1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-04 12:52:15 +00:00
freebsd/sys/kern/kern_thr.c
Marcel Moolenaar fdcac92868 Assign thread IDs to kernel threads. The purpose of the thread ID (tid)
is twofold:
1. When a 1:1 or M:N threaded process dumps core, we need to put the
   register state of each of its kernel threads in the core file.
   This can only be done by differentiating the pid field in the
   respective note. For this we need the tid.
2. When thread support is present for remote debugging the kernel
   with gdb(1), threads need to be identified by an integer due to
   limitations in the remote protocol. This requires having a tid.

To minimize the impact of having thread IDs, threads that are created
as part of a fork (i.e. the initial thread in a process) will inherit
the process ID (i.e. tid=pid). Subsequent threads will have IDs larger
than PID_MAX to avoid interference with the pid allocation algorithm.
The assignment of tids is handled by thread_new_tid().

The thread ID allocation algorithm has been written with 3 assumptions
in mind:
1. IDs need to be created as fast a possible,
2. Reuse of IDs may happen instantaneously,
3. Someone else will write a better algorithm.
2004-04-03 15:59:13 +00:00

316 lines
7.2 KiB
C

/*
* Copyright (c) 2003, Jeffrey Roberson <jeff@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/sysent.h>
#include <sys/systm.h>
#include <sys/sysproto.h>
#include <sys/signalvar.h>
#include <sys/ucontext.h>
#include <sys/thr.h>
#include <machine/frame.h>
/*
* Back end support functions.
*/
void
thr_exit1(void)
{
struct ksegrp *kg;
struct thread *td;
struct kse *ke;
struct proc *p;
td = curthread;
p = td->td_proc;
kg = td->td_ksegrp;
ke = td->td_kse;
mtx_assert(&sched_lock, MA_OWNED);
PROC_LOCK_ASSERT(p, MA_OWNED);
KASSERT(!mtx_owned(&Giant), ("dying thread owns giant"));
/*
* Shutting down last thread in the proc. This will actually
* call exit() in the trampoline when it returns.
*/
if (p->p_numthreads == 1) {
PROC_UNLOCK(p);
return;
}
/*
* XXX Undelivered process wide signals should be reposted to the
* proc.
*/
/* Clean up cpu resources. */
cpu_thread_exit(td);
/* Unlink the thread from the process and kseg. */
thread_unlink(td);
ke->ke_state = KES_UNQUEUED;
ke->ke_thread = NULL;
kse_unlink(ke);
sched_exit_kse(TAILQ_NEXT(ke, ke_kglist), ke);
/*
* If we were stopped while waiting for all threads to exit and this
* is the last thread wakeup the exiting thread.
*/
if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE)
if (p->p_numthreads == 1)
thread_unsuspend_one(p->p_singlethread);
PROC_UNLOCK(p);
td->td_kse = NULL;
td->td_state = TDS_INACTIVE;
#if 0
td->td_proc = NULL;
#endif
td->td_ksegrp = NULL;
td->td_last_kse = NULL;
sched_exit_thread(TAILQ_NEXT(td, td_kglist), td);
thread_stash(td);
cpu_throw(td, choosethread());
}
#define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
/*
* System call interface.
*/
int
thr_create(struct thread *td, struct thr_create_args *uap)
/* ucontext_t *ctx, thr_id_t *id, int flags */
{
struct kse *ke0;
struct thread *td0;
ucontext_t ctx;
int error;
if ((error = copyin(uap->ctx, &ctx, sizeof(ctx))))
return (error);
/* Initialize our td. */
td0 = thread_alloc();
td0->td_tid = thread_new_tid();
/*
* Try the copyout as soon as we allocate the td so we don't have to
* tear things down in a failure case below.
*/
if ((error = copyout(&td0, uap->id, sizeof(thr_id_t)))) {
thread_free(td0);
return (error);
}
bzero(&td0->td_startzero,
(unsigned)RANGEOF(struct thread, td_startzero, td_endzero));
bcopy(&td->td_startcopy, &td0->td_startcopy,
(unsigned) RANGEOF(struct thread, td_startcopy, td_endcopy));
td0->td_proc = td->td_proc;
PROC_LOCK(td->td_proc);
td0->td_sigmask = td->td_sigmask;
PROC_UNLOCK(td->td_proc);
td0->td_ucred = crhold(td->td_ucred);
/* Initialize our kse structure. */
ke0 = kse_alloc();
bzero(&ke0->ke_startzero,
RANGEOF(struct kse, ke_startzero, ke_endzero));
/* Set up our machine context. */
cpu_set_upcall(td0, td);
error = set_mcontext(td0, &ctx.uc_mcontext);
if (error != 0) {
kse_free(ke0);
thread_free(td0);
goto out;
}
/* Link the thread and kse into the ksegrp and make it runnable. */
mtx_lock_spin(&sched_lock);
thread_link(td0, td->td_ksegrp);
kse_link(ke0, td->td_ksegrp);
/* Bind this thread and kse together. */
td0->td_kse = ke0;
ke0->ke_thread = td0;
sched_fork_kse(td->td_kse, ke0);
sched_fork_thread(td, td0);
TD_SET_CAN_RUN(td0);
if ((uap->flags & THR_SUSPENDED) == 0)
setrunqueue(td0);
mtx_unlock_spin(&sched_lock);
out:
return (error);
}
int
thr_self(struct thread *td, struct thr_self_args *uap)
/* thr_id_t *id */
{
int error;
if ((error = copyout(&td, uap->id, sizeof(thr_id_t))))
return (error);
return (0);
}
int
thr_exit(struct thread *td, struct thr_exit_args *uap)
/* NULL */
{
struct proc *p;
p = td->td_proc;
PROC_LOCK(p);
mtx_lock_spin(&sched_lock);
/*
* This unlocks proc and doesn't return unless this is the last
* thread.
*/
thr_exit1();
mtx_unlock_spin(&sched_lock);
return (0);
}
int
thr_kill(struct thread *td, struct thr_kill_args *uap)
/* thr_id_t id, int sig */
{
struct thread *ttd;
struct proc *p;
int error;
p = td->td_proc;
error = 0;
PROC_LOCK(p);
FOREACH_THREAD_IN_PROC(p, ttd) {
if (ttd == uap->id)
break;
}
if (ttd == NULL) {
error = ESRCH;
goto out;
}
if (uap->sig == 0)
goto out;
if (!_SIG_VALID(uap->sig)) {
error = EINVAL;
goto out;
}
tdsignal(ttd, uap->sig, SIGTARGET_TD);
out:
PROC_UNLOCK(p);
return (error);
}
int
thr_suspend(struct thread *td, struct thr_suspend_args *uap)
/* const struct timespec *timeout */
{
struct timespec ts;
struct timeval tv;
int error;
int hz;
hz = 0;
error = 0;
if (uap->timeout != NULL) {
error = copyin((const void *)uap->timeout, (void *)&ts,
sizeof(struct timespec));
if (error != 0)
return (error);
if (ts.tv_nsec < 0 || ts.tv_nsec > 1000000000)
return (EINVAL);
if (ts.tv_sec == 0 && ts.tv_nsec == 0)
return (ETIMEDOUT);
TIMESPEC_TO_TIMEVAL(&tv, &ts);
hz = tvtohz(&tv);
}
PROC_LOCK(td->td_proc);
mtx_lock_spin(&sched_lock);
if ((td->td_flags & TDF_THRWAKEUP) == 0) {
mtx_unlock_spin(&sched_lock);
error = msleep((void *)td, &td->td_proc->p_mtx,
td->td_priority | PCATCH, "lthr", hz);
mtx_lock_spin(&sched_lock);
}
td->td_flags &= ~TDF_THRWAKEUP;
mtx_unlock_spin(&sched_lock);
PROC_UNLOCK(td->td_proc);
return (error == EWOULDBLOCK ? ETIMEDOUT : error);
}
int
thr_wake(struct thread *td, struct thr_wake_args *uap)
/* thr_id_t id */
{
struct thread *tdsleeper, *ttd;
tdsleeper = ((struct thread *)uap->id);
PROC_LOCK(tdsleeper->td_proc);
FOREACH_THREAD_IN_PROC(tdsleeper->td_proc, ttd) {
if (ttd == tdsleeper)
break;
}
if (ttd == NULL) {
PROC_UNLOCK(tdsleeper->td_proc);
return (ESRCH);
}
mtx_lock_spin(&sched_lock);
tdsleeper->td_flags |= TDF_THRWAKEUP;
mtx_unlock_spin(&sched_lock);
wakeup_one((void *)tdsleeper);
PROC_UNLOCK(tdsleeper->td_proc);
return (0);
}