1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-11-24 07:40:52 +00:00
freebsd/sys/netinet/raw_ip.c
Gleb Smirnoff ce69e37369 Revert "sockets: retire sorflush()"
Provide a comment in sorflush() why the socket I/O sx(9) lock is actually
important.

This reverts commit 507f87a799.
2024-02-03 13:08:41 -08:00

1098 lines
26 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1982, 1986, 1988, 1993
* The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_ipsec.h"
#include "opt_route.h"
#include <sys/param.h>
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/eventhandler.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/rwlock.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <vm/uma.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/route.h>
#include <net/route/route_ctl.h>
#include <net/vnet.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_fib.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#include <netinet/ip_mroute.h>
#include <netinet/ip_icmp.h>
#include <netipsec/ipsec_support.h>
#include <machine/stdarg.h>
#include <security/mac/mac_framework.h>
extern ipproto_input_t *ip_protox[];
VNET_DEFINE(int, ip_defttl) = IPDEFTTL;
SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(ip_defttl), 0,
"Maximum TTL on IP packets");
VNET_DEFINE(struct inpcbinfo, ripcbinfo);
#define V_ripcbinfo VNET(ripcbinfo)
/*
* Control and data hooks for ipfw, dummynet, divert and so on.
* The data hooks are not used here but it is convenient
* to keep them all in one place.
*/
VNET_DEFINE(ip_fw_ctl_ptr_t, ip_fw_ctl_ptr) = NULL;
int (*ip_dn_ctl_ptr)(struct sockopt *);
int (*ip_dn_io_ptr)(struct mbuf **, struct ip_fw_args *);
void (*ip_divert_ptr)(struct mbuf *, bool);
int (*ng_ipfw_input_p)(struct mbuf **, struct ip_fw_args *, bool);
#ifdef INET
/*
* Hooks for multicast routing. They all default to NULL, so leave them not
* initialized and rely on BSS being set to 0.
*/
/*
* The socket used to communicate with the multicast routing daemon.
*/
VNET_DEFINE(struct socket *, ip_mrouter);
/*
* The various mrouter and rsvp functions.
*/
int (*ip_mrouter_set)(struct socket *, struct sockopt *);
int (*ip_mrouter_get)(struct socket *, struct sockopt *);
int (*ip_mrouter_done)(void);
int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
struct ip_moptions *);
int (*mrt_ioctl)(u_long, caddr_t, int);
int (*legal_vif_num)(int);
u_long (*ip_mcast_src)(int);
int (*rsvp_input_p)(struct mbuf **, int *, int);
int (*ip_rsvp_vif)(struct socket *, struct sockopt *);
void (*ip_rsvp_force_done)(struct socket *);
#endif /* INET */
u_long rip_sendspace = 9216;
SYSCTL_ULONG(_net_inet_raw, OID_AUTO, maxdgram, CTLFLAG_RW,
&rip_sendspace, 0, "Maximum outgoing raw IP datagram size");
u_long rip_recvspace = 9216;
SYSCTL_ULONG(_net_inet_raw, OID_AUTO, recvspace, CTLFLAG_RW,
&rip_recvspace, 0, "Maximum space for incoming raw IP datagrams");
/*
* Hash functions
*/
#define INP_PCBHASH_RAW_SIZE 256
#define INP_PCBHASH_RAW(proto, laddr, faddr, mask) \
(((proto) + (laddr) + (faddr)) % (mask) + 1)
#ifdef INET
static void
rip_inshash(struct inpcb *inp)
{
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
struct inpcbhead *pcbhash;
int hash;
INP_HASH_WLOCK_ASSERT(pcbinfo);
INP_WLOCK_ASSERT(inp);
if (inp->inp_ip_p != 0 &&
inp->inp_laddr.s_addr != INADDR_ANY &&
inp->inp_faddr.s_addr != INADDR_ANY) {
hash = INP_PCBHASH_RAW(inp->inp_ip_p, inp->inp_laddr.s_addr,
inp->inp_faddr.s_addr, pcbinfo->ipi_hashmask);
} else
hash = 0;
pcbhash = &pcbinfo->ipi_hash_exact[hash];
CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_exact);
}
static void
rip_delhash(struct inpcb *inp)
{
INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
INP_WLOCK_ASSERT(inp);
CK_LIST_REMOVE(inp, inp_hash_exact);
}
#endif /* INET */
INPCBSTORAGE_DEFINE(ripcbstor, inpcb, "rawinp", "ripcb", "rip", "riphash");
static void
rip_init(void *arg __unused)
{
in_pcbinfo_init(&V_ripcbinfo, &ripcbstor, INP_PCBHASH_RAW_SIZE, 1);
}
VNET_SYSINIT(rip_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rip_init, NULL);
#ifdef VIMAGE
static void
rip_destroy(void *unused __unused)
{
in_pcbinfo_destroy(&V_ripcbinfo);
}
VNET_SYSUNINIT(raw_ip, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, rip_destroy, NULL);
#endif
#ifdef INET
static int
rip_append(struct inpcb *inp, struct ip *ip, struct mbuf *m,
struct sockaddr_in *ripsrc)
{
struct socket *so = inp->inp_socket;
struct mbuf *n, *opts = NULL;
INP_LOCK_ASSERT(inp);
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
/* check AH/ESP integrity. */
if (IPSEC_ENABLED(ipv4) && IPSEC_CHECK_POLICY(ipv4, m, inp) != 0)
return (0);
#endif /* IPSEC */
#ifdef MAC
if (mac_inpcb_check_deliver(inp, m) != 0)
return (0);
#endif
/* Check the minimum TTL for socket. */
if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl)
return (0);
if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) == NULL)
return (0);
if ((inp->inp_flags & INP_CONTROLOPTS) ||
(so->so_options & (SO_TIMESTAMP | SO_BINTIME)))
ip_savecontrol(inp, &opts, ip, n);
SOCKBUF_LOCK(&so->so_rcv);
if (sbappendaddr_locked(&so->so_rcv,
(struct sockaddr *)ripsrc, n, opts) == 0) {
soroverflow_locked(so);
m_freem(n);
if (opts)
m_freem(opts);
return (0);
}
sorwakeup_locked(so);
return (1);
}
struct rip_inp_match_ctx {
struct ip *ip;
int proto;
};
static bool
rip_inp_match1(const struct inpcb *inp, void *v)
{
struct rip_inp_match_ctx *ctx = v;
if (inp->inp_ip_p != ctx->proto)
return (false);
#ifdef INET6
/* XXX inp locking */
if ((inp->inp_vflag & INP_IPV4) == 0)
return (false);
#endif
if (inp->inp_laddr.s_addr != ctx->ip->ip_dst.s_addr)
return (false);
if (inp->inp_faddr.s_addr != ctx->ip->ip_src.s_addr)
return (false);
return (true);
}
static bool
rip_inp_match2(const struct inpcb *inp, void *v)
{
struct rip_inp_match_ctx *ctx = v;
if (inp->inp_ip_p && inp->inp_ip_p != ctx->proto)
return (false);
#ifdef INET6
/* XXX inp locking */
if ((inp->inp_vflag & INP_IPV4) == 0)
return (false);
#endif
if (!in_nullhost(inp->inp_laddr) &&
!in_hosteq(inp->inp_laddr, ctx->ip->ip_dst))
return (false);
if (!in_nullhost(inp->inp_faddr) &&
!in_hosteq(inp->inp_faddr, ctx->ip->ip_src))
return (false);
return (true);
}
/*
* Setup generic address and protocol structures for raw_input routine, then
* pass them along with mbuf chain.
*/
int
rip_input(struct mbuf **mp, int *offp, int proto)
{
struct rip_inp_match_ctx ctx = {
.ip = mtod(*mp, struct ip *),
.proto = proto,
};
struct inpcb_iterator inpi = INP_ITERATOR(&V_ripcbinfo,
INPLOOKUP_RLOCKPCB, rip_inp_match1, &ctx);
struct ifnet *ifp;
struct mbuf *m = *mp;
struct inpcb *inp;
struct sockaddr_in ripsrc;
int appended;
*mp = NULL;
appended = 0;
bzero(&ripsrc, sizeof(ripsrc));
ripsrc.sin_len = sizeof(ripsrc);
ripsrc.sin_family = AF_INET;
ripsrc.sin_addr = ctx.ip->ip_src;
ifp = m->m_pkthdr.rcvif;
inpi.hash = INP_PCBHASH_RAW(proto, ctx.ip->ip_src.s_addr,
ctx.ip->ip_dst.s_addr, V_ripcbinfo.ipi_hashmask);
while ((inp = inp_next(&inpi)) != NULL) {
INP_RLOCK_ASSERT(inp);
if (jailed_without_vnet(inp->inp_cred) &&
prison_check_ip4(inp->inp_cred, &ctx.ip->ip_dst) != 0) {
/*
* XXX: If faddr was bound to multicast group,
* jailed raw socket will drop datagram.
*/
continue;
}
appended += rip_append(inp, ctx.ip, m, &ripsrc);
}
inpi.hash = 0;
inpi.match = rip_inp_match2;
MPASS(inpi.inp == NULL);
while ((inp = inp_next(&inpi)) != NULL) {
INP_RLOCK_ASSERT(inp);
if (jailed_without_vnet(inp->inp_cred) &&
!IN_MULTICAST(ntohl(ctx.ip->ip_dst.s_addr)) &&
prison_check_ip4(inp->inp_cred, &ctx.ip->ip_dst) != 0)
/*
* Allow raw socket in jail to receive multicast;
* assume process had PRIV_NETINET_RAW at attach,
* and fall through into normal filter path if so.
*/
continue;
/*
* If this raw socket has multicast state, and we
* have received a multicast, check if this socket
* should receive it, as multicast filtering is now
* the responsibility of the transport layer.
*/
if (inp->inp_moptions != NULL &&
IN_MULTICAST(ntohl(ctx.ip->ip_dst.s_addr))) {
/*
* If the incoming datagram is for IGMP, allow it
* through unconditionally to the raw socket.
*
* In the case of IGMPv2, we may not have explicitly
* joined the group, and may have set IFF_ALLMULTI
* on the interface. imo_multi_filter() may discard
* control traffic we actually need to see.
*
* Userland multicast routing daemons should continue
* filter the control traffic appropriately.
*/
int blocked;
blocked = MCAST_PASS;
if (proto != IPPROTO_IGMP) {
struct sockaddr_in group;
bzero(&group, sizeof(struct sockaddr_in));
group.sin_len = sizeof(struct sockaddr_in);
group.sin_family = AF_INET;
group.sin_addr = ctx.ip->ip_dst;
blocked = imo_multi_filter(inp->inp_moptions,
ifp,
(struct sockaddr *)&group,
(struct sockaddr *)&ripsrc);
}
if (blocked != MCAST_PASS) {
IPSTAT_INC(ips_notmember);
continue;
}
}
appended += rip_append(inp, ctx.ip, m, &ripsrc);
}
if (appended == 0 && ip_protox[ctx.ip->ip_p] == rip_input) {
IPSTAT_INC(ips_noproto);
IPSTAT_DEC(ips_delivered);
icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PROTOCOL, 0, 0);
} else
m_freem(m);
return (IPPROTO_DONE);
}
/*
* Generate IP header and pass packet to ip_output. Tack on options user may
* have setup with control call.
*/
static int
rip_send(struct socket *so, int pruflags, struct mbuf *m, struct sockaddr *nam,
struct mbuf *control, struct thread *td)
{
struct epoch_tracker et;
struct ip *ip;
struct inpcb *inp;
in_addr_t *dst;
int error, flags, cnt, hlen;
u_char opttype, optlen, *cp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("rip_send: inp == NULL"));
if (control != NULL) {
m_freem(control);
control = NULL;
}
if (so->so_state & SS_ISCONNECTED) {
if (nam) {
error = EISCONN;
m_freem(m);
return (error);
}
dst = &inp->inp_faddr.s_addr;
} else {
if (nam == NULL)
error = ENOTCONN;
else if (nam->sa_family != AF_INET)
error = EAFNOSUPPORT;
else if (nam->sa_len != sizeof(struct sockaddr_in))
error = EINVAL;
else
error = 0;
if (error != 0) {
m_freem(m);
return (error);
}
dst = &((struct sockaddr_in *)nam)->sin_addr.s_addr;
}
flags = ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0) |
IP_ALLOWBROADCAST;
/*
* If the user handed us a complete IP packet, use it. Otherwise,
* allocate an mbuf for a header and fill it in.
*/
if ((inp->inp_flags & INP_HDRINCL) == 0) {
if (m->m_pkthdr.len + sizeof(struct ip) > IP_MAXPACKET) {
m_freem(m);
return(EMSGSIZE);
}
M_PREPEND(m, sizeof(struct ip), M_NOWAIT);
if (m == NULL)
return(ENOBUFS);
INP_RLOCK(inp);
ip = mtod(m, struct ip *);
ip->ip_tos = inp->inp_ip_tos;
if (inp->inp_flags & INP_DONTFRAG)
ip->ip_off = htons(IP_DF);
else
ip->ip_off = htons(0);
ip->ip_p = inp->inp_ip_p;
ip->ip_len = htons(m->m_pkthdr.len);
ip->ip_src = inp->inp_laddr;
ip->ip_dst.s_addr = *dst;
#ifdef ROUTE_MPATH
if (CALC_FLOWID_OUTBOUND) {
uint32_t hash_type, hash_val;
hash_val = fib4_calc_software_hash(ip->ip_src,
ip->ip_dst, 0, 0, ip->ip_p, &hash_type);
m->m_pkthdr.flowid = hash_val;
M_HASHTYPE_SET(m, hash_type);
flags |= IP_NODEFAULTFLOWID;
}
#endif
if (jailed(inp->inp_cred)) {
/*
* prison_local_ip4() would be good enough but would
* let a source of INADDR_ANY pass, which we do not
* want to see from jails.
*/
if (ip->ip_src.s_addr == INADDR_ANY) {
NET_EPOCH_ENTER(et);
error = in_pcbladdr(inp, &ip->ip_dst,
&ip->ip_src, inp->inp_cred);
NET_EPOCH_EXIT(et);
} else {
error = prison_local_ip4(inp->inp_cred,
&ip->ip_src);
}
if (error != 0) {
INP_RUNLOCK(inp);
m_freem(m);
return (error);
}
}
ip->ip_ttl = inp->inp_ip_ttl;
} else {
if (m->m_pkthdr.len > IP_MAXPACKET) {
m_freem(m);
return (EMSGSIZE);
}
if (m->m_pkthdr.len < sizeof(*ip)) {
m_freem(m);
return (EINVAL);
}
m = m_pullup(m, sizeof(*ip));
if (m == NULL)
return (ENOMEM);
ip = mtod(m, struct ip *);
hlen = ip->ip_hl << 2;
if (m->m_len < hlen) {
m = m_pullup(m, hlen);
if (m == NULL)
return (EINVAL);
ip = mtod(m, struct ip *);
}
#ifdef ROUTE_MPATH
if (CALC_FLOWID_OUTBOUND) {
uint32_t hash_type, hash_val;
hash_val = fib4_calc_software_hash(ip->ip_dst,
ip->ip_src, 0, 0, ip->ip_p, &hash_type);
m->m_pkthdr.flowid = hash_val;
M_HASHTYPE_SET(m, hash_type);
flags |= IP_NODEFAULTFLOWID;
}
#endif
INP_RLOCK(inp);
/*
* Don't allow both user specified and setsockopt options,
* and don't allow packet length sizes that will crash.
*/
if ((hlen < sizeof (*ip))
|| ((hlen > sizeof (*ip)) && inp->inp_options)
|| (ntohs(ip->ip_len) != m->m_pkthdr.len)) {
INP_RUNLOCK(inp);
m_freem(m);
return (EINVAL);
}
error = prison_check_ip4(inp->inp_cred, &ip->ip_src);
if (error != 0) {
INP_RUNLOCK(inp);
m_freem(m);
return (error);
}
/*
* Don't allow IP options which do not have the required
* structure as specified in section 3.1 of RFC 791 on
* pages 15-23.
*/
cp = (u_char *)(ip + 1);
cnt = hlen - sizeof (struct ip);
for (; cnt > 0; cnt -= optlen, cp += optlen) {
opttype = cp[IPOPT_OPTVAL];
if (opttype == IPOPT_EOL)
break;
if (opttype == IPOPT_NOP) {
optlen = 1;
continue;
}
if (cnt < IPOPT_OLEN + sizeof(u_char)) {
INP_RUNLOCK(inp);
m_freem(m);
return (EINVAL);
}
optlen = cp[IPOPT_OLEN];
if (optlen < IPOPT_OLEN + sizeof(u_char) ||
optlen > cnt) {
INP_RUNLOCK(inp);
m_freem(m);
return (EINVAL);
}
}
/*
* This doesn't allow application to specify ID of zero,
* but we got this limitation from the beginning of history.
*/
if (ip->ip_id == 0)
ip_fillid(ip);
/*
* XXX prevent ip_output from overwriting header fields.
*/
flags |= IP_RAWOUTPUT;
IPSTAT_INC(ips_rawout);
}
if (inp->inp_flags & INP_ONESBCAST)
flags |= IP_SENDONES;
#ifdef MAC
mac_inpcb_create_mbuf(inp, m);
#endif
NET_EPOCH_ENTER(et);
error = ip_output(m, inp->inp_options, NULL, flags,
inp->inp_moptions, inp);
NET_EPOCH_EXIT(et);
INP_RUNLOCK(inp);
return (error);
}
/*
* Raw IP socket option processing.
*
* IMPORTANT NOTE regarding access control: Traditionally, raw sockets could
* only be created by a privileged process, and as such, socket option
* operations to manage system properties on any raw socket were allowed to
* take place without explicit additional access control checks. However,
* raw sockets can now also be created in jail(), and therefore explicit
* checks are now required. Likewise, raw sockets can be used by a process
* after it gives up privilege, so some caution is required. For options
* passed down to the IP layer via ip_ctloutput(), checks are assumed to be
* performed in ip_ctloutput() and therefore no check occurs here.
* Unilaterally checking priv_check() here breaks normal IP socket option
* operations on raw sockets.
*
* When adding new socket options here, make sure to add access control
* checks here as necessary.
*
* XXX-BZ inp locking?
*/
int
rip_ctloutput(struct socket *so, struct sockopt *sopt)
{
struct inpcb *inp = sotoinpcb(so);
int error, optval;
if (sopt->sopt_level != IPPROTO_IP) {
if ((sopt->sopt_level == SOL_SOCKET) &&
(sopt->sopt_name == SO_SETFIB)) {
inp->inp_inc.inc_fibnum = so->so_fibnum;
return (0);
}
return (EINVAL);
}
error = 0;
switch (sopt->sopt_dir) {
case SOPT_GET:
switch (sopt->sopt_name) {
case IP_HDRINCL:
optval = inp->inp_flags & INP_HDRINCL;
error = sooptcopyout(sopt, &optval, sizeof optval);
break;
case IP_FW3: /* generic ipfw v.3 functions */
case IP_FW_ADD: /* ADD actually returns the body... */
case IP_FW_GET:
case IP_FW_TABLE_GETSIZE:
case IP_FW_TABLE_LIST:
case IP_FW_NAT_GET_CONFIG:
case IP_FW_NAT_GET_LOG:
if (V_ip_fw_ctl_ptr != NULL)
error = V_ip_fw_ctl_ptr(sopt);
else
error = ENOPROTOOPT;
break;
case IP_DUMMYNET3: /* generic dummynet v.3 functions */
case IP_DUMMYNET_GET:
if (ip_dn_ctl_ptr != NULL)
error = ip_dn_ctl_ptr(sopt);
else
error = ENOPROTOOPT;
break ;
case MRT_INIT:
case MRT_DONE:
case MRT_ADD_VIF:
case MRT_DEL_VIF:
case MRT_ADD_MFC:
case MRT_DEL_MFC:
case MRT_VERSION:
case MRT_ASSERT:
case MRT_API_SUPPORT:
case MRT_API_CONFIG:
case MRT_ADD_BW_UPCALL:
case MRT_DEL_BW_UPCALL:
error = priv_check(curthread, PRIV_NETINET_MROUTE);
if (error != 0)
return (error);
if (inp->inp_ip_p != IPPROTO_IGMP)
return (EOPNOTSUPP);
error = ip_mrouter_get ? ip_mrouter_get(so, sopt) :
EOPNOTSUPP;
break;
default:
error = ip_ctloutput(so, sopt);
break;
}
break;
case SOPT_SET:
switch (sopt->sopt_name) {
case IP_HDRINCL:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error)
break;
if (optval)
inp->inp_flags |= INP_HDRINCL;
else
inp->inp_flags &= ~INP_HDRINCL;
break;
case IP_FW3: /* generic ipfw v.3 functions */
case IP_FW_ADD:
case IP_FW_DEL:
case IP_FW_FLUSH:
case IP_FW_ZERO:
case IP_FW_RESETLOG:
case IP_FW_TABLE_ADD:
case IP_FW_TABLE_DEL:
case IP_FW_TABLE_FLUSH:
case IP_FW_NAT_CFG:
case IP_FW_NAT_DEL:
if (V_ip_fw_ctl_ptr != NULL)
error = V_ip_fw_ctl_ptr(sopt);
else
error = ENOPROTOOPT;
break;
case IP_DUMMYNET3: /* generic dummynet v.3 functions */
case IP_DUMMYNET_CONFIGURE:
case IP_DUMMYNET_DEL:
case IP_DUMMYNET_FLUSH:
if (ip_dn_ctl_ptr != NULL)
error = ip_dn_ctl_ptr(sopt);
else
error = ENOPROTOOPT ;
break ;
case IP_RSVP_ON:
error = priv_check(curthread, PRIV_NETINET_MROUTE);
if (error != 0)
return (error);
if (inp->inp_ip_p != IPPROTO_RSVP)
return (EOPNOTSUPP);
error = ip_rsvp_init(so);
break;
case IP_RSVP_OFF:
error = priv_check(curthread, PRIV_NETINET_MROUTE);
if (error != 0)
return (error);
error = ip_rsvp_done();
break;
case IP_RSVP_VIF_ON:
case IP_RSVP_VIF_OFF:
error = priv_check(curthread, PRIV_NETINET_MROUTE);
if (error != 0)
return (error);
if (inp->inp_ip_p != IPPROTO_RSVP)
return (EOPNOTSUPP);
error = ip_rsvp_vif ?
ip_rsvp_vif(so, sopt) : EINVAL;
break;
case MRT_INIT:
case MRT_DONE:
case MRT_ADD_VIF:
case MRT_DEL_VIF:
case MRT_ADD_MFC:
case MRT_DEL_MFC:
case MRT_VERSION:
case MRT_ASSERT:
case MRT_API_SUPPORT:
case MRT_API_CONFIG:
case MRT_ADD_BW_UPCALL:
case MRT_DEL_BW_UPCALL:
error = priv_check(curthread, PRIV_NETINET_MROUTE);
if (error != 0)
return (error);
if (inp->inp_ip_p != IPPROTO_IGMP)
return (EOPNOTSUPP);
error = ip_mrouter_set ? ip_mrouter_set(so, sopt) :
EOPNOTSUPP;
break;
default:
error = ip_ctloutput(so, sopt);
break;
}
break;
}
return (error);
}
void
rip_ctlinput(struct icmp *icmp)
{
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
if (IPSEC_ENABLED(ipv4))
IPSEC_CTLINPUT(ipv4, icmp);
#endif
}
static int
rip_attach(struct socket *so, int proto, struct thread *td)
{
struct inpcb *inp;
int error;
inp = sotoinpcb(so);
KASSERT(inp == NULL, ("rip_attach: inp != NULL"));
error = priv_check(td, PRIV_NETINET_RAW);
if (error)
return (error);
if (proto >= IPPROTO_MAX || proto < 0)
return EPROTONOSUPPORT;
error = soreserve(so, rip_sendspace, rip_recvspace);
if (error)
return (error);
error = in_pcballoc(so, &V_ripcbinfo);
if (error)
return (error);
inp = (struct inpcb *)so->so_pcb;
inp->inp_ip_p = proto;
inp->inp_ip_ttl = V_ip_defttl;
INP_HASH_WLOCK(&V_ripcbinfo);
rip_inshash(inp);
INP_HASH_WUNLOCK(&V_ripcbinfo);
INP_WUNLOCK(inp);
return (0);
}
static void
rip_detach(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("rip_detach: inp == NULL"));
KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
("rip_detach: not closed"));
/* Disable mrouter first */
if (so == V_ip_mrouter && ip_mrouter_done)
ip_mrouter_done();
INP_WLOCK(inp);
INP_HASH_WLOCK(&V_ripcbinfo);
rip_delhash(inp);
INP_HASH_WUNLOCK(&V_ripcbinfo);
if (ip_rsvp_force_done)
ip_rsvp_force_done(so);
if (so == V_ip_rsvpd)
ip_rsvp_done();
in_pcbfree(inp);
}
static void
rip_dodisconnect(struct socket *so, struct inpcb *inp)
{
struct inpcbinfo *pcbinfo;
pcbinfo = inp->inp_pcbinfo;
INP_WLOCK(inp);
INP_HASH_WLOCK(pcbinfo);
rip_delhash(inp);
inp->inp_faddr.s_addr = INADDR_ANY;
rip_inshash(inp);
INP_HASH_WUNLOCK(pcbinfo);
SOCK_LOCK(so);
so->so_state &= ~SS_ISCONNECTED;
SOCK_UNLOCK(so);
INP_WUNLOCK(inp);
}
static void
rip_abort(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("rip_abort: inp == NULL"));
rip_dodisconnect(so, inp);
}
static void
rip_close(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("rip_close: inp == NULL"));
rip_dodisconnect(so, inp);
}
static int
rip_disconnect(struct socket *so)
{
struct inpcb *inp;
if ((so->so_state & SS_ISCONNECTED) == 0)
return (ENOTCONN);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("rip_disconnect: inp == NULL"));
rip_dodisconnect(so, inp);
return (0);
}
static int
rip_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
{
struct sockaddr_in *addr = (struct sockaddr_in *)nam;
struct inpcb *inp;
int error;
if (nam->sa_family != AF_INET)
return (EAFNOSUPPORT);
if (nam->sa_len != sizeof(*addr))
return (EINVAL);
error = prison_check_ip4(td->td_ucred, &addr->sin_addr);
if (error != 0)
return (error);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("rip_bind: inp == NULL"));
if (CK_STAILQ_EMPTY(&V_ifnet) ||
(addr->sin_family != AF_INET && addr->sin_family != AF_IMPLINK) ||
(addr->sin_addr.s_addr &&
(inp->inp_flags & INP_BINDANY) == 0 &&
ifa_ifwithaddr_check((struct sockaddr *)addr) == 0))
return (EADDRNOTAVAIL);
INP_WLOCK(inp);
INP_HASH_WLOCK(&V_ripcbinfo);
rip_delhash(inp);
inp->inp_laddr = addr->sin_addr;
rip_inshash(inp);
INP_HASH_WUNLOCK(&V_ripcbinfo);
INP_WUNLOCK(inp);
return (0);
}
static int
rip_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
{
struct sockaddr_in *addr = (struct sockaddr_in *)nam;
struct inpcb *inp;
if (nam->sa_len != sizeof(*addr))
return (EINVAL);
if (CK_STAILQ_EMPTY(&V_ifnet))
return (EADDRNOTAVAIL);
if (addr->sin_family != AF_INET && addr->sin_family != AF_IMPLINK)
return (EAFNOSUPPORT);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("rip_connect: inp == NULL"));
INP_WLOCK(inp);
INP_HASH_WLOCK(&V_ripcbinfo);
rip_delhash(inp);
inp->inp_faddr = addr->sin_addr;
rip_inshash(inp);
INP_HASH_WUNLOCK(&V_ripcbinfo);
soisconnected(so);
INP_WUNLOCK(inp);
return (0);
}
static int
rip_shutdown(struct socket *so, enum shutdown_how how)
{
SOCK_LOCK(so);
if (!(so->so_state & SS_ISCONNECTED)) {
SOCK_UNLOCK(so);
return (ENOTCONN);
}
SOCK_UNLOCK(so);
switch (how) {
case SHUT_RD:
sorflush(so);
break;
case SHUT_RDWR:
sorflush(so);
/* FALLTHROUGH */
case SHUT_WR:
socantsendmore(so);
}
return (0);
}
#endif /* INET */
static int
rip_pcblist(SYSCTL_HANDLER_ARGS)
{
struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_ripcbinfo,
INPLOOKUP_RLOCKPCB);
struct xinpgen xig;
struct inpcb *inp;
int error;
if (req->newptr != 0)
return (EPERM);
if (req->oldptr == 0) {
int n;
n = V_ripcbinfo.ipi_count;
n += imax(n / 8, 10);
req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
return (0);
}
if ((error = sysctl_wire_old_buffer(req, 0)) != 0)
return (error);
bzero(&xig, sizeof(xig));
xig.xig_len = sizeof xig;
xig.xig_count = V_ripcbinfo.ipi_count;
xig.xig_gen = V_ripcbinfo.ipi_gencnt;
xig.xig_sogen = so_gencnt;
error = SYSCTL_OUT(req, &xig, sizeof xig);
if (error)
return (error);
while ((inp = inp_next(&inpi)) != NULL) {
if (inp->inp_gencnt <= xig.xig_gen &&
cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
struct xinpcb xi;
in_pcbtoxinpcb(inp, &xi);
error = SYSCTL_OUT(req, &xi, sizeof xi);
if (error) {
INP_RUNLOCK(inp);
break;
}
}
}
if (!error) {
/*
* Give the user an updated idea of our state. If the
* generation differs from what we told her before, she knows
* that something happened while we were processing this
* request, and it might be necessary to retry.
*/
xig.xig_gen = V_ripcbinfo.ipi_gencnt;
xig.xig_sogen = so_gencnt;
xig.xig_count = V_ripcbinfo.ipi_count;
error = SYSCTL_OUT(req, &xig, sizeof xig);
}
return (error);
}
SYSCTL_PROC(_net_inet_raw, OID_AUTO/*XXX*/, pcblist,
CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
rip_pcblist, "S,xinpcb",
"List of active raw IP sockets");
#ifdef INET
struct protosw rip_protosw = {
.pr_type = SOCK_RAW,
.pr_flags = PR_ATOMIC|PR_ADDR,
.pr_ctloutput = rip_ctloutput,
.pr_abort = rip_abort,
.pr_attach = rip_attach,
.pr_bind = rip_bind,
.pr_connect = rip_connect,
.pr_control = in_control,
.pr_detach = rip_detach,
.pr_disconnect = rip_disconnect,
.pr_peeraddr = in_getpeeraddr,
.pr_send = rip_send,
.pr_shutdown = rip_shutdown,
.pr_sockaddr = in_getsockaddr,
.pr_sosetlabel = in_pcbsosetlabel,
.pr_close = rip_close
};
#endif /* INET */