RXCSUM & ifp->if_capabilities) != 0)
|
|
ifp->if_capenable ^= IFCAP_RXCSUM;
|
|
SK_IF_UNLOCK(sc_if);
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
|
|
* IDs against our list and return a device name if we find a match.
|
|
*/
|
|
static int
|
|
skc_probe(dev)
|
|
device_t dev;
|
|
{
|
|
struct sk_type *t = sk_devs;
|
|
|
|
while(t->sk_name != NULL) {
|
|
if ((pci_get_vendor(dev) == t->sk_vid) &&
|
|
(pci_get_device(dev) == t->sk_did)) {
|
|
/*
|
|
* Only attach to rev. 2 of the Linksys EG1032 adapter.
|
|
* Rev. 3 is supported by re(4).
|
|
*/
|
|
if ((t->sk_vid == VENDORID_LINKSYS) &&
|
|
(t->sk_did == DEVICEID_LINKSYS_EG1032) &&
|
|
(pci_get_subdevice(dev) !=
|
|
SUBDEVICEID_LINKSYS_EG1032_REV2)) {
|
|
t++;
|
|
continue;
|
|
}
|
|
device_set_desc(dev, t->sk_name);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
t++;
|
|
}
|
|
|
|
return(ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Force the GEnesis into reset, then bring it out of reset.
|
|
*/
|
|
static void
|
|
sk_reset(sc)
|
|
struct sk_softc *sc;
|
|
{
|
|
|
|
CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
|
|
CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
|
|
if (SK_YUKON_FAMILY(sc->sk_type))
|
|
CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
|
|
|
|
DELAY(1000);
|
|
CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
|
|
DELAY(2);
|
|
CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
|
|
if (SK_YUKON_FAMILY(sc->sk_type))
|
|
CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
|
|
|
|
if (sc->sk_type == SK_GENESIS) {
|
|
/* Configure packet arbiter */
|
|
sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
|
|
sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
|
|
sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
|
|
sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
|
|
sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
|
|
}
|
|
|
|
/* Enable RAM interface */
|
|
sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
|
|
|
|
/*
|
|
* Configure interrupt moderation. The moderation timer
|
|
* defers interrupts specified in the interrupt moderation
|
|
* timer mask based on the timeout specified in the interrupt
|
|
* moderation timer init register. Each bit in the timer
|
|
* register represents one tick, so to specify a timeout in
|
|
* microseconds, we have to multiply by the correct number of
|
|
* ticks-per-microsecond.
|
|
*/
|
|
switch (sc->sk_type) {
|
|
case SK_GENESIS:
|
|
sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
|
|
break;
|
|
default:
|
|
sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
|
|
break;
|
|
}
|
|
if (bootverbose)
|
|
device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
|
|
sc->sk_int_mod);
|
|
sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
|
|
sc->sk_int_ticks));
|
|
sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
|
|
SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
|
|
sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
sk_probe(dev)
|
|
device_t dev;
|
|
{
|
|
struct sk_softc *sc;
|
|
|
|
sc = device_get_softc(device_get_parent(dev));
|
|
|
|
/*
|
|
* Not much to do here. We always know there will be
|
|
* at least one XMAC present, and if there are two,
|
|
* skc_attach() will create a second device instance
|
|
* for us.
|
|
*/
|
|
switch (sc->sk_type) {
|
|
case SK_GENESIS:
|
|
device_set_desc(dev, "XaQti Corp. XMAC II");
|
|
break;
|
|
case SK_YUKON:
|
|
case SK_YUKON_LITE:
|
|
case SK_YUKON_LP:
|
|
device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
|
|
break;
|
|
}
|
|
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
|
|
/*
|
|
* Each XMAC chip is attached as a separate logical IP interface.
|
|
* Single port cards will have only one logical interface of course.
|
|
*/
|
|
static int
|
|
sk_attach(dev)
|
|
device_t dev;
|
|
{
|
|
struct sk_softc *sc;
|
|
struct sk_if_softc *sc_if;
|
|
struct ifnet *ifp;
|
|
u_int32_t r;
|
|
int error, i, phy, port;
|
|
u_char eaddr[6];
|
|
u_char inv_mac[] = {0, 0, 0, 0, 0, 0};
|
|
|
|
if (dev == NULL)
|
|
return(EINVAL);
|
|
|
|
error = 0;
|
|
sc_if = device_get_softc(dev);
|
|
sc = device_get_softc(device_get_parent(dev));
|
|
port = *(int *)device_get_ivars(dev);
|
|
|
|
sc_if->sk_if_dev = dev;
|
|
sc_if->sk_port = port;
|
|
sc_if->sk_softc = sc;
|
|
sc->sk_if[port] = sc_if;
|
|
if (port == SK_PORT_A)
|
|
sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
|
|
if (port == SK_PORT_B)
|
|
sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
|
|
|
|
callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
|
|
callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0);
|
|
|
|
if (sk_dma_alloc(sc_if) != 0) {
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
sk_dma_jumbo_alloc(sc_if);
|
|
|
|
ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
device_printf(sc_if->sk_if_dev, "can not if_alloc()\n");
|
|
error = ENOSPC;
|
|
goto fail;
|
|
}
|
|
ifp->if_softc = sc_if;
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
/*
|
|
* SK_GENESIS has a bug in checksum offload - From linux.
|
|
*/
|
|
if (sc_if->sk_softc->sk_type != SK_GENESIS) {
|
|
ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
|
|
ifp->if_hwassist = 0;
|
|
} else {
|
|
ifp->if_capabilities = 0;
|
|
ifp->if_hwassist = 0;
|
|
}
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
/*
|
|
* Some revision of Yukon controller generates corrupted
|
|
* frame when TX checksum offloading is enabled. The
|
|
* frame has a valid checksum value so payload might be
|
|
* modified during TX checksum calculation. Disable TX
|
|
* checksum offloading but give users chance to enable it
|
|
* when they know their controller works without problems
|
|
* with TX checksum offloading.
|
|
*/
|
|
ifp->if_capenable &= ~IFCAP_TXCSUM;
|
|
ifp->if_ioctl = sk_ioctl;
|
|
ifp->if_start = sk_start;
|
|
ifp->if_init = sk_init;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
|
|
ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
/*
|
|
* Get station address for this interface. Note that
|
|
* dual port cards actually come with three station
|
|
* addresses: one for each port, plus an extra. The
|
|
* extra one is used by the SysKonnect driver software
|
|
* as a 'virtual' station address for when both ports
|
|
* are operating in failover mode. Currently we don't
|
|
* use this extra address.
|
|
*/
|
|
SK_IF_LOCK(sc_if);
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
eaddr[i] =
|
|
sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
|
|
|
|
/* Verify whether the station address is invalid or not. */
|
|
if (bcmp(eaddr, inv_mac, sizeof(inv_mac)) == 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"Generating random ethernet address\n");
|
|
r = arc4random();
|
|
/*
|
|
* Set OUI to convenient locally assigned address. 'b'
|
|
* is 0x62, which has the locally assigned bit set, and
|
|
* the broadcast/multicast bit clear.
|
|
*/
|
|
eaddr[0] = 'b';
|
|
eaddr[1] = 's';
|
|
eaddr[2] = 'd';
|
|
eaddr[3] = (r >> 16) & 0xff;
|
|
eaddr[4] = (r >> 8) & 0xff;
|
|
eaddr[5] = (r >> 0) & 0xff;
|
|
}
|
|
/*
|
|
* Set up RAM buffer addresses. The NIC will have a certain
|
|
* amount of SRAM on it, somewhere between 512K and 2MB. We
|
|
* need to divide this up a) between the transmitter and
|
|
* receiver and b) between the two XMACs, if this is a
|
|
* dual port NIC. Our algotithm is to divide up the memory
|
|
* evenly so that everyone gets a fair share.
|
|
*
|
|
* Just to be contrary, Yukon2 appears to have separate memory
|
|
* for each MAC.
|
|
*/
|
|
if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
|
|
u_int32_t chunk, val;
|
|
|
|
chunk = sc->sk_ramsize / 2;
|
|
val = sc->sk_rboff / sizeof(u_int64_t);
|
|
sc_if->sk_rx_ramstart = val;
|
|
val += (chunk / sizeof(u_int64_t));
|
|
sc_if->sk_rx_ramend = val - 1;
|
|
sc_if->sk_tx_ramstart = val;
|
|
val += (chunk / sizeof(u_int64_t));
|
|
sc_if->sk_tx_ramend = val - 1;
|
|
} else {
|
|
u_int32_t chunk, val;
|
|
|
|
chunk = sc->sk_ramsize / 4;
|
|
val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
|
|
sizeof(u_int64_t);
|
|
sc_if->sk_rx_ramstart = val;
|
|
val += (chunk / sizeof(u_int64_t));
|
|
sc_if->sk_rx_ramend = val - 1;
|
|
sc_if->sk_tx_ramstart = val;
|
|
val += (chunk / sizeof(u_int64_t));
|
|
sc_if->sk_tx_ramend = val - 1;
|
|
}
|
|
|
|
/* Read and save PHY type and set PHY address */
|
|
sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
|
|
if (!SK_YUKON_FAMILY(sc->sk_type)) {
|
|
switch(sc_if->sk_phytype) {
|
|
case SK_PHYTYPE_XMAC:
|
|
sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
|
|
break;
|
|
case SK_PHYTYPE_BCOM:
|
|
sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
|
|
break;
|
|
default:
|
|
device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
|
|
sc_if->sk_phytype);
|
|
error = ENODEV;
|
|
SK_IF_UNLOCK(sc_if);
|
|
goto fail;
|
|
}
|
|
} else {
|
|
if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
|
|
sc->sk_pmd != 'S') {
|
|
/* not initialized, punt */
|
|
sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
|
|
sc->sk_coppertype = 1;
|
|
}
|
|
|
|
sc_if->sk_phyaddr = SK_PHYADDR_MARV;
|
|
|
|
if (!(sc->sk_coppertype))
|
|
sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
|
|
}
|
|
|
|
/*
|
|
* Call MI attach routine. Can't hold locks when calling into ether_*.
|
|
*/
|
|
SK_IF_UNLOCK(sc_if);
|
|
ether_ifattach(ifp, eaddr);
|
|
SK_IF_LOCK(sc_if);
|
|
|
|
/*
|
|
* The hardware should be ready for VLAN_MTU by default:
|
|
* XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
|
|
* YU_SMR_MFL_VLAN is set by this driver in Yukon.
|
|
*
|
|
*/
|
|
ifp->if_capabilities |= IFCAP_VLAN_MTU;
|
|
ifp->if_capenable |= IFCAP_VLAN_MTU;
|
|
/*
|
|
* Tell the upper layer(s) we support long frames.
|
|
* Must appear after the call to ether_ifattach() because
|
|
* ether_ifattach() sets ifi_hdrlen to the default value.
|
|
*/
|
|
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
|
|
|
|
/*
|
|
* Do miibus setup.
|
|
*/
|
|
phy = MII_PHY_ANY;
|
|
switch (sc->sk_type) {
|
|
case SK_GENESIS:
|
|
sk_init_xmac(sc_if);
|
|
if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
|
|
phy = 0;
|
|
break;
|
|
case SK_YUKON:
|
|
case SK_YUKON_LITE:
|
|
case SK_YUKON_LP:
|
|
sk_init_yukon(sc_if);
|
|
phy = 0;
|
|
break;
|
|
}
|
|
|
|
SK_IF_UNLOCK(sc_if);
|
|
error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd,
|
|
sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n");
|
|
ether_ifdetach(ifp);
|
|
goto fail;
|
|
}
|
|
|
|
fail:
|
|
if (error) {
|
|
/* Access should be ok even though lock has been dropped */
|
|
sc->sk_if[port] = NULL;
|
|
sk_detach(dev);
|
|
}
|
|
|
|
return(error);
|
|
}
|
|
|
|
/*
|
|
* Attach the interface. Allocate softc structures, do ifmedia
|
|
* setup and ethernet/BPF attach.
|
|
*/
|
|
static int
|
|
skc_attach(dev)
|
|
device_t dev;
|
|
{
|
|
struct sk_softc *sc;
|
|
int error = 0, *port;
|
|
uint8_t skrs;
|
|
const char *pname = NULL;
|
|
char *revstr;
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->sk_dev = dev;
|
|
|
|
mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
|
|
MTX_DEF);
|
|
mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
|
|
/*
|
|
* Map control/status registers.
|
|
*/
|
|
pci_enable_busmaster(dev);
|
|
|
|
/* Allocate resources */
|
|
#ifdef SK_USEIOSPACE
|
|
sc->sk_res_spec = sk_res_spec_io;
|
|
#else
|
|
sc->sk_res_spec = sk_res_spec_mem;
|
|
#endif
|
|
error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
|
|
if (error) {
|
|
if (sc->sk_res_spec == sk_res_spec_mem)
|
|
sc->sk_res_spec = sk_res_spec_io;
|
|
else
|
|
sc->sk_res_spec = sk_res_spec_mem;
|
|
error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
|
|
if (error) {
|
|
device_printf(dev, "couldn't allocate %s resources\n",
|
|
sc->sk_res_spec == sk_res_spec_mem ? "memory" :
|
|
"I/O");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
|
|
sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
|
|
|
|
/* Bail out if chip is not recognized. */
|
|
if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
|
|
device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
|
|
sc->sk_type, sc->sk_rev);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW,
|
|
&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
|
|
"SK interrupt moderation");
|
|
|
|
/* Pull in device tunables. */
|
|
sc->sk_int_mod = SK_IM_DEFAULT;
|
|
error = resource_int_value(device_get_name(dev), device_get_unit(dev),
|
|
"int_mod", &sc->sk_int_mod);
|
|
if (error == 0) {
|
|
if (sc->sk_int_mod < SK_IM_MIN ||
|
|
sc->sk_int_mod > SK_IM_MAX) {
|
|
device_printf(dev, "int_mod value out of range; "
|
|
"using default: %d\n", SK_IM_DEFAULT);
|
|
sc->sk_int_mod = SK_IM_DEFAULT;
|
|
}
|
|
}
|
|
|
|
/* Reset the adapter. */
|
|
sk_reset(sc);
|
|
|
|
skrs = sk_win_read_1(sc, SK_EPROM0);
|
|
if (sc->sk_type == SK_GENESIS) {
|
|
/* Read and save RAM size and RAMbuffer offset */
|
|
switch(skrs) {
|
|
case SK_RAMSIZE_512K_64:
|
|
sc->sk_ramsize = 0x80000;
|
|
sc->sk_rboff = SK_RBOFF_0;
|
|
break;
|
|
case SK_RAMSIZE_1024K_64:
|
|
sc->sk_ramsize = 0x100000;
|
|
sc->sk_rboff = SK_RBOFF_80000;
|
|
break;
|
|
case SK_RAMSIZE_1024K_128:
|
|
sc->sk_ramsize = 0x100000;
|
|
sc->sk_rboff = SK_RBOFF_0;
|
|
break;
|
|
case SK_RAMSIZE_2048K_128:
|
|
sc->sk_ramsize = 0x200000;
|
|
sc->sk_rboff = SK_RBOFF_0;
|
|
break;
|
|
default:
|
|
device_printf(dev, "unknown ram size: %d\n", skrs);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
} else { /* SK_YUKON_FAMILY */
|
|
if (skrs == 0x00)
|
|
sc->sk_ramsize = 0x20000;
|
|
else
|
|
sc->sk_ramsize = skrs * (1<<12);
|
|
sc->sk_rboff = SK_RBOFF_0;
|
|
}
|
|
|
|
/* Read and save physical media type */
|
|
sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
|
|
|
|
if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
|
|
sc->sk_coppertype = 1;
|
|
else
|
|
sc->sk_coppertype = 0;
|
|
|
|
/* Determine whether to name it with VPD PN or just make it up.
|
|
* Marvell Yukon VPD PN seems to freqently be bogus. */
|
|
switch (pci_get_device(dev)) {
|
|
case DEVICEID_SK_V1:
|
|
case DEVICEID_BELKIN_5005:
|
|
case DEVICEID_3COM_3C940:
|
|
case DEVICEID_LINKSYS_EG1032:
|
|
case DEVICEID_DLINK_DGE530T_A1:
|
|
case DEVICEID_DLINK_DGE530T_B1:
|
|
/* Stay with VPD PN. */
|
|
(void) pci_get_vpd_ident(dev, &pname);
|
|
break;
|
|
case DEVICEID_SK_V2:
|
|
/* YUKON VPD PN might bear no resemblance to reality. */
|
|
switch (sc->sk_type) {
|
|
case SK_GENESIS:
|
|
/* Stay with VPD PN. */
|
|
(void) pci_get_vpd_ident(dev, &pname);
|
|
break;
|
|
case SK_YUKON:
|
|
pname = "Marvell Yukon Gigabit Ethernet";
|
|
break;
|
|
case SK_YUKON_LITE:
|
|
pname = "Marvell Yukon Lite Gigabit Ethernet";
|
|
break;
|
|
case SK_YUKON_LP:
|
|
pname = "Marvell Yukon LP Gigabit Ethernet";
|
|
break;
|
|
default:
|
|
pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
|
|
break;
|
|
}
|
|
|
|
/* Yukon Lite Rev. A0 needs special test. */
|
|
if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
|
|
u_int32_t far;
|
|
u_int8_t testbyte;
|
|
|
|
/* Save flash address register before testing. */
|
|
far = sk_win_read_4(sc, SK_EP_ADDR);
|
|
|
|
sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
|
|
testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
|
|
|
|
if (testbyte != 0x00) {
|
|
/* Yukon Lite Rev. A0 detected. */
|
|
sc->sk_type = SK_YUKON_LITE;
|
|
sc->sk_rev = SK_YUKON_LITE_REV_A0;
|
|
/* Restore flash address register. */
|
|
sk_win_write_4(sc, SK_EP_ADDR, far);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
|
|
"chipver=%02x, rev=%x\n",
|
|
pci_get_vendor(dev), pci_get_device(dev),
|
|
sc->sk_type, sc->sk_rev);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
if (sc->sk_type == SK_YUKON_LITE) {
|
|
switch (sc->sk_rev) {
|
|
case SK_YUKON_LITE_REV_A0:
|
|
revstr = "A0";
|
|
break;
|
|
case SK_YUKON_LITE_REV_A1:
|
|
revstr = "A1";
|
|
break;
|
|
case SK_YUKON_LITE_REV_A3:
|
|
revstr = "A3";
|
|
break;
|
|
default:
|
|
revstr = "";
|
|
break;
|
|
}
|
|
} else {
|
|
revstr = "";
|
|
}
|
|
|
|
/* Announce the product name and more VPD data if there. */
|
|
if (pname != NULL)
|
|
device_printf(dev, "%s rev. %s(0x%x)\n",
|
|
pname, revstr, sc->sk_rev);
|
|
|
|
if (bootverbose) {
|
|
device_printf(dev, "chip ver = 0x%02x\n", sc->sk_type);
|
|
device_printf(dev, "chip rev = 0x%02x\n", sc->sk_rev);
|
|
device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
|
|
device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
|
|
}
|
|
|
|
sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
|
|
if (sc->sk_devs[SK_PORT_A] == NULL) {
|
|
device_printf(dev, "failed to add child for PORT_A\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
|
|
if (port == NULL) {
|
|
device_printf(dev, "failed to allocate memory for "
|
|
"ivars of PORT_A\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
*port = SK_PORT_A;
|
|
device_set_ivars(sc->sk_devs[SK_PORT_A], port);
|
|
|
|
if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
|
|
sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
|
|
if (sc->sk_devs[SK_PORT_B] == NULL) {
|
|
device_printf(dev, "failed to add child for PORT_B\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
|
|
if (port == NULL) {
|
|
device_printf(dev, "failed to allocate memory for "
|
|
"ivars of PORT_B\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
*port = SK_PORT_B;
|
|
device_set_ivars(sc->sk_devs[SK_PORT_B], port);
|
|
}
|
|
|
|
/* Turn on the 'driver is loaded' LED. */
|
|
CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
|
|
|
|
error = bus_generic_attach(dev);
|
|
if (error) {
|
|
device_printf(dev, "failed to attach port(s)\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Hook interrupt last to avoid having to lock softc */
|
|
error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE,
|
|
NULL, sk_intr, sc, &sc->sk_intrhand);
|
|
|
|
if (error) {
|
|
device_printf(dev, "couldn't set up irq\n");
|
|
goto fail;
|
|
}
|
|
|
|
fail:
|
|
if (error)
|
|
skc_detach(dev);
|
|
|
|
return(error);
|
|
}
|
|
|
|
/*
|
|
* Shutdown hardware and free up resources. This can be called any
|
|
* time after the mutex has been initialized. It is called in both
|
|
* the error case in attach and the normal detach case so it needs
|
|
* to be careful about only freeing resources that have actually been
|
|
* allocated.
|
|
*/
|
|
static int
|
|
sk_detach(dev)
|
|
device_t dev;
|
|
{
|
|
struct sk_if_softc *sc_if;
|
|
struct ifnet *ifp;
|
|
|
|
sc_if = device_get_softc(dev);
|
|
KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
|
|
("sk mutex not initialized in sk_detach"));
|
|
SK_IF_LOCK(sc_if);
|
|
|
|
ifp = sc_if->sk_ifp;
|
|
/* These should only be active if attach_xmac succeeded */
|
|
if (device_is_attached(dev)) {
|
|
sk_stop(sc_if);
|
|
/* Can't hold locks while calling detach */
|
|
SK_IF_UNLOCK(sc_if);
|
|
callout_drain(&sc_if->sk_tick_ch);
|
|
callout_drain(&sc_if->sk_watchdog_ch);
|
|
ether_ifdetach(ifp);
|
|
SK_IF_LOCK(sc_if);
|
|
}
|
|
if (ifp)
|
|
if_free(ifp);
|
|
/*
|
|
* We're generally called from skc_detach() which is using
|
|
* device_delete_child() to get to here. It's already trashed
|
|
* miibus for us, so don't do it here or we'll panic.
|
|
*/
|
|
/*
|
|
if (sc_if->sk_miibus != NULL)
|
|
device_delete_child(dev, sc_if->sk_miibus);
|
|
*/
|
|
bus_generic_detach(dev);
|
|
sk_dma_jumbo_free(sc_if);
|
|
sk_dma_free(sc_if);
|
|
SK_IF_UNLOCK(sc_if);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static int
|
|
skc_detach(dev)
|
|
device_t dev;
|
|
{
|
|
struct sk_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
|
|
|
|
if (device_is_alive(dev)) {
|
|
if (sc->sk_devs[SK_PORT_A] != NULL) {
|
|
free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
|
|
device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
|
|
}
|
|
if (sc->sk_devs[SK_PORT_B] != NULL) {
|
|
free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
|
|
device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
|
|
}
|
|
bus_generic_detach(dev);
|
|
}
|
|
|
|
if (sc->sk_intrhand)
|
|
bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand);
|
|
bus_release_resources(dev, sc->sk_res_spec, sc->sk_res);
|
|
|
|
mtx_destroy(&sc->sk_mii_mtx);
|
|
mtx_destroy(&sc->sk_mtx);
|
|
|
|
return(0);
|
|
}
|
|
|
|
struct sk_dmamap_arg {
|
|
bus_addr_t sk_busaddr;
|
|
};
|
|
|
|
static void
|
|
sk_dmamap_cb(arg, segs, nseg, error)
|
|
void *arg;
|
|
bus_dma_segment_t *segs;
|
|
int nseg;
|
|
int error;
|
|
{
|
|
struct sk_dmamap_arg *ctx;
|
|
|
|
if (error != 0)
|
|
return;
|
|
|
|
ctx = arg;
|
|
ctx->sk_busaddr = segs[0].ds_addr;
|
|
}
|
|
|
|
/*
|
|
* Allocate jumbo buffer storage. The SysKonnect adapters support
|
|
* "jumbograms" (9K frames), although SysKonnect doesn't currently
|
|
* use them in their drivers. In order for us to use them, we need
|
|
* large 9K receive buffers, however standard mbuf clusters are only
|
|
* 2048 bytes in size. Consequently, we need to allocate and manage
|
|
* our own jumbo buffer pool. Fortunately, this does not require an
|
|
* excessive amount of additional code.
|
|
*/
|
|
static int
|
|
sk_dma_alloc(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_dmamap_arg ctx;
|
|
struct sk_txdesc *txd;
|
|
struct sk_rxdesc *rxd;
|
|
int error, i;
|
|
|
|
/* create parent tag */
|
|
/*
|
|
* XXX
|
|
* This driver should use BUS_SPACE_MAXADDR for lowaddr argument
|
|
* in bus_dma_tag_create(9) as the NIC would support DAC mode.
|
|
* However bz@ reported that it does not work on amd64 with > 4GB
|
|
* RAM. Until we have more clues of the breakage, disable DAC mode
|
|
* by limiting DMA address to be in 32bit address space.
|
|
*/
|
|
error = bus_dma_tag_create(
|
|
bus_get_dma_tag(sc_if->sk_if_dev),/* parent */
|
|
1, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
|
|
0, /* nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc_if->sk_cdata.sk_parent_tag);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to create parent DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* create tag for Tx ring */
|
|
error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
|
|
SK_RING_ALIGN, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
SK_TX_RING_SZ, /* maxsize */
|
|
1, /* nsegments */
|
|
SK_TX_RING_SZ, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc_if->sk_cdata.sk_tx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to allocate Tx ring DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* create tag for Rx ring */
|
|
error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
|
|
SK_RING_ALIGN, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
SK_RX_RING_SZ, /* maxsize */
|
|
1, /* nsegments */
|
|
SK_RX_RING_SZ, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc_if->sk_cdata.sk_rx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to allocate Rx ring DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* create tag for Tx buffers */
|
|
error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
|
|
1, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES * SK_MAXTXSEGS, /* maxsize */
|
|
SK_MAXTXSEGS, /* nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc_if->sk_cdata.sk_tx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to allocate Tx DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* create tag for Rx buffers */
|
|
error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
|
|
1, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES, /* maxsize */
|
|
1, /* nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc_if->sk_cdata.sk_rx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to allocate Rx DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* allocate DMA'able memory and load the DMA map for Tx ring */
|
|
error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
|
|
(void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
|
|
&sc_if->sk_cdata.sk_tx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to allocate DMA'able memory for Tx ring\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.sk_busaddr = 0;
|
|
error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
|
|
sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
|
|
SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to load DMA'able memory for Tx ring\n");
|
|
goto fail;
|
|
}
|
|
sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
|
|
|
|
/* allocate DMA'able memory and load the DMA map for Rx ring */
|
|
error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
|
|
(void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
|
|
&sc_if->sk_cdata.sk_rx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to allocate DMA'able memory for Rx ring\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.sk_busaddr = 0;
|
|
error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
|
|
sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
|
|
SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to load DMA'able memory for Rx ring\n");
|
|
goto fail;
|
|
}
|
|
sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
|
|
|
|
/* create DMA maps for Tx buffers */
|
|
for (i = 0; i < SK_TX_RING_CNT; i++) {
|
|
txd = &sc_if->sk_cdata.sk_txdesc[i];
|
|
txd->tx_m = NULL;
|
|
txd->tx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
|
|
&txd->tx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to create Tx dmamap\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* create DMA maps for Rx buffers */
|
|
if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
|
|
&sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to create spare Rx dmamap\n");
|
|
goto fail;
|
|
}
|
|
for (i = 0; i < SK_RX_RING_CNT; i++) {
|
|
rxd = &sc_if->sk_cdata.sk_rxdesc[i];
|
|
rxd->rx_m = NULL;
|
|
rxd->rx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
|
|
&rxd->rx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to create Rx dmamap\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
fail:
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
sk_dma_jumbo_alloc(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_dmamap_arg ctx;
|
|
struct sk_rxdesc *jrxd;
|
|
int error, i;
|
|
|
|
if (jumbo_disable != 0) {
|
|
device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n");
|
|
sc_if->sk_jumbo_disable = 1;
|
|
return (0);
|
|
}
|
|
/* create tag for jumbo Rx ring */
|
|
error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
|
|
SK_RING_ALIGN, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
SK_JUMBO_RX_RING_SZ, /* maxsize */
|
|
1, /* nsegments */
|
|
SK_JUMBO_RX_RING_SZ, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to allocate jumbo Rx ring DMA tag\n");
|
|
goto jumbo_fail;
|
|
}
|
|
|
|
/* create tag for jumbo Rx buffers */
|
|
error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
|
|
1, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MJUM9BYTES, /* maxsize */
|
|
1, /* nsegments */
|
|
MJUM9BYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc_if->sk_cdata.sk_jumbo_rx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to allocate jumbo Rx DMA tag\n");
|
|
goto jumbo_fail;
|
|
}
|
|
|
|
/* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
|
|
error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
|
|
(void **)&sc_if->sk_rdata.sk_jumbo_rx_ring,
|
|
BUS_DMA_NOWAIT|BUS_DMA_ZERO, &sc_if->sk_cdata.sk_jumbo_rx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to allocate DMA'able memory for jumbo Rx ring\n");
|
|
goto jumbo_fail;
|
|
}
|
|
|
|
ctx.sk_busaddr = 0;
|
|
error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
|
|
sc_if->sk_cdata.sk_jumbo_rx_ring_map,
|
|
sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
|
|
&ctx, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to load DMA'able memory for jumbo Rx ring\n");
|
|
goto jumbo_fail;
|
|
}
|
|
sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
|
|
|
|
/* create DMA maps for jumbo Rx buffers */
|
|
if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
|
|
&sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to create spare jumbo Rx dmamap\n");
|
|
goto jumbo_fail;
|
|
}
|
|
for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
|
|
jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
|
|
jrxd->rx_m = NULL;
|
|
jrxd->rx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
|
|
&jrxd->rx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to create jumbo Rx dmamap\n");
|
|
goto jumbo_fail;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
|
|
jumbo_fail:
|
|
sk_dma_jumbo_free(sc_if);
|
|
device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to "
|
|
"resource shortage\n");
|
|
sc_if->sk_jumbo_disable = 1;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
sk_dma_free(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_txdesc *txd;
|
|
struct sk_rxdesc *rxd;
|
|
int i;
|
|
|
|
/* Tx ring */
|
|
if (sc_if->sk_cdata.sk_tx_ring_tag) {
|
|
if (sc_if->sk_cdata.sk_tx_ring_map)
|
|
bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
|
|
sc_if->sk_cdata.sk_tx_ring_map);
|
|
if (sc_if->sk_cdata.sk_tx_ring_map &&
|
|
sc_if->sk_rdata.sk_tx_ring)
|
|
bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
|
|
sc_if->sk_rdata.sk_tx_ring,
|
|
sc_if->sk_cdata.sk_tx_ring_map);
|
|
sc_if->sk_rdata.sk_tx_ring = NULL;
|
|
sc_if->sk_cdata.sk_tx_ring_map = NULL;
|
|
bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
|
|
sc_if->sk_cdata.sk_tx_ring_tag = NULL;
|
|
}
|
|
/* Rx ring */
|
|
if (sc_if->sk_cdata.sk_rx_ring_tag) {
|
|
if (sc_if->sk_cdata.sk_rx_ring_map)
|
|
bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
|
|
sc_if->sk_cdata.sk_rx_ring_map);
|
|
if (sc_if->sk_cdata.sk_rx_ring_map &&
|
|
sc_if->sk_rdata.sk_rx_ring)
|
|
bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
|
|
sc_if->sk_rdata.sk_rx_ring,
|
|
sc_if->sk_cdata.sk_rx_ring_map);
|
|
sc_if->sk_rdata.sk_rx_ring = NULL;
|
|
sc_if->sk_cdata.sk_rx_ring_map = NULL;
|
|
bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
|
|
sc_if->sk_cdata.sk_rx_ring_tag = NULL;
|
|
}
|
|
/* Tx buffers */
|
|
if (sc_if->sk_cdata.sk_tx_tag) {
|
|
for (i = 0; i < SK_TX_RING_CNT; i++) {
|
|
txd = &sc_if->sk_cdata.sk_txdesc[i];
|
|
if (txd->tx_dmamap) {
|
|
bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
|
|
txd->tx_dmamap);
|
|
txd->tx_dmamap = NULL;
|
|
}
|
|
}
|
|
bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
|
|
sc_if->sk_cdata.sk_tx_tag = NULL;
|
|
}
|
|
/* Rx buffers */
|
|
if (sc_if->sk_cdata.sk_rx_tag) {
|
|
for (i = 0; i < SK_RX_RING_CNT; i++) {
|
|
rxd = &sc_if->sk_cdata.sk_rxdesc[i];
|
|
if (rxd->rx_dmamap) {
|
|
bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
|
|
rxd->rx_dmamap);
|
|
rxd->rx_dmamap = NULL;
|
|
}
|
|
}
|
|
if (sc_if->sk_cdata.sk_rx_sparemap) {
|
|
bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
|
|
sc_if->sk_cdata.sk_rx_sparemap);
|
|
sc_if->sk_cdata.sk_rx_sparemap = NULL;
|
|
}
|
|
bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
|
|
sc_if->sk_cdata.sk_rx_tag = NULL;
|
|
}
|
|
|
|
if (sc_if->sk_cdata.sk_parent_tag) {
|
|
bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
|
|
sc_if->sk_cdata.sk_parent_tag = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
sk_dma_jumbo_free(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_rxdesc *jrxd;
|
|
int i;
|
|
|
|
/* jumbo Rx ring */
|
|
if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
|
|
if (sc_if->sk_cdata.sk_jumbo_rx_ring_map)
|
|
bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
|
|
sc_if->sk_cdata.sk_jumbo_rx_ring_map);
|
|
if (sc_if->sk_cdata.sk_jumbo_rx_ring_map &&
|
|
sc_if->sk_rdata.sk_jumbo_rx_ring)
|
|
bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
|
|
sc_if->sk_rdata.sk_jumbo_rx_ring,
|
|
sc_if->sk_cdata.sk_jumbo_rx_ring_map);
|
|
sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
|
|
sc_if->sk_cdata.sk_jumbo_rx_ring_map = NULL;
|
|
bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
|
|
sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
|
|
}
|
|
|
|
/* jumbo Rx buffers */
|
|
if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
|
|
for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
|
|
jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
|
|
if (jrxd->rx_dmamap) {
|
|
bus_dmamap_destroy(
|
|
sc_if->sk_cdata.sk_jumbo_rx_tag,
|
|
jrxd->rx_dmamap);
|
|
jrxd->rx_dmamap = NULL;
|
|
}
|
|
}
|
|
if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
|
|
bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
|
|
sc_if->sk_cdata.sk_jumbo_rx_sparemap);
|
|
sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL;
|
|
}
|
|
bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
|
|
sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
sk_txcksum(ifp, m, f)
|
|
struct ifnet *ifp;
|
|
struct mbuf *m;
|
|
struct sk_tx_desc *f;
|
|
{
|
|
struct ip *ip;
|
|
u_int16_t offset;
|
|
u_int8_t *p;
|
|
|
|
offset = sizeof(struct ip) + ETHER_HDR_LEN;
|
|
for(; m && m->m_len == 0; m = m->m_next)
|
|
;
|
|
if (m == NULL || m->m_len < ETHER_HDR_LEN) {
|
|
if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
|
|
/* checksum may be corrupted */
|
|
goto sendit;
|
|
}
|
|
if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
|
|
if (m->m_len != ETHER_HDR_LEN) {
|
|
if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
|
|
__func__);
|
|
/* checksum may be corrupted */
|
|
goto sendit;
|
|
}
|
|
for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
|
|
;
|
|
if (m == NULL) {
|
|
offset = sizeof(struct ip) + ETHER_HDR_LEN;
|
|
/* checksum may be corrupted */
|
|
goto sendit;
|
|
}
|
|
ip = mtod(m, struct ip *);
|
|
} else {
|
|
p = mtod(m, u_int8_t *);
|
|
p += ETHER_HDR_LEN;
|
|
ip = (struct ip *)p;
|
|
}
|
|
offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
|
|
|
|
sendit:
|
|
f->sk_csum_startval = 0;
|
|
f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
|
|
(offset << 16));
|
|
}
|
|
|
|
static int
|
|
sk_encap(sc_if, m_head)
|
|
struct sk_if_softc *sc_if;
|
|
struct mbuf **m_head;
|
|
{
|
|
struct sk_txdesc *txd;
|
|
struct sk_tx_desc *f = NULL;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t txsegs[SK_MAXTXSEGS];
|
|
u_int32_t cflags, frag, si, sk_ctl;
|
|
int error, i, nseg;
|
|
|
|
SK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
|
|
return (ENOBUFS);
|
|
|
|
error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
|
|
txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
|
|
if (error == EFBIG) {
|
|
m = m_defrag(*m_head, M_DONTWAIT);
|
|
if (m == NULL) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (ENOMEM);
|
|
}
|
|
*m_head = m;
|
|
error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
|
|
txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
|
|
if (error != 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (error);
|
|
}
|
|
} else if (error != 0)
|
|
return (error);
|
|
if (nseg == 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (EIO);
|
|
}
|
|
if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
|
|
bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
m = *m_head;
|
|
if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0)
|
|
cflags = SK_OPCODE_CSUM;
|
|
else
|
|
cflags = SK_OPCODE_DEFAULT;
|
|
si = frag = sc_if->sk_cdata.sk_tx_prod;
|
|
for (i = 0; i < nseg; i++) {
|
|
f = &sc_if->sk_rdata.sk_tx_ring[frag];
|
|
f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
|
|
f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
|
|
sk_ctl = txsegs[i].ds_len | cflags;
|
|
if (i == 0) {
|
|
if (cflags == SK_OPCODE_CSUM)
|
|
sk_txcksum(sc_if->sk_ifp, m, f);
|
|
sk_ctl |= SK_TXCTL_FIRSTFRAG;
|
|
} else
|
|
sk_ctl |= SK_TXCTL_OWN;
|
|
f->sk_ctl = htole32(sk_ctl);
|
|
sc_if->sk_cdata.sk_tx_cnt++;
|
|
SK_INC(frag, SK_TX_RING_CNT);
|
|
}
|
|
sc_if->sk_cdata.sk_tx_prod = frag;
|
|
|
|
/* set EOF on the last desciptor */
|
|
frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
|
|
f = &sc_if->sk_rdata.sk_tx_ring[frag];
|
|
f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
|
|
|
|
/* turn the first descriptor ownership to NIC */
|
|
f = &sc_if->sk_rdata.sk_tx_ring[si];
|
|
f->sk_ctl |= htole32(SK_TXCTL_OWN);
|
|
|
|
STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
|
|
STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
|
|
txd->tx_m = m;
|
|
|
|
/* sync descriptors */
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
|
|
sc_if->sk_cdata.sk_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
sk_start(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct sk_if_softc *sc_if;
|
|
|
|
sc_if = ifp->if_softc;
|
|
|
|
SK_IF_LOCK(sc_if);
|
|
sk_start_locked(ifp);
|
|
SK_IF_UNLOCK(sc_if);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
sk_start_locked(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct sk_softc *sc;
|
|
struct sk_if_softc *sc_if;
|
|
struct mbuf *m_head;
|
|
int enq;
|
|
|
|
sc_if = ifp->if_softc;
|
|
sc = sc_if->sk_softc;
|
|
|
|
SK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
|
|
sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
|
|
/*
|
|
* Pack the data into the transmit ring. If we
|
|
* don't have room, set the OACTIVE flag and wait
|
|
* for the NIC to drain the ring.
|
|
*/
|
|
if (sk_encap(sc_if, &m_head)) {
|
|
if (m_head == NULL)
|
|
break;
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
enq++;
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
BPF_MTAP(ifp, m_head);
|
|
}
|
|
|
|
if (enq > 0) {
|
|
/* Transmit */
|
|
CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
|
|
|
|
/* Set a timeout in case the chip goes out to lunch. */
|
|
sc_if->sk_watchdog_timer = 5;
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
sk_watchdog(arg)
|
|
void *arg;
|
|
{
|
|
struct sk_if_softc *sc_if;
|
|
struct ifnet *ifp;
|
|
|
|
ifp = arg;
|
|
sc_if = ifp->if_softc;
|
|
|
|
SK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer)
|
|
goto done;
|
|
|
|
/*
|
|
* Reclaim first as there is a possibility of losing Tx completion
|
|
* interrupts.
|
|
*/
|
|
sk_txeof(sc_if);
|
|
if (sc_if->sk_cdata.sk_tx_cnt != 0) {
|
|
if_printf(sc_if->sk_ifp, "watchdog timeout\n");
|
|
ifp->if_oerrors++;
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
sk_init_locked(sc_if);
|
|
}
|
|
|
|
done:
|
|
callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
skc_shutdown(dev)
|
|
device_t dev;
|
|
{
|
|
struct sk_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
SK_LOCK(sc);
|
|
|
|
/* Turn off the 'driver is loaded' LED. */
|
|
CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
|
|
|
|
/*
|
|
* Reset the GEnesis controller. Doing this should also
|
|
* assert the resets on the attached XMAC(s).
|
|
*/
|
|
sk_reset(sc);
|
|
SK_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
skc_suspend(dev)
|
|
device_t dev;
|
|
{
|
|
struct sk_softc *sc;
|
|
struct sk_if_softc *sc_if0, *sc_if1;
|
|
struct ifnet *ifp0 = NULL, *ifp1 = NULL;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
SK_LOCK(sc);
|
|
|
|
sc_if0 = sc->sk_if[SK_PORT_A];
|
|
sc_if1 = sc->sk_if[SK_PORT_B];
|
|
if (sc_if0 != NULL)
|
|
ifp0 = sc_if0->sk_ifp;
|
|
if (sc_if1 != NULL)
|
|
ifp1 = sc_if1->sk_ifp;
|
|
if (ifp0 != NULL)
|
|
sk_stop(sc_if0);
|
|
if (ifp1 != NULL)
|
|
sk_stop(sc_if1);
|
|
sc->sk_suspended = 1;
|
|
|
|
SK_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
skc_resume(dev)
|
|
device_t dev;
|
|
{
|
|
struct sk_softc *sc;
|
|
struct sk_if_softc *sc_if0, *sc_if1;
|
|
struct ifnet *ifp0 = NULL, *ifp1 = NULL;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
SK_LOCK(sc);
|
|
|
|
sc_if0 = sc->sk_if[SK_PORT_A];
|
|
sc_if1 = sc->sk_if[SK_PORT_B];
|
|
if (sc_if0 != NULL)
|
|
ifp0 = sc_if0->sk_ifp;
|
|
if (sc_if1 != NULL)
|
|
ifp1 = sc_if1->sk_ifp;
|
|
if (ifp0 != NULL && ifp0->if_flags & IFF_UP)
|
|
sk_init_locked(sc_if0);
|
|
if (ifp1 != NULL && ifp1->if_flags & IFF_UP)
|
|
sk_init_locked(sc_if1);
|
|
sc->sk_suspended = 0;
|
|
|
|
SK_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* According to the data sheet from SK-NET GENESIS the hardware can compute
|
|
* two Rx checksums at the same time(Each checksum start position is
|
|
* programmed in Rx descriptors). However it seems that TCP/UDP checksum
|
|
* does not work at least on my Yukon hardware. I tried every possible ways
|
|
* to get correct checksum value but couldn't get correct one. So TCP/UDP
|
|
* checksum offload was disabled at the moment and only IP checksum offload
|
|
* was enabled.
|
|
* As nomral IP header size is 20 bytes I can't expect it would give an
|
|
* increase in throughput. However it seems it doesn't hurt performance in
|
|
* my testing. If there is a more detailed information for checksum secret
|
|
* of the hardware in question please contact yongari@FreeBSD.org to add
|
|
* TCP/UDP checksum offload support.
|
|
*/
|
|
static __inline void
|
|
sk_rxcksum(ifp, m, csum)
|
|
struct ifnet *ifp;
|
|
struct mbuf *m;
|
|
u_int32_t csum;
|
|
{
|
|
struct ether_header *eh;
|
|
struct ip *ip;
|
|
int32_t hlen, len, pktlen;
|
|
u_int16_t csum1, csum2, ipcsum;
|
|
|
|
pktlen = m->m_pkthdr.len;
|
|
if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
|
|
return;
|
|
eh = mtod(m, struct ether_header *);
|
|
if (eh->ether_type != htons(ETHERTYPE_IP))
|
|
return;
|
|
ip = (struct ip *)(eh + 1);
|
|
if (ip->ip_v != IPVERSION)
|
|
return;
|
|
hlen = ip->ip_hl << 2;
|
|
pktlen -= sizeof(struct ether_header);
|
|
if (hlen < sizeof(struct ip))
|
|
return;
|
|
if (ntohs(ip->ip_len) < hlen)
|
|
return;
|
|
if (ntohs(ip->ip_len) != pktlen)
|
|
return;
|
|
|
|
csum1 = htons(csum & 0xffff);
|
|
csum2 = htons((csum >> 16) & 0xffff);
|
|
ipcsum = in_addword(csum1, ~csum2 & 0xffff);
|
|
/* checksum fixup for IP options */
|
|
len = hlen - sizeof(struct ip);
|
|
if (len > 0) {
|
|
/*
|
|
* If the second checksum value is correct we can compute IP
|
|
* checksum with simple math. Unfortunately the second checksum
|
|
* value is wrong so we can't verify the checksum from the
|
|
* value(It seems there is some magic here to get correct
|
|
* value). If the second checksum value is correct it also
|
|
* means we can get TCP/UDP checksum) here. However, it still
|
|
* needs pseudo header checksum calculation due to hardware
|
|
* limitations.
|
|
*/
|
|
return;
|
|
}
|
|
m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
|
|
if (ipcsum == 0xffff)
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
|
|
}
|
|
|
|
static __inline int
|
|
sk_rxvalid(sc, stat, len)
|
|
struct sk_softc *sc;
|
|
u_int32_t stat, len;
|
|
{
|
|
|
|
if (sc->sk_type == SK_GENESIS) {
|
|
if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
|
|
XM_RXSTAT_BYTES(stat) != len)
|
|
return (0);
|
|
} else {
|
|
if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
|
|
YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
|
|
YU_RXSTAT_JABBER)) != 0 ||
|
|
(stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
|
|
YU_RXSTAT_BYTES(stat) != len)
|
|
return (0);
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
static void
|
|
sk_rxeof(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_softc *sc;
|
|
struct mbuf *m;
|
|
struct ifnet *ifp;
|
|
struct sk_rx_desc *cur_rx;
|
|
struct sk_rxdesc *rxd;
|
|
int cons, prog;
|
|
u_int32_t csum, rxstat, sk_ctl;
|
|
|
|
sc = sc_if->sk_softc;
|
|
ifp = sc_if->sk_ifp;
|
|
|
|
SK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
|
|
sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
|
|
|
|
prog = 0;
|
|
for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
|
|
prog++, SK_INC(cons, SK_RX_RING_CNT)) {
|
|
cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
|
|
sk_ctl = le32toh(cur_rx->sk_ctl);
|
|
if ((sk_ctl & SK_RXCTL_OWN) != 0)
|
|
break;
|
|
rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
|
|
rxstat = le32toh(cur_rx->sk_xmac_rxstat);
|
|
|
|
if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
|
|
SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
|
|
SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
|
|
SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
|
|
SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
|
|
sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
|
|
ifp->if_ierrors++;
|
|
sk_discard_rxbuf(sc_if, cons);
|
|
continue;
|
|
}
|
|
|
|
m = rxd->rx_m;
|
|
csum = le32toh(cur_rx->sk_csum);
|
|
if (sk_newbuf(sc_if, cons) != 0) {
|
|
ifp->if_iqdrops++;
|
|
/* reuse old buffer */
|
|
sk_discard_rxbuf(sc_if, cons);
|
|
continue;
|
|
}
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
|
|
ifp->if_ipackets++;
|
|
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
|
|
sk_rxcksum(ifp, m, csum);
|
|
SK_IF_UNLOCK(sc_if);
|
|
(*ifp->if_input)(ifp, m);
|
|
SK_IF_LOCK(sc_if);
|
|
}
|
|
|
|
if (prog > 0) {
|
|
sc_if->sk_cdata.sk_rx_cons = cons;
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
|
|
sc_if->sk_cdata.sk_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
}
|
|
|
|
static void
|
|
sk_jumbo_rxeof(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_softc *sc;
|
|
struct mbuf *m;
|
|
struct ifnet *ifp;
|
|
struct sk_rx_desc *cur_rx;
|
|
struct sk_rxdesc *jrxd;
|
|
int cons, prog;
|
|
u_int32_t csum, rxstat, sk_ctl;
|
|
|
|
sc = sc_if->sk_softc;
|
|
ifp = sc_if->sk_ifp;
|
|
|
|
SK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
|
|
sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
|
|
|
|
prog = 0;
|
|
for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
|
|
prog < SK_JUMBO_RX_RING_CNT;
|
|
prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
|
|
cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
|
|
sk_ctl = le32toh(cur_rx->sk_ctl);
|
|
if ((sk_ctl & SK_RXCTL_OWN) != 0)
|
|
break;
|
|
jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
|
|
rxstat = le32toh(cur_rx->sk_xmac_rxstat);
|
|
|
|
if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
|
|
SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
|
|
SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
|
|
SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
|
|
SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
|
|
sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
|
|
ifp->if_ierrors++;
|
|
sk_discard_jumbo_rxbuf(sc_if, cons);
|
|
continue;
|
|
}
|
|
|
|
m = jrxd->rx_m;
|
|
csum = le32toh(cur_rx->sk_csum);
|
|
if (sk_jumbo_newbuf(sc_if, cons) != 0) {
|
|
ifp->if_iqdrops++;
|
|
/* reuse old buffer */
|
|
sk_discard_jumbo_rxbuf(sc_if, cons);
|
|
continue;
|
|
}
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
|
|
ifp->if_ipackets++;
|
|
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
|
|
sk_rxcksum(ifp, m, csum);
|
|
SK_IF_UNLOCK(sc_if);
|
|
(*ifp->if_input)(ifp, m);
|
|
SK_IF_LOCK(sc_if);
|
|
}
|
|
|
|
if (prog > 0) {
|
|
sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
|
|
sc_if->sk_cdata.sk_jumbo_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
}
|
|
|
|
static void
|
|
sk_txeof(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_softc *sc;
|
|
struct sk_txdesc *txd;
|
|
struct sk_tx_desc *cur_tx;
|
|
struct ifnet *ifp;
|
|
u_int32_t idx, sk_ctl;
|
|
|
|
sc = sc_if->sk_softc;
|
|
ifp = sc_if->sk_ifp;
|
|
|
|
txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
|
|
if (txd == NULL)
|
|
return;
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
|
|
sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
|
|
/*
|
|
* Go through our tx ring and free mbufs for those
|
|
* frames that have been sent.
|
|
*/
|
|
for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
|
|
if (sc_if->sk_cdata.sk_tx_cnt <= 0)
|
|
break;
|
|
cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
|
|
sk_ctl = le32toh(cur_tx->sk_ctl);
|
|
if (sk_ctl & SK_TXCTL_OWN)
|
|
break;
|
|
sc_if->sk_cdata.sk_tx_cnt--;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
|
|
continue;
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
|
|
|
|
ifp->if_opackets++;
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
|
|
STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
|
|
txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
|
|
}
|
|
sc_if->sk_cdata.sk_tx_cons = idx;
|
|
sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
|
|
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
|
|
sc_if->sk_cdata.sk_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
static void
|
|
sk_tick(xsc_if)
|
|
void *xsc_if;
|
|
{
|
|
struct sk_if_softc *sc_if;
|
|
struct mii_data *mii;
|
|
struct ifnet *ifp;
|
|
int i;
|
|
|
|
sc_if = xsc_if;
|
|
ifp = sc_if->sk_ifp;
|
|
mii = device_get_softc(sc_if->sk_miibus);
|
|
|
|
if (!(ifp->if_flags & IFF_UP))
|
|
return;
|
|
|
|
if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
|
|
sk_intr_bcom(sc_if);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* According to SysKonnect, the correct way to verify that
|
|
* the link has come back up is to poll bit 0 of the GPIO
|
|
* register three times. This pin has the signal from the
|
|
* link_sync pin connected to it; if we read the same link
|
|
* state 3 times in a row, we know the link is up.
|
|
*/
|
|
for (i = 0; i < 3; i++) {
|
|
if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
|
|
break;
|
|
}
|
|
|
|
if (i != 3) {
|
|
callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
|
|
return;
|
|
}
|
|
|
|
/* Turn the GP0 interrupt back on. */
|
|
SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
|
|
SK_XM_READ_2(sc_if, XM_ISR);
|
|
mii_tick(mii);
|
|
callout_stop(&sc_if->sk_tick_ch);
|
|
}
|
|
|
|
static void
|
|
sk_yukon_tick(xsc_if)
|
|
void *xsc_if;
|
|
{
|
|
struct sk_if_softc *sc_if;
|
|
struct mii_data *mii;
|
|
|
|
sc_if = xsc_if;
|
|
mii = device_get_softc(sc_if->sk_miibus);
|
|
|
|
mii_tick(mii);
|
|
callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
|
|
}
|
|
|
|
static void
|
|
sk_intr_bcom(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct mii_data *mii;
|
|
struct ifnet *ifp;
|
|
int status;
|
|
mii = device_get_softc(sc_if->sk_miibus);
|
|
ifp = sc_if->sk_ifp;
|
|
|
|
SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
|
|
|
|
/*
|
|
* Read the PHY interrupt register to make sure
|
|
* we clear any pending interrupts.
|
|
*/
|
|
status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
|
|
|
|
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
|
|
sk_init_xmac(sc_if);
|
|
return;
|
|
}
|
|
|
|
if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
|
|
int lstat;
|
|
lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
|
|
BRGPHY_MII_AUXSTS);
|
|
|
|
if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
|
|
mii_mediachg(mii);
|
|
/* Turn off the link LED. */
|
|
SK_IF_WRITE_1(sc_if, 0,
|
|
SK_LINKLED1_CTL, SK_LINKLED_OFF);
|
|
sc_if->sk_link = 0;
|
|
} else if (status & BRGPHY_ISR_LNK_CHG) {
|
|
sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
|
|
BRGPHY_MII_IMR, 0xFF00);
|
|
mii_tick(mii);
|
|
sc_if->sk_link = 1;
|
|
/* Turn on the link LED. */
|
|
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
|
|
SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
|
|
SK_LINKLED_BLINK_OFF);
|
|
} else {
|
|
mii_tick(mii);
|
|
callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
|
|
}
|
|
}
|
|
|
|
SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
sk_intr_xmac(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_softc *sc;
|
|
u_int16_t status;
|
|
|
|
sc = sc_if->sk_softc;
|
|
status = SK_XM_READ_2(sc_if, XM_ISR);
|
|
|
|
/*
|
|
* Link has gone down. Start MII tick timeout to
|
|
* watch for link resync.
|
|
*/
|
|
if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
|
|
if (status & XM_ISR_GP0_SET) {
|
|
SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
|
|
callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
|
|
}
|
|
|
|
if (status & XM_ISR_AUTONEG_DONE) {
|
|
callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
|
|
}
|
|
}
|
|
|
|
if (status & XM_IMR_TX_UNDERRUN)
|
|
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
|
|
|
|
if (status & XM_IMR_RX_OVERRUN)
|
|
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
|
|
|
|
status = SK_XM_READ_2(sc_if, XM_ISR);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
sk_intr_yukon(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
u_int8_t status;
|
|
|
|
status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
|
|
/* RX overrun */
|
|
if ((status & SK_GMAC_INT_RX_OVER) != 0) {
|
|
SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
|
|
SK_RFCTL_RX_FIFO_OVER);
|
|
}
|
|
/* TX underrun */
|
|
if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
|
|
SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
|
|
SK_TFCTL_TX_FIFO_UNDER);
|
|
}
|
|
}
|
|
|
|
static void
|
|
sk_intr(xsc)
|
|
void *xsc;
|
|
{
|
|
struct sk_softc *sc = xsc;
|
|
struct sk_if_softc *sc_if0, *sc_if1;
|
|
struct ifnet *ifp0 = NULL, *ifp1 = NULL;
|
|
u_int32_t status;
|
|
|
|
SK_LOCK(sc);
|
|
|
|
status = CSR_READ_4(sc, SK_ISSR);
|
|
if (status == 0 || status == 0xffffffff || sc->sk_suspended)
|
|
goto done_locked;
|
|
|
|
sc_if0 = sc->sk_if[SK_PORT_A];
|
|
sc_if1 = sc->sk_if[SK_PORT_B];
|
|
|
|
if (sc_if0 != NULL)
|
|
ifp0 = sc_if0->sk_ifp;
|
|
if (sc_if1 != NULL)
|
|
ifp1 = sc_if1->sk_ifp;
|
|
|
|
for (; (status &= sc->sk_intrmask) != 0;) {
|
|
/* Handle receive interrupts first. */
|
|
if (status & SK_ISR_RX1_EOF) {
|
|
if (ifp0->if_mtu > SK_MAX_FRAMELEN)
|
|
sk_jumbo_rxeof(sc_if0);
|
|
else
|
|
sk_rxeof(sc_if0);
|
|
CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
|
|
SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
|
|
}
|
|
if (status & SK_ISR_RX2_EOF) {
|
|
if (ifp1->if_mtu > SK_MAX_FRAMELEN)
|
|
sk_jumbo_rxeof(sc_if1);
|
|
else
|
|
sk_rxeof(sc_if1);
|
|
CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
|
|
SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
|
|
}
|
|
|
|
/* Then transmit interrupts. */
|
|
if (status & SK_ISR_TX1_S_EOF) {
|
|
sk_txeof(sc_if0);
|
|
CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
|
|
}
|
|
if (status & SK_ISR_TX2_S_EOF) {
|
|
sk_txeof(sc_if1);
|
|
CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
|
|
}
|
|
|
|
/* Then MAC interrupts. */
|
|
if (status & SK_ISR_MAC1 &&
|
|
ifp0->if_drv_flags & IFF_DRV_RUNNING) {
|
|
if (sc->sk_type == SK_GENESIS)
|
|
sk_intr_xmac(sc_if0);
|
|
else
|
|
sk_intr_yukon(sc_if0);
|
|
}
|
|
|
|
if (status & SK_ISR_MAC2 &&
|
|
ifp1->if_drv_flags & IFF_DRV_RUNNING) {
|
|
if (sc->sk_type == SK_GENESIS)
|
|
sk_intr_xmac(sc_if1);
|
|
else
|
|
sk_intr_yukon(sc_if1);
|
|
}
|
|
|
|
if (status & SK_ISR_EXTERNAL_REG) {
|
|
if (ifp0 != NULL &&
|
|
sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
|
|
sk_intr_bcom(sc_if0);
|
|
if (ifp1 != NULL &&
|
|
sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
|
|
sk_intr_bcom(sc_if1);
|
|
}
|
|
status = CSR_READ_4(sc, SK_ISSR);
|
|
}
|
|
|
|
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
|
|
|
|
if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
|
|
sk_start_locked(ifp0);
|
|
if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
|
|
sk_start_locked(ifp1);
|
|
|
|
done_locked:
|
|
SK_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
sk_init_xmac(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_softc *sc;
|
|
struct ifnet *ifp;
|
|
u_int16_t eaddr[(ETHER_ADDR_LEN+1)/2];
|
|
struct sk_bcom_hack bhack[] = {
|
|
{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
|
|
{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
|
|
{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
|
|
{ 0, 0 } };
|
|
|
|
SK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
sc = sc_if->sk_softc;
|
|
ifp = sc_if->sk_ifp;
|
|
|
|
/* Unreset the XMAC. */
|
|
SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
|
|
DELAY(1000);
|
|
|
|
/* Reset the XMAC's internal state. */
|
|
SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
|
|
|
|
/* Save the XMAC II revision */
|
|
sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
|
|
|
|
/*
|
|
* Perform additional initialization for external PHYs,
|
|
* namely for the 1000baseTX cards that use the XMAC's
|
|
* GMII mode.
|
|
*/
|
|
if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
|
|
int i = 0;
|
|
u_int32_t val;
|
|
|
|
/* Take PHY out of reset. */
|
|
val = sk_win_read_4(sc, SK_GPIO);
|
|
if (sc_if->sk_port == SK_PORT_A)
|
|
val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
|
|
else
|
|
val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
|
|
sk_win_write_4(sc, SK_GPIO, val);
|
|
|
|
/* Enable GMII mode on the XMAC. */
|
|
SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
|
|
|
|
sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
|
|
BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
|
|
DELAY(10000);
|
|
sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
|
|
BRGPHY_MII_IMR, 0xFFF0);
|
|
|
|
/*
|
|
* Early versions of the BCM5400 apparently have
|
|
* a bug that requires them to have their reserved
|
|
* registers initialized to some magic values. I don't
|
|
* know what the numbers do, I'm just the messenger.
|
|
*/
|
|
if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
|
|
== 0x6041) {
|
|
while(bhack[i].reg) {
|
|
sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
|
|
bhack[i].reg, bhack[i].val);
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set station address */
|
|
bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
|
|
SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
|
|
SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
|
|
SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
|
|
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
|
|
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
|
|
} else {
|
|
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
|
|
}
|
|
|
|
/* We don't need the FCS appended to the packet. */
|
|
SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
|
|
|
|
/* We want short frames padded to 60 bytes. */
|
|
SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
|
|
|
|
/*
|
|
* Enable the reception of all error frames. This is is
|
|
* a necessary evil due to the design of the XMAC. The
|
|
* XMAC's receive FIFO is only 8K in size, however jumbo
|
|
* frames can be up to 9000 bytes in length. When bad
|
|
* frame filtering is enabled, the XMAC's RX FIFO operates
|
|
* in 'store and forward' mode. For this to work, the
|
|
* entire frame has to fit into the FIFO, but that means
|
|
* that jumbo frames larger than 8192 bytes will be
|
|
* truncated. Disabling all bad frame filtering causes
|
|
* the RX FIFO to operate in streaming mode, in which
|
|
* case the XMAC will start transfering frames out of the
|
|
* RX FIFO as soon as the FIFO threshold is reached.
|
|
*/
|
|
if (ifp->if_mtu > SK_MAX_FRAMELEN) {
|
|
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
|
|
XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
|
|
XM_MODE_RX_INRANGELEN);
|
|
SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
|
|
} else
|
|
SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
|
|
|
|
/*
|
|
* Bump up the transmit threshold. This helps hold off transmit
|
|
* underruns when we're blasting traffic from both ports at once.
|
|
*/
|
|
SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
|
|
|
|
/* Set Rx filter */
|
|
sk_rxfilter_genesis(sc_if);
|
|
|
|
/* Clear and enable interrupts */
|
|
SK_XM_READ_2(sc_if, XM_ISR);
|
|
if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
|
|
SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
|
|
else
|
|
SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
|
|
|
|
/* Configure MAC arbiter */
|
|
switch(sc_if->sk_xmac_rev) {
|
|
case XM_XMAC_REV_B2:
|
|
sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
|
|
sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
|
|
sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
|
|
sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
|
|
sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
|
|
sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
|
|
sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
|
|
sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
|
|
sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
|
|
break;
|
|
case XM_XMAC_REV_C1:
|
|
sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
|
|
sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
|
|
sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
|
|
sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
|
|
sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
|
|
sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
|
|
sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
|
|
sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
|
|
sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
sk_win_write_2(sc, SK_MACARB_CTL,
|
|
SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
|
|
|
|
sc_if->sk_link = 1;
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
sk_init_yukon(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
u_int32_t phy, v;
|
|
u_int16_t reg;
|
|
struct sk_softc *sc;
|
|
struct ifnet *ifp;
|
|
u_int8_t *eaddr;
|
|
int i;
|
|
|
|
SK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
sc = sc_if->sk_softc;
|
|
ifp = sc_if->sk_ifp;
|
|
|
|
if (sc->sk_type == SK_YUKON_LITE &&
|
|
sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
|
|
/*
|
|
* Workaround code for COMA mode, set PHY reset.
|
|
* Otherwise it will not correctly take chip out of
|
|
* powerdown (coma)
|
|
*/
|
|
v = sk_win_read_4(sc, SK_GPIO);
|
|
v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
|
|
sk_win_write_4(sc, SK_GPIO, v);
|
|
}
|
|
|
|
/* GMAC and GPHY Reset */
|
|
SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
|
|
DELAY(1000);
|
|
|
|
if (sc->sk_type == SK_YUKON_LITE &&
|
|
sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
|
|
/*
|
|
* Workaround code for COMA mode, clear PHY reset
|
|
*/
|
|
v = sk_win_read_4(sc, SK_GPIO);
|
|
v |= SK_GPIO_DIR9;
|
|
v &= ~SK_GPIO_DAT9;
|
|
sk_win_write_4(sc, SK_GPIO, v);
|
|
}
|
|
|
|
phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
|
|
SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
|
|
|
|
if (sc->sk_coppertype)
|
|
phy |= SK_GPHY_COPPER;
|
|
else
|
|
phy |= SK_GPHY_FIBER;
|
|
|
|
SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
|
|
DELAY(1000);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
|
|
SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
|
|
|
|
/* unused read of the interrupt source register */
|
|
SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
|
|
|
|
reg = SK_YU_READ_2(sc_if, YUKON_PAR);
|
|
|
|
/* MIB Counter Clear Mode set */
|
|
reg |= YU_PAR_MIB_CLR;
|
|
SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
|
|
|
|
/* MIB Counter Clear Mode clear */
|
|
reg &= ~YU_PAR_MIB_CLR;
|
|
SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
|
|
|
|
/* receive control reg */
|
|
SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
|
|
|
|
/* transmit parameter register */
|
|
SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
|
|
YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
|
|
|
|
/* serial mode register */
|
|
reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
|
|
if (ifp->if_mtu > SK_MAX_FRAMELEN)
|
|
reg |= YU_SMR_MFL_JUMBO;
|
|
SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
|
|
|
|
/* Setup Yukon's station address */
|
|
eaddr = IF_LLADDR(sc_if->sk_ifp);
|
|
for (i = 0; i < 3; i++)
|
|
SK_YU_WRITE_2(sc_if, SK_MAC0_0 + i * 4,
|
|
eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
|
|
/* Set GMAC source address of flow control. */
|
|
for (i = 0; i < 3; i++)
|
|
SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
|
|
eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
|
|
/* Set GMAC virtual address. */
|
|
for (i = 0; i < 3; i++)
|
|
SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4,
|
|
eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
|
|
|
|
/* Set Rx filter */
|
|
sk_rxfilter_yukon(sc_if);
|
|
|
|
/* enable interrupt mask for counter overflows */
|
|
SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
|
|
SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
|
|
SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
|
|
|
|
/* Configure RX MAC FIFO Flush Mask */
|
|
v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
|
|
YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
|
|
YU_RXSTAT_JABBER;
|
|
SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
|
|
|
|
/* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
|
|
if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
|
|
v = SK_TFCTL_OPERATION_ON;
|
|
else
|
|
v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
|
|
/* Configure RX MAC FIFO */
|
|
SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
|
|
SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
|
|
|
|
/* Increase flush threshould to 64 bytes */
|
|
SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
|
|
SK_RFCTL_FIFO_THRESHOLD + 1);
|
|
|
|
/* Configure TX MAC FIFO */
|
|
SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
|
|
SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
|
|
}
|
|
|
|
/*
|
|
* Note that to properly initialize any part of the GEnesis chip,
|
|
* you first have to take it out of reset mode.
|
|
*/
|
|
static void
|
|
sk_init(xsc)
|
|
void *xsc;
|
|
{
|
|
struct sk_if_softc *sc_if = xsc;
|
|
|
|
SK_IF_LOCK(sc_if);
|
|
sk_init_locked(sc_if);
|
|
SK_IF_UNLOCK(sc_if);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
sk_init_locked(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_softc *sc;
|
|
struct ifnet *ifp;
|
|
struct mii_data *mii;
|
|
u_int16_t reg;
|
|
u_int32_t imr;
|
|
int error;
|
|
|
|
SK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
ifp = sc_if->sk_ifp;
|
|
sc = sc_if->sk_softc;
|
|
mii = device_get_softc(sc_if->sk_miibus);
|
|
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
return;
|
|
|
|
/* Cancel pending I/O and free all RX/TX buffers. */
|
|
sk_stop(sc_if);
|
|
|
|
if (sc->sk_type == SK_GENESIS) {
|
|
/* Configure LINK_SYNC LED */
|
|
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
|
|
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
|
|
SK_LINKLED_LINKSYNC_ON);
|
|
|
|
/* Configure RX LED */
|
|
SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
|
|
SK_RXLEDCTL_COUNTER_START);
|
|
|
|
/* Configure TX LED */
|
|
SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
|
|
SK_TXLEDCTL_COUNTER_START);
|
|
}
|
|
|
|
/*
|
|
* Configure descriptor poll timer
|
|
*
|
|
* SK-NET GENESIS data sheet says that possibility of losing Start
|
|
* transmit command due to CPU/cache related interim storage problems
|
|
* under certain conditions. The document recommends a polling
|
|
* mechanism to send a Start transmit command to initiate transfer
|
|
* of ready descriptors regulary. To cope with this issue sk(4) now
|
|
* enables descriptor poll timer to initiate descriptor processing
|
|
* periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
|
|
* issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
|
|
* command instead of waiting for next descriptor polling time.
|
|
* The same rule may apply to Rx side too but it seems that is not
|
|
* needed at the moment.
|
|
* Since sk(4) uses descriptor polling as a last resort there is no
|
|
* need to set smaller polling time than maximum allowable one.
|
|
*/
|
|
SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
|
|
|
|
/* Configure I2C registers */
|
|
|
|
/* Configure XMAC(s) */
|
|
switch (sc->sk_type) {
|
|
case SK_GENESIS:
|
|
sk_init_xmac(sc_if);
|
|
break;
|
|
case SK_YUKON:
|
|
case SK_YUKON_LITE:
|
|
case SK_YUKON_LP:
|
|
sk_init_yukon(sc_if);
|
|
break;
|
|
}
|
|
mii_mediachg(mii);
|
|
|
|
if (sc->sk_type == SK_GENESIS) {
|
|
/* Configure MAC FIFOs */
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
|
|
|
|
SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
|
|
}
|
|
|
|
/* Configure transmit arbiter(s) */
|
|
SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
|
|
SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
|
|
|
|
/* Configure RAMbuffers */
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
|
|
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
|
|
|
|
/* Configure BMUs */
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
|
|
if (ifp->if_mtu > SK_MAX_FRAMELEN) {
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
|
|
SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
|
|
SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
|
|
} else {
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
|
|
SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
|
|
SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
|
|
}
|
|
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
|
|
SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
|
|
SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
|
|
|
|
/* Init descriptors */
|
|
if (ifp->if_mtu > SK_MAX_FRAMELEN)
|
|
error = sk_init_jumbo_rx_ring(sc_if);
|
|
else
|
|
error = sk_init_rx_ring(sc_if);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"initialization failed: no memory for rx buffers\n");
|
|
sk_stop(sc_if);
|
|
return;
|
|
}
|
|
sk_init_tx_ring(sc_if);
|
|
|
|
/* Set interrupt moderation if changed via sysctl. */
|
|
imr = sk_win_read_4(sc, SK_IMTIMERINIT);
|
|
if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
|
|
sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
|
|
sc->sk_int_ticks));
|
|
if (bootverbose)
|
|
device_printf(sc_if->sk_if_dev,
|
|
"interrupt moderation is %d us.\n",
|
|
sc->sk_int_mod);
|
|
}
|
|
|
|
/* Configure interrupt handling */
|
|
CSR_READ_4(sc, SK_ISSR);
|
|
if (sc_if->sk_port == SK_PORT_A)
|
|
sc->sk_intrmask |= SK_INTRS1;
|
|
else
|
|
sc->sk_intrmask |= SK_INTRS2;
|
|
|
|
sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
|
|
|
|
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
|
|
|
|
/* Start BMUs. */
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
|
|
|
|
switch(sc->sk_type) {
|
|
case SK_GENESIS:
|
|
/* Enable XMACs TX and RX state machines */
|
|
SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
|
|
SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
|
|
break;
|
|
case SK_YUKON:
|
|
case SK_YUKON_LITE:
|
|
case SK_YUKON_LP:
|
|
reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
|
|
reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
|
|
#if 0
|
|
/* XXX disable 100Mbps and full duplex mode? */
|
|
reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
|
|
#endif
|
|
SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
|
|
}
|
|
|
|
/* Activate descriptor polling timer */
|
|
SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
|
|
/* start transfer of Tx descriptors */
|
|
CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
switch (sc->sk_type) {
|
|
case SK_YUKON:
|
|
case SK_YUKON_LITE:
|
|
case SK_YUKON_LP:
|
|
callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
|
|
break;
|
|
}
|
|
|
|
callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
sk_stop(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
int i;
|
|
struct sk_softc *sc;
|
|
struct sk_txdesc *txd;
|
|
struct sk_rxdesc *rxd;
|
|
struct sk_rxdesc *jrxd;
|
|
struct ifnet *ifp;
|
|
u_int32_t val;
|
|
|
|
SK_IF_LOCK_ASSERT(sc_if);
|
|
sc = sc_if->sk_softc;
|
|
ifp = sc_if->sk_ifp;
|
|
|
|
callout_stop(&sc_if->sk_tick_ch);
|
|
callout_stop(&sc_if->sk_watchdog_ch);
|
|
|
|
/* stop Tx descriptor polling timer */
|
|
SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
|
|
/* stop transfer of Tx descriptors */
|
|
CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
|
|
for (i = 0; i < SK_TIMEOUT; i++) {
|
|
val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
|
|
if ((val & SK_TXBMU_TX_STOP) == 0)
|
|
break;
|
|
DELAY(1);
|
|
}
|
|
if (i == SK_TIMEOUT)
|
|
device_printf(sc_if->sk_if_dev,
|
|
"can not stop transfer of Tx descriptor\n");
|
|
/* stop transfer of Rx descriptors */
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
|
|
for (i = 0; i < SK_TIMEOUT; i++) {
|
|
val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
|
|
if ((val & SK_RXBMU_RX_STOP) == 0)
|
|
break;
|
|
DELAY(1);
|
|
}
|
|
if (i == SK_TIMEOUT)
|
|
device_printf(sc_if->sk_if_dev,
|
|
"can not stop transfer of Rx descriptor\n");
|
|
|
|
if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
|
|
/* Put PHY back into reset. */
|
|
val = sk_win_read_4(sc, SK_GPIO);
|
|
if (sc_if->sk_port == SK_PORT_A) {
|
|
val |= SK_GPIO_DIR0;
|
|
val &= ~SK_GPIO_DAT0;
|
|
} else {
|
|
val |= SK_GPIO_DIR2;
|
|
val &= ~SK_GPIO_DAT2;
|
|
}
|
|
sk_win_write_4(sc, SK_GPIO, val);
|
|
}
|
|
|
|
/* Turn off various components of this interface. */
|
|
SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
|
|
switch (sc->sk_type) {
|
|
case SK_GENESIS:
|
|
SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
|
|
break;
|
|
case SK_YUKON:
|
|
case SK_YUKON_LITE:
|
|
case SK_YUKON_LP:
|
|
SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
|
|
SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
|
|
break;
|
|
}
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
|
|
SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
|
|
SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
|
|
SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
|
|
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
|
|
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
|
|
|
|
/* Disable interrupts */
|
|
if (sc_if->sk_port == SK_PORT_A)
|
|
sc->sk_intrmask &= ~SK_INTRS1;
|
|
else
|
|
sc->sk_intrmask &= ~SK_INTRS2;
|
|
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
|
|
|
|
SK_XM_READ_2(sc_if, XM_ISR);
|
|
SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
|
|
|
|
/* Free RX and TX mbufs still in the queues. */
|
|
for (i = 0; i < SK_RX_RING_CNT; i++) {
|
|
rxd = &sc_if->sk_cdata.sk_rxdesc[i];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
|
|
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
|
|
rxd->rx_dmamap);
|
|
m_freem(rxd->rx_m);
|
|
rxd->rx_m = NULL;
|
|
}
|
|
}
|
|
for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
|
|
jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
|
|
if (jrxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
|
|
jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
|
|
jrxd->rx_dmamap);
|
|
m_freem(jrxd->rx_m);
|
|
jrxd->rx_m = NULL;
|
|
}
|
|
}
|
|
for (i = 0; i < SK_TX_RING_CNT; i++) {
|
|
txd = &sc_if->sk_cdata.sk_txdesc[i];
|
|
if (txd->tx_m != NULL) {
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
|
|
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
|
|
txd->tx_dmamap);
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
}
|
|
}
|
|
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
|
|
{
|
|
int error, value;
|
|
|
|
if (!arg1)
|
|
return (EINVAL);
|
|
value = *(int *)arg1;
|
|
error = sysctl_handle_int(oidp, &value, 0, req);
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
if (value < low || value > high)
|
|
return (EINVAL);
|
|
*(int *)arg1 = value;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
|
|
}
|