1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-07 13:14:51 +00:00
freebsd/sys/mips/idt/if_kr.c
Marius Strobl 4b7ec27007 - There's no need to overwrite the default device method with the default
one. Interestingly, these are actually the default for quite some time
  (bus_generic_driver_added(9) since r52045 and bus_generic_print_child(9)
  since r52045) but even recently added device drivers do this unnecessarily.
  Discussed with: jhb, marcel
- While at it, use DEVMETHOD_END.
  Discussed with: jhb
- Also while at it, use __FBSDID.
2011-11-22 21:28:20 +00:00

1611 lines
38 KiB
C

/*-
* Copyright (C) 2007
* Oleksandr Tymoshenko <gonzo@freebsd.org>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $Id: $
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* RC32434 Ethernet interface driver
*/
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/taskqueue.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/bpf.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
MODULE_DEPEND(kr, ether, 1, 1, 1);
MODULE_DEPEND(kr, miibus, 1, 1, 1);
#include "miibus_if.h"
#include <mips/idt/if_krreg.h>
#define KR_DEBUG
static int kr_attach(device_t);
static int kr_detach(device_t);
static int kr_ifmedia_upd(struct ifnet *);
static void kr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int kr_ioctl(struct ifnet *, u_long, caddr_t);
static void kr_init(void *);
static void kr_init_locked(struct kr_softc *);
static void kr_link_task(void *, int);
static int kr_miibus_readreg(device_t, int, int);
static void kr_miibus_statchg(device_t);
static int kr_miibus_writereg(device_t, int, int, int);
static int kr_probe(device_t);
static void kr_reset(struct kr_softc *);
static int kr_resume(device_t);
static int kr_rx_ring_init(struct kr_softc *);
static int kr_tx_ring_init(struct kr_softc *);
static int kr_shutdown(device_t);
static void kr_start(struct ifnet *);
static void kr_start_locked(struct ifnet *);
static void kr_stop(struct kr_softc *);
static int kr_suspend(device_t);
static void kr_rx(struct kr_softc *);
static void kr_tx(struct kr_softc *);
static void kr_rx_intr(void *);
static void kr_tx_intr(void *);
static void kr_rx_und_intr(void *);
static void kr_tx_ovr_intr(void *);
static void kr_tick(void *);
static void kr_dmamap_cb(void *, bus_dma_segment_t *, int, int);
static int kr_dma_alloc(struct kr_softc *);
static void kr_dma_free(struct kr_softc *);
static int kr_newbuf(struct kr_softc *, int);
static __inline void kr_fixup_rx(struct mbuf *);
static device_method_t kr_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, kr_probe),
DEVMETHOD(device_attach, kr_attach),
DEVMETHOD(device_detach, kr_detach),
DEVMETHOD(device_suspend, kr_suspend),
DEVMETHOD(device_resume, kr_resume),
DEVMETHOD(device_shutdown, kr_shutdown),
/* MII interface */
DEVMETHOD(miibus_readreg, kr_miibus_readreg),
DEVMETHOD(miibus_writereg, kr_miibus_writereg),
DEVMETHOD(miibus_statchg, kr_miibus_statchg),
DEVMETHOD_END
};
static driver_t kr_driver = {
"kr",
kr_methods,
sizeof(struct kr_softc)
};
static devclass_t kr_devclass;
DRIVER_MODULE(kr, obio, kr_driver, kr_devclass, 0, 0);
DRIVER_MODULE(miibus, kr, miibus_driver, miibus_devclass, 0, 0);
static int
kr_probe(device_t dev)
{
device_set_desc(dev, "RC32434 Ethernet interface");
return (0);
}
static int
kr_attach(device_t dev)
{
uint8_t eaddr[ETHER_ADDR_LEN];
struct ifnet *ifp;
struct kr_softc *sc;
int error = 0, rid;
int unit;
sc = device_get_softc(dev);
unit = device_get_unit(dev);
sc->kr_dev = dev;
mtx_init(&sc->kr_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->kr_stat_callout, &sc->kr_mtx, 0);
TASK_INIT(&sc->kr_link_task, 0, kr_link_task, sc);
pci_enable_busmaster(dev);
/* Map control/status registers. */
sc->kr_rid = 0;
sc->kr_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->kr_rid,
RF_ACTIVE);
if (sc->kr_res == NULL) {
device_printf(dev, "couldn't map memory\n");
error = ENXIO;
goto fail;
}
sc->kr_btag = rman_get_bustag(sc->kr_res);
sc->kr_bhandle = rman_get_bushandle(sc->kr_res);
/* Allocate interrupts */
rid = 0;
sc->kr_rx_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, KR_RX_IRQ,
KR_RX_IRQ, 1, RF_SHAREABLE | RF_ACTIVE);
if (sc->kr_rx_irq == NULL) {
device_printf(dev, "couldn't map rx interrupt\n");
error = ENXIO;
goto fail;
}
rid = 0;
sc->kr_tx_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, KR_TX_IRQ,
KR_TX_IRQ, 1, RF_SHAREABLE | RF_ACTIVE);
if (sc->kr_tx_irq == NULL) {
device_printf(dev, "couldn't map tx interrupt\n");
error = ENXIO;
goto fail;
}
rid = 0;
sc->kr_rx_und_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
KR_RX_UND_IRQ, KR_RX_UND_IRQ, 1, RF_SHAREABLE | RF_ACTIVE);
if (sc->kr_rx_und_irq == NULL) {
device_printf(dev, "couldn't map rx underrun interrupt\n");
error = ENXIO;
goto fail;
}
rid = 0;
sc->kr_tx_ovr_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
KR_TX_OVR_IRQ, KR_TX_OVR_IRQ, 1, RF_SHAREABLE | RF_ACTIVE);
if (sc->kr_tx_ovr_irq == NULL) {
device_printf(dev, "couldn't map tx overrun interrupt\n");
error = ENXIO;
goto fail;
}
/* Allocate ifnet structure. */
ifp = sc->kr_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "couldn't allocate ifnet structure\n");
error = ENOSPC;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = kr_ioctl;
ifp->if_start = kr_start;
ifp->if_init = kr_init;
/* XXX: add real size */
IFQ_SET_MAXLEN(&ifp->if_snd, 9);
ifp->if_snd.ifq_maxlen = 9;
IFQ_SET_READY(&ifp->if_snd);
ifp->if_capenable = ifp->if_capabilities;
eaddr[0] = 0x00;
eaddr[1] = 0x0C;
eaddr[2] = 0x42;
eaddr[3] = 0x09;
eaddr[4] = 0x5E;
eaddr[5] = 0x6B;
if (kr_dma_alloc(sc) != 0) {
error = ENXIO;
goto fail;
}
/* TODO: calculate prescale */
CSR_WRITE_4(sc, KR_ETHMCP, (165000000 / (1250000 + 1)) & ~1);
CSR_WRITE_4(sc, KR_MIIMCFG, KR_MIIMCFG_R);
DELAY(1000);
CSR_WRITE_4(sc, KR_MIIMCFG, 0);
/* Do MII setup. */
error = mii_attach(dev, &sc->kr_miibus, ifp, kr_ifmedia_upd,
kr_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
/* Call MI attach routine. */
ether_ifattach(ifp, eaddr);
/* Hook interrupt last to avoid having to lock softc */
error = bus_setup_intr(dev, sc->kr_rx_irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, kr_rx_intr, sc, &sc->kr_rx_intrhand);
if (error) {
device_printf(dev, "couldn't set up rx irq\n");
ether_ifdetach(ifp);
goto fail;
}
error = bus_setup_intr(dev, sc->kr_tx_irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, kr_tx_intr, sc, &sc->kr_tx_intrhand);
if (error) {
device_printf(dev, "couldn't set up tx irq\n");
ether_ifdetach(ifp);
goto fail;
}
error = bus_setup_intr(dev, sc->kr_rx_und_irq,
INTR_TYPE_NET | INTR_MPSAFE, NULL, kr_rx_und_intr, sc,
&sc->kr_rx_und_intrhand);
if (error) {
device_printf(dev, "couldn't set up rx underrun irq\n");
ether_ifdetach(ifp);
goto fail;
}
error = bus_setup_intr(dev, sc->kr_tx_ovr_irq,
INTR_TYPE_NET | INTR_MPSAFE, NULL, kr_tx_ovr_intr, sc,
&sc->kr_tx_ovr_intrhand);
if (error) {
device_printf(dev, "couldn't set up tx overrun irq\n");
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error)
kr_detach(dev);
return (error);
}
static int
kr_detach(device_t dev)
{
struct kr_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->kr_ifp;
KASSERT(mtx_initialized(&sc->kr_mtx), ("vr mutex not initialized"));
/* These should only be active if attach succeeded */
if (device_is_attached(dev)) {
KR_LOCK(sc);
sc->kr_detach = 1;
kr_stop(sc);
KR_UNLOCK(sc);
taskqueue_drain(taskqueue_swi, &sc->kr_link_task);
ether_ifdetach(ifp);
}
if (sc->kr_miibus)
device_delete_child(dev, sc->kr_miibus);
bus_generic_detach(dev);
if (sc->kr_rx_intrhand)
bus_teardown_intr(dev, sc->kr_rx_irq, sc->kr_rx_intrhand);
if (sc->kr_rx_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->kr_rx_irq);
if (sc->kr_tx_intrhand)
bus_teardown_intr(dev, sc->kr_tx_irq, sc->kr_tx_intrhand);
if (sc->kr_tx_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->kr_tx_irq);
if (sc->kr_rx_und_intrhand)
bus_teardown_intr(dev, sc->kr_rx_und_irq,
sc->kr_rx_und_intrhand);
if (sc->kr_rx_und_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->kr_rx_und_irq);
if (sc->kr_tx_ovr_intrhand)
bus_teardown_intr(dev, sc->kr_tx_ovr_irq,
sc->kr_tx_ovr_intrhand);
if (sc->kr_tx_ovr_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->kr_tx_ovr_irq);
if (sc->kr_res)
bus_release_resource(dev, SYS_RES_MEMORY, sc->kr_rid,
sc->kr_res);
if (ifp)
if_free(ifp);
kr_dma_free(sc);
mtx_destroy(&sc->kr_mtx);
return (0);
}
static int
kr_suspend(device_t dev)
{
panic("%s", __func__);
return 0;
}
static int
kr_resume(device_t dev)
{
panic("%s", __func__);
return 0;
}
static int
kr_shutdown(device_t dev)
{
struct kr_softc *sc;
sc = device_get_softc(dev);
KR_LOCK(sc);
kr_stop(sc);
KR_UNLOCK(sc);
return (0);
}
static int
kr_miibus_readreg(device_t dev, int phy, int reg)
{
struct kr_softc * sc = device_get_softc(dev);
int i, result;
i = KR_MII_TIMEOUT;
while ((CSR_READ_4(sc, KR_MIIMIND) & KR_MIIMIND_BSY) && i)
i--;
if (i == 0)
device_printf(dev, "phy mii is busy %d:%d\n", phy, reg);
CSR_WRITE_4(sc, KR_MIIMADDR, (phy << 8) | reg);
i = KR_MII_TIMEOUT;
while ((CSR_READ_4(sc, KR_MIIMIND) & KR_MIIMIND_BSY) && i)
i--;
if (i == 0)
device_printf(dev, "phy mii is busy %d:%d\n", phy, reg);
CSR_WRITE_4(sc, KR_MIIMCMD, KR_MIIMCMD_RD);
i = KR_MII_TIMEOUT;
while ((CSR_READ_4(sc, KR_MIIMIND) & KR_MIIMIND_BSY) && i)
i--;
if (i == 0)
device_printf(dev, "phy mii read is timed out %d:%d\n", phy,
reg);
if (CSR_READ_4(sc, KR_MIIMIND) & KR_MIIMIND_NV)
printf("phy mii readreg failed %d:%d: data not valid\n",
phy, reg);
result = CSR_READ_4(sc , KR_MIIMRDD);
CSR_WRITE_4(sc, KR_MIIMCMD, 0);
return (result);
}
static int
kr_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct kr_softc * sc = device_get_softc(dev);
int i;
i = KR_MII_TIMEOUT;
while ((CSR_READ_4(sc, KR_MIIMIND) & KR_MIIMIND_BSY) && i)
i--;
if (i == 0)
device_printf(dev, "phy mii is busy %d:%d\n", phy, reg);
CSR_WRITE_4(sc, KR_MIIMADDR, (phy << 8) | reg);
i = KR_MII_TIMEOUT;
while ((CSR_READ_4(sc, KR_MIIMIND) & KR_MIIMIND_BSY) && i)
i--;
if (i == 0)
device_printf(dev, "phy mii is busy %d:%d\n", phy, reg);
CSR_WRITE_4(sc, KR_MIIMWTD, data);
i = KR_MII_TIMEOUT;
while ((CSR_READ_4(sc, KR_MIIMIND) & KR_MIIMIND_BSY) && i)
i--;
if (i == 0)
device_printf(dev, "phy mii is busy %d:%d\n", phy, reg);
return (0);
}
static void
kr_miibus_statchg(device_t dev)
{
struct kr_softc *sc;
sc = device_get_softc(dev);
taskqueue_enqueue(taskqueue_swi, &sc->kr_link_task);
}
static void
kr_link_task(void *arg, int pending)
{
struct kr_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
/* int lfdx, mfdx; */
sc = (struct kr_softc *)arg;
KR_LOCK(sc);
mii = device_get_softc(sc->kr_miibus);
ifp = sc->kr_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
KR_UNLOCK(sc);
return;
}
if (mii->mii_media_status & IFM_ACTIVE) {
if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
sc->kr_link_status = 1;
} else
sc->kr_link_status = 0;
KR_UNLOCK(sc);
}
static void
kr_reset(struct kr_softc *sc)
{
int i;
CSR_WRITE_4(sc, KR_ETHINTFC, 0);
for (i = 0; i < KR_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_4(sc, KR_ETHINTFC) & ETH_INTFC_RIP))
break;
}
if (i == KR_TIMEOUT)
device_printf(sc->kr_dev, "reset time out\n");
}
static void
kr_init(void *xsc)
{
struct kr_softc *sc = xsc;
KR_LOCK(sc);
kr_init_locked(sc);
KR_UNLOCK(sc);
}
static void
kr_init_locked(struct kr_softc *sc)
{
struct ifnet *ifp = sc->kr_ifp;
struct mii_data *mii;
KR_LOCK_ASSERT(sc);
mii = device_get_softc(sc->kr_miibus);
kr_stop(sc);
kr_reset(sc);
CSR_WRITE_4(sc, KR_ETHINTFC, ETH_INTFC_EN);
/* Init circular RX list. */
if (kr_rx_ring_init(sc) != 0) {
device_printf(sc->kr_dev,
"initialization failed: no memory for rx buffers\n");
kr_stop(sc);
return;
}
/* Init tx descriptors. */
kr_tx_ring_init(sc);
KR_DMA_WRITE_REG(KR_DMA_RXCHAN, DMA_S, 0);
KR_DMA_WRITE_REG(KR_DMA_RXCHAN, DMA_NDPTR, 0);
KR_DMA_WRITE_REG(KR_DMA_RXCHAN, DMA_DPTR,
sc->kr_rdata.kr_rx_ring_paddr);
KR_DMA_CLEARBITS_REG(KR_DMA_RXCHAN, DMA_SM,
DMA_SM_H | DMA_SM_E | DMA_SM_D) ;
KR_DMA_WRITE_REG(KR_DMA_TXCHAN, DMA_S, 0);
KR_DMA_WRITE_REG(KR_DMA_TXCHAN, DMA_NDPTR, 0);
KR_DMA_WRITE_REG(KR_DMA_TXCHAN, DMA_DPTR, 0);
KR_DMA_CLEARBITS_REG(KR_DMA_TXCHAN, DMA_SM,
DMA_SM_F | DMA_SM_E);
/* Accept only packets destined for THIS Ethernet device address */
CSR_WRITE_4(sc, KR_ETHARC, 1);
/*
* Set all Ethernet address registers to the same initial values
* set all four addresses to 66-88-aa-cc-dd-ee
*/
CSR_WRITE_4(sc, KR_ETHSAL0, 0x42095E6B);
CSR_WRITE_4(sc, KR_ETHSAH0, 0x0000000C);
CSR_WRITE_4(sc, KR_ETHSAL1, 0x42095E6B);
CSR_WRITE_4(sc, KR_ETHSAH1, 0x0000000C);
CSR_WRITE_4(sc, KR_ETHSAL2, 0x42095E6B);
CSR_WRITE_4(sc, KR_ETHSAH2, 0x0000000C);
CSR_WRITE_4(sc, KR_ETHSAL3, 0x42095E6B);
CSR_WRITE_4(sc, KR_ETHSAH3, 0x0000000C);
CSR_WRITE_4(sc, KR_ETHMAC2,
KR_ETH_MAC2_PEN | KR_ETH_MAC2_CEN | KR_ETH_MAC2_FD);
CSR_WRITE_4(sc, KR_ETHIPGT, KR_ETHIPGT_FULL_DUPLEX);
CSR_WRITE_4(sc, KR_ETHIPGR, 0x12); /* minimum value */
CSR_WRITE_4(sc, KR_MIIMCFG, KR_MIIMCFG_R);
DELAY(1000);
CSR_WRITE_4(sc, KR_MIIMCFG, 0);
/* TODO: calculate prescale */
CSR_WRITE_4(sc, KR_ETHMCP, (165000000 / (1250000 + 1)) & ~1);
/* FIFO Tx threshold level */
CSR_WRITE_4(sc, KR_ETHFIFOTT, 0x30);
CSR_WRITE_4(sc, KR_ETHMAC1, KR_ETH_MAC1_RE);
sc->kr_link_status = 0;
mii_mediachg(mii);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->kr_stat_callout, hz, kr_tick, sc);
}
static void
kr_start(struct ifnet *ifp)
{
struct kr_softc *sc;
sc = ifp->if_softc;
KR_LOCK(sc);
kr_start_locked(ifp);
KR_UNLOCK(sc);
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int
kr_encap(struct kr_softc *sc, struct mbuf **m_head)
{
struct kr_txdesc *txd;
struct kr_desc *desc, *prev_desc;
bus_dma_segment_t txsegs[KR_MAXFRAGS];
uint32_t link_addr;
int error, i, nsegs, prod, si, prev_prod;
KR_LOCK_ASSERT(sc);
prod = sc->kr_cdata.kr_tx_prod;
txd = &sc->kr_cdata.kr_txdesc[prod];
error = bus_dmamap_load_mbuf_sg(sc->kr_cdata.kr_tx_tag, txd->tx_dmamap,
*m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
if (error == EFBIG) {
panic("EFBIG");
} else if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
/* Check number of available descriptors. */
if (sc->kr_cdata.kr_tx_cnt + nsegs >= (KR_TX_RING_CNT - 1)) {
bus_dmamap_unload(sc->kr_cdata.kr_tx_tag, txd->tx_dmamap);
return (ENOBUFS);
}
txd->tx_m = *m_head;
bus_dmamap_sync(sc->kr_cdata.kr_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_PREWRITE);
si = prod;
/*
* Make a list of descriptors for this packet. DMA controller will
* walk through it while kr_link is not zero. The last one should
* have COF flag set, to pickup next chain from NDPTR
*/
prev_prod = prod;
desc = prev_desc = NULL;
for (i = 0; i < nsegs; i++) {
desc = &sc->kr_rdata.kr_tx_ring[prod];
desc->kr_ctl = KR_DMASIZE(txsegs[i].ds_len) | KR_CTL_IOF;
if (i == 0)
desc->kr_devcs = KR_DMATX_DEVCS_FD;
desc->kr_ca = txsegs[i].ds_addr;
desc->kr_link = 0;
/* link with previous descriptor */
if (prev_desc)
prev_desc->kr_link = KR_TX_RING_ADDR(sc, prod);
sc->kr_cdata.kr_tx_cnt++;
prev_desc = desc;
KR_INC(prod, KR_TX_RING_CNT);
}
/*
* Set COF for last descriptor and mark last fragment with LD flag
*/
if (desc) {
desc->kr_ctl |= KR_CTL_COF;
desc->kr_devcs |= KR_DMATX_DEVCS_LD;
}
/* Update producer index. */
sc->kr_cdata.kr_tx_prod = prod;
/* Sync descriptors. */
bus_dmamap_sync(sc->kr_cdata.kr_tx_ring_tag,
sc->kr_cdata.kr_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Start transmitting */
/* Check if new list is queued in NDPTR */
if (KR_DMA_READ_REG(KR_DMA_TXCHAN, DMA_NDPTR) == 0) {
/* NDPTR is not busy - start new list */
KR_DMA_WRITE_REG(KR_DMA_TXCHAN, DMA_NDPTR,
KR_TX_RING_ADDR(sc, si));
}
else {
link_addr = KR_TX_RING_ADDR(sc, si);
/* Get previous descriptor */
si = (si + KR_TX_RING_CNT - 1) % KR_TX_RING_CNT;
desc = &sc->kr_rdata.kr_tx_ring[si];
desc->kr_link = link_addr;
}
return (0);
}
static void
kr_start_locked(struct ifnet *ifp)
{
struct kr_softc *sc;
struct mbuf *m_head;
int enq;
sc = ifp->if_softc;
KR_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || sc->kr_link_status == 0 )
return;
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
sc->kr_cdata.kr_tx_cnt < KR_TX_RING_CNT - 2; ) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (kr_encap(sc, &m_head)) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
enq++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
ETHER_BPF_MTAP(ifp, m_head);
}
}
static void
kr_stop(struct kr_softc *sc)
{
struct ifnet *ifp;
KR_LOCK_ASSERT(sc);
ifp = sc->kr_ifp;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
callout_stop(&sc->kr_stat_callout);
/* mask out RX interrupts */
KR_DMA_SETBITS_REG(KR_DMA_RXCHAN, DMA_SM,
DMA_SM_D | DMA_SM_H | DMA_SM_E);
/* mask out TX interrupts */
KR_DMA_SETBITS_REG(KR_DMA_TXCHAN, DMA_SM,
DMA_SM_F | DMA_SM_E);
/* Abort RX DMA transactions */
if (KR_DMA_READ_REG(KR_DMA_RXCHAN, DMA_C) & DMA_C_R) {
/* Set ABORT bit if trunsuction is in progress */
KR_DMA_WRITE_REG(KR_DMA_RXCHAN, DMA_C, DMA_C_ABORT);
/* XXX: Add timeout */
while ((KR_DMA_READ_REG(KR_DMA_RXCHAN, DMA_S) & DMA_S_H) == 0)
DELAY(10);
KR_DMA_WRITE_REG(KR_DMA_RXCHAN, DMA_S, 0);
}
KR_DMA_WRITE_REG(KR_DMA_RXCHAN, DMA_DPTR, 0);
KR_DMA_WRITE_REG(KR_DMA_RXCHAN, DMA_NDPTR, 0);
/* Abort TX DMA transactions */
if (KR_DMA_READ_REG(KR_DMA_TXCHAN, DMA_C) & DMA_C_R) {
/* Set ABORT bit if trunsuction is in progress */
KR_DMA_WRITE_REG(KR_DMA_TXCHAN, DMA_C, DMA_C_ABORT);
/* XXX: Add timeout */
while ((KR_DMA_READ_REG(KR_DMA_TXCHAN, DMA_S) & DMA_S_H) == 0)
DELAY(10);
KR_DMA_WRITE_REG(KR_DMA_TXCHAN, DMA_S, 0);
}
KR_DMA_WRITE_REG(KR_DMA_TXCHAN, DMA_DPTR, 0);
KR_DMA_WRITE_REG(KR_DMA_TXCHAN, DMA_NDPTR, 0);
CSR_WRITE_4(sc, KR_ETHINTFC, 0);
}
static int
kr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct kr_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int error;
switch (command) {
case SIOCSIFFLAGS:
#if 0
KR_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if ((ifp->if_flags ^ sc->kr_if_flags) &
(IFF_PROMISC | IFF_ALLMULTI))
kr_set_filter(sc);
} else {
if (sc->kr_detach == 0)
kr_init_locked(sc);
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
kr_stop(sc);
}
sc->kr_if_flags = ifp->if_flags;
KR_UNLOCK(sc);
#endif
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
#if 0
KR_LOCK(sc);
kr_set_filter(sc);
KR_UNLOCK(sc);
#endif
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->kr_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
case SIOCSIFCAP:
error = 0;
#if 0
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if ((mask & IFCAP_HWCSUM) != 0) {
ifp->if_capenable ^= IFCAP_HWCSUM;
if ((IFCAP_HWCSUM & ifp->if_capenable) &&
(IFCAP_HWCSUM & ifp->if_capabilities))
ifp->if_hwassist = KR_CSUM_FEATURES;
else
ifp->if_hwassist = 0;
}
if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if (IFCAP_VLAN_HWTAGGING & ifp->if_capenable &&
IFCAP_VLAN_HWTAGGING & ifp->if_capabilities &&
ifp->if_drv_flags & IFF_DRV_RUNNING) {
KR_LOCK(sc);
kr_vlan_setup(sc);
KR_UNLOCK(sc);
}
}
VLAN_CAPABILITIES(ifp);
#endif
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
/*
* Set media options.
*/
static int
kr_ifmedia_upd(struct ifnet *ifp)
{
struct kr_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int error;
sc = ifp->if_softc;
KR_LOCK(sc);
mii = device_get_softc(sc->kr_miibus);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
error = mii_mediachg(mii);
KR_UNLOCK(sc);
return (error);
}
/*
* Report current media status.
*/
static void
kr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct kr_softc *sc = ifp->if_softc;
struct mii_data *mii;
mii = device_get_softc(sc->kr_miibus);
KR_LOCK(sc);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
KR_UNLOCK(sc);
}
struct kr_dmamap_arg {
bus_addr_t kr_busaddr;
};
static void
kr_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct kr_dmamap_arg *ctx;
if (error != 0)
return;
ctx = arg;
ctx->kr_busaddr = segs[0].ds_addr;
}
static int
kr_dma_alloc(struct kr_softc *sc)
{
struct kr_dmamap_arg ctx;
struct kr_txdesc *txd;
struct kr_rxdesc *rxd;
int error, i;
/* Create parent DMA tag. */
error = bus_dma_tag_create(
bus_get_dma_tag(sc->kr_dev), /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->kr_cdata.kr_parent_tag);
if (error != 0) {
device_printf(sc->kr_dev, "failed to create parent DMA tag\n");
goto fail;
}
/* Create tag for Tx ring. */
error = bus_dma_tag_create(
sc->kr_cdata.kr_parent_tag, /* parent */
KR_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
KR_TX_RING_SIZE, /* maxsize */
1, /* nsegments */
KR_TX_RING_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->kr_cdata.kr_tx_ring_tag);
if (error != 0) {
device_printf(sc->kr_dev, "failed to create Tx ring DMA tag\n");
goto fail;
}
/* Create tag for Rx ring. */
error = bus_dma_tag_create(
sc->kr_cdata.kr_parent_tag, /* parent */
KR_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
KR_RX_RING_SIZE, /* maxsize */
1, /* nsegments */
KR_RX_RING_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->kr_cdata.kr_rx_ring_tag);
if (error != 0) {
device_printf(sc->kr_dev, "failed to create Rx ring DMA tag\n");
goto fail;
}
/* Create tag for Tx buffers. */
error = bus_dma_tag_create(
sc->kr_cdata.kr_parent_tag, /* parent */
sizeof(uint32_t), 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES * KR_MAXFRAGS, /* maxsize */
KR_MAXFRAGS, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->kr_cdata.kr_tx_tag);
if (error != 0) {
device_printf(sc->kr_dev, "failed to create Tx DMA tag\n");
goto fail;
}
/* Create tag for Rx buffers. */
error = bus_dma_tag_create(
sc->kr_cdata.kr_parent_tag, /* parent */
KR_RX_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, /* maxsize */
1, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->kr_cdata.kr_rx_tag);
if (error != 0) {
device_printf(sc->kr_dev, "failed to create Rx DMA tag\n");
goto fail;
}
/* Allocate DMA'able memory and load the DMA map for Tx ring. */
error = bus_dmamem_alloc(sc->kr_cdata.kr_tx_ring_tag,
(void **)&sc->kr_rdata.kr_tx_ring, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->kr_cdata.kr_tx_ring_map);
if (error != 0) {
device_printf(sc->kr_dev,
"failed to allocate DMA'able memory for Tx ring\n");
goto fail;
}
ctx.kr_busaddr = 0;
error = bus_dmamap_load(sc->kr_cdata.kr_tx_ring_tag,
sc->kr_cdata.kr_tx_ring_map, sc->kr_rdata.kr_tx_ring,
KR_TX_RING_SIZE, kr_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.kr_busaddr == 0) {
device_printf(sc->kr_dev,
"failed to load DMA'able memory for Tx ring\n");
goto fail;
}
sc->kr_rdata.kr_tx_ring_paddr = ctx.kr_busaddr;
/* Allocate DMA'able memory and load the DMA map for Rx ring. */
error = bus_dmamem_alloc(sc->kr_cdata.kr_rx_ring_tag,
(void **)&sc->kr_rdata.kr_rx_ring, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->kr_cdata.kr_rx_ring_map);
if (error != 0) {
device_printf(sc->kr_dev,
"failed to allocate DMA'able memory for Rx ring\n");
goto fail;
}
ctx.kr_busaddr = 0;
error = bus_dmamap_load(sc->kr_cdata.kr_rx_ring_tag,
sc->kr_cdata.kr_rx_ring_map, sc->kr_rdata.kr_rx_ring,
KR_RX_RING_SIZE, kr_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.kr_busaddr == 0) {
device_printf(sc->kr_dev,
"failed to load DMA'able memory for Rx ring\n");
goto fail;
}
sc->kr_rdata.kr_rx_ring_paddr = ctx.kr_busaddr;
/* Create DMA maps for Tx buffers. */
for (i = 0; i < KR_TX_RING_CNT; i++) {
txd = &sc->kr_cdata.kr_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
error = bus_dmamap_create(sc->kr_cdata.kr_tx_tag, 0,
&txd->tx_dmamap);
if (error != 0) {
device_printf(sc->kr_dev,
"failed to create Tx dmamap\n");
goto fail;
}
}
/* Create DMA maps for Rx buffers. */
if ((error = bus_dmamap_create(sc->kr_cdata.kr_rx_tag, 0,
&sc->kr_cdata.kr_rx_sparemap)) != 0) {
device_printf(sc->kr_dev,
"failed to create spare Rx dmamap\n");
goto fail;
}
for (i = 0; i < KR_RX_RING_CNT; i++) {
rxd = &sc->kr_cdata.kr_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_dmamap = NULL;
error = bus_dmamap_create(sc->kr_cdata.kr_rx_tag, 0,
&rxd->rx_dmamap);
if (error != 0) {
device_printf(sc->kr_dev,
"failed to create Rx dmamap\n");
goto fail;
}
}
fail:
return (error);
}
static void
kr_dma_free(struct kr_softc *sc)
{
struct kr_txdesc *txd;
struct kr_rxdesc *rxd;
int i;
/* Tx ring. */
if (sc->kr_cdata.kr_tx_ring_tag) {
if (sc->kr_cdata.kr_tx_ring_map)
bus_dmamap_unload(sc->kr_cdata.kr_tx_ring_tag,
sc->kr_cdata.kr_tx_ring_map);
if (sc->kr_cdata.kr_tx_ring_map &&
sc->kr_rdata.kr_tx_ring)
bus_dmamem_free(sc->kr_cdata.kr_tx_ring_tag,
sc->kr_rdata.kr_tx_ring,
sc->kr_cdata.kr_tx_ring_map);
sc->kr_rdata.kr_tx_ring = NULL;
sc->kr_cdata.kr_tx_ring_map = NULL;
bus_dma_tag_destroy(sc->kr_cdata.kr_tx_ring_tag);
sc->kr_cdata.kr_tx_ring_tag = NULL;
}
/* Rx ring. */
if (sc->kr_cdata.kr_rx_ring_tag) {
if (sc->kr_cdata.kr_rx_ring_map)
bus_dmamap_unload(sc->kr_cdata.kr_rx_ring_tag,
sc->kr_cdata.kr_rx_ring_map);
if (sc->kr_cdata.kr_rx_ring_map &&
sc->kr_rdata.kr_rx_ring)
bus_dmamem_free(sc->kr_cdata.kr_rx_ring_tag,
sc->kr_rdata.kr_rx_ring,
sc->kr_cdata.kr_rx_ring_map);
sc->kr_rdata.kr_rx_ring = NULL;
sc->kr_cdata.kr_rx_ring_map = NULL;
bus_dma_tag_destroy(sc->kr_cdata.kr_rx_ring_tag);
sc->kr_cdata.kr_rx_ring_tag = NULL;
}
/* Tx buffers. */
if (sc->kr_cdata.kr_tx_tag) {
for (i = 0; i < KR_TX_RING_CNT; i++) {
txd = &sc->kr_cdata.kr_txdesc[i];
if (txd->tx_dmamap) {
bus_dmamap_destroy(sc->kr_cdata.kr_tx_tag,
txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
bus_dma_tag_destroy(sc->kr_cdata.kr_tx_tag);
sc->kr_cdata.kr_tx_tag = NULL;
}
/* Rx buffers. */
if (sc->kr_cdata.kr_rx_tag) {
for (i = 0; i < KR_RX_RING_CNT; i++) {
rxd = &sc->kr_cdata.kr_rxdesc[i];
if (rxd->rx_dmamap) {
bus_dmamap_destroy(sc->kr_cdata.kr_rx_tag,
rxd->rx_dmamap);
rxd->rx_dmamap = NULL;
}
}
if (sc->kr_cdata.kr_rx_sparemap) {
bus_dmamap_destroy(sc->kr_cdata.kr_rx_tag,
sc->kr_cdata.kr_rx_sparemap);
sc->kr_cdata.kr_rx_sparemap = 0;
}
bus_dma_tag_destroy(sc->kr_cdata.kr_rx_tag);
sc->kr_cdata.kr_rx_tag = NULL;
}
if (sc->kr_cdata.kr_parent_tag) {
bus_dma_tag_destroy(sc->kr_cdata.kr_parent_tag);
sc->kr_cdata.kr_parent_tag = NULL;
}
}
/*
* Initialize the transmit descriptors.
*/
static int
kr_tx_ring_init(struct kr_softc *sc)
{
struct kr_ring_data *rd;
struct kr_txdesc *txd;
bus_addr_t addr;
int i;
sc->kr_cdata.kr_tx_prod = 0;
sc->kr_cdata.kr_tx_cons = 0;
sc->kr_cdata.kr_tx_cnt = 0;
sc->kr_cdata.kr_tx_pkts = 0;
rd = &sc->kr_rdata;
bzero(rd->kr_tx_ring, KR_TX_RING_SIZE);
for (i = 0; i < KR_TX_RING_CNT; i++) {
if (i == KR_TX_RING_CNT - 1)
addr = KR_TX_RING_ADDR(sc, 0);
else
addr = KR_TX_RING_ADDR(sc, i + 1);
rd->kr_tx_ring[i].kr_ctl = KR_CTL_IOF;
rd->kr_tx_ring[i].kr_ca = 0;
rd->kr_tx_ring[i].kr_devcs = 0;
rd->kr_tx_ring[i].kr_link = 0;
txd = &sc->kr_cdata.kr_txdesc[i];
txd->tx_m = NULL;
}
bus_dmamap_sync(sc->kr_cdata.kr_tx_ring_tag,
sc->kr_cdata.kr_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int
kr_rx_ring_init(struct kr_softc *sc)
{
struct kr_ring_data *rd;
struct kr_rxdesc *rxd;
bus_addr_t addr;
int i;
sc->kr_cdata.kr_rx_cons = 0;
rd = &sc->kr_rdata;
bzero(rd->kr_rx_ring, KR_RX_RING_SIZE);
for (i = 0; i < KR_RX_RING_CNT; i++) {
rxd = &sc->kr_cdata.kr_rxdesc[i];
rxd->rx_m = NULL;
rxd->desc = &rd->kr_rx_ring[i];
if (i == KR_RX_RING_CNT - 1)
addr = KR_RX_RING_ADDR(sc, 0);
else
addr = KR_RX_RING_ADDR(sc, i + 1);
rd->kr_rx_ring[i].kr_ctl = KR_CTL_IOD;
if (i == KR_RX_RING_CNT - 1)
rd->kr_rx_ring[i].kr_ctl |= KR_CTL_COD;
rd->kr_rx_ring[i].kr_devcs = 0;
rd->kr_rx_ring[i].kr_ca = 0;
rd->kr_rx_ring[i].kr_link = addr;
if (kr_newbuf(sc, i) != 0)
return (ENOBUFS);
}
bus_dmamap_sync(sc->kr_cdata.kr_rx_ring_tag,
sc->kr_cdata.kr_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
static int
kr_newbuf(struct kr_softc *sc, int idx)
{
struct kr_desc *desc;
struct kr_rxdesc *rxd;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, sizeof(uint64_t));
if (bus_dmamap_load_mbuf_sg(sc->kr_cdata.kr_rx_tag,
sc->kr_cdata.kr_rx_sparemap, m, segs, &nsegs, 0) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
rxd = &sc->kr_cdata.kr_rxdesc[idx];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->kr_cdata.kr_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->kr_cdata.kr_rx_tag, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc->kr_cdata.kr_rx_sparemap;
sc->kr_cdata.kr_rx_sparemap = map;
bus_dmamap_sync(sc->kr_cdata.kr_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
desc = rxd->desc;
desc->kr_ca = segs[0].ds_addr;
desc->kr_ctl |= KR_DMASIZE(segs[0].ds_len);
rxd->saved_ca = desc->kr_ca ;
rxd->saved_ctl = desc->kr_ctl ;
return (0);
}
static __inline void
kr_fixup_rx(struct mbuf *m)
{
int i;
uint16_t *src, *dst;
src = mtod(m, uint16_t *);
dst = src - 1;
for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
*dst++ = *src++;
m->m_data -= ETHER_ALIGN;
}
static void
kr_tx(struct kr_softc *sc)
{
struct kr_txdesc *txd;
struct kr_desc *cur_tx;
struct ifnet *ifp;
uint32_t ctl, devcs;
int cons, prod;
KR_LOCK_ASSERT(sc);
cons = sc->kr_cdata.kr_tx_cons;
prod = sc->kr_cdata.kr_tx_prod;
if (cons == prod)
return;
bus_dmamap_sync(sc->kr_cdata.kr_tx_ring_tag,
sc->kr_cdata.kr_tx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
ifp = sc->kr_ifp;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
for (; cons != prod; KR_INC(cons, KR_TX_RING_CNT)) {
cur_tx = &sc->kr_rdata.kr_tx_ring[cons];
ctl = cur_tx->kr_ctl;
devcs = cur_tx->kr_devcs;
/* Check if descriptor has "finished" flag */
if ((ctl & KR_CTL_F) == 0)
break;
sc->kr_cdata.kr_tx_cnt--;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
txd = &sc->kr_cdata.kr_txdesc[cons];
if (devcs & KR_DMATX_DEVCS_TOK)
ifp->if_opackets++;
else {
ifp->if_oerrors++;
/* collisions: medium busy, late collision */
if ((devcs & KR_DMATX_DEVCS_EC) ||
(devcs & KR_DMATX_DEVCS_LC))
ifp->if_collisions++;
}
bus_dmamap_sync(sc->kr_cdata.kr_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->kr_cdata.kr_tx_tag, txd->tx_dmamap);
/* Free only if it's first descriptor in list */
if (txd->tx_m)
m_freem(txd->tx_m);
txd->tx_m = NULL;
/* reset descriptor */
cur_tx->kr_ctl = KR_CTL_IOF;
cur_tx->kr_devcs = 0;
cur_tx->kr_ca = 0;
cur_tx->kr_link = 0;
}
sc->kr_cdata.kr_tx_cons = cons;
bus_dmamap_sync(sc->kr_cdata.kr_tx_ring_tag,
sc->kr_cdata.kr_tx_ring_map, BUS_DMASYNC_PREWRITE);
}
static void
kr_rx(struct kr_softc *sc)
{
struct kr_rxdesc *rxd;
struct ifnet *ifp = sc->kr_ifp;
int cons, prog, packet_len, count, error;
struct kr_desc *cur_rx;
struct mbuf *m;
KR_LOCK_ASSERT(sc);
cons = sc->kr_cdata.kr_rx_cons;
bus_dmamap_sync(sc->kr_cdata.kr_rx_ring_tag,
sc->kr_cdata.kr_rx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (prog = 0; prog < KR_RX_RING_CNT; KR_INC(cons, KR_RX_RING_CNT)) {
cur_rx = &sc->kr_rdata.kr_rx_ring[cons];
rxd = &sc->kr_cdata.kr_rxdesc[cons];
m = rxd->rx_m;
if ((cur_rx->kr_ctl & KR_CTL_D) == 0)
break;
prog++;
packet_len = KR_PKTSIZE(cur_rx->kr_devcs);
count = m->m_len - KR_DMASIZE(cur_rx->kr_ctl);
/* Assume it's error */
error = 1;
if (packet_len != count)
ifp->if_ierrors++;
else if (count < 64)
ifp->if_ierrors++;
else if ((cur_rx->kr_devcs & KR_DMARX_DEVCS_LD) == 0)
ifp->if_ierrors++;
else if ((cur_rx->kr_devcs & KR_DMARX_DEVCS_ROK) != 0) {
error = 0;
bus_dmamap_sync(sc->kr_cdata.kr_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
m = rxd->rx_m;
kr_fixup_rx(m);
m->m_pkthdr.rcvif = ifp;
/* Skip 4 bytes of CRC */
m->m_pkthdr.len = m->m_len = packet_len - ETHER_CRC_LEN;
ifp->if_ipackets++;
KR_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
KR_LOCK(sc);
}
if (error) {
/* Restore CONTROL and CA values, reset DEVCS */
cur_rx->kr_ctl = rxd->saved_ctl;
cur_rx->kr_ca = rxd->saved_ca;
cur_rx->kr_devcs = 0;
}
else {
/* Reinit descriptor */
cur_rx->kr_ctl = KR_CTL_IOD;
if (cons == KR_RX_RING_CNT - 1)
cur_rx->kr_ctl |= KR_CTL_COD;
cur_rx->kr_devcs = 0;
cur_rx->kr_ca = 0;
if (kr_newbuf(sc, cons) != 0) {
device_printf(sc->kr_dev,
"Failed to allocate buffer\n");
break;
}
}
bus_dmamap_sync(sc->kr_cdata.kr_rx_ring_tag,
sc->kr_cdata.kr_rx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
}
if (prog > 0) {
sc->kr_cdata.kr_rx_cons = cons;
bus_dmamap_sync(sc->kr_cdata.kr_rx_ring_tag,
sc->kr_cdata.kr_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
}
static void
kr_rx_intr(void *arg)
{
struct kr_softc *sc = arg;
uint32_t status;
KR_LOCK(sc);
/* mask out interrupts */
KR_DMA_SETBITS_REG(KR_DMA_RXCHAN, DMA_SM,
DMA_SM_D | DMA_SM_H | DMA_SM_E);
status = KR_DMA_READ_REG(KR_DMA_RXCHAN, DMA_S);
if (status & (DMA_S_D | DMA_S_E | DMA_S_H)) {
kr_rx(sc);
if (status & DMA_S_E)
device_printf(sc->kr_dev, "RX DMA error\n");
}
/* Reread status */
status = KR_DMA_READ_REG(KR_DMA_RXCHAN, DMA_S);
/* restart DMA RX if it has been halted */
if (status & DMA_S_H) {
KR_DMA_WRITE_REG(KR_DMA_RXCHAN, DMA_DPTR,
KR_RX_RING_ADDR(sc, sc->kr_cdata.kr_rx_cons));
}
KR_DMA_WRITE_REG(KR_DMA_RXCHAN, DMA_S, ~status);
/* Enable F, H, E interrupts */
KR_DMA_CLEARBITS_REG(KR_DMA_RXCHAN, DMA_SM,
DMA_SM_D | DMA_SM_H | DMA_SM_E);
KR_UNLOCK(sc);
}
static void
kr_tx_intr(void *arg)
{
struct kr_softc *sc = arg;
uint32_t status;
KR_LOCK(sc);
/* mask out interrupts */
KR_DMA_SETBITS_REG(KR_DMA_TXCHAN, DMA_SM,
DMA_SM_F | DMA_SM_E);
status = KR_DMA_READ_REG(KR_DMA_TXCHAN, DMA_S);
if (status & (DMA_S_F | DMA_S_E)) {
kr_tx(sc);
if (status & DMA_S_E)
device_printf(sc->kr_dev, "DMA error\n");
}
KR_DMA_WRITE_REG(KR_DMA_TXCHAN, DMA_S, ~status);
/* Enable F, E interrupts */
KR_DMA_CLEARBITS_REG(KR_DMA_TXCHAN, DMA_SM,
DMA_SM_F | DMA_SM_E);
KR_UNLOCK(sc);
}
static void
kr_rx_und_intr(void *arg)
{
panic("interrupt: %s\n", __func__);
}
static void
kr_tx_ovr_intr(void *arg)
{
panic("interrupt: %s\n", __func__);
}
static void
kr_tick(void *xsc)
{
struct kr_softc *sc = xsc;
struct mii_data *mii;
KR_LOCK_ASSERT(sc);
mii = device_get_softc(sc->kr_miibus);
mii_tick(mii);
callout_reset(&sc->kr_stat_callout, hz, kr_tick, sc);
}