1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-11-27 08:00:11 +00:00
freebsd/sys/netinet/tcp_var.h
Michael Tuexen 5a268d8688 tcp: fix comment
Make the comment consistent with the code.

Reviewed by:		rscheff
MFC after:		1 week
Sponsored by:		Netflix, Inc.
Differential Revision:	https://reviews.freebsd.org/D44611
2024-04-03 18:26:04 +02:00

1577 lines
62 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1982, 1986, 1993, 1994, 1995
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef _NETINET_TCP_VAR_H_
#define _NETINET_TCP_VAR_H_
#include <netinet/tcp.h>
#include <netinet/tcp_fsm.h>
#ifdef _KERNEL
#include <net/vnet.h>
#include <sys/mbuf.h>
#include <sys/ktls.h>
#endif
#define TCP_END_BYTE_INFO 8 /* Bytes that makeup the "end information array" */
/* Types of ending byte info */
#define TCP_EI_EMPTY_SLOT 0
#define TCP_EI_STATUS_CLIENT_FIN 0x1
#define TCP_EI_STATUS_CLIENT_RST 0x2
#define TCP_EI_STATUS_SERVER_FIN 0x3
#define TCP_EI_STATUS_SERVER_RST 0x4
#define TCP_EI_STATUS_RETRAN 0x5
#define TCP_EI_STATUS_PROGRESS 0x6
#define TCP_EI_STATUS_PERSIST_MAX 0x7
#define TCP_EI_STATUS_KEEP_MAX 0x8
#define TCP_EI_STATUS_DATA_A_CLOSE 0x9
#define TCP_EI_STATUS_RST_IN_FRONT 0xa
#define TCP_EI_STATUS_2MSL 0xb
#define TCP_EI_STATUS_MAX_VALUE 0xb
#define TCP_TRK_REQ_LOG_NEW 0x01
#define TCP_TRK_REQ_LOG_COMPLETE 0x02
#define TCP_TRK_REQ_LOG_FREED 0x03
#define TCP_TRK_REQ_LOG_ALLOCFAIL 0x04
#define TCP_TRK_REQ_LOG_MOREYET 0x05
#define TCP_TRK_REQ_LOG_FORCEFREE 0x06
#define TCP_TRK_REQ_LOG_STALE 0x07
#define TCP_TRK_REQ_LOG_SEARCH 0x08
/************************************************/
/* Status bits we track to assure no duplicates,
* the bits here are not used by the code but
* for human representation. To check a bit we
* take and shift over by 1 minus the value (1-8).
*/
/************************************************/
#define TCP_EI_BITS_CLIENT_FIN 0x001
#define TCP_EI_BITS_CLIENT_RST 0x002
#define TCP_EI_BITS_SERVER_FIN 0x004
#define TCP_EI_BITS_SERVER_RST 0x008
#define TCP_EI_BITS_RETRAN 0x010
#define TCP_EI_BITS_PROGRESS 0x020
#define TCP_EI_BITS_PRESIST_MAX 0x040
#define TCP_EI_BITS_KEEP_MAX 0x080
#define TCP_EI_BITS_DATA_A_CLO 0x100
#define TCP_EI_BITS_RST_IN_FR 0x200 /* a front state reset */
#define TCP_EI_BITS_2MS_TIMER 0x400 /* 2 MSL timer expired */
#if defined(_KERNEL) || defined(_WANT_TCPCB)
#include <netinet/cc/cc.h>
/* TCP segment queue entry */
struct tseg_qent {
TAILQ_ENTRY(tseg_qent) tqe_q;
struct mbuf *tqe_m; /* mbuf contains packet */
struct mbuf *tqe_last; /* last mbuf in chain */
tcp_seq tqe_start; /* TCP Sequence number start */
int tqe_len; /* TCP segment data length */
uint32_t tqe_flags; /* The flags from tcp_get_flags() */
uint32_t tqe_mbuf_cnt; /* Count of mbuf overhead */
};
TAILQ_HEAD(tsegqe_head, tseg_qent);
struct sackblk {
tcp_seq start; /* start seq no. of sack block */
tcp_seq end; /* end seq no. */
};
struct sackhole {
tcp_seq start; /* start seq no. of hole */
tcp_seq end; /* end seq no. */
tcp_seq rxmit; /* next seq. no in hole to be retransmitted */
TAILQ_ENTRY(sackhole) scblink; /* scoreboard linkage */
};
struct sackhint {
struct sackhole *nexthole;
int32_t sack_bytes_rexmit;
tcp_seq last_sack_ack; /* Most recent/largest sacked ack */
int32_t delivered_data; /* Newly acked data from last SACK */
int32_t sacked_bytes; /* Total sacked bytes reported by the
* receiver via sack option
*/
uint32_t recover_fs; /* Flight Size at the start of Loss recovery */
uint32_t prr_delivered; /* Total bytes delivered using PRR */
uint32_t prr_out; /* Bytes sent during IN_RECOVERY */
int32_t hole_bytes; /* current number of bytes in scoreboard holes */
int32_t lost_bytes; /* number of rfc6675 IsLost() bytes */
};
#define SEGQ_EMPTY(tp) TAILQ_EMPTY(&(tp)->t_segq)
STAILQ_HEAD(tcp_log_stailq, tcp_log_mem);
#define TCP_TRK_TRACK_FLG_EMPTY 0x00 /* Available */
#define TCP_TRK_TRACK_FLG_USED 0x01 /* In use */
#define TCP_TRK_TRACK_FLG_OPEN 0x02 /* End is not valid (open range request) */
#define TCP_TRK_TRACK_FLG_SEQV 0x04 /* We had a sendfile that touched it */
#define TCP_TRK_TRACK_FLG_COMP 0x08 /* Sendfile as placed the last bits (range req only) */
#define TCP_TRK_TRACK_FLG_FSND 0x10 /* First send has been done into the seq space */
#define TCP_TRK_TRACK_FLG_LSND 0x20 /* We were able to set the Last Sent */
#define MAX_TCP_TRK_REQ 5 /* Max we will have at once */
struct tcp_sendfile_track {
uint64_t timestamp; /* User sent timestamp */
uint64_t start; /* Start of sendfile offset */
uint64_t end; /* End if not open-range req */
uint64_t localtime; /* Time we actually got the req */
uint64_t deadline; /* If in CU mode, deadline to delivery */
uint64_t first_send; /* Time of first send in the range */
uint64_t cspr; /* Client suggested pace rate */
uint64_t sent_at_fs; /* What was t_sndbytes as we begun sending */
uint64_t rxt_at_fs; /* What was t_snd_rxt_bytes as we begun sending */
uint64_t sent_at_ls; /* Sent value at the last send */
uint64_t rxt_at_ls; /* Retransmit value at the last send */
tcp_seq start_seq; /* First TCP Seq assigned */
tcp_seq end_seq; /* If range req last seq */
uint32_t flags; /* Type of request open etc */
uint32_t sbcc_at_s; /* When we allocate what is the sb_cc */
uint32_t hint_maxseg; /* Client hinted maxseg */
uint32_t playout_ms; /* Client playout ms */
uint32_t hybrid_flags; /* Hybrid flags on this request */
};
/*
* Change Query responses for a stack switch we create a structure
* that allows query response from the new stack to the old, if
* supported.
*
* There are three queries currently defined.
* - sendmap
* - timers
* - rack_times
*
* For the sendmap query the caller fills in the
* req and the req_param as the first seq (usually
* snd_una). When the response comes back indicating
* that there was data (return value 1), then the caller
* can build a sendmap entry based on the range and the
* times. The next query would then be done at the
* newly created sendmap_end. Repeated until sendmap_end == snd_max.
*
* Flags in sendmap_flags are defined below as well.
*
* For timers the standard PACE_TMR_XXXX flags are returned indicating
* a pacing timer (possibly) and one other timer. If pacing timer then
* the expiration timeout time in microseconds is in timer_pacing_to.
* And the value used with whatever timer (if a flag is set) is in
* timer_rxt. If no timers are running a 0 is returned and of
* course no flags are set in timer_hpts_flags.
*
* The rack_times are a misc collection of information that
* the old stack might possibly fill in. Of course its possible
* that an old stack may not have a piece of information. If so
* then setting that value to zero is advised. Setting any
* timestamp passed should only place a zero in it when it
* is unfilled. This may mean that a time is off by a micro-second
* but this is ok in the grand scheme of things.
*
* When switching stacks it is desireable to get as much information
* from the old stack to the new stack as possible. Though not always
* will the stack be compatible in the types of information. The
* init() function needs to take care when it begins changing
* things such as inp_flags2 and the timer units to position these
* changes at a point where it is unlikely they will fail after
* making such changes. A stack optionally can have an "undo"
* function
*
* To transfer information to the old stack from the new in
* respect to LRO and the inp_flags2, the new stack should set
* the inp_flags2 to what it supports. The old stack in its
* fini() function should call the tcp_handle_orphaned_packets()
* to clean up any packets. Note that a new stack should attempt
*/
/* Query types */
#define TCP_QUERY_SENDMAP 1
#define TCP_QUERY_TIMERS_UP 2
#define TCP_QUERY_RACK_TIMES 3
/* Flags returned in sendmap_flags */
#define SNDMAP_ACKED 0x000001/* The remote endpoint acked this */
#define SNDMAP_OVERMAX 0x000008/* We have more retran's then we can fit */
#define SNDMAP_SACK_PASSED 0x000010/* A sack was done above this block */
#define SNDMAP_HAS_FIN 0x000040/* segment is sent with fin */
#define SNDMAP_TLP 0x000080/* segment sent as tail-loss-probe */
#define SNDMAP_HAS_SYN 0x000800/* SYN is on this guy */
#define SNDMAP_HAD_PUSH 0x008000/* Push was sent on original send */
#define SNDMAP_MASK (SNDMAP_ACKED|SNDMAP_OVERMAX|SNDMAP_SACK_PASSED|SNDMAP_HAS_FIN\
|SNDMAP_TLP|SNDMAP_HAS_SYN|SNDMAP_HAD_PUSH)
#define SNDMAP_NRTX 3
struct tcp_query_resp {
int req;
uint32_t req_param;
union {
struct {
tcp_seq sendmap_start;
tcp_seq sendmap_end;
int sendmap_send_cnt;
uint64_t sendmap_time[SNDMAP_NRTX];
uint64_t sendmap_ack_arrival;
int sendmap_flags;
uint32_t sendmap_r_rtr_bytes;
/* If FAS is available if not 0 */
uint32_t sendmap_fas;
uint8_t sendmap_dupacks;
};
struct {
uint32_t timer_hpts_flags;
uint32_t timer_pacing_to;
uint32_t timer_timer_exp;
};
struct {
/* Timestamps and rtt's */
uint32_t rack_reorder_ts; /* Last uscts that reordering was seen */
uint32_t rack_num_dsacks; /* Num of dsacks seen */
uint32_t rack_rxt_last_time; /* Last time a RXT/TLP or rack tmr went off */
uint32_t rack_min_rtt; /* never 0 smallest rtt seen */
uint32_t rack_rtt; /* Last rtt used by rack */
uint32_t rack_tmit_time; /* The time the rtt seg was tmited */
uint32_t rack_time_went_idle; /* If in persist the time we went idle */
/* Prr data */
uint32_t rack_sacked;
uint32_t rack_holes_rxt;
uint32_t rack_prr_delivered;
uint32_t rack_prr_recovery_fs;
uint32_t rack_prr_out;
uint32_t rack_prr_sndcnt;
/* TLP data */
uint16_t rack_tlp_cnt_out; /* How many tlp's have been sent */
/* Various bits */
uint8_t rack_tlp_out; /* Is a TLP outstanding */
uint8_t rack_srtt_measured; /* The previous stack has measured srtt */
uint8_t rack_in_persist; /* Is the old stack in persists? */
uint8_t rack_wanted_output; /* Did the prevous stack have a want output set */
};
};
};
#define TCP_TMR_GRANULARITY_TICKS 1 /* TCP timers are in ticks (msec if hz=1000) */
#define TCP_TMR_GRANULARITY_USEC 2 /* TCP timers are in microseconds */
typedef enum {
TT_REXMT = 0,
TT_PERSIST,
TT_KEEP,
TT_2MSL,
TT_DELACK,
TT_N,
} tt_which;
typedef enum {
TT_PROCESSING = 0,
TT_PROCESSED,
TT_STARTING,
TT_STOPPING,
} tt_what;
/*
* Tcp control block, one per tcp connection.
*/
struct tcpcb {
struct inpcb t_inpcb; /* embedded protocol independent cb */
#define t_start_zero t_fb
#define t_zero_size (sizeof(struct tcpcb) - \
offsetof(struct tcpcb, t_start_zero))
struct tcp_function_block *t_fb;/* TCP function call block */
void *t_fb_ptr; /* Pointer to t_fb specific data */
struct callout t_callout;
sbintime_t t_timers[TT_N];
sbintime_t t_precisions[TT_N];
/* HPTS. Used by BBR and Rack stacks. See tcp_hpts.c for more info. */
TAILQ_ENTRY(tcpcb) t_hpts; /* linkage to HPTS ring */
STAILQ_HEAD(, mbuf) t_inqueue; /* HPTS input packets queue */
uint32_t t_hpts_request; /* Current hpts request, zero if
* fits in the pacing window. */
uint32_t t_hpts_slot; /* HPTS wheel slot this tcb is. */
uint32_t t_hpts_drop_reas; /* Reason we are dropping the pcb. */
uint32_t t_hpts_gencnt;
uint16_t t_hpts_cpu; /* CPU chosen by hpts_cpuid(). */
uint16_t t_lro_cpu; /* CPU derived from LRO. */
#define HPTS_CPU_NONE ((uint16_t)-1)
enum {
IHPTS_NONE = 0,
IHPTS_ONQUEUE,
IHPTS_MOVING,
} t_in_hpts; /* Is it linked into HPTS? */
uint32_t t_maxseg:24, /* maximum segment size */
_t_logstate:8; /* State of "black box" logging */
uint32_t t_port:16, /* Tunneling (over udp) port */
t_state:4, /* state of this connection */
t_idle_reduce : 1,
t_delayed_ack: 7, /* Delayed ack variable */
t_fin_is_rst: 1, /* Are fin's treated as resets */
t_log_state_set: 1,
bits_spare : 2;
u_int t_flags;
tcp_seq snd_una; /* sent but unacknowledged */
tcp_seq snd_max; /* highest sequence number sent;
* used to recognize retransmits
*/
tcp_seq snd_nxt; /* send next */
tcp_seq snd_up; /* send urgent pointer */
uint32_t snd_wnd; /* send window */
uint32_t snd_cwnd; /* congestion-controlled window */
uint32_t ts_offset; /* our timestamp offset */
uint32_t rfbuf_ts; /* recv buffer autoscaling timestamp */
int rcv_numsacks; /* # distinct sack blks present */
u_int t_tsomax; /* TSO total burst length limit */
u_int t_tsomaxsegcount; /* TSO maximum segment count */
u_int t_tsomaxsegsize; /* TSO maximum segment size in bytes */
tcp_seq rcv_nxt; /* receive next */
tcp_seq rcv_adv; /* advertised window */
uint32_t rcv_wnd; /* receive window */
u_int t_flags2; /* More tcpcb flags storage */
int t_srtt; /* smoothed round-trip time */
int t_rttvar; /* variance in round-trip time */
uint32_t ts_recent; /* timestamp echo data */
u_char snd_scale; /* window scaling for send window */
u_char rcv_scale; /* window scaling for recv window */
u_char snd_limited; /* segments limited transmitted */
u_char request_r_scale; /* pending window scaling */
tcp_seq last_ack_sent;
u_int t_rcvtime; /* inactivity time */
tcp_seq rcv_up; /* receive urgent pointer */
int t_segqlen; /* segment reassembly queue length */
uint32_t t_segqmbuflen; /* total reassembly queue byte length */
struct tsegqe_head t_segq; /* segment reassembly queue */
uint32_t snd_ssthresh; /* snd_cwnd size threshold for
* for slow start exponential to
* linear switch
*/
tcp_seq snd_wl1; /* window update seg seq number */
tcp_seq snd_wl2; /* window update seg ack number */
tcp_seq irs; /* initial receive sequence number */
tcp_seq iss; /* initial send sequence number */
u_int t_acktime; /* RACK and BBR incoming new data was acked */
u_int t_sndtime; /* time last data was sent */
u_int ts_recent_age; /* when last updated */
tcp_seq snd_recover; /* for use in NewReno Fast Recovery */
char t_oobflags; /* have some */
char t_iobc; /* input character */
uint8_t t_nic_ktls_xmit:1, /* active nic ktls xmit sessions */
t_nic_ktls_xmit_dis:1, /* disabled nic xmit ktls? */
t_nic_ktls_spare:6; /* spare nic ktls */
int t_rxtcur; /* current retransmit value (ticks) */
int t_rxtshift; /* log(2) of rexmt exp. backoff */
u_int t_rtttime; /* RTT measurement start time */
tcp_seq t_rtseq; /* sequence number being timed */
u_int t_starttime; /* time connection was established */
u_int t_fbyte_in; /* ticks time first byte queued in */
u_int t_fbyte_out; /* ticks time first byte queued out */
u_int t_pmtud_saved_maxseg; /* pre-blackhole MSS */
int t_blackhole_enter; /* when to enter blackhole detection */
int t_blackhole_exit; /* when to exit blackhole detection */
u_int t_rttmin; /* minimum rtt allowed */
int t_softerror; /* possible error not yet reported */
uint32_t max_sndwnd; /* largest window peer has offered */
uint32_t snd_cwnd_prev; /* cwnd prior to retransmit */
uint32_t snd_ssthresh_prev; /* ssthresh prior to retransmit */
tcp_seq snd_recover_prev; /* snd_recover prior to retransmit */
int t_sndzerowin; /* zero-window updates sent */
int snd_numholes; /* number of holes seen by sender */
u_int t_badrxtwin; /* window for retransmit recovery */
TAILQ_HEAD(sackhole_head, sackhole) snd_holes;
/* SACK scoreboard (sorted) */
tcp_seq snd_fack; /* last seq number(+1) sack'd by rcv'r*/
struct sackblk sackblks[MAX_SACK_BLKS]; /* seq nos. of sack blocks */
struct sackhint sackhint; /* SACK scoreboard hint */
int t_rttlow; /* smallest observerved RTT */
int rfbuf_cnt; /* recv buffer autoscaling byte count */
struct toedev *tod; /* toedev handling this connection */
int t_sndrexmitpack; /* retransmit packets sent */
int t_rcvoopack; /* out-of-order packets received */
void *t_toe; /* TOE pcb pointer */
struct cc_algo *t_cc; /* congestion control algorithm */
struct cc_var t_ccv; /* congestion control specific vars */
int t_bytes_acked; /* # bytes acked during current RTT */
u_int t_maxunacktime;
u_int t_keepinit; /* time to establish connection */
u_int t_keepidle; /* time before keepalive probes begin */
u_int t_keepintvl; /* interval between keepalives */
u_int t_keepcnt; /* number of keepalives before close */
int t_dupacks; /* consecutive dup acks recd */
int t_lognum; /* Number of log entries */
int t_loglimit; /* Maximum number of log entries */
uint32_t t_rcep; /* Number of received CE marked pkts */
uint32_t t_scep; /* Synced number of delivered CE pkts */
int64_t t_pacing_rate; /* bytes / sec, -1 => unlimited */
struct tcp_log_stailq t_logs; /* Log buffer */
struct tcp_log_id_node *t_lin;
struct tcp_log_id_bucket *t_lib;
const char *t_output_caller; /* Function that called tcp_output */
struct statsblob *t_stats; /* Per-connection stats */
/* Should these be a pointer to the arrays or an array? */
uint32_t t_logsn; /* Log "serial number" */
uint32_t gput_ts; /* Time goodput measurement started */
tcp_seq gput_seq; /* Outbound measurement seq */
tcp_seq gput_ack; /* Inbound measurement ack */
int32_t t_stats_gput_prev; /* XXXLAS: Prev gput measurement */
uint32_t t_maxpeakrate; /* max peak rate set by user, bytes/s */
uint32_t t_sndtlppack; /* tail loss probe packets sent */
uint64_t t_sndtlpbyte; /* total tail loss probe bytes sent */
uint64_t t_sndbytes; /* total bytes sent */
uint64_t t_snd_rxt_bytes; /* total bytes retransmitted */
uint32_t t_dsack_bytes; /* dsack bytes received */
uint32_t t_dsack_tlp_bytes; /* dsack bytes received for TLPs sent */
uint32_t t_dsack_pack; /* dsack packets we have eceived */
uint8_t t_tmr_granularity; /* Granularity of all timers srtt etc */
uint8_t t_rttupdated; /* number of times rtt sampled */
/* TCP Fast Open */
uint8_t t_tfo_client_cookie_len; /* TFO client cookie length */
uint32_t t_end_info_status; /* Status flag of end info */
unsigned int *t_tfo_pending; /* TFO server pending counter */
union {
uint8_t client[TCP_FASTOPEN_MAX_COOKIE_LEN];
uint64_t server;
} t_tfo_cookie; /* TCP Fast Open cookie to send */
union {
uint8_t t_end_info_bytes[TCP_END_BYTE_INFO];
uint64_t t_end_info;
};
struct osd t_osd; /* storage for Khelp module data */
uint8_t _t_logpoint; /* Used when a BB log points is enabled */
/*
* Keep all #ifdef'ed components at the end of the structure!
* This is important to minimize problems when compiling modules
* using this structure from within the modules' directory.
*/
#ifdef TCP_REQUEST_TRK
/* Response tracking addons. */
uint8_t t_tcpreq_req; /* Request count */
uint8_t t_tcpreq_open; /* Number of open range requests */
uint8_t t_tcpreq_closed; /* Number of closed range requests */
uint32_t tcp_hybrid_start; /* Num of times we started hybrid pacing */
uint32_t tcp_hybrid_stop; /* Num of times we stopped hybrid pacing */
uint32_t tcp_hybrid_error; /* Num of times we failed to start hybrid pacing */
struct tcp_sendfile_track t_tcpreq_info[MAX_TCP_TRK_REQ];
#endif
#ifdef TCP_ACCOUNTING
uint64_t tcp_cnt_counters[TCP_NUM_CNT_COUNTERS];
uint64_t tcp_proc_time[TCP_NUM_CNT_COUNTERS];
#endif
#ifdef TCPPCAP
struct mbufq t_inpkts; /* List of saved input packets. */
struct mbufq t_outpkts; /* List of saved output packets. */
#endif
};
#endif /* _KERNEL || _WANT_TCPCB */
#ifdef _KERNEL
struct tcptemp {
u_char tt_ipgen[40]; /* the size must be of max ip header, now IPv6 */
struct tcphdr tt_t;
};
/* SACK scoreboard update status */
typedef enum {
SACK_NOCHANGE = 0,
SACK_CHANGE,
SACK_NEWLOSS
} sackstatus_t;
/* Enable TCP/UDP tunneling port */
#define TCP_TUNNELING_PORT_MIN 0
#define TCP_TUNNELING_PORT_MAX 65535
#define TCP_TUNNELING_PORT_DEFAULT 0
/* Enable TCP/UDP tunneling port */
#define TCP_TUNNELING_OVERHEAD_MIN sizeof(struct udphdr)
#define TCP_TUNNELING_OVERHEAD_MAX 1024
#define TCP_TUNNELING_OVERHEAD_DEFAULT TCP_TUNNELING_OVERHEAD_MIN
/* Minimum map entries limit value, if set */
#define TCP_MIN_MAP_ENTRIES_LIMIT 128
/*
* TODO: We yet need to brave plowing in
* to tcp_input() and the pru_usrreq() block.
* Right now these go to the old standards which
* are somewhat ok, but in the long term may
* need to be changed. If we do tackle tcp_input()
* then we need to get rid of the tcp_do_segment()
* function below.
*/
/* Flags for tcp functions */
#define TCP_FUNC_BEING_REMOVED 0x01 /* Can no longer be referenced */
#define TCP_FUNC_OUTPUT_CANDROP 0x02 /* tfb_tcp_output may ask tcp_drop */
/**
* Adding a tfb_tcp_handoff_ok function allows the socket
* option to change stacks to query you even if the
* connection is in a later stage. You return 0 to
* say you can take over and run your stack, you return
* non-zero (an error number) to say no you can't.
* If the function is undefined you can only change
* in the early states (before connect or listen).
*
* tfb_tcp_fb_init is used to allow the new stack to
* setup its control block. Among the things it must
* do is:
* a) Make sure that the inp_flags2 is setup correctly
* for LRO. There are two flags that the previous
* stack may have set INP_MBUF_ACKCMP and
* INP_SUPPORTS_MBUFQ. If the new stack does not
* support these it *should* clear the flags.
* b) Make sure that the timers are in the proper
* granularity that the stack wants. The stack
* should check the t_tmr_granularity field. Currently
* there are two values that it may hold
* TCP_TMR_GRANULARITY_TICKS and TCP_TMR_GRANULARITY_USEC.
* Use the functions tcp_timer_convert(tp, granularity);
* to move the timers to the correct format for your stack.
*
* The new stack may also optionally query the tfb_chg_query
* function if the old stack has one. The new stack may ask
* for one of three entries and can also state to the old
* stack its support for the INP_MBUF_ACKCMP and
* INP_SUPPORTS_MBUFQ. This is important since if there are
* queued ack's without that statement the old stack will
* be forced to discard the queued acks. The requests that
* can be made for information by the new stacks are:
*
* Note also that the tfb_tcp_fb_init() when called can
* determine if a query is needed by looking at the
* value passed in the ptr. The ptr is designed to be
* set in with any allocated memory, but the address
* of the condtion (ptr == &tp->t_fb_ptr) will be
* true if this is not a stack switch but the initial
* setup of a tcb (which means no query would be needed).
* If, however, the value is not t_fb_ptr, then the caller
* is in the middle of a stack switch and is the new stack.
* A query would be appropriate (if the new stack support
* the query mechanism).
*
* TCP_QUERY_SENDMAP - Query of outstanding data.
* TCP_QUERY_TIMERS_UP - Query about running timers.
* TCP_SUPPORTED_LRO - Declaration in req_param of
* the inp_flags2 supported by
* the new stack.
* TCP_QUERY_RACK_TIMES - Enquire about various timestamps
* and states the old stack may be in.
*
* tfb_tcp_fb_fini is changed to add a flag to tell
* the old stack if the tcb is being destroyed or
* not. A one in the flag means the TCB is being
* destroyed, a zero indicates its transitioning to
* another stack (via socket option). The
* tfb_tcp_fb_fini() function itself should not change timers
* or inp_flags2 (the tfb_tcp_fb_init() must do that). However
* if the old stack supports the LRO mbuf queuing, and the new
* stack does not communicate via chg messages that it too does,
* it must assume it does not and free any queued mbufs.
*
*/
struct tcp_function_block {
char tfb_tcp_block_name[TCP_FUNCTION_NAME_LEN_MAX];
int (*tfb_tcp_output)(struct tcpcb *);
void (*tfb_tcp_do_segment)(struct tcpcb *, struct mbuf *,
struct tcphdr *, int, int, uint8_t);
int (*tfb_do_segment_nounlock)(struct tcpcb *, struct mbuf *,
struct tcphdr *, int, int, uint8_t, int, struct timeval *);
int (*tfb_do_queued_segments)(struct tcpcb *, int);
int (*tfb_tcp_ctloutput)(struct tcpcb *, struct sockopt *);
/* Optional memory allocation/free routine */
int (*tfb_tcp_fb_init)(struct tcpcb *, void **);
void (*tfb_tcp_fb_fini)(struct tcpcb *, int);
/* Optional timers, must define all if you define one */
int (*tfb_tcp_timer_stop_all)(struct tcpcb *);
void (*tfb_tcp_rexmit_tmr)(struct tcpcb *);
int (*tfb_tcp_handoff_ok)(struct tcpcb *);
void (*tfb_tcp_mtu_chg)(struct tcpcb *tp);
int (*tfb_pru_options)(struct tcpcb *, int);
void (*tfb_hwtls_change)(struct tcpcb *, int);
int (*tfb_chg_query)(struct tcpcb *, struct tcp_query_resp *);
void (*tfb_switch_failed)(struct tcpcb *);
bool (*tfb_early_wake_check)(struct tcpcb *);
int (*tfb_compute_pipe)(struct tcpcb *tp);
int (*tfb_stack_info)(struct tcpcb *tp, struct stack_specific_info *);
void (*tfb_inherit)(struct tcpcb *tp, struct inpcb *h_inp);
volatile uint32_t tfb_refcnt;
uint32_t tfb_flags;
uint8_t tfb_id;
};
struct tcp_function {
TAILQ_ENTRY(tcp_function) tf_next;
char tf_name[TCP_FUNCTION_NAME_LEN_MAX];
struct tcp_function_block *tf_fb;
};
TAILQ_HEAD(tcp_funchead, tcp_function);
struct tcpcb * tcp_drop(struct tcpcb *, int);
#ifdef _NETINET_IN_PCB_H_
#define intotcpcb(inp) __containerof((inp), struct tcpcb, t_inpcb)
#define sototcpcb(so) intotcpcb(sotoinpcb(so))
#define tptoinpcb(tp) (&(tp)->t_inpcb)
#define tptosocket(tp) (tp)->t_inpcb.inp_socket
/*
* tcp_output()
* Handles tcp_drop request from advanced stacks and reports that inpcb is
* gone with negative return code.
* Drop in replacement for the default stack.
*/
static inline int
tcp_output(struct tcpcb *tp)
{
struct inpcb *inp = tptoinpcb(tp);
int rv;
INP_WLOCK_ASSERT(inp);
rv = tp->t_fb->tfb_tcp_output(tp);
if (rv < 0) {
KASSERT(tp->t_fb->tfb_flags & TCP_FUNC_OUTPUT_CANDROP,
("TCP stack %s requested tcp_drop(%p)",
tp->t_fb->tfb_tcp_block_name, tp));
tp = tcp_drop(tp, -rv);
if (tp)
INP_WUNLOCK(inp);
}
return (rv);
}
/*
* tcp_output_unlock()
* Always returns unlocked, handles drop request from advanced stacks.
* Always returns positive error code.
*/
static inline int
tcp_output_unlock(struct tcpcb *tp)
{
struct inpcb *inp = tptoinpcb(tp);
int rv;
INP_WLOCK_ASSERT(inp);
rv = tp->t_fb->tfb_tcp_output(tp);
if (rv < 0) {
KASSERT(tp->t_fb->tfb_flags & TCP_FUNC_OUTPUT_CANDROP,
("TCP stack %s requested tcp_drop(%p)",
tp->t_fb->tfb_tcp_block_name, tp));
rv = -rv;
tp = tcp_drop(tp, rv);
if (tp)
INP_WUNLOCK(inp);
} else
INP_WUNLOCK(inp);
return (rv);
}
/*
* tcp_output_nodrop()
* Always returns locked. It is caller's responsibility to run tcp_drop()!
* Useful in syscall implementations, when we want to perform some logging
* and/or tracing with tcpcb before calling tcp_drop(). To be used with
* tcp_unlock_or_drop() later.
*
* XXXGL: maybe don't allow stacks to return a drop request at certain
* TCP states? Why would it do in connect(2)? In recv(2)?
*/
static inline int
tcp_output_nodrop(struct tcpcb *tp)
{
int rv;
INP_WLOCK_ASSERT(tptoinpcb(tp));
rv = tp->t_fb->tfb_tcp_output(tp);
KASSERT(rv >= 0 || tp->t_fb->tfb_flags & TCP_FUNC_OUTPUT_CANDROP,
("TCP stack %s requested tcp_drop(%p)",
tp->t_fb->tfb_tcp_block_name, tp));
return (rv);
}
/*
* tcp_unlock_or_drop()
* Handle return code from tfb_tcp_output() after we have logged/traced,
* to be used with tcp_output_nodrop().
*/
static inline int
tcp_unlock_or_drop(struct tcpcb *tp, int tcp_output_retval)
{
struct inpcb *inp = tptoinpcb(tp);
INP_WLOCK_ASSERT(inp);
if (tcp_output_retval < 0) {
tcp_output_retval = -tcp_output_retval;
if (tcp_drop(tp, tcp_output_retval) != NULL)
INP_WUNLOCK(inp);
} else
INP_WUNLOCK(inp);
return (tcp_output_retval);
}
#endif /* _NETINET_IN_PCB_H_ */
static int inline
tcp_packets_this_ack(struct tcpcb *tp, tcp_seq ack)
{
return ((ack - tp->snd_una) / tp->t_maxseg +
((((ack - tp->snd_una) % tp->t_maxseg) != 0) ? 1 : 0));
}
#endif /* _KERNEL */
/*
* Flags and utility macros for the t_flags field.
*/
#define TF_ACKNOW 0x00000001 /* ack peer immediately */
#define TF_DELACK 0x00000002 /* ack, but try to delay it */
#define TF_NODELAY 0x00000004 /* don't delay packets to coalesce */
#define TF_NOOPT 0x00000008 /* don't use tcp options */
#define TF_SENTFIN 0x00000010 /* have sent FIN */
#define TF_REQ_SCALE 0x00000020 /* have/will request window scaling */
#define TF_RCVD_SCALE 0x00000040 /* other side has requested scaling */
#define TF_REQ_TSTMP 0x00000080 /* have/will request timestamps */
#define TF_RCVD_TSTMP 0x00000100 /* a timestamp was received in SYN */
#define TF_SACK_PERMIT 0x00000200 /* other side said I could SACK */
#define TF_NEEDSYN 0x00000400 /* send SYN (implicit state) */
#define TF_NEEDFIN 0x00000800 /* send FIN (implicit state) */
#define TF_NOPUSH 0x00001000 /* don't push */
#define TF_PREVVALID 0x00002000 /* saved values for bad rxmit valid
* Note: accessing and restoring from
* these may only be done in the 1st
* RTO recovery round (t_rxtshift == 1)
*/
#define TF_WAKESOR 0x00004000 /* wake up receive socket */
#define TF_GPUTINPROG 0x00008000 /* Goodput measurement in progress */
#define TF_MORETOCOME 0x00010000 /* More data to be appended to sock */
#define TF_SONOTCONN 0x00020000 /* needs soisconnected() on ESTAB */
#define TF_LASTIDLE 0x00040000 /* connection was previously idle */
#define TF_RXWIN0SENT 0x00080000 /* sent a receiver win 0 in response */
#define TF_FASTRECOVERY 0x00100000 /* in NewReno Fast Recovery */
#define TF_WASFRECOVERY 0x00200000 /* was in NewReno Fast Recovery */
#define TF_SIGNATURE 0x00400000 /* require MD5 digests (RFC2385) */
#define TF_FORCEDATA 0x00800000 /* force out a byte */
#define TF_TSO 0x01000000 /* TSO enabled on this connection */
#define TF_TOE 0x02000000 /* this connection is offloaded */
#define TF_CLOSED 0x04000000 /* close(2) called on socket */
#define TF_SENTSYN 0x08000000 /* At least one syn has been sent */
#define TF_LRD 0x10000000 /* Lost Retransmission Detection */
#define TF_CONGRECOVERY 0x20000000 /* congestion recovery mode */
#define TF_WASCRECOVERY 0x40000000 /* was in congestion recovery */
#define TF_FASTOPEN 0x80000000 /* TCP Fast Open indication */
#define IN_FASTRECOVERY(t_flags) (t_flags & TF_FASTRECOVERY)
#define ENTER_FASTRECOVERY(t_flags) t_flags |= TF_FASTRECOVERY
#define EXIT_FASTRECOVERY(t_flags) t_flags &= ~TF_FASTRECOVERY
#define IN_CONGRECOVERY(t_flags) (t_flags & TF_CONGRECOVERY)
#define ENTER_CONGRECOVERY(t_flags) t_flags |= TF_CONGRECOVERY
#define EXIT_CONGRECOVERY(t_flags) t_flags &= ~TF_CONGRECOVERY
#define IN_RECOVERY(t_flags) (t_flags & (TF_CONGRECOVERY | TF_FASTRECOVERY))
#define ENTER_RECOVERY(t_flags) t_flags |= (TF_CONGRECOVERY | TF_FASTRECOVERY)
#define EXIT_RECOVERY(t_flags) t_flags &= ~(TF_CONGRECOVERY | TF_FASTRECOVERY)
#define BYTES_THIS_ACK(tp, th) (th->th_ack - tp->snd_una)
/*
* Flags for the t_oobflags field.
*/
#define TCPOOB_HAVEDATA 0x01
#define TCPOOB_HADDATA 0x02
/*
* Flags for the extended TCP flags field, t_flags2
*/
#define TF2_PLPMTU_BLACKHOLE 0x00000001 /* Possible PLPMTUD Black Hole. */
#define TF2_PLPMTU_PMTUD 0x00000002 /* Allowed to attempt PLPMTUD. */
#define TF2_PLPMTU_MAXSEGSNT 0x00000004 /* Last seg sent was full seg. */
#define TF2_LOG_AUTO 0x00000008 /* Session is auto-logging. */
#define TF2_DROP_AF_DATA 0x00000010 /* Drop after all data ack'd */
#define TF2_ECN_PERMIT 0x00000020 /* connection ECN-ready */
#define TF2_ECN_SND_CWR 0x00000040 /* ECN CWR in queue */
#define TF2_ECN_SND_ECE 0x00000080 /* ECN ECE in queue */
#define TF2_ACE_PERMIT 0x00000100 /* Accurate ECN mode */
#define TF2_HPTS_CPU_SET 0x00000200 /* t_hpts_cpu is not random */
#define TF2_FBYTES_COMPLETE 0x00000400 /* We have first bytes in and out */
#define TF2_ECN_USE_ECT1 0x00000800 /* Use ECT(1) marking on session */
#define TF2_TCP_ACCOUNTING 0x00001000 /* Do TCP accounting */
#define TF2_HPTS_CALLS 0x00002000 /* tcp_output() called via HPTS */
#define TF2_MBUF_L_ACKS 0x00004000 /* large mbufs for ack compression */
#define TF2_MBUF_ACKCMP 0x00008000 /* mbuf ack compression ok */
#define TF2_SUPPORTS_MBUFQ 0x00010000 /* Supports the mbuf queue method */
#define TF2_MBUF_QUEUE_READY 0x00020000 /* Inputs can be queued */
#define TF2_DONT_SACK_QUEUE 0x00040000 /* Don't wake on sack */
#define TF2_CANNOT_DO_ECN 0x00080000 /* The stack does not do ECN */
/*
* Structure to hold TCP options that are only used during segment
* processing (in tcp_input), but not held in the tcpcb.
* It's basically used to reduce the number of parameters
* to tcp_dooptions and tcp_addoptions.
* The binary order of the to_flags is relevant for packing of the
* options in tcp_addoptions.
*/
struct tcpopt {
u_int32_t to_flags; /* which options are present */
#define TOF_MSS 0x0001 /* maximum segment size */
#define TOF_SCALE 0x0002 /* window scaling */
#define TOF_SACKPERM 0x0004 /* SACK permitted */
#define TOF_TS 0x0010 /* timestamp */
#define TOF_SIGNATURE 0x0040 /* TCP-MD5 signature option (RFC2385) */
#define TOF_SACK 0x0080 /* Peer sent SACK option */
#define TOF_FASTOPEN 0x0100 /* TCP Fast Open (TFO) cookie */
#define TOF_MAXOPT 0x0200
u_int32_t to_tsval; /* new timestamp */
u_int32_t to_tsecr; /* reflected timestamp */
u_char *to_sacks; /* pointer to the first SACK blocks */
u_char *to_signature; /* pointer to the TCP-MD5 signature */
u_int8_t *to_tfo_cookie; /* pointer to the TFO cookie */
u_int16_t to_mss; /* maximum segment size */
u_int8_t to_wscale; /* window scaling */
u_int8_t to_nsacks; /* number of SACK blocks */
u_int8_t to_tfo_len; /* TFO cookie length */
u_int32_t to_spare; /* UTO */
};
/*
* Flags for tcp_dooptions.
*/
#define TO_SYN 0x01 /* parse SYN-only options */
struct hc_metrics_lite { /* must stay in sync with hc_metrics */
uint32_t rmx_mtu; /* MTU for this path */
uint32_t rmx_ssthresh; /* outbound gateway buffer limit */
uint32_t rmx_rtt; /* estimated round trip time */
uint32_t rmx_rttvar; /* estimated rtt variance */
uint32_t rmx_cwnd; /* congestion window */
uint32_t rmx_sendpipe; /* outbound delay-bandwidth product */
uint32_t rmx_recvpipe; /* inbound delay-bandwidth product */
};
#ifndef _NETINET_IN_PCB_H_
struct in_conninfo;
#endif /* _NETINET_IN_PCB_H_ */
/*
* The smoothed round-trip time and estimated variance
* are stored as fixed point numbers scaled by the values below.
* For convenience, these scales are also used in smoothing the average
* (smoothed = (1/scale)sample + ((scale-1)/scale)smoothed).
* With these scales, srtt has 3 bits to the right of the binary point,
* and thus an "ALPHA" of 0.875. rttvar has 2 bits to the right of the
* binary point, and is smoothed with an ALPHA of 0.75.
*/
#define TCP_RTT_SCALE 32 /* multiplier for srtt; 5 bits frac. */
#define TCP_RTT_SHIFT 5 /* shift for srtt; 5 bits frac. */
#define TCP_RTTVAR_SCALE 16 /* multiplier for rttvar; 4 bits */
#define TCP_RTTVAR_SHIFT 4 /* shift for rttvar; 4 bits */
#define TCP_DELTA_SHIFT 2 /* see tcp_input.c */
/*
* The initial retransmission should happen at rtt + 4 * rttvar.
* Because of the way we do the smoothing, srtt and rttvar
* will each average +1/2 tick of bias. When we compute
* the retransmit timer, we want 1/2 tick of rounding and
* 1 extra tick because of +-1/2 tick uncertainty in the
* firing of the timer. The bias will give us exactly the
* 1.5 tick we need. But, because the bias is
* statistical, we have to test that we don't drop below
* the minimum feasible timer (which is 2 ticks).
* This version of the macro adapted from a paper by Lawrence
* Brakmo and Larry Peterson which outlines a problem caused
* by insufficient precision in the original implementation,
* which results in inappropriately large RTO values for very
* fast networks.
*/
#define TCP_REXMTVAL(tp) \
max((tp)->t_rttmin, (((tp)->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT)) \
+ (tp)->t_rttvar) >> TCP_DELTA_SHIFT)
/*
* TCP statistics.
* Many of these should be kept per connection,
* but that's inconvenient at the moment.
*/
struct tcpstat {
uint64_t tcps_connattempt; /* connections initiated */
uint64_t tcps_accepts; /* connections accepted */
uint64_t tcps_connects; /* connections established */
uint64_t tcps_drops; /* connections dropped */
uint64_t tcps_conndrops; /* embryonic connections dropped */
uint64_t tcps_minmssdrops; /* average minmss too low drops */
uint64_t tcps_closed; /* conn. closed (includes drops) */
uint64_t tcps_segstimed; /* segs where we tried to get rtt */
uint64_t tcps_rttupdated; /* times we succeeded */
uint64_t tcps_delack; /* delayed acks sent */
uint64_t tcps_timeoutdrop; /* conn. dropped in rxmt timeout */
uint64_t tcps_rexmttimeo; /* retransmit timeouts */
uint64_t tcps_persisttimeo; /* persist timeouts */
uint64_t tcps_keeptimeo; /* keepalive timeouts */
uint64_t tcps_keepprobe; /* keepalive probes sent */
uint64_t tcps_keepdrops; /* connections dropped in keepalive */
uint64_t tcps_progdrops; /* drops due to no progress */
uint64_t tcps_sndtotal; /* total packets sent */
uint64_t tcps_sndpack; /* data packets sent */
uint64_t tcps_sndbyte; /* data bytes sent */
uint64_t tcps_sndrexmitpack; /* data packets retransmitted */
uint64_t tcps_sndrexmitbyte; /* data bytes retransmitted */
uint64_t tcps_sndrexmitbad; /* unnecessary packet retransmissions */
uint64_t tcps_sndacks; /* ack-only packets sent */
uint64_t tcps_sndprobe; /* window probes sent */
uint64_t tcps_sndurg; /* packets sent with URG only */
uint64_t tcps_sndwinup; /* window update-only packets sent */
uint64_t tcps_sndctrl; /* control (SYN|FIN|RST) packets sent */
uint64_t tcps_rcvtotal; /* total packets received */
uint64_t tcps_rcvpack; /* packets received in sequence */
uint64_t tcps_rcvbyte; /* bytes received in sequence */
uint64_t tcps_rcvbadsum; /* packets received with ccksum errs */
uint64_t tcps_rcvbadoff; /* packets received with bad offset */
uint64_t tcps_rcvreassfull; /* packets dropped for no reass space */
uint64_t tcps_rcvshort; /* packets received too short */
uint64_t tcps_rcvduppack; /* duplicate-only packets received */
uint64_t tcps_rcvdupbyte; /* duplicate-only bytes received */
uint64_t tcps_rcvpartduppack; /* packets with some duplicate data */
uint64_t tcps_rcvpartdupbyte; /* dup. bytes in part-dup. packets */
uint64_t tcps_rcvoopack; /* out-of-order packets received */
uint64_t tcps_rcvoobyte; /* out-of-order bytes received */
uint64_t tcps_rcvpackafterwin; /* packets with data after window */
uint64_t tcps_rcvbyteafterwin; /* bytes rcvd after window */
uint64_t tcps_rcvafterclose; /* packets rcvd after "close" */
uint64_t tcps_rcvwinprobe; /* rcvd window probe packets */
uint64_t tcps_rcvdupack; /* rcvd duplicate acks */
uint64_t tcps_rcvacktoomuch; /* rcvd acks for unsent data */
uint64_t tcps_rcvackpack; /* rcvd ack packets */
uint64_t tcps_rcvackbyte; /* bytes acked by rcvd acks */
uint64_t tcps_rcvwinupd; /* rcvd window update packets */
uint64_t tcps_pawsdrop; /* segments dropped due to PAWS */
uint64_t tcps_predack; /* times hdr predict ok for acks */
uint64_t tcps_preddat; /* times hdr predict ok for data pkts */
uint64_t tcps_pcbcachemiss;
uint64_t tcps_cachedrtt; /* times cached RTT in route updated */
uint64_t tcps_cachedrttvar; /* times cached rttvar updated */
uint64_t tcps_cachedssthresh; /* times cached ssthresh updated */
uint64_t tcps_usedrtt; /* times RTT initialized from route */
uint64_t tcps_usedrttvar; /* times RTTVAR initialized from rt */
uint64_t tcps_usedssthresh; /* times ssthresh initialized from rt*/
uint64_t tcps_persistdrop; /* timeout in persist state */
uint64_t tcps_badsyn; /* bogus SYN, e.g. premature ACK */
uint64_t tcps_mturesent; /* resends due to MTU discovery */
uint64_t tcps_listendrop; /* listen queue overflows */
uint64_t tcps_badrst; /* ignored RSTs in the window */
uint64_t tcps_sc_added; /* entry added to syncache */
uint64_t tcps_sc_retransmitted; /* syncache entry was retransmitted */
uint64_t tcps_sc_dupsyn; /* duplicate SYN packet */
uint64_t tcps_sc_dropped; /* could not reply to packet */
uint64_t tcps_sc_completed; /* successful extraction of entry */
uint64_t tcps_sc_bucketoverflow;/* syncache per-bucket limit hit */
uint64_t tcps_sc_cacheoverflow; /* syncache cache limit hit */
uint64_t tcps_sc_reset; /* RST removed entry from syncache */
uint64_t tcps_sc_stale; /* timed out or listen socket gone */
uint64_t tcps_sc_aborted; /* syncache entry aborted */
uint64_t tcps_sc_badack; /* removed due to bad ACK */
uint64_t tcps_sc_unreach; /* ICMP unreachable received */
uint64_t tcps_sc_zonefail; /* zalloc() failed */
uint64_t tcps_sc_sendcookie; /* SYN cookie sent */
uint64_t tcps_sc_recvcookie; /* SYN cookie received */
uint64_t tcps_hc_added; /* entry added to hostcache */
uint64_t tcps_hc_bucketoverflow;/* hostcache per bucket limit hit */
uint64_t tcps_finwait2_drops; /* Drop FIN_WAIT_2 connection after time limit */
/* SACK related stats */
uint64_t tcps_sack_recovery_episode; /* SACK recovery episodes */
uint64_t tcps_sack_rexmits; /* SACK rexmit segments */
uint64_t tcps_sack_rexmit_bytes; /* SACK rexmit bytes */
uint64_t tcps_sack_rcv_blocks; /* SACK blocks (options) received */
uint64_t tcps_sack_send_blocks; /* SACK blocks (options) sent */
uint64_t tcps_sack_lostrexmt; /* SACK lost retransmission recovered */
uint64_t tcps_sack_sboverflow; /* times scoreboard overflowed */
/* ECN related stats */
uint64_t tcps_ecn_rcvce; /* ECN Congestion Experienced */
uint64_t tcps_ecn_rcvect0; /* ECN Capable Transport */
uint64_t tcps_ecn_rcvect1; /* ECN Capable Transport */
uint64_t tcps_ecn_shs; /* ECN successful handshakes */
uint64_t tcps_ecn_rcwnd; /* # times ECN reduced the cwnd */
/* TCP_SIGNATURE related stats */
uint64_t tcps_sig_rcvgoodsig; /* Total matching signature received */
uint64_t tcps_sig_rcvbadsig; /* Total bad signature received */
uint64_t tcps_sig_err_buildsig; /* Failed to make signature */
uint64_t tcps_sig_err_sigopt; /* No signature expected by socket */
uint64_t tcps_sig_err_nosigopt; /* No signature provided by segment */
/* Path MTU Discovery Black Hole Detection related stats */
uint64_t tcps_pmtud_blackhole_activated; /* Black Hole Count */
uint64_t tcps_pmtud_blackhole_activated_min_mss; /* BH at min MSS Count */
uint64_t tcps_pmtud_blackhole_failed; /* Black Hole Failure Count */
uint64_t tcps_tunneled_pkts; /* Packets encap's in UDP received */
uint64_t tcps_tunneled_errs; /* Packets that had errors that were UDP encaped */
/* Dsack related stats */
uint64_t tcps_dsack_count; /* Number of ACKs arriving with DSACKs */
uint64_t tcps_dsack_bytes; /* Number of bytes DSACK'ed no TLP */
uint64_t tcps_dsack_tlp_bytes; /* Number of bytes DSACK'ed due to TLPs */
/* TCPS_TIME_WAIT usage stats */
uint64_t tcps_tw_recycles; /* Times time-wait was recycled. */
uint64_t tcps_tw_resets; /* Times time-wait sent a reset. */
uint64_t tcps_tw_responds; /* Times time-wait sent a valid ack. */
/* Accurate ECN Handshake stats */
uint64_t tcps_ace_nect; /* ACE SYN packet with Non-ECT */
uint64_t tcps_ace_ect1; /* ACE SYN packet with ECT1 */
uint64_t tcps_ace_ect0; /* ACE SYN packet with ECT0 */
uint64_t tcps_ace_ce; /* ACE SYN packet with CE */
/* ECN related stats */
uint64_t tcps_ecn_sndect0; /* ECN Capable Transport */
uint64_t tcps_ecn_sndect1; /* ECN Capable Transport */
/*
* BBR and Rack implement TLP's these values count TLP bytes in
* two catagories, bytes that were retransmitted and bytes that
* were newly transmited. Both types can serve as TLP's but they
* are accounted differently.
*/
uint64_t tcps_tlpresends; /* number of tlp resends */
uint64_t tcps_tlpresend_bytes; /* number of bytes resent by tlp */
uint64_t _pad[4]; /* 4 TBD placeholder for STABLE */
};
#define tcps_rcvmemdrop tcps_rcvreassfull /* compat */
#ifdef _KERNEL
#define TI_UNLOCKED 1
#define TI_RLOCKED 2
#include <sys/counter.h>
VNET_PCPUSTAT_DECLARE(struct tcpstat, tcpstat); /* tcp statistics */
/*
* In-kernel consumers can use these accessor macros directly to update
* stats.
*/
#define TCPSTAT_ADD(name, val) \
VNET_PCPUSTAT_ADD(struct tcpstat, tcpstat, name, (val))
#define TCPSTAT_INC(name) TCPSTAT_ADD(name, 1)
/*
* Kernel module consumers must use this accessor macro.
*/
void kmod_tcpstat_add(int statnum, int val);
#define KMOD_TCPSTAT_ADD(name, val) \
kmod_tcpstat_add(offsetof(struct tcpstat, name) / sizeof(uint64_t), val)
#define KMOD_TCPSTAT_INC(name) KMOD_TCPSTAT_ADD(name, 1)
/*
* Running TCP connection count by state.
*/
VNET_DECLARE(counter_u64_t, tcps_states[TCP_NSTATES]);
#define V_tcps_states VNET(tcps_states)
#define TCPSTATES_INC(state) counter_u64_add(V_tcps_states[state], 1)
#define TCPSTATES_DEC(state) counter_u64_add(V_tcps_states[state], -1)
/*
* TCP specific helper hook point identifiers.
*/
#define HHOOK_TCP_EST_IN 0
#define HHOOK_TCP_EST_OUT 1
#define HHOOK_TCP_LAST HHOOK_TCP_EST_OUT
struct tcp_hhook_data {
struct tcpcb *tp;
struct tcphdr *th;
struct tcpopt *to;
uint32_t len;
int tso;
tcp_seq curack;
};
#ifdef TCP_HHOOK
void hhook_run_tcp_est_out(struct tcpcb *tp,
struct tcphdr *th, struct tcpopt *to,
uint32_t len, int tso);
#endif
#endif
/*
* TCB structure exported to user-land via sysctl(3).
*
* Fields prefixed with "xt_" are unique to the export structure, and fields
* with "t_" or other prefixes match corresponding fields of 'struct tcpcb'.
*
* Legend:
* (s) - used by userland utilities in src
* (p) - used by utilities in ports
* (3) - is known to be used by third party software not in ports
* (n) - no known usage
*
* Evil hack: declare only if in_pcb.h and sys/socketvar.h have been
* included. Not all of our clients do.
*/
#if defined(_NETINET_IN_PCB_H_) && defined(_SYS_SOCKETVAR_H_)
struct xtcpcb {
ksize_t xt_len; /* length of this structure */
struct xinpcb xt_inp;
char xt_stack[TCP_FUNCTION_NAME_LEN_MAX]; /* (s) */
char xt_logid[TCP_LOG_ID_LEN]; /* (s) */
char xt_cc[TCP_CA_NAME_MAX]; /* (s) */
int64_t spare64[6];
int32_t t_state; /* (s,p) */
uint32_t t_flags; /* (s,p) */
int32_t t_sndzerowin; /* (s) */
int32_t t_sndrexmitpack; /* (s) */
int32_t t_rcvoopack; /* (s) */
int32_t t_rcvtime; /* (s) */
int32_t tt_rexmt; /* (s) */
int32_t tt_persist; /* (s) */
int32_t tt_keep; /* (s) */
int32_t tt_2msl; /* (s) */
int32_t tt_delack; /* (s) */
int32_t t_logstate; /* (3) */
uint32_t t_snd_cwnd; /* (s) */
uint32_t t_snd_ssthresh; /* (s) */
uint32_t t_maxseg; /* (s) */
uint32_t t_rcv_wnd; /* (s) */
uint32_t t_snd_wnd; /* (s) */
uint32_t xt_ecn; /* (s) */
uint32_t t_dsack_bytes; /* (n) */
uint32_t t_dsack_tlp_bytes; /* (n) */
uint32_t t_dsack_pack; /* (n) */
uint16_t xt_encaps_port; /* (s) */
int16_t spare16;
int32_t spare32[22];
} __aligned(8);
#ifdef _KERNEL
void tcp_inptoxtp(const struct inpcb *, struct xtcpcb *);
#endif
#endif
/*
* TCP function information (name-to-id mapping, aliases, and refcnt)
* exported to user-land via sysctl(3).
*/
struct tcp_function_info {
uint32_t tfi_refcnt;
uint8_t tfi_id;
char tfi_name[TCP_FUNCTION_NAME_LEN_MAX];
char tfi_alias[TCP_FUNCTION_NAME_LEN_MAX];
};
/*
* Identifiers for TCP sysctl nodes
*/
#define TCPCTL_DO_RFC1323 1 /* use RFC-1323 extensions */
#define TCPCTL_MSSDFLT 3 /* MSS default */
#define TCPCTL_STATS 4 /* statistics */
#define TCPCTL_RTTDFLT 5 /* default RTT estimate */
#define TCPCTL_KEEPIDLE 6 /* keepalive idle timer */
#define TCPCTL_KEEPINTVL 7 /* interval to send keepalives */
#define TCPCTL_SENDSPACE 8 /* send buffer space */
#define TCPCTL_RECVSPACE 9 /* receive buffer space */
#define TCPCTL_KEEPINIT 10 /* timeout for establishing syn */
#define TCPCTL_PCBLIST 11 /* list of all outstanding PCBs */
#define TCPCTL_DELACKTIME 12 /* time before sending delayed ACK */
#define TCPCTL_V6MSSDFLT 13 /* MSS default for IPv6 */
#define TCPCTL_SACK 14 /* Selective Acknowledgement,rfc 2018 */
#define TCPCTL_DROP 15 /* drop tcp connection */
#define TCPCTL_STATES 16 /* connection counts by TCP state */
#ifdef _KERNEL
#ifdef SYSCTL_DECL
SYSCTL_DECL(_net_inet_tcp);
SYSCTL_DECL(_net_inet_tcp_sack);
MALLOC_DECLARE(M_TCPLOG);
#endif
VNET_DECLARE(int, tcp_log_in_vain);
#define V_tcp_log_in_vain VNET(tcp_log_in_vain)
/*
* Global TCP tunables shared between different stacks.
* Please keep the list sorted.
*/
VNET_DECLARE(int, drop_synfin);
VNET_DECLARE(int, path_mtu_discovery);
VNET_DECLARE(int, tcp_abc_l_var);
VNET_DECLARE(int, tcp_autorcvbuf_max);
VNET_DECLARE(int, tcp_autosndbuf_inc);
VNET_DECLARE(int, tcp_autosndbuf_max);
VNET_DECLARE(int, tcp_delack_enabled);
VNET_DECLARE(int, tcp_do_autorcvbuf);
VNET_DECLARE(int, tcp_do_autosndbuf);
VNET_DECLARE(int, tcp_do_ecn);
VNET_DECLARE(int, tcp_do_lrd);
VNET_DECLARE(int, tcp_do_prr);
VNET_DECLARE(int, tcp_do_prr_conservative);
VNET_DECLARE(int, tcp_do_newcwv);
VNET_DECLARE(int, tcp_do_rfc1323);
VNET_DECLARE(int, tcp_tolerate_missing_ts);
VNET_DECLARE(int, tcp_do_rfc3042);
VNET_DECLARE(int, tcp_do_rfc3390);
VNET_DECLARE(int, tcp_do_rfc3465);
VNET_DECLARE(int, tcp_do_newsack);
VNET_DECLARE(int, tcp_do_sack);
VNET_DECLARE(int, tcp_do_tso);
VNET_DECLARE(int, tcp_ecn_maxretries);
VNET_DECLARE(int, tcp_initcwnd_segments);
VNET_DECLARE(int, tcp_insecure_rst);
VNET_DECLARE(int, tcp_insecure_syn);
VNET_DECLARE(uint32_t, tcp_map_entries_limit);
VNET_DECLARE(uint32_t, tcp_map_split_limit);
VNET_DECLARE(int, tcp_minmss);
VNET_DECLARE(int, tcp_mssdflt);
#ifdef STATS
VNET_DECLARE(int, tcp_perconn_stats_dflt_tpl);
VNET_DECLARE(int, tcp_perconn_stats_enable);
#endif /* STATS */
VNET_DECLARE(int, tcp_recvspace);
VNET_DECLARE(int, tcp_retries);
VNET_DECLARE(int, tcp_sack_globalholes);
VNET_DECLARE(int, tcp_sack_globalmaxholes);
VNET_DECLARE(int, tcp_sack_maxholes);
VNET_DECLARE(int, tcp_sc_rst_sock_fail);
VNET_DECLARE(int, tcp_sendspace);
VNET_DECLARE(int, tcp_udp_tunneling_overhead);
VNET_DECLARE(int, tcp_udp_tunneling_port);
VNET_DECLARE(struct inpcbinfo, tcbinfo);
#define V_tcp_do_lrd VNET(tcp_do_lrd)
#define V_tcp_do_prr VNET(tcp_do_prr)
#define V_tcp_do_newcwv VNET(tcp_do_newcwv)
#define V_drop_synfin VNET(drop_synfin)
#define V_path_mtu_discovery VNET(path_mtu_discovery)
#define V_tcbinfo VNET(tcbinfo)
#define V_tcp_abc_l_var VNET(tcp_abc_l_var)
#define V_tcp_autorcvbuf_max VNET(tcp_autorcvbuf_max)
#define V_tcp_autosndbuf_inc VNET(tcp_autosndbuf_inc)
#define V_tcp_autosndbuf_max VNET(tcp_autosndbuf_max)
#define V_tcp_delack_enabled VNET(tcp_delack_enabled)
#define V_tcp_do_autorcvbuf VNET(tcp_do_autorcvbuf)
#define V_tcp_do_autosndbuf VNET(tcp_do_autosndbuf)
#define V_tcp_do_ecn VNET(tcp_do_ecn)
#define V_tcp_do_rfc1323 VNET(tcp_do_rfc1323)
#define V_tcp_tolerate_missing_ts VNET(tcp_tolerate_missing_ts)
#define V_tcp_ts_offset_per_conn VNET(tcp_ts_offset_per_conn)
#define V_tcp_do_rfc3042 VNET(tcp_do_rfc3042)
#define V_tcp_do_rfc3390 VNET(tcp_do_rfc3390)
#define V_tcp_do_rfc3465 VNET(tcp_do_rfc3465)
#define V_tcp_do_newsack VNET(tcp_do_newsack)
#define V_tcp_do_sack VNET(tcp_do_sack)
#define V_tcp_do_tso VNET(tcp_do_tso)
#define V_tcp_ecn_maxretries VNET(tcp_ecn_maxretries)
#define V_tcp_initcwnd_segments VNET(tcp_initcwnd_segments)
#define V_tcp_insecure_rst VNET(tcp_insecure_rst)
#define V_tcp_insecure_syn VNET(tcp_insecure_syn)
#define V_tcp_map_entries_limit VNET(tcp_map_entries_limit)
#define V_tcp_map_split_limit VNET(tcp_map_split_limit)
#define V_tcp_minmss VNET(tcp_minmss)
#define V_tcp_mssdflt VNET(tcp_mssdflt)
#ifdef STATS
#define V_tcp_perconn_stats_dflt_tpl VNET(tcp_perconn_stats_dflt_tpl)
#define V_tcp_perconn_stats_enable VNET(tcp_perconn_stats_enable)
#endif /* STATS */
#define V_tcp_recvspace VNET(tcp_recvspace)
#define V_tcp_retries VNET(tcp_retries)
#define V_tcp_sack_globalholes VNET(tcp_sack_globalholes)
#define V_tcp_sack_globalmaxholes VNET(tcp_sack_globalmaxholes)
#define V_tcp_sack_maxholes VNET(tcp_sack_maxholes)
#define V_tcp_sc_rst_sock_fail VNET(tcp_sc_rst_sock_fail)
#define V_tcp_sendspace VNET(tcp_sendspace)
#define V_tcp_udp_tunneling_overhead VNET(tcp_udp_tunneling_overhead)
#define V_tcp_udp_tunneling_port VNET(tcp_udp_tunneling_port)
#ifdef TCP_HHOOK
VNET_DECLARE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST + 1]);
#define V_tcp_hhh VNET(tcp_hhh)
#endif
void tcp_account_for_send(struct tcpcb *, uint32_t, uint8_t, uint8_t, bool);
int tcp_addoptions(struct tcpopt *, u_char *);
struct tcpcb *
tcp_close(struct tcpcb *);
void tcp_discardcb(struct tcpcb *);
void tcp_twstart(struct tcpcb *);
int tcp_ctloutput(struct socket *, struct sockopt *);
void tcp_fini(void *);
char *tcp_log_addrs(struct in_conninfo *, struct tcphdr *, const void *,
const void *);
char *tcp_log_vain(struct in_conninfo *, struct tcphdr *, const void *,
const void *);
int tcp_reass(struct tcpcb *, struct tcphdr *, tcp_seq *, int *,
struct mbuf *);
void tcp_reass_global_init(void);
void tcp_reass_flush(struct tcpcb *);
void tcp_dooptions(struct tcpopt *, u_char *, int, int);
void tcp_dropwithreset(struct mbuf *, struct tcphdr *,
struct tcpcb *, int, int);
void tcp_pulloutofband(struct socket *,
struct tcphdr *, struct mbuf *, int);
void tcp_xmit_timer(struct tcpcb *, int);
void tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
void cc_ack_received(struct tcpcb *tp, struct tcphdr *th,
uint16_t nsegs, uint16_t type);
void cc_conn_init(struct tcpcb *tp);
void cc_post_recovery(struct tcpcb *tp, struct tcphdr *th);
void cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos);
void cc_ecnpkt_handler_flags(struct tcpcb *tp, uint16_t flags, uint8_t iptos);
void cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type);
#ifdef TCP_HHOOK
void hhook_run_tcp_est_in(struct tcpcb *tp,
struct tcphdr *th, struct tcpopt *to);
#endif
int tcp_input(struct mbuf **, int *, int);
int tcp_autorcvbuf(struct mbuf *, struct tcphdr *, struct socket *,
struct tcpcb *, int);
int tcp_input_with_port(struct mbuf **, int *, int, uint16_t);
void tcp_do_segment(struct tcpcb *, struct mbuf *, struct tcphdr *, int,
int, uint8_t);
int register_tcp_functions(struct tcp_function_block *blk, int wait);
int register_tcp_functions_as_names(struct tcp_function_block *blk,
int wait, const char *names[], int *num_names);
int register_tcp_functions_as_name(struct tcp_function_block *blk,
const char *name, int wait);
int deregister_tcp_functions(struct tcp_function_block *blk, bool quiesce,
bool force);
struct tcp_function_block *find_and_ref_tcp_functions(struct tcp_function_set *fs);
int find_tcp_function_alias(struct tcp_function_block *blk, struct tcp_function_set *fs);
uint32_t tcp_get_srtt(struct tcpcb *tp, int granularity);
void tcp_switch_back_to_default(struct tcpcb *tp);
struct tcp_function_block *
find_and_ref_tcp_fb(struct tcp_function_block *fs);
int tcp_default_ctloutput(struct tcpcb *tp, struct sockopt *sopt);
int tcp_ctloutput_set(struct inpcb *inp, struct sockopt *sopt);
void tcp_log_socket_option(struct tcpcb *tp, uint32_t option_num,
uint32_t option_val, int err);
extern counter_u64_t tcp_inp_lro_direct_queue;
extern counter_u64_t tcp_inp_lro_wokeup_queue;
extern counter_u64_t tcp_inp_lro_compressed;
extern counter_u64_t tcp_inp_lro_locks_taken;
extern counter_u64_t tcp_extra_mbuf;
extern counter_u64_t tcp_would_have_but;
extern counter_u64_t tcp_comp_total;
extern counter_u64_t tcp_uncomp_total;
extern counter_u64_t tcp_bad_csums;
#ifdef TCP_SAD_DETECTION
/* Various SACK attack thresholds */
extern int32_t tcp_force_detection;
extern int32_t tcp_sad_limit;
extern int32_t tcp_sack_to_ack_thresh;
extern int32_t tcp_sack_to_move_thresh;
extern int32_t tcp_restoral_thresh;
extern int32_t tcp_sad_decay_val;
extern int32_t tcp_sad_pacing_interval;
extern int32_t tcp_sad_low_pps;
extern int32_t tcp_map_minimum;
extern int32_t tcp_attack_on_turns_on_logging;
#endif
extern uint32_t tcp_ack_war_time_window;
extern uint32_t tcp_ack_war_cnt;
/*
* Used by tcp_maxmtu() to communicate interface specific features
* and limits at the time of connection setup.
*/
struct tcp_ifcap {
int ifcap;
u_int tsomax;
u_int tsomaxsegcount;
u_int tsomaxsegsize;
};
uint32_t tcp_maxmtu(struct in_conninfo *, struct tcp_ifcap *);
uint32_t tcp_maxmtu6(struct in_conninfo *, struct tcp_ifcap *);
void tcp6_use_min_mtu(struct tcpcb *);
u_int tcp_maxseg(const struct tcpcb *);
u_int tcp_fixed_maxseg(const struct tcpcb *);
void tcp_mss_update(struct tcpcb *, int, int, struct hc_metrics_lite *,
struct tcp_ifcap *);
void tcp_mss(struct tcpcb *, int);
int tcp_mssopt(struct in_conninfo *);
struct tcpcb *
tcp_newtcpcb(struct inpcb *);
int tcp_default_output(struct tcpcb *);
void tcp_state_change(struct tcpcb *, int);
void tcp_respond(struct tcpcb *, void *,
struct tcphdr *, struct mbuf *, tcp_seq, tcp_seq, uint16_t);
bool tcp_twcheck(struct inpcb *, struct tcpopt *, struct tcphdr *,
struct mbuf *, int);
void tcp_setpersist(struct tcpcb *);
void tcp_record_dsack(struct tcpcb *tp, tcp_seq start, tcp_seq end, int tlp);
struct tcptemp *
tcpip_maketemplate(struct inpcb *);
void tcpip_fillheaders(struct inpcb *, uint16_t, void *, void *);
void tcp_timer_activate(struct tcpcb *, tt_which, u_int);
bool tcp_timer_active(struct tcpcb *, tt_which);
void tcp_timer_stop(struct tcpcb *);
int inp_to_cpuid(struct inpcb *inp);
/*
* All tcp_hc_* functions are IPv4 and IPv6 (via in_conninfo)
*/
void tcp_hc_init(void);
#ifdef VIMAGE
void tcp_hc_destroy(void);
#endif
void tcp_hc_get(struct in_conninfo *, struct hc_metrics_lite *);
uint32_t tcp_hc_getmtu(struct in_conninfo *);
void tcp_hc_updatemtu(struct in_conninfo *, uint32_t);
void tcp_hc_update(struct in_conninfo *, struct hc_metrics_lite *);
void cc_after_idle(struct tcpcb *tp);
extern struct protosw tcp_protosw; /* shared for TOE */
extern struct protosw tcp6_protosw; /* shared for TOE */
uint32_t tcp_new_ts_offset(struct in_conninfo *);
tcp_seq tcp_new_isn(struct in_conninfo *);
sackstatus_t
tcp_sack_doack(struct tcpcb *, struct tcpopt *, tcp_seq);
int tcp_dsack_block_exists(struct tcpcb *);
void tcp_update_dsack_list(struct tcpcb *, tcp_seq, tcp_seq);
void tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_laststart,
tcp_seq rcv_lastend);
void tcp_clean_dsack_blocks(struct tcpcb *tp);
void tcp_clean_sackreport(struct tcpcb *tp);
void tcp_sack_adjust(struct tcpcb *tp);
struct sackhole *tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt);
void tcp_do_prr_ack(struct tcpcb *, struct tcphdr *, struct tcpopt *,
sackstatus_t, u_int *);
void tcp_lost_retransmission(struct tcpcb *, struct tcphdr *);
void tcp_sack_partialack(struct tcpcb *, struct tcphdr *, u_int *);
void tcp_resend_sackholes(struct tcpcb *tp);
void tcp_free_sackholes(struct tcpcb *tp);
void tcp_sack_lost_retransmission(struct tcpcb *, struct tcphdr *);
int tcp_newreno(struct tcpcb *, struct tcphdr *);
int tcp_compute_pipe(struct tcpcb *);
uint32_t tcp_compute_initwnd(uint32_t);
void tcp_sndbuf_autoscale(struct tcpcb *, struct socket *, uint32_t);
int tcp_stats_sample_rollthedice(struct tcpcb *tp, void *seed_bytes,
size_t seed_len);
int tcp_can_enable_pacing(void);
int tcp_incr_dgp_pacing_cnt(void);
void tcp_dec_dgp_pacing_cnt(void);
void tcp_decrement_paced_conn(void);
void tcp_change_time_units(struct tcpcb *, int);
void tcp_handle_orphaned_packets(struct tcpcb *);
struct mbuf *
tcp_m_copym(struct mbuf *m, int32_t off0, int32_t *plen,
int32_t seglimit, int32_t segsize, struct sockbuf *sb, bool hw_tls);
int tcp_stats_init(void);
void tcp_log_end_status(struct tcpcb *tp, uint8_t status);
#ifdef TCP_REQUEST_TRK
void tcp_req_free_a_slot(struct tcpcb *tp, struct tcp_sendfile_track *ent);
struct tcp_sendfile_track *
tcp_req_find_a_req_that_is_completed_by(struct tcpcb *tp, tcp_seq th_ack, int *ip);
int tcp_req_check_for_comp(struct tcpcb *tp, tcp_seq ack_point);
int
tcp_req_is_entry_comp(struct tcpcb *tp, struct tcp_sendfile_track *ent, tcp_seq ack_point);
struct tcp_sendfile_track *
tcp_req_find_req_for_seq(struct tcpcb *tp, tcp_seq seq);
void
tcp_req_log_req_info(struct tcpcb *tp,
struct tcp_sendfile_track *req, uint16_t slot,
uint8_t val, uint64_t offset, uint64_t nbytes);
uint32_t
tcp_estimate_tls_overhead(struct socket *so, uint64_t tls_usr_bytes);
void
tcp_req_alloc_req(struct tcpcb *tp, union tcp_log_userdata *user,
uint64_t ts);
struct tcp_sendfile_track *
tcp_req_alloc_req_full(struct tcpcb *tp, struct tcp_snd_req *req, uint64_t ts, int rec_dups);
#endif
#ifdef TCP_ACCOUNTING
int tcp_do_ack_accounting(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to, uint32_t tiwin, int mss);
#endif
static inline void
tcp_lro_features_off(struct tcpcb *tp)
{
tp->t_flags2 &= ~(TF2_SUPPORTS_MBUFQ|
TF2_MBUF_QUEUE_READY|
TF2_DONT_SACK_QUEUE|
TF2_MBUF_ACKCMP|
TF2_MBUF_L_ACKS);
}
static inline void
tcp_fields_to_host(struct tcphdr *th)
{
th->th_seq = ntohl(th->th_seq);
th->th_ack = ntohl(th->th_ack);
th->th_win = ntohs(th->th_win);
th->th_urp = ntohs(th->th_urp);
}
static inline void
tcp_fields_to_net(struct tcphdr *th)
{
th->th_seq = htonl(th->th_seq);
th->th_ack = htonl(th->th_ack);
th->th_win = htons(th->th_win);
th->th_urp = htons(th->th_urp);
}
#endif /* _KERNEL */
#endif /* _NETINET_TCP_VAR_H_ */