mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-17 15:27:36 +00:00
b078889a6b
Fixes GCC libstdc++/29286 The fix seems to work for amd64 but causes segfaults on powerpc. At this time gcc is much more important on powerpc than on amd64. Reported by: andreast
4661 lines
126 KiB
C
4661 lines
126 KiB
C
/* Lowering pass for OpenMP directives. Converts OpenMP directives
|
||
into explicit calls to the runtime library (libgomp) and data
|
||
marshalling to implement data sharing and copying clauses.
|
||
Contributed by Diego Novillo <dnovillo@redhat.com>
|
||
|
||
Copyright (C) 2005, 2006 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "tree.h"
|
||
#include "rtl.h"
|
||
#include "tree-gimple.h"
|
||
#include "tree-inline.h"
|
||
#include "langhooks.h"
|
||
#include "diagnostic.h"
|
||
#include "tree-flow.h"
|
||
#include "timevar.h"
|
||
#include "flags.h"
|
||
#include "function.h"
|
||
#include "expr.h"
|
||
#include "toplev.h"
|
||
#include "tree-pass.h"
|
||
#include "ggc.h"
|
||
#include "except.h"
|
||
|
||
|
||
/* Lowering of OpenMP parallel and workshare constructs proceeds in two
|
||
phases. The first phase scans the function looking for OMP statements
|
||
and then for variables that must be replaced to satisfy data sharing
|
||
clauses. The second phase expands code for the constructs, as well as
|
||
re-gimplifying things when variables have been replaced with complex
|
||
expressions.
|
||
|
||
Final code generation is done by pass_expand_omp. The flowgraph is
|
||
scanned for parallel regions which are then moved to a new
|
||
function, to be invoked by the thread library. */
|
||
|
||
/* Context structure. Used to store information about each parallel
|
||
directive in the code. */
|
||
|
||
typedef struct omp_context
|
||
{
|
||
/* This field must be at the beginning, as we do "inheritance": Some
|
||
callback functions for tree-inline.c (e.g., omp_copy_decl)
|
||
receive a copy_body_data pointer that is up-casted to an
|
||
omp_context pointer. */
|
||
copy_body_data cb;
|
||
|
||
/* The tree of contexts corresponding to the encountered constructs. */
|
||
struct omp_context *outer;
|
||
tree stmt;
|
||
|
||
/* Map variables to fields in a structure that allows communication
|
||
between sending and receiving threads. */
|
||
splay_tree field_map;
|
||
tree record_type;
|
||
tree sender_decl;
|
||
tree receiver_decl;
|
||
|
||
/* A chain of variables to add to the top-level block surrounding the
|
||
construct. In the case of a parallel, this is in the child function. */
|
||
tree block_vars;
|
||
|
||
/* What to do with variables with implicitly determined sharing
|
||
attributes. */
|
||
enum omp_clause_default_kind default_kind;
|
||
|
||
/* Nesting depth of this context. Used to beautify error messages re
|
||
invalid gotos. The outermost ctx is depth 1, with depth 0 being
|
||
reserved for the main body of the function. */
|
||
int depth;
|
||
|
||
/* True if this parallel directive is nested within another. */
|
||
bool is_nested;
|
||
} omp_context;
|
||
|
||
|
||
/* A structure describing the main elements of a parallel loop. */
|
||
|
||
struct omp_for_data
|
||
{
|
||
tree v, n1, n2, step, chunk_size, for_stmt;
|
||
enum tree_code cond_code;
|
||
tree pre;
|
||
bool have_nowait, have_ordered;
|
||
enum omp_clause_schedule_kind sched_kind;
|
||
};
|
||
|
||
|
||
static splay_tree all_contexts;
|
||
static int parallel_nesting_level;
|
||
struct omp_region *root_omp_region;
|
||
|
||
static void scan_omp (tree *, omp_context *);
|
||
static void lower_omp (tree *, omp_context *);
|
||
static tree lookup_decl_in_outer_ctx (tree, omp_context *);
|
||
static tree maybe_lookup_decl_in_outer_ctx (tree, omp_context *);
|
||
|
||
/* Find an OpenMP clause of type KIND within CLAUSES. */
|
||
|
||
static tree
|
||
find_omp_clause (tree clauses, enum omp_clause_code kind)
|
||
{
|
||
for (; clauses ; clauses = OMP_CLAUSE_CHAIN (clauses))
|
||
if (OMP_CLAUSE_CODE (clauses) == kind)
|
||
return clauses;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Return true if CTX is for an omp parallel. */
|
||
|
||
static inline bool
|
||
is_parallel_ctx (omp_context *ctx)
|
||
{
|
||
return TREE_CODE (ctx->stmt) == OMP_PARALLEL;
|
||
}
|
||
|
||
|
||
/* Return true if REGION is a combined parallel+workshare region. */
|
||
|
||
static inline bool
|
||
is_combined_parallel (struct omp_region *region)
|
||
{
|
||
return region->is_combined_parallel;
|
||
}
|
||
|
||
|
||
/* Extract the header elements of parallel loop FOR_STMT and store
|
||
them into *FD. */
|
||
|
||
static void
|
||
extract_omp_for_data (tree for_stmt, struct omp_for_data *fd)
|
||
{
|
||
tree t;
|
||
|
||
fd->for_stmt = for_stmt;
|
||
fd->pre = NULL;
|
||
|
||
t = OMP_FOR_INIT (for_stmt);
|
||
gcc_assert (TREE_CODE (t) == MODIFY_EXPR);
|
||
fd->v = TREE_OPERAND (t, 0);
|
||
gcc_assert (DECL_P (fd->v));
|
||
gcc_assert (TREE_CODE (TREE_TYPE (fd->v)) == INTEGER_TYPE);
|
||
fd->n1 = TREE_OPERAND (t, 1);
|
||
|
||
t = OMP_FOR_COND (for_stmt);
|
||
fd->cond_code = TREE_CODE (t);
|
||
gcc_assert (TREE_OPERAND (t, 0) == fd->v);
|
||
fd->n2 = TREE_OPERAND (t, 1);
|
||
switch (fd->cond_code)
|
||
{
|
||
case LT_EXPR:
|
||
case GT_EXPR:
|
||
break;
|
||
case LE_EXPR:
|
||
fd->n2 = fold_build2 (PLUS_EXPR, TREE_TYPE (fd->n2), fd->n2,
|
||
build_int_cst (TREE_TYPE (fd->n2), 1));
|
||
fd->cond_code = LT_EXPR;
|
||
break;
|
||
case GE_EXPR:
|
||
fd->n2 = fold_build2 (MINUS_EXPR, TREE_TYPE (fd->n2), fd->n2,
|
||
build_int_cst (TREE_TYPE (fd->n2), 1));
|
||
fd->cond_code = GT_EXPR;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
t = OMP_FOR_INCR (fd->for_stmt);
|
||
gcc_assert (TREE_CODE (t) == MODIFY_EXPR);
|
||
gcc_assert (TREE_OPERAND (t, 0) == fd->v);
|
||
t = TREE_OPERAND (t, 1);
|
||
gcc_assert (TREE_OPERAND (t, 0) == fd->v);
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case PLUS_EXPR:
|
||
fd->step = TREE_OPERAND (t, 1);
|
||
break;
|
||
case MINUS_EXPR:
|
||
fd->step = TREE_OPERAND (t, 1);
|
||
fd->step = fold_build1 (NEGATE_EXPR, TREE_TYPE (fd->step), fd->step);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
fd->have_nowait = fd->have_ordered = false;
|
||
fd->sched_kind = OMP_CLAUSE_SCHEDULE_STATIC;
|
||
fd->chunk_size = NULL_TREE;
|
||
|
||
for (t = OMP_FOR_CLAUSES (for_stmt); t ; t = OMP_CLAUSE_CHAIN (t))
|
||
switch (OMP_CLAUSE_CODE (t))
|
||
{
|
||
case OMP_CLAUSE_NOWAIT:
|
||
fd->have_nowait = true;
|
||
break;
|
||
case OMP_CLAUSE_ORDERED:
|
||
fd->have_ordered = true;
|
||
break;
|
||
case OMP_CLAUSE_SCHEDULE:
|
||
fd->sched_kind = OMP_CLAUSE_SCHEDULE_KIND (t);
|
||
fd->chunk_size = OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (t);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (fd->sched_kind == OMP_CLAUSE_SCHEDULE_RUNTIME)
|
||
gcc_assert (fd->chunk_size == NULL);
|
||
else if (fd->chunk_size == NULL)
|
||
{
|
||
/* We only need to compute a default chunk size for ordered
|
||
static loops and dynamic loops. */
|
||
if (fd->sched_kind != OMP_CLAUSE_SCHEDULE_STATIC || fd->have_ordered)
|
||
fd->chunk_size = (fd->sched_kind == OMP_CLAUSE_SCHEDULE_STATIC)
|
||
? integer_zero_node : integer_one_node;
|
||
}
|
||
}
|
||
|
||
|
||
/* Given two blocks PAR_ENTRY_BB and WS_ENTRY_BB such that WS_ENTRY_BB
|
||
is the immediate dominator of PAR_ENTRY_BB, return true if there
|
||
are no data dependencies that would prevent expanding the parallel
|
||
directive at PAR_ENTRY_BB as a combined parallel+workshare region.
|
||
|
||
When expanding a combined parallel+workshare region, the call to
|
||
the child function may need additional arguments in the case of
|
||
OMP_FOR regions. In some cases, these arguments are computed out
|
||
of variables passed in from the parent to the child via 'struct
|
||
.omp_data_s'. For instance:
|
||
|
||
#pragma omp parallel for schedule (guided, i * 4)
|
||
for (j ...)
|
||
|
||
Is lowered into:
|
||
|
||
# BLOCK 2 (PAR_ENTRY_BB)
|
||
.omp_data_o.i = i;
|
||
#pragma omp parallel [child fn: bar.omp_fn.0 ( ..., D.1598)
|
||
|
||
# BLOCK 3 (WS_ENTRY_BB)
|
||
.omp_data_i = &.omp_data_o;
|
||
D.1667 = .omp_data_i->i;
|
||
D.1598 = D.1667 * 4;
|
||
#pragma omp for schedule (guided, D.1598)
|
||
|
||
When we outline the parallel region, the call to the child function
|
||
'bar.omp_fn.0' will need the value D.1598 in its argument list, but
|
||
that value is computed *after* the call site. So, in principle we
|
||
cannot do the transformation.
|
||
|
||
To see whether the code in WS_ENTRY_BB blocks the combined
|
||
parallel+workshare call, we collect all the variables used in the
|
||
OMP_FOR header check whether they appear on the LHS of any
|
||
statement in WS_ENTRY_BB. If so, then we cannot emit the combined
|
||
call.
|
||
|
||
FIXME. If we had the SSA form built at this point, we could merely
|
||
hoist the code in block 3 into block 2 and be done with it. But at
|
||
this point we don't have dataflow information and though we could
|
||
hack something up here, it is really not worth the aggravation. */
|
||
|
||
static bool
|
||
workshare_safe_to_combine_p (basic_block par_entry_bb, basic_block ws_entry_bb)
|
||
{
|
||
struct omp_for_data fd;
|
||
tree par_stmt, ws_stmt;
|
||
|
||
par_stmt = last_stmt (par_entry_bb);
|
||
ws_stmt = last_stmt (ws_entry_bb);
|
||
|
||
if (TREE_CODE (ws_stmt) == OMP_SECTIONS)
|
||
return true;
|
||
|
||
gcc_assert (TREE_CODE (ws_stmt) == OMP_FOR);
|
||
|
||
extract_omp_for_data (ws_stmt, &fd);
|
||
|
||
/* FIXME. We give up too easily here. If any of these arguments
|
||
are not constants, they will likely involve variables that have
|
||
been mapped into fields of .omp_data_s for sharing with the child
|
||
function. With appropriate data flow, it would be possible to
|
||
see through this. */
|
||
if (!is_gimple_min_invariant (fd.n1)
|
||
|| !is_gimple_min_invariant (fd.n2)
|
||
|| !is_gimple_min_invariant (fd.step)
|
||
|| (fd.chunk_size && !is_gimple_min_invariant (fd.chunk_size)))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Collect additional arguments needed to emit a combined
|
||
parallel+workshare call. WS_STMT is the workshare directive being
|
||
expanded. */
|
||
|
||
static tree
|
||
get_ws_args_for (tree ws_stmt)
|
||
{
|
||
tree t;
|
||
|
||
if (TREE_CODE (ws_stmt) == OMP_FOR)
|
||
{
|
||
struct omp_for_data fd;
|
||
tree ws_args;
|
||
|
||
extract_omp_for_data (ws_stmt, &fd);
|
||
|
||
ws_args = NULL_TREE;
|
||
if (fd.chunk_size)
|
||
{
|
||
t = fold_convert (long_integer_type_node, fd.chunk_size);
|
||
ws_args = tree_cons (NULL, t, ws_args);
|
||
}
|
||
|
||
t = fold_convert (long_integer_type_node, fd.step);
|
||
ws_args = tree_cons (NULL, t, ws_args);
|
||
|
||
t = fold_convert (long_integer_type_node, fd.n2);
|
||
ws_args = tree_cons (NULL, t, ws_args);
|
||
|
||
t = fold_convert (long_integer_type_node, fd.n1);
|
||
ws_args = tree_cons (NULL, t, ws_args);
|
||
|
||
return ws_args;
|
||
}
|
||
else if (TREE_CODE (ws_stmt) == OMP_SECTIONS)
|
||
{
|
||
basic_block bb = bb_for_stmt (ws_stmt);
|
||
t = build_int_cst (unsigned_type_node, EDGE_COUNT (bb->succs));
|
||
t = tree_cons (NULL, t, NULL);
|
||
return t;
|
||
}
|
||
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
|
||
/* Discover whether REGION is a combined parallel+workshare region. */
|
||
|
||
static void
|
||
determine_parallel_type (struct omp_region *region)
|
||
{
|
||
basic_block par_entry_bb, par_exit_bb;
|
||
basic_block ws_entry_bb, ws_exit_bb;
|
||
|
||
if (region == NULL || region->inner == NULL
|
||
|| region->exit == NULL || region->inner->exit == NULL)
|
||
return;
|
||
|
||
/* We only support parallel+for and parallel+sections. */
|
||
if (region->type != OMP_PARALLEL
|
||
|| (region->inner->type != OMP_FOR
|
||
&& region->inner->type != OMP_SECTIONS))
|
||
return;
|
||
|
||
/* Check for perfect nesting PAR_ENTRY_BB -> WS_ENTRY_BB and
|
||
WS_EXIT_BB -> PAR_EXIT_BB. */
|
||
par_entry_bb = region->entry;
|
||
par_exit_bb = region->exit;
|
||
ws_entry_bb = region->inner->entry;
|
||
ws_exit_bb = region->inner->exit;
|
||
|
||
if (single_succ (par_entry_bb) == ws_entry_bb
|
||
&& single_succ (ws_exit_bb) == par_exit_bb
|
||
&& workshare_safe_to_combine_p (par_entry_bb, ws_entry_bb)
|
||
&& (OMP_PARALLEL_COMBINED (last_stmt (par_entry_bb))
|
||
|| (last_and_only_stmt (ws_entry_bb)
|
||
&& last_and_only_stmt (par_exit_bb))))
|
||
{
|
||
tree ws_stmt = last_stmt (ws_entry_bb);
|
||
|
||
if (region->inner->type == OMP_FOR)
|
||
{
|
||
/* If this is a combined parallel loop, we need to determine
|
||
whether or not to use the combined library calls. There
|
||
are two cases where we do not apply the transformation:
|
||
static loops and any kind of ordered loop. In the first
|
||
case, we already open code the loop so there is no need
|
||
to do anything else. In the latter case, the combined
|
||
parallel loop call would still need extra synchronization
|
||
to implement ordered semantics, so there would not be any
|
||
gain in using the combined call. */
|
||
tree clauses = OMP_FOR_CLAUSES (ws_stmt);
|
||
tree c = find_omp_clause (clauses, OMP_CLAUSE_SCHEDULE);
|
||
if (c == NULL
|
||
|| OMP_CLAUSE_SCHEDULE_KIND (c) == OMP_CLAUSE_SCHEDULE_STATIC
|
||
|| find_omp_clause (clauses, OMP_CLAUSE_ORDERED))
|
||
{
|
||
region->is_combined_parallel = false;
|
||
region->inner->is_combined_parallel = false;
|
||
return;
|
||
}
|
||
}
|
||
|
||
region->is_combined_parallel = true;
|
||
region->inner->is_combined_parallel = true;
|
||
region->ws_args = get_ws_args_for (ws_stmt);
|
||
}
|
||
}
|
||
|
||
|
||
/* Return true if EXPR is variable sized. */
|
||
|
||
static inline bool
|
||
is_variable_sized (tree expr)
|
||
{
|
||
return !TREE_CONSTANT (TYPE_SIZE_UNIT (TREE_TYPE (expr)));
|
||
}
|
||
|
||
/* Return true if DECL is a reference type. */
|
||
|
||
static inline bool
|
||
is_reference (tree decl)
|
||
{
|
||
return lang_hooks.decls.omp_privatize_by_reference (decl);
|
||
}
|
||
|
||
/* Lookup variables in the decl or field splay trees. The "maybe" form
|
||
allows for the variable form to not have been entered, otherwise we
|
||
assert that the variable must have been entered. */
|
||
|
||
static inline tree
|
||
lookup_decl (tree var, omp_context *ctx)
|
||
{
|
||
splay_tree_node n;
|
||
n = splay_tree_lookup (ctx->cb.decl_map, (splay_tree_key) var);
|
||
return (tree) n->value;
|
||
}
|
||
|
||
static inline tree
|
||
maybe_lookup_decl (tree var, omp_context *ctx)
|
||
{
|
||
splay_tree_node n;
|
||
n = splay_tree_lookup (ctx->cb.decl_map, (splay_tree_key) var);
|
||
return n ? (tree) n->value : NULL_TREE;
|
||
}
|
||
|
||
static inline tree
|
||
lookup_field (tree var, omp_context *ctx)
|
||
{
|
||
splay_tree_node n;
|
||
n = splay_tree_lookup (ctx->field_map, (splay_tree_key) var);
|
||
return (tree) n->value;
|
||
}
|
||
|
||
static inline tree
|
||
maybe_lookup_field (tree var, omp_context *ctx)
|
||
{
|
||
splay_tree_node n;
|
||
n = splay_tree_lookup (ctx->field_map, (splay_tree_key) var);
|
||
return n ? (tree) n->value : NULL_TREE;
|
||
}
|
||
|
||
/* Return true if DECL should be copied by pointer. SHARED_P is true
|
||
if DECL is to be shared. */
|
||
|
||
static bool
|
||
use_pointer_for_field (tree decl, bool shared_p)
|
||
{
|
||
if (AGGREGATE_TYPE_P (TREE_TYPE (decl)))
|
||
return true;
|
||
|
||
/* We can only use copy-in/copy-out semantics for shared variables
|
||
when we know the value is not accessible from an outer scope. */
|
||
if (shared_p)
|
||
{
|
||
/* ??? Trivially accessible from anywhere. But why would we even
|
||
be passing an address in this case? Should we simply assert
|
||
this to be false, or should we have a cleanup pass that removes
|
||
these from the list of mappings? */
|
||
if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
|
||
return true;
|
||
|
||
/* For variables with DECL_HAS_VALUE_EXPR_P set, we cannot tell
|
||
without analyzing the expression whether or not its location
|
||
is accessible to anyone else. In the case of nested parallel
|
||
regions it certainly may be. */
|
||
if (TREE_CODE (decl) != RESULT_DECL && DECL_HAS_VALUE_EXPR_P (decl))
|
||
return true;
|
||
|
||
/* Do not use copy-in/copy-out for variables that have their
|
||
address taken. */
|
||
if (TREE_ADDRESSABLE (decl))
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Construct a new automatic decl similar to VAR. */
|
||
|
||
static tree
|
||
omp_copy_decl_2 (tree var, tree name, tree type, omp_context *ctx)
|
||
{
|
||
tree copy = build_decl (VAR_DECL, name, type);
|
||
|
||
TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (var);
|
||
DECL_COMPLEX_GIMPLE_REG_P (copy) = DECL_COMPLEX_GIMPLE_REG_P (var);
|
||
DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (var);
|
||
DECL_IGNORED_P (copy) = DECL_IGNORED_P (var);
|
||
TREE_USED (copy) = 1;
|
||
DECL_CONTEXT (copy) = current_function_decl;
|
||
DECL_SEEN_IN_BIND_EXPR_P (copy) = 1;
|
||
|
||
TREE_CHAIN (copy) = ctx->block_vars;
|
||
ctx->block_vars = copy;
|
||
|
||
return copy;
|
||
}
|
||
|
||
static tree
|
||
omp_copy_decl_1 (tree var, omp_context *ctx)
|
||
{
|
||
return omp_copy_decl_2 (var, DECL_NAME (var), TREE_TYPE (var), ctx);
|
||
}
|
||
|
||
/* Build tree nodes to access the field for VAR on the receiver side. */
|
||
|
||
static tree
|
||
build_receiver_ref (tree var, bool by_ref, omp_context *ctx)
|
||
{
|
||
tree x, field = lookup_field (var, ctx);
|
||
|
||
/* If the receiver record type was remapped in the child function,
|
||
remap the field into the new record type. */
|
||
x = maybe_lookup_field (field, ctx);
|
||
if (x != NULL)
|
||
field = x;
|
||
|
||
x = build_fold_indirect_ref (ctx->receiver_decl);
|
||
x = build3 (COMPONENT_REF, TREE_TYPE (field), x, field, NULL);
|
||
if (by_ref)
|
||
x = build_fold_indirect_ref (x);
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Build tree nodes to access VAR in the scope outer to CTX. In the case
|
||
of a parallel, this is a component reference; for workshare constructs
|
||
this is some variable. */
|
||
|
||
static tree
|
||
build_outer_var_ref (tree var, omp_context *ctx)
|
||
{
|
||
tree x;
|
||
|
||
if (is_global_var (maybe_lookup_decl_in_outer_ctx (var, ctx)))
|
||
x = var;
|
||
else if (is_variable_sized (var))
|
||
{
|
||
x = TREE_OPERAND (DECL_VALUE_EXPR (var), 0);
|
||
x = build_outer_var_ref (x, ctx);
|
||
x = build_fold_indirect_ref (x);
|
||
}
|
||
else if (is_parallel_ctx (ctx))
|
||
{
|
||
bool by_ref = use_pointer_for_field (var, false);
|
||
x = build_receiver_ref (var, by_ref, ctx);
|
||
}
|
||
else if (ctx->outer)
|
||
x = lookup_decl (var, ctx->outer);
|
||
else if (is_reference (var))
|
||
/* This can happen with orphaned constructs. If var is reference, it is
|
||
possible it is shared and as such valid. */
|
||
x = var;
|
||
else
|
||
gcc_unreachable ();
|
||
|
||
if (is_reference (var))
|
||
x = build_fold_indirect_ref (x);
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Build tree nodes to access the field for VAR on the sender side. */
|
||
|
||
static tree
|
||
build_sender_ref (tree var, omp_context *ctx)
|
||
{
|
||
tree field = lookup_field (var, ctx);
|
||
return build3 (COMPONENT_REF, TREE_TYPE (field),
|
||
ctx->sender_decl, field, NULL);
|
||
}
|
||
|
||
/* Add a new field for VAR inside the structure CTX->SENDER_DECL. */
|
||
|
||
static void
|
||
install_var_field (tree var, bool by_ref, omp_context *ctx)
|
||
{
|
||
tree field, type;
|
||
|
||
gcc_assert (!splay_tree_lookup (ctx->field_map, (splay_tree_key) var));
|
||
|
||
type = TREE_TYPE (var);
|
||
if (by_ref)
|
||
type = build_pointer_type (type);
|
||
|
||
field = build_decl (FIELD_DECL, DECL_NAME (var), type);
|
||
|
||
/* Remember what variable this field was created for. This does have a
|
||
side effect of making dwarf2out ignore this member, so for helpful
|
||
debugging we clear it later in delete_omp_context. */
|
||
DECL_ABSTRACT_ORIGIN (field) = var;
|
||
|
||
insert_field_into_struct (ctx->record_type, field);
|
||
|
||
splay_tree_insert (ctx->field_map, (splay_tree_key) var,
|
||
(splay_tree_value) field);
|
||
}
|
||
|
||
static tree
|
||
install_var_local (tree var, omp_context *ctx)
|
||
{
|
||
tree new_var = omp_copy_decl_1 (var, ctx);
|
||
insert_decl_map (&ctx->cb, var, new_var);
|
||
return new_var;
|
||
}
|
||
|
||
/* Adjust the replacement for DECL in CTX for the new context. This means
|
||
copying the DECL_VALUE_EXPR, and fixing up the type. */
|
||
|
||
static void
|
||
fixup_remapped_decl (tree decl, omp_context *ctx, bool private_debug)
|
||
{
|
||
tree new_decl, size;
|
||
|
||
new_decl = lookup_decl (decl, ctx);
|
||
|
||
TREE_TYPE (new_decl) = remap_type (TREE_TYPE (decl), &ctx->cb);
|
||
|
||
if ((!TREE_CONSTANT (DECL_SIZE (new_decl)) || private_debug)
|
||
&& DECL_HAS_VALUE_EXPR_P (decl))
|
||
{
|
||
tree ve = DECL_VALUE_EXPR (decl);
|
||
walk_tree (&ve, copy_body_r, &ctx->cb, NULL);
|
||
SET_DECL_VALUE_EXPR (new_decl, ve);
|
||
DECL_HAS_VALUE_EXPR_P (new_decl) = 1;
|
||
}
|
||
|
||
if (!TREE_CONSTANT (DECL_SIZE (new_decl)))
|
||
{
|
||
size = remap_decl (DECL_SIZE (decl), &ctx->cb);
|
||
if (size == error_mark_node)
|
||
size = TYPE_SIZE (TREE_TYPE (new_decl));
|
||
DECL_SIZE (new_decl) = size;
|
||
|
||
size = remap_decl (DECL_SIZE_UNIT (decl), &ctx->cb);
|
||
if (size == error_mark_node)
|
||
size = TYPE_SIZE_UNIT (TREE_TYPE (new_decl));
|
||
DECL_SIZE_UNIT (new_decl) = size;
|
||
}
|
||
}
|
||
|
||
/* The callback for remap_decl. Search all containing contexts for a
|
||
mapping of the variable; this avoids having to duplicate the splay
|
||
tree ahead of time. We know a mapping doesn't already exist in the
|
||
given context. Create new mappings to implement default semantics. */
|
||
|
||
static tree
|
||
omp_copy_decl (tree var, copy_body_data *cb)
|
||
{
|
||
omp_context *ctx = (omp_context *) cb;
|
||
tree new_var;
|
||
|
||
if (TREE_CODE (var) == LABEL_DECL)
|
||
{
|
||
new_var = create_artificial_label ();
|
||
DECL_CONTEXT (new_var) = current_function_decl;
|
||
insert_decl_map (&ctx->cb, var, new_var);
|
||
return new_var;
|
||
}
|
||
|
||
while (!is_parallel_ctx (ctx))
|
||
{
|
||
ctx = ctx->outer;
|
||
if (ctx == NULL)
|
||
return var;
|
||
new_var = maybe_lookup_decl (var, ctx);
|
||
if (new_var)
|
||
return new_var;
|
||
}
|
||
|
||
if (is_global_var (var) || decl_function_context (var) != ctx->cb.src_fn)
|
||
return var;
|
||
|
||
return error_mark_node;
|
||
}
|
||
|
||
|
||
/* Return the parallel region associated with STMT. */
|
||
|
||
/* Debugging dumps for parallel regions. */
|
||
void dump_omp_region (FILE *, struct omp_region *, int);
|
||
void debug_omp_region (struct omp_region *);
|
||
void debug_all_omp_regions (void);
|
||
|
||
/* Dump the parallel region tree rooted at REGION. */
|
||
|
||
void
|
||
dump_omp_region (FILE *file, struct omp_region *region, int indent)
|
||
{
|
||
fprintf (file, "%*sbb %d: %s\n", indent, "", region->entry->index,
|
||
tree_code_name[region->type]);
|
||
|
||
if (region->inner)
|
||
dump_omp_region (file, region->inner, indent + 4);
|
||
|
||
if (region->cont)
|
||
{
|
||
fprintf (file, "%*sbb %d: OMP_CONTINUE\n", indent, "",
|
||
region->cont->index);
|
||
}
|
||
|
||
if (region->exit)
|
||
fprintf (file, "%*sbb %d: OMP_RETURN\n", indent, "",
|
||
region->exit->index);
|
||
else
|
||
fprintf (file, "%*s[no exit marker]\n", indent, "");
|
||
|
||
if (region->next)
|
||
dump_omp_region (file, region->next, indent);
|
||
}
|
||
|
||
void
|
||
debug_omp_region (struct omp_region *region)
|
||
{
|
||
dump_omp_region (stderr, region, 0);
|
||
}
|
||
|
||
void
|
||
debug_all_omp_regions (void)
|
||
{
|
||
dump_omp_region (stderr, root_omp_region, 0);
|
||
}
|
||
|
||
|
||
/* Create a new parallel region starting at STMT inside region PARENT. */
|
||
|
||
struct omp_region *
|
||
new_omp_region (basic_block bb, enum tree_code type, struct omp_region *parent)
|
||
{
|
||
struct omp_region *region = xcalloc (1, sizeof (*region));
|
||
|
||
region->outer = parent;
|
||
region->entry = bb;
|
||
region->type = type;
|
||
|
||
if (parent)
|
||
{
|
||
/* This is a nested region. Add it to the list of inner
|
||
regions in PARENT. */
|
||
region->next = parent->inner;
|
||
parent->inner = region;
|
||
}
|
||
else
|
||
{
|
||
/* This is a toplevel region. Add it to the list of toplevel
|
||
regions in ROOT_OMP_REGION. */
|
||
region->next = root_omp_region;
|
||
root_omp_region = region;
|
||
}
|
||
|
||
return region;
|
||
}
|
||
|
||
/* Release the memory associated with the region tree rooted at REGION. */
|
||
|
||
static void
|
||
free_omp_region_1 (struct omp_region *region)
|
||
{
|
||
struct omp_region *i, *n;
|
||
|
||
for (i = region->inner; i ; i = n)
|
||
{
|
||
n = i->next;
|
||
free_omp_region_1 (i);
|
||
}
|
||
|
||
free (region);
|
||
}
|
||
|
||
/* Release the memory for the entire omp region tree. */
|
||
|
||
void
|
||
free_omp_regions (void)
|
||
{
|
||
struct omp_region *r, *n;
|
||
for (r = root_omp_region; r ; r = n)
|
||
{
|
||
n = r->next;
|
||
free_omp_region_1 (r);
|
||
}
|
||
root_omp_region = NULL;
|
||
}
|
||
|
||
|
||
/* Create a new context, with OUTER_CTX being the surrounding context. */
|
||
|
||
static omp_context *
|
||
new_omp_context (tree stmt, omp_context *outer_ctx)
|
||
{
|
||
omp_context *ctx = XCNEW (omp_context);
|
||
|
||
splay_tree_insert (all_contexts, (splay_tree_key) stmt,
|
||
(splay_tree_value) ctx);
|
||
ctx->stmt = stmt;
|
||
|
||
if (outer_ctx)
|
||
{
|
||
ctx->outer = outer_ctx;
|
||
ctx->cb = outer_ctx->cb;
|
||
ctx->cb.block = NULL;
|
||
ctx->depth = outer_ctx->depth + 1;
|
||
}
|
||
else
|
||
{
|
||
ctx->cb.src_fn = current_function_decl;
|
||
ctx->cb.dst_fn = current_function_decl;
|
||
ctx->cb.src_node = cgraph_node (current_function_decl);
|
||
ctx->cb.dst_node = ctx->cb.src_node;
|
||
ctx->cb.src_cfun = cfun;
|
||
ctx->cb.copy_decl = omp_copy_decl;
|
||
ctx->cb.eh_region = -1;
|
||
ctx->cb.transform_call_graph_edges = CB_CGE_MOVE;
|
||
ctx->depth = 1;
|
||
}
|
||
|
||
ctx->cb.decl_map = splay_tree_new (splay_tree_compare_pointers, 0, 0);
|
||
|
||
return ctx;
|
||
}
|
||
|
||
/* Destroy a omp_context data structures. Called through the splay tree
|
||
value delete callback. */
|
||
|
||
static void
|
||
delete_omp_context (splay_tree_value value)
|
||
{
|
||
omp_context *ctx = (omp_context *) value;
|
||
|
||
splay_tree_delete (ctx->cb.decl_map);
|
||
|
||
if (ctx->field_map)
|
||
splay_tree_delete (ctx->field_map);
|
||
|
||
/* We hijacked DECL_ABSTRACT_ORIGIN earlier. We need to clear it before
|
||
it produces corrupt debug information. */
|
||
if (ctx->record_type)
|
||
{
|
||
tree t;
|
||
for (t = TYPE_FIELDS (ctx->record_type); t ; t = TREE_CHAIN (t))
|
||
DECL_ABSTRACT_ORIGIN (t) = NULL;
|
||
}
|
||
|
||
XDELETE (ctx);
|
||
}
|
||
|
||
/* Fix up RECEIVER_DECL with a type that has been remapped to the child
|
||
context. */
|
||
|
||
static void
|
||
fixup_child_record_type (omp_context *ctx)
|
||
{
|
||
tree f, type = ctx->record_type;
|
||
|
||
/* ??? It isn't sufficient to just call remap_type here, because
|
||
variably_modified_type_p doesn't work the way we expect for
|
||
record types. Testing each field for whether it needs remapping
|
||
and creating a new record by hand works, however. */
|
||
for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
|
||
if (variably_modified_type_p (TREE_TYPE (f), ctx->cb.src_fn))
|
||
break;
|
||
if (f)
|
||
{
|
||
tree name, new_fields = NULL;
|
||
|
||
type = lang_hooks.types.make_type (RECORD_TYPE);
|
||
name = DECL_NAME (TYPE_NAME (ctx->record_type));
|
||
name = build_decl (TYPE_DECL, name, type);
|
||
TYPE_NAME (type) = name;
|
||
|
||
for (f = TYPE_FIELDS (ctx->record_type); f ; f = TREE_CHAIN (f))
|
||
{
|
||
tree new_f = copy_node (f);
|
||
DECL_CONTEXT (new_f) = type;
|
||
TREE_TYPE (new_f) = remap_type (TREE_TYPE (f), &ctx->cb);
|
||
TREE_CHAIN (new_f) = new_fields;
|
||
new_fields = new_f;
|
||
|
||
/* Arrange to be able to look up the receiver field
|
||
given the sender field. */
|
||
splay_tree_insert (ctx->field_map, (splay_tree_key) f,
|
||
(splay_tree_value) new_f);
|
||
}
|
||
TYPE_FIELDS (type) = nreverse (new_fields);
|
||
layout_type (type);
|
||
}
|
||
|
||
TREE_TYPE (ctx->receiver_decl) = build_pointer_type (type);
|
||
}
|
||
|
||
/* Instantiate decls as necessary in CTX to satisfy the data sharing
|
||
specified by CLAUSES. */
|
||
|
||
static void
|
||
scan_sharing_clauses (tree clauses, omp_context *ctx)
|
||
{
|
||
tree c, decl;
|
||
bool scan_array_reductions = false;
|
||
|
||
for (c = clauses; c; c = OMP_CLAUSE_CHAIN (c))
|
||
{
|
||
bool by_ref;
|
||
|
||
switch (OMP_CLAUSE_CODE (c))
|
||
{
|
||
case OMP_CLAUSE_PRIVATE:
|
||
decl = OMP_CLAUSE_DECL (c);
|
||
if (!is_variable_sized (decl))
|
||
install_var_local (decl, ctx);
|
||
break;
|
||
|
||
case OMP_CLAUSE_SHARED:
|
||
gcc_assert (is_parallel_ctx (ctx));
|
||
decl = OMP_CLAUSE_DECL (c);
|
||
gcc_assert (!is_variable_sized (decl));
|
||
by_ref = use_pointer_for_field (decl, true);
|
||
/* Global variables don't need to be copied,
|
||
the receiver side will use them directly. */
|
||
if (is_global_var (maybe_lookup_decl_in_outer_ctx (decl, ctx)))
|
||
break;
|
||
if (! TREE_READONLY (decl)
|
||
|| TREE_ADDRESSABLE (decl)
|
||
|| by_ref
|
||
|| is_reference (decl))
|
||
{
|
||
install_var_field (decl, by_ref, ctx);
|
||
install_var_local (decl, ctx);
|
||
break;
|
||
}
|
||
/* We don't need to copy const scalar vars back. */
|
||
OMP_CLAUSE_SET_CODE (c, OMP_CLAUSE_FIRSTPRIVATE);
|
||
goto do_private;
|
||
|
||
case OMP_CLAUSE_LASTPRIVATE:
|
||
/* Let the corresponding firstprivate clause create
|
||
the variable. */
|
||
if (OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c))
|
||
break;
|
||
/* FALLTHRU */
|
||
|
||
case OMP_CLAUSE_FIRSTPRIVATE:
|
||
case OMP_CLAUSE_REDUCTION:
|
||
decl = OMP_CLAUSE_DECL (c);
|
||
do_private:
|
||
if (is_variable_sized (decl))
|
||
break;
|
||
else if (is_parallel_ctx (ctx)
|
||
&& ! is_global_var (maybe_lookup_decl_in_outer_ctx (decl,
|
||
ctx)))
|
||
{
|
||
by_ref = use_pointer_for_field (decl, false);
|
||
install_var_field (decl, by_ref, ctx);
|
||
}
|
||
install_var_local (decl, ctx);
|
||
break;
|
||
|
||
case OMP_CLAUSE_COPYPRIVATE:
|
||
if (ctx->outer)
|
||
scan_omp (&OMP_CLAUSE_DECL (c), ctx->outer);
|
||
/* FALLTHRU */
|
||
|
||
case OMP_CLAUSE_COPYIN:
|
||
decl = OMP_CLAUSE_DECL (c);
|
||
by_ref = use_pointer_for_field (decl, false);
|
||
install_var_field (decl, by_ref, ctx);
|
||
break;
|
||
|
||
case OMP_CLAUSE_DEFAULT:
|
||
ctx->default_kind = OMP_CLAUSE_DEFAULT_KIND (c);
|
||
break;
|
||
|
||
case OMP_CLAUSE_IF:
|
||
case OMP_CLAUSE_NUM_THREADS:
|
||
case OMP_CLAUSE_SCHEDULE:
|
||
if (ctx->outer)
|
||
scan_omp (&OMP_CLAUSE_OPERAND (c, 0), ctx->outer);
|
||
break;
|
||
|
||
case OMP_CLAUSE_NOWAIT:
|
||
case OMP_CLAUSE_ORDERED:
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
for (c = clauses; c; c = OMP_CLAUSE_CHAIN (c))
|
||
{
|
||
switch (OMP_CLAUSE_CODE (c))
|
||
{
|
||
case OMP_CLAUSE_LASTPRIVATE:
|
||
/* Let the corresponding firstprivate clause create
|
||
the variable. */
|
||
if (OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c))
|
||
break;
|
||
/* FALLTHRU */
|
||
|
||
case OMP_CLAUSE_PRIVATE:
|
||
case OMP_CLAUSE_FIRSTPRIVATE:
|
||
case OMP_CLAUSE_REDUCTION:
|
||
decl = OMP_CLAUSE_DECL (c);
|
||
if (is_variable_sized (decl))
|
||
install_var_local (decl, ctx);
|
||
fixup_remapped_decl (decl, ctx,
|
||
OMP_CLAUSE_CODE (c) == OMP_CLAUSE_PRIVATE
|
||
&& OMP_CLAUSE_PRIVATE_DEBUG (c));
|
||
if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_REDUCTION
|
||
&& OMP_CLAUSE_REDUCTION_PLACEHOLDER (c))
|
||
scan_array_reductions = true;
|
||
break;
|
||
|
||
case OMP_CLAUSE_SHARED:
|
||
decl = OMP_CLAUSE_DECL (c);
|
||
if (! is_global_var (maybe_lookup_decl_in_outer_ctx (decl, ctx)))
|
||
fixup_remapped_decl (decl, ctx, false);
|
||
break;
|
||
|
||
case OMP_CLAUSE_COPYPRIVATE:
|
||
case OMP_CLAUSE_COPYIN:
|
||
case OMP_CLAUSE_DEFAULT:
|
||
case OMP_CLAUSE_IF:
|
||
case OMP_CLAUSE_NUM_THREADS:
|
||
case OMP_CLAUSE_SCHEDULE:
|
||
case OMP_CLAUSE_NOWAIT:
|
||
case OMP_CLAUSE_ORDERED:
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
if (scan_array_reductions)
|
||
for (c = clauses; c; c = OMP_CLAUSE_CHAIN (c))
|
||
if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_REDUCTION
|
||
&& OMP_CLAUSE_REDUCTION_PLACEHOLDER (c))
|
||
{
|
||
scan_omp (&OMP_CLAUSE_REDUCTION_INIT (c), ctx);
|
||
scan_omp (&OMP_CLAUSE_REDUCTION_MERGE (c), ctx);
|
||
}
|
||
}
|
||
|
||
/* Create a new name for omp child function. Returns an identifier. */
|
||
|
||
static GTY(()) unsigned int tmp_ompfn_id_num;
|
||
|
||
static tree
|
||
create_omp_child_function_name (void)
|
||
{
|
||
tree name = DECL_ASSEMBLER_NAME (current_function_decl);
|
||
size_t len = IDENTIFIER_LENGTH (name);
|
||
char *tmp_name, *prefix;
|
||
|
||
prefix = alloca (len + sizeof ("_omp_fn"));
|
||
memcpy (prefix, IDENTIFIER_POINTER (name), len);
|
||
strcpy (prefix + len, "_omp_fn");
|
||
#ifndef NO_DOT_IN_LABEL
|
||
prefix[len] = '.';
|
||
#elif !defined NO_DOLLAR_IN_LABEL
|
||
prefix[len] = '$';
|
||
#endif
|
||
ASM_FORMAT_PRIVATE_NAME (tmp_name, prefix, tmp_ompfn_id_num++);
|
||
return get_identifier (tmp_name);
|
||
}
|
||
|
||
/* Build a decl for the omp child function. It'll not contain a body
|
||
yet, just the bare decl. */
|
||
|
||
static void
|
||
create_omp_child_function (omp_context *ctx)
|
||
{
|
||
tree decl, type, name, t;
|
||
|
||
name = create_omp_child_function_name ();
|
||
type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
|
||
|
||
decl = build_decl (FUNCTION_DECL, name, type);
|
||
decl = lang_hooks.decls.pushdecl (decl);
|
||
|
||
ctx->cb.dst_fn = decl;
|
||
|
||
TREE_STATIC (decl) = 1;
|
||
TREE_USED (decl) = 1;
|
||
DECL_ARTIFICIAL (decl) = 1;
|
||
DECL_IGNORED_P (decl) = 0;
|
||
TREE_PUBLIC (decl) = 0;
|
||
DECL_UNINLINABLE (decl) = 1;
|
||
DECL_EXTERNAL (decl) = 0;
|
||
DECL_CONTEXT (decl) = NULL_TREE;
|
||
DECL_INITIAL (decl) = make_node (BLOCK);
|
||
|
||
t = build_decl (RESULT_DECL, NULL_TREE, void_type_node);
|
||
DECL_ARTIFICIAL (t) = 1;
|
||
DECL_IGNORED_P (t) = 1;
|
||
DECL_RESULT (decl) = t;
|
||
|
||
t = build_decl (PARM_DECL, get_identifier (".omp_data_i"), ptr_type_node);
|
||
DECL_ARTIFICIAL (t) = 1;
|
||
DECL_ARG_TYPE (t) = ptr_type_node;
|
||
DECL_CONTEXT (t) = current_function_decl;
|
||
TREE_USED (t) = 1;
|
||
DECL_ARGUMENTS (decl) = t;
|
||
ctx->receiver_decl = t;
|
||
|
||
/* Allocate memory for the function structure. The call to
|
||
allocate_struct_function clobbers CFUN, so we need to restore
|
||
it afterward. */
|
||
allocate_struct_function (decl);
|
||
DECL_SOURCE_LOCATION (decl) = EXPR_LOCATION (ctx->stmt);
|
||
cfun->function_end_locus = EXPR_LOCATION (ctx->stmt);
|
||
cfun = ctx->cb.src_cfun;
|
||
}
|
||
|
||
|
||
/* Scan an OpenMP parallel directive. */
|
||
|
||
static void
|
||
scan_omp_parallel (tree *stmt_p, omp_context *outer_ctx)
|
||
{
|
||
omp_context *ctx;
|
||
tree name;
|
||
|
||
/* Ignore parallel directives with empty bodies, unless there
|
||
are copyin clauses. */
|
||
if (optimize > 0
|
||
&& empty_body_p (OMP_PARALLEL_BODY (*stmt_p))
|
||
&& find_omp_clause (OMP_CLAUSES (*stmt_p), OMP_CLAUSE_COPYIN) == NULL)
|
||
{
|
||
*stmt_p = build_empty_stmt ();
|
||
return;
|
||
}
|
||
|
||
ctx = new_omp_context (*stmt_p, outer_ctx);
|
||
if (parallel_nesting_level > 1)
|
||
ctx->is_nested = true;
|
||
ctx->field_map = splay_tree_new (splay_tree_compare_pointers, 0, 0);
|
||
ctx->default_kind = OMP_CLAUSE_DEFAULT_SHARED;
|
||
ctx->record_type = lang_hooks.types.make_type (RECORD_TYPE);
|
||
name = create_tmp_var_name (".omp_data_s");
|
||
name = build_decl (TYPE_DECL, name, ctx->record_type);
|
||
TYPE_NAME (ctx->record_type) = name;
|
||
create_omp_child_function (ctx);
|
||
OMP_PARALLEL_FN (*stmt_p) = ctx->cb.dst_fn;
|
||
|
||
scan_sharing_clauses (OMP_PARALLEL_CLAUSES (*stmt_p), ctx);
|
||
scan_omp (&OMP_PARALLEL_BODY (*stmt_p), ctx);
|
||
|
||
if (TYPE_FIELDS (ctx->record_type) == NULL)
|
||
ctx->record_type = ctx->receiver_decl = NULL;
|
||
else
|
||
{
|
||
layout_type (ctx->record_type);
|
||
fixup_child_record_type (ctx);
|
||
}
|
||
}
|
||
|
||
|
||
/* Scan an OpenMP loop directive. */
|
||
|
||
static void
|
||
scan_omp_for (tree *stmt_p, omp_context *outer_ctx)
|
||
{
|
||
omp_context *ctx;
|
||
tree stmt;
|
||
|
||
stmt = *stmt_p;
|
||
ctx = new_omp_context (stmt, outer_ctx);
|
||
|
||
scan_sharing_clauses (OMP_FOR_CLAUSES (stmt), ctx);
|
||
|
||
scan_omp (&OMP_FOR_PRE_BODY (stmt), ctx);
|
||
scan_omp (&OMP_FOR_INIT (stmt), ctx);
|
||
scan_omp (&OMP_FOR_COND (stmt), ctx);
|
||
scan_omp (&OMP_FOR_INCR (stmt), ctx);
|
||
scan_omp (&OMP_FOR_BODY (stmt), ctx);
|
||
}
|
||
|
||
/* Scan an OpenMP sections directive. */
|
||
|
||
static void
|
||
scan_omp_sections (tree *stmt_p, omp_context *outer_ctx)
|
||
{
|
||
tree stmt;
|
||
omp_context *ctx;
|
||
|
||
stmt = *stmt_p;
|
||
ctx = new_omp_context (stmt, outer_ctx);
|
||
scan_sharing_clauses (OMP_SECTIONS_CLAUSES (stmt), ctx);
|
||
scan_omp (&OMP_SECTIONS_BODY (stmt), ctx);
|
||
}
|
||
|
||
/* Scan an OpenMP single directive. */
|
||
|
||
static void
|
||
scan_omp_single (tree *stmt_p, omp_context *outer_ctx)
|
||
{
|
||
tree stmt = *stmt_p;
|
||
omp_context *ctx;
|
||
tree name;
|
||
|
||
ctx = new_omp_context (stmt, outer_ctx);
|
||
ctx->field_map = splay_tree_new (splay_tree_compare_pointers, 0, 0);
|
||
ctx->record_type = lang_hooks.types.make_type (RECORD_TYPE);
|
||
name = create_tmp_var_name (".omp_copy_s");
|
||
name = build_decl (TYPE_DECL, name, ctx->record_type);
|
||
TYPE_NAME (ctx->record_type) = name;
|
||
|
||
scan_sharing_clauses (OMP_SINGLE_CLAUSES (stmt), ctx);
|
||
scan_omp (&OMP_SINGLE_BODY (stmt), ctx);
|
||
|
||
if (TYPE_FIELDS (ctx->record_type) == NULL)
|
||
ctx->record_type = NULL;
|
||
else
|
||
layout_type (ctx->record_type);
|
||
}
|
||
|
||
|
||
/* Check OpenMP nesting restrictions. */
|
||
static void
|
||
check_omp_nesting_restrictions (tree t, omp_context *ctx)
|
||
{
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case OMP_FOR:
|
||
case OMP_SECTIONS:
|
||
case OMP_SINGLE:
|
||
for (; ctx != NULL; ctx = ctx->outer)
|
||
switch (TREE_CODE (ctx->stmt))
|
||
{
|
||
case OMP_FOR:
|
||
case OMP_SECTIONS:
|
||
case OMP_SINGLE:
|
||
case OMP_ORDERED:
|
||
case OMP_MASTER:
|
||
warning (0, "work-sharing region may not be closely nested inside "
|
||
"of work-sharing, critical, ordered or master region");
|
||
return;
|
||
case OMP_PARALLEL:
|
||
return;
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
case OMP_MASTER:
|
||
for (; ctx != NULL; ctx = ctx->outer)
|
||
switch (TREE_CODE (ctx->stmt))
|
||
{
|
||
case OMP_FOR:
|
||
case OMP_SECTIONS:
|
||
case OMP_SINGLE:
|
||
warning (0, "master region may not be closely nested inside "
|
||
"of work-sharing region");
|
||
return;
|
||
case OMP_PARALLEL:
|
||
return;
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
case OMP_ORDERED:
|
||
for (; ctx != NULL; ctx = ctx->outer)
|
||
switch (TREE_CODE (ctx->stmt))
|
||
{
|
||
case OMP_CRITICAL:
|
||
warning (0, "ordered region may not be closely nested inside "
|
||
"of critical region");
|
||
return;
|
||
case OMP_FOR:
|
||
if (find_omp_clause (OMP_CLAUSES (ctx->stmt),
|
||
OMP_CLAUSE_ORDERED) == NULL)
|
||
warning (0, "ordered region must be closely nested inside "
|
||
"a loop region with an ordered clause");
|
||
return;
|
||
case OMP_PARALLEL:
|
||
return;
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
case OMP_CRITICAL:
|
||
for (; ctx != NULL; ctx = ctx->outer)
|
||
if (TREE_CODE (ctx->stmt) == OMP_CRITICAL
|
||
&& OMP_CRITICAL_NAME (t) == OMP_CRITICAL_NAME (ctx->stmt))
|
||
{
|
||
warning (0, "critical region may not be nested inside a critical "
|
||
"region with the same name");
|
||
return;
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
|
||
/* Callback for walk_stmts used to scan for OpenMP directives at TP. */
|
||
|
||
static tree
|
||
scan_omp_1 (tree *tp, int *walk_subtrees, void *data)
|
||
{
|
||
struct walk_stmt_info *wi = data;
|
||
omp_context *ctx = wi->info;
|
||
tree t = *tp;
|
||
|
||
if (EXPR_HAS_LOCATION (t))
|
||
input_location = EXPR_LOCATION (t);
|
||
|
||
/* Check the OpenMP nesting restrictions. */
|
||
if (OMP_DIRECTIVE_P (t) && ctx != NULL)
|
||
check_omp_nesting_restrictions (t, ctx);
|
||
|
||
*walk_subtrees = 0;
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case OMP_PARALLEL:
|
||
parallel_nesting_level++;
|
||
scan_omp_parallel (tp, ctx);
|
||
parallel_nesting_level--;
|
||
break;
|
||
|
||
case OMP_FOR:
|
||
scan_omp_for (tp, ctx);
|
||
break;
|
||
|
||
case OMP_SECTIONS:
|
||
scan_omp_sections (tp, ctx);
|
||
break;
|
||
|
||
case OMP_SINGLE:
|
||
scan_omp_single (tp, ctx);
|
||
break;
|
||
|
||
case OMP_SECTION:
|
||
case OMP_MASTER:
|
||
case OMP_ORDERED:
|
||
case OMP_CRITICAL:
|
||
ctx = new_omp_context (*tp, ctx);
|
||
scan_omp (&OMP_BODY (*tp), ctx);
|
||
break;
|
||
|
||
case BIND_EXPR:
|
||
{
|
||
tree var;
|
||
*walk_subtrees = 1;
|
||
|
||
for (var = BIND_EXPR_VARS (t); var ; var = TREE_CHAIN (var))
|
||
insert_decl_map (&ctx->cb, var, var);
|
||
}
|
||
break;
|
||
|
||
case VAR_DECL:
|
||
case PARM_DECL:
|
||
case LABEL_DECL:
|
||
case RESULT_DECL:
|
||
if (ctx)
|
||
*tp = remap_decl (t, &ctx->cb);
|
||
break;
|
||
|
||
default:
|
||
if (ctx && TYPE_P (t))
|
||
*tp = remap_type (t, &ctx->cb);
|
||
else if (!DECL_P (t))
|
||
*walk_subtrees = 1;
|
||
break;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
|
||
/* Scan all the statements starting at STMT_P. CTX contains context
|
||
information about the OpenMP directives and clauses found during
|
||
the scan. */
|
||
|
||
static void
|
||
scan_omp (tree *stmt_p, omp_context *ctx)
|
||
{
|
||
location_t saved_location;
|
||
struct walk_stmt_info wi;
|
||
|
||
memset (&wi, 0, sizeof (wi));
|
||
wi.callback = scan_omp_1;
|
||
wi.info = ctx;
|
||
wi.want_bind_expr = (ctx != NULL);
|
||
wi.want_locations = true;
|
||
|
||
saved_location = input_location;
|
||
walk_stmts (&wi, stmt_p);
|
||
input_location = saved_location;
|
||
}
|
||
|
||
/* Re-gimplification and code generation routines. */
|
||
|
||
/* Build a call to GOMP_barrier. */
|
||
|
||
static void
|
||
build_omp_barrier (tree *stmt_list)
|
||
{
|
||
tree t;
|
||
|
||
t = built_in_decls[BUILT_IN_GOMP_BARRIER];
|
||
t = build_function_call_expr (t, NULL);
|
||
gimplify_and_add (t, stmt_list);
|
||
}
|
||
|
||
/* If a context was created for STMT when it was scanned, return it. */
|
||
|
||
static omp_context *
|
||
maybe_lookup_ctx (tree stmt)
|
||
{
|
||
splay_tree_node n;
|
||
n = splay_tree_lookup (all_contexts, (splay_tree_key) stmt);
|
||
return n ? (omp_context *) n->value : NULL;
|
||
}
|
||
|
||
|
||
/* Find the mapping for DECL in CTX or the immediately enclosing
|
||
context that has a mapping for DECL.
|
||
|
||
If CTX is a nested parallel directive, we may have to use the decl
|
||
mappings created in CTX's parent context. Suppose that we have the
|
||
following parallel nesting (variable UIDs showed for clarity):
|
||
|
||
iD.1562 = 0;
|
||
#omp parallel shared(iD.1562) -> outer parallel
|
||
iD.1562 = iD.1562 + 1;
|
||
|
||
#omp parallel shared (iD.1562) -> inner parallel
|
||
iD.1562 = iD.1562 - 1;
|
||
|
||
Each parallel structure will create a distinct .omp_data_s structure
|
||
for copying iD.1562 in/out of the directive:
|
||
|
||
outer parallel .omp_data_s.1.i -> iD.1562
|
||
inner parallel .omp_data_s.2.i -> iD.1562
|
||
|
||
A shared variable mapping will produce a copy-out operation before
|
||
the parallel directive and a copy-in operation after it. So, in
|
||
this case we would have:
|
||
|
||
iD.1562 = 0;
|
||
.omp_data_o.1.i = iD.1562;
|
||
#omp parallel shared(iD.1562) -> outer parallel
|
||
.omp_data_i.1 = &.omp_data_o.1
|
||
.omp_data_i.1->i = .omp_data_i.1->i + 1;
|
||
|
||
.omp_data_o.2.i = iD.1562; -> **
|
||
#omp parallel shared(iD.1562) -> inner parallel
|
||
.omp_data_i.2 = &.omp_data_o.2
|
||
.omp_data_i.2->i = .omp_data_i.2->i - 1;
|
||
|
||
|
||
** This is a problem. The symbol iD.1562 cannot be referenced
|
||
inside the body of the outer parallel region. But since we are
|
||
emitting this copy operation while expanding the inner parallel
|
||
directive, we need to access the CTX structure of the outer
|
||
parallel directive to get the correct mapping:
|
||
|
||
.omp_data_o.2.i = .omp_data_i.1->i
|
||
|
||
Since there may be other workshare or parallel directives enclosing
|
||
the parallel directive, it may be necessary to walk up the context
|
||
parent chain. This is not a problem in general because nested
|
||
parallelism happens only rarely. */
|
||
|
||
static tree
|
||
lookup_decl_in_outer_ctx (tree decl, omp_context *ctx)
|
||
{
|
||
tree t;
|
||
omp_context *up;
|
||
|
||
gcc_assert (ctx->is_nested);
|
||
|
||
for (up = ctx->outer, t = NULL; up && t == NULL; up = up->outer)
|
||
t = maybe_lookup_decl (decl, up);
|
||
|
||
gcc_assert (t || is_global_var (decl));
|
||
|
||
return t ? t : decl;
|
||
}
|
||
|
||
|
||
/* Similar to lookup_decl_in_outer_ctx, but return DECL if not found
|
||
in outer contexts. */
|
||
|
||
static tree
|
||
maybe_lookup_decl_in_outer_ctx (tree decl, omp_context *ctx)
|
||
{
|
||
tree t = NULL;
|
||
omp_context *up;
|
||
|
||
if (ctx->is_nested)
|
||
for (up = ctx->outer, t = NULL; up && t == NULL; up = up->outer)
|
||
t = maybe_lookup_decl (decl, up);
|
||
|
||
return t ? t : decl;
|
||
}
|
||
|
||
|
||
/* Construct the initialization value for reduction CLAUSE. */
|
||
|
||
tree
|
||
omp_reduction_init (tree clause, tree type)
|
||
{
|
||
switch (OMP_CLAUSE_REDUCTION_CODE (clause))
|
||
{
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
case BIT_IOR_EXPR:
|
||
case BIT_XOR_EXPR:
|
||
case TRUTH_OR_EXPR:
|
||
case TRUTH_ORIF_EXPR:
|
||
case TRUTH_XOR_EXPR:
|
||
case NE_EXPR:
|
||
return fold_convert (type, integer_zero_node);
|
||
|
||
case MULT_EXPR:
|
||
case TRUTH_AND_EXPR:
|
||
case TRUTH_ANDIF_EXPR:
|
||
case EQ_EXPR:
|
||
return fold_convert (type, integer_one_node);
|
||
|
||
case BIT_AND_EXPR:
|
||
return fold_convert (type, integer_minus_one_node);
|
||
|
||
case MAX_EXPR:
|
||
if (SCALAR_FLOAT_TYPE_P (type))
|
||
{
|
||
REAL_VALUE_TYPE max, min;
|
||
if (HONOR_INFINITIES (TYPE_MODE (type)))
|
||
{
|
||
real_inf (&max);
|
||
real_arithmetic (&min, NEGATE_EXPR, &max, NULL);
|
||
}
|
||
else
|
||
real_maxval (&min, 1, TYPE_MODE (type));
|
||
return build_real (type, min);
|
||
}
|
||
else
|
||
{
|
||
gcc_assert (INTEGRAL_TYPE_P (type));
|
||
return TYPE_MIN_VALUE (type);
|
||
}
|
||
|
||
case MIN_EXPR:
|
||
if (SCALAR_FLOAT_TYPE_P (type))
|
||
{
|
||
REAL_VALUE_TYPE max;
|
||
if (HONOR_INFINITIES (TYPE_MODE (type)))
|
||
real_inf (&max);
|
||
else
|
||
real_maxval (&max, 0, TYPE_MODE (type));
|
||
return build_real (type, max);
|
||
}
|
||
else
|
||
{
|
||
gcc_assert (INTEGRAL_TYPE_P (type));
|
||
return TYPE_MAX_VALUE (type);
|
||
}
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Generate code to implement the input clauses, FIRSTPRIVATE and COPYIN,
|
||
from the receiver (aka child) side and initializers for REFERENCE_TYPE
|
||
private variables. Initialization statements go in ILIST, while calls
|
||
to destructors go in DLIST. */
|
||
|
||
static void
|
||
lower_rec_input_clauses (tree clauses, tree *ilist, tree *dlist,
|
||
omp_context *ctx)
|
||
{
|
||
tree_stmt_iterator diter;
|
||
tree c, dtor, copyin_seq, x, args, ptr;
|
||
bool copyin_by_ref = false;
|
||
bool lastprivate_firstprivate = false;
|
||
int pass;
|
||
|
||
*dlist = alloc_stmt_list ();
|
||
diter = tsi_start (*dlist);
|
||
copyin_seq = NULL;
|
||
|
||
/* Do all the fixed sized types in the first pass, and the variable sized
|
||
types in the second pass. This makes sure that the scalar arguments to
|
||
the variable sized types are processed before we use them in the
|
||
variable sized operations. */
|
||
for (pass = 0; pass < 2; ++pass)
|
||
{
|
||
for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c))
|
||
{
|
||
enum omp_clause_code c_kind = OMP_CLAUSE_CODE (c);
|
||
tree var, new_var;
|
||
bool by_ref;
|
||
|
||
switch (c_kind)
|
||
{
|
||
case OMP_CLAUSE_PRIVATE:
|
||
if (OMP_CLAUSE_PRIVATE_DEBUG (c))
|
||
continue;
|
||
break;
|
||
case OMP_CLAUSE_SHARED:
|
||
if (maybe_lookup_decl (OMP_CLAUSE_DECL (c), ctx) == NULL)
|
||
{
|
||
gcc_assert (is_global_var (OMP_CLAUSE_DECL (c)));
|
||
continue;
|
||
}
|
||
case OMP_CLAUSE_FIRSTPRIVATE:
|
||
case OMP_CLAUSE_COPYIN:
|
||
case OMP_CLAUSE_REDUCTION:
|
||
break;
|
||
case OMP_CLAUSE_LASTPRIVATE:
|
||
if (OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c))
|
||
{
|
||
lastprivate_firstprivate = true;
|
||
if (pass != 0)
|
||
continue;
|
||
}
|
||
break;
|
||
default:
|
||
continue;
|
||
}
|
||
|
||
new_var = var = OMP_CLAUSE_DECL (c);
|
||
if (c_kind != OMP_CLAUSE_COPYIN)
|
||
new_var = lookup_decl (var, ctx);
|
||
|
||
if (c_kind == OMP_CLAUSE_SHARED || c_kind == OMP_CLAUSE_COPYIN)
|
||
{
|
||
if (pass != 0)
|
||
continue;
|
||
}
|
||
else if (is_variable_sized (var))
|
||
{
|
||
/* For variable sized types, we need to allocate the
|
||
actual storage here. Call alloca and store the
|
||
result in the pointer decl that we created elsewhere. */
|
||
if (pass == 0)
|
||
continue;
|
||
|
||
ptr = DECL_VALUE_EXPR (new_var);
|
||
gcc_assert (TREE_CODE (ptr) == INDIRECT_REF);
|
||
ptr = TREE_OPERAND (ptr, 0);
|
||
gcc_assert (DECL_P (ptr));
|
||
|
||
x = TYPE_SIZE_UNIT (TREE_TYPE (new_var));
|
||
args = tree_cons (NULL, x, NULL);
|
||
x = built_in_decls[BUILT_IN_ALLOCA];
|
||
x = build_function_call_expr (x, args);
|
||
x = fold_convert (TREE_TYPE (ptr), x);
|
||
x = build2 (MODIFY_EXPR, void_type_node, ptr, x);
|
||
gimplify_and_add (x, ilist);
|
||
}
|
||
else if (is_reference (var))
|
||
{
|
||
/* For references that are being privatized for Fortran,
|
||
allocate new backing storage for the new pointer
|
||
variable. This allows us to avoid changing all the
|
||
code that expects a pointer to something that expects
|
||
a direct variable. Note that this doesn't apply to
|
||
C++, since reference types are disallowed in data
|
||
sharing clauses there, except for NRV optimized
|
||
return values. */
|
||
if (pass == 0)
|
||
continue;
|
||
|
||
x = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (new_var)));
|
||
if (TREE_CONSTANT (x))
|
||
{
|
||
const char *name = NULL;
|
||
if (DECL_NAME (var))
|
||
name = IDENTIFIER_POINTER (DECL_NAME (new_var));
|
||
|
||
x = create_tmp_var_raw (TREE_TYPE (TREE_TYPE (new_var)),
|
||
name);
|
||
gimple_add_tmp_var (x);
|
||
x = build_fold_addr_expr_with_type (x, TREE_TYPE (new_var));
|
||
}
|
||
else
|
||
{
|
||
args = tree_cons (NULL, x, NULL);
|
||
x = built_in_decls[BUILT_IN_ALLOCA];
|
||
x = build_function_call_expr (x, args);
|
||
x = fold_convert (TREE_TYPE (new_var), x);
|
||
}
|
||
|
||
x = build2 (MODIFY_EXPR, void_type_node, new_var, x);
|
||
gimplify_and_add (x, ilist);
|
||
|
||
new_var = build_fold_indirect_ref (new_var);
|
||
}
|
||
else if (c_kind == OMP_CLAUSE_REDUCTION
|
||
&& OMP_CLAUSE_REDUCTION_PLACEHOLDER (c))
|
||
{
|
||
if (pass == 0)
|
||
continue;
|
||
}
|
||
else if (pass != 0)
|
||
continue;
|
||
|
||
switch (OMP_CLAUSE_CODE (c))
|
||
{
|
||
case OMP_CLAUSE_SHARED:
|
||
/* Shared global vars are just accessed directly. */
|
||
if (is_global_var (new_var))
|
||
break;
|
||
/* Set up the DECL_VALUE_EXPR for shared variables now. This
|
||
needs to be delayed until after fixup_child_record_type so
|
||
that we get the correct type during the dereference. */
|
||
by_ref = use_pointer_for_field (var, true);
|
||
x = build_receiver_ref (var, by_ref, ctx);
|
||
SET_DECL_VALUE_EXPR (new_var, x);
|
||
DECL_HAS_VALUE_EXPR_P (new_var) = 1;
|
||
|
||
/* ??? If VAR is not passed by reference, and the variable
|
||
hasn't been initialized yet, then we'll get a warning for
|
||
the store into the omp_data_s structure. Ideally, we'd be
|
||
able to notice this and not store anything at all, but
|
||
we're generating code too early. Suppress the warning. */
|
||
if (!by_ref)
|
||
TREE_NO_WARNING (var) = 1;
|
||
break;
|
||
|
||
case OMP_CLAUSE_LASTPRIVATE:
|
||
if (OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c))
|
||
break;
|
||
/* FALLTHRU */
|
||
|
||
case OMP_CLAUSE_PRIVATE:
|
||
x = lang_hooks.decls.omp_clause_default_ctor (c, new_var);
|
||
if (x)
|
||
gimplify_and_add (x, ilist);
|
||
/* FALLTHRU */
|
||
|
||
do_dtor:
|
||
x = lang_hooks.decls.omp_clause_dtor (c, new_var);
|
||
if (x)
|
||
{
|
||
dtor = x;
|
||
gimplify_stmt (&dtor);
|
||
tsi_link_before (&diter, dtor, TSI_SAME_STMT);
|
||
}
|
||
break;
|
||
|
||
case OMP_CLAUSE_FIRSTPRIVATE:
|
||
x = build_outer_var_ref (var, ctx);
|
||
x = lang_hooks.decls.omp_clause_copy_ctor (c, new_var, x);
|
||
gimplify_and_add (x, ilist);
|
||
goto do_dtor;
|
||
break;
|
||
|
||
case OMP_CLAUSE_COPYIN:
|
||
by_ref = use_pointer_for_field (var, false);
|
||
x = build_receiver_ref (var, by_ref, ctx);
|
||
x = lang_hooks.decls.omp_clause_assign_op (c, new_var, x);
|
||
append_to_statement_list (x, ©in_seq);
|
||
copyin_by_ref |= by_ref;
|
||
break;
|
||
|
||
case OMP_CLAUSE_REDUCTION:
|
||
if (OMP_CLAUSE_REDUCTION_PLACEHOLDER (c))
|
||
{
|
||
gimplify_and_add (OMP_CLAUSE_REDUCTION_INIT (c), ilist);
|
||
OMP_CLAUSE_REDUCTION_INIT (c) = NULL;
|
||
}
|
||
else
|
||
{
|
||
x = omp_reduction_init (c, TREE_TYPE (new_var));
|
||
gcc_assert (TREE_CODE (TREE_TYPE (new_var)) != ARRAY_TYPE);
|
||
x = build2 (MODIFY_EXPR, void_type_node, new_var, x);
|
||
gimplify_and_add (x, ilist);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
}
|
||
|
||
/* The copyin sequence is not to be executed by the main thread, since
|
||
that would result in self-copies. Perhaps not visible to scalars,
|
||
but it certainly is to C++ operator=. */
|
||
if (copyin_seq)
|
||
{
|
||
x = built_in_decls[BUILT_IN_OMP_GET_THREAD_NUM];
|
||
x = build_function_call_expr (x, NULL);
|
||
x = build2 (NE_EXPR, boolean_type_node, x,
|
||
build_int_cst (TREE_TYPE (x), 0));
|
||
x = build3 (COND_EXPR, void_type_node, x, copyin_seq, NULL);
|
||
gimplify_and_add (x, ilist);
|
||
}
|
||
|
||
/* If any copyin variable is passed by reference, we must ensure the
|
||
master thread doesn't modify it before it is copied over in all
|
||
threads. Similarly for variables in both firstprivate and
|
||
lastprivate clauses we need to ensure the lastprivate copying
|
||
happens after firstprivate copying in all threads. */
|
||
if (copyin_by_ref || lastprivate_firstprivate)
|
||
build_omp_barrier (ilist);
|
||
}
|
||
|
||
|
||
/* Generate code to implement the LASTPRIVATE clauses. This is used for
|
||
both parallel and workshare constructs. PREDICATE may be NULL if it's
|
||
always true. */
|
||
|
||
static void
|
||
lower_lastprivate_clauses (tree clauses, tree predicate, tree *stmt_list,
|
||
omp_context *ctx)
|
||
{
|
||
tree sub_list, x, c;
|
||
|
||
/* Early exit if there are no lastprivate clauses. */
|
||
clauses = find_omp_clause (clauses, OMP_CLAUSE_LASTPRIVATE);
|
||
if (clauses == NULL)
|
||
{
|
||
/* If this was a workshare clause, see if it had been combined
|
||
with its parallel. In that case, look for the clauses on the
|
||
parallel statement itself. */
|
||
if (is_parallel_ctx (ctx))
|
||
return;
|
||
|
||
ctx = ctx->outer;
|
||
if (ctx == NULL || !is_parallel_ctx (ctx))
|
||
return;
|
||
|
||
clauses = find_omp_clause (OMP_PARALLEL_CLAUSES (ctx->stmt),
|
||
OMP_CLAUSE_LASTPRIVATE);
|
||
if (clauses == NULL)
|
||
return;
|
||
}
|
||
|
||
sub_list = alloc_stmt_list ();
|
||
|
||
for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c))
|
||
{
|
||
tree var, new_var;
|
||
|
||
if (OMP_CLAUSE_CODE (c) != OMP_CLAUSE_LASTPRIVATE)
|
||
continue;
|
||
|
||
var = OMP_CLAUSE_DECL (c);
|
||
new_var = lookup_decl (var, ctx);
|
||
|
||
x = build_outer_var_ref (var, ctx);
|
||
if (is_reference (var))
|
||
new_var = build_fold_indirect_ref (new_var);
|
||
x = lang_hooks.decls.omp_clause_assign_op (c, x, new_var);
|
||
append_to_statement_list (x, &sub_list);
|
||
}
|
||
|
||
if (predicate)
|
||
x = build3 (COND_EXPR, void_type_node, predicate, sub_list, NULL);
|
||
else
|
||
x = sub_list;
|
||
|
||
gimplify_and_add (x, stmt_list);
|
||
}
|
||
|
||
|
||
/* Generate code to implement the REDUCTION clauses. */
|
||
|
||
static void
|
||
lower_reduction_clauses (tree clauses, tree *stmt_list, omp_context *ctx)
|
||
{
|
||
tree sub_list = NULL, x, c;
|
||
int count = 0;
|
||
|
||
/* First see if there is exactly one reduction clause. Use OMP_ATOMIC
|
||
update in that case, otherwise use a lock. */
|
||
for (c = clauses; c && count < 2; c = OMP_CLAUSE_CHAIN (c))
|
||
if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_REDUCTION)
|
||
{
|
||
if (OMP_CLAUSE_REDUCTION_PLACEHOLDER (c))
|
||
{
|
||
/* Never use OMP_ATOMIC for array reductions. */
|
||
count = -1;
|
||
break;
|
||
}
|
||
count++;
|
||
}
|
||
|
||
if (count == 0)
|
||
return;
|
||
|
||
for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c))
|
||
{
|
||
tree var, ref, new_var;
|
||
enum tree_code code;
|
||
|
||
if (OMP_CLAUSE_CODE (c) != OMP_CLAUSE_REDUCTION)
|
||
continue;
|
||
|
||
var = OMP_CLAUSE_DECL (c);
|
||
new_var = lookup_decl (var, ctx);
|
||
if (is_reference (var))
|
||
new_var = build_fold_indirect_ref (new_var);
|
||
ref = build_outer_var_ref (var, ctx);
|
||
code = OMP_CLAUSE_REDUCTION_CODE (c);
|
||
|
||
/* reduction(-:var) sums up the partial results, so it acts
|
||
identically to reduction(+:var). */
|
||
if (code == MINUS_EXPR)
|
||
code = PLUS_EXPR;
|
||
|
||
if (count == 1)
|
||
{
|
||
tree addr = build_fold_addr_expr (ref);
|
||
|
||
addr = save_expr (addr);
|
||
ref = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (addr)), addr);
|
||
x = fold_build2 (code, TREE_TYPE (ref), ref, new_var);
|
||
x = build2 (OMP_ATOMIC, void_type_node, addr, x);
|
||
gimplify_and_add (x, stmt_list);
|
||
return;
|
||
}
|
||
|
||
if (OMP_CLAUSE_REDUCTION_PLACEHOLDER (c))
|
||
{
|
||
tree placeholder = OMP_CLAUSE_REDUCTION_PLACEHOLDER (c);
|
||
|
||
if (is_reference (var))
|
||
ref = build_fold_addr_expr (ref);
|
||
SET_DECL_VALUE_EXPR (placeholder, ref);
|
||
DECL_HAS_VALUE_EXPR_P (placeholder) = 1;
|
||
gimplify_and_add (OMP_CLAUSE_REDUCTION_MERGE (c), &sub_list);
|
||
OMP_CLAUSE_REDUCTION_MERGE (c) = NULL;
|
||
OMP_CLAUSE_REDUCTION_PLACEHOLDER (c) = NULL;
|
||
}
|
||
else
|
||
{
|
||
x = build2 (code, TREE_TYPE (ref), ref, new_var);
|
||
ref = build_outer_var_ref (var, ctx);
|
||
x = build2 (MODIFY_EXPR, void_type_node, ref, x);
|
||
append_to_statement_list (x, &sub_list);
|
||
}
|
||
}
|
||
|
||
x = built_in_decls[BUILT_IN_GOMP_ATOMIC_START];
|
||
x = build_function_call_expr (x, NULL);
|
||
gimplify_and_add (x, stmt_list);
|
||
|
||
gimplify_and_add (sub_list, stmt_list);
|
||
|
||
x = built_in_decls[BUILT_IN_GOMP_ATOMIC_END];
|
||
x = build_function_call_expr (x, NULL);
|
||
gimplify_and_add (x, stmt_list);
|
||
}
|
||
|
||
|
||
/* Generate code to implement the COPYPRIVATE clauses. */
|
||
|
||
static void
|
||
lower_copyprivate_clauses (tree clauses, tree *slist, tree *rlist,
|
||
omp_context *ctx)
|
||
{
|
||
tree c;
|
||
|
||
for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c))
|
||
{
|
||
tree var, ref, x;
|
||
bool by_ref;
|
||
|
||
if (OMP_CLAUSE_CODE (c) != OMP_CLAUSE_COPYPRIVATE)
|
||
continue;
|
||
|
||
var = OMP_CLAUSE_DECL (c);
|
||
by_ref = use_pointer_for_field (var, false);
|
||
|
||
ref = build_sender_ref (var, ctx);
|
||
x = (ctx->is_nested) ? lookup_decl_in_outer_ctx (var, ctx) : var;
|
||
x = by_ref ? build_fold_addr_expr (x) : x;
|
||
x = build2 (MODIFY_EXPR, void_type_node, ref, x);
|
||
gimplify_and_add (x, slist);
|
||
|
||
ref = build_receiver_ref (var, by_ref, ctx);
|
||
if (is_reference (var))
|
||
{
|
||
ref = build_fold_indirect_ref (ref);
|
||
var = build_fold_indirect_ref (var);
|
||
}
|
||
x = lang_hooks.decls.omp_clause_assign_op (c, var, ref);
|
||
gimplify_and_add (x, rlist);
|
||
}
|
||
}
|
||
|
||
|
||
/* Generate code to implement the clauses, FIRSTPRIVATE, COPYIN, LASTPRIVATE,
|
||
and REDUCTION from the sender (aka parent) side. */
|
||
|
||
static void
|
||
lower_send_clauses (tree clauses, tree *ilist, tree *olist, omp_context *ctx)
|
||
{
|
||
tree c;
|
||
|
||
for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c))
|
||
{
|
||
tree val, ref, x, var;
|
||
bool by_ref, do_in = false, do_out = false;
|
||
|
||
switch (OMP_CLAUSE_CODE (c))
|
||
{
|
||
case OMP_CLAUSE_FIRSTPRIVATE:
|
||
case OMP_CLAUSE_COPYIN:
|
||
case OMP_CLAUSE_LASTPRIVATE:
|
||
case OMP_CLAUSE_REDUCTION:
|
||
break;
|
||
default:
|
||
continue;
|
||
}
|
||
|
||
var = val = OMP_CLAUSE_DECL (c);
|
||
if (ctx->is_nested)
|
||
var = lookup_decl_in_outer_ctx (val, ctx);
|
||
|
||
if (OMP_CLAUSE_CODE (c) != OMP_CLAUSE_COPYIN
|
||
&& is_global_var (var))
|
||
continue;
|
||
if (is_variable_sized (val))
|
||
continue;
|
||
by_ref = use_pointer_for_field (val, false);
|
||
|
||
switch (OMP_CLAUSE_CODE (c))
|
||
{
|
||
case OMP_CLAUSE_FIRSTPRIVATE:
|
||
case OMP_CLAUSE_COPYIN:
|
||
do_in = true;
|
||
break;
|
||
|
||
case OMP_CLAUSE_LASTPRIVATE:
|
||
if (by_ref || is_reference (val))
|
||
{
|
||
if (OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c))
|
||
continue;
|
||
do_in = true;
|
||
}
|
||
else
|
||
do_out = true;
|
||
break;
|
||
|
||
case OMP_CLAUSE_REDUCTION:
|
||
do_in = true;
|
||
do_out = !(by_ref || is_reference (val));
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (do_in)
|
||
{
|
||
ref = build_sender_ref (val, ctx);
|
||
x = by_ref ? build_fold_addr_expr (var) : var;
|
||
x = build2 (MODIFY_EXPR, void_type_node, ref, x);
|
||
gimplify_and_add (x, ilist);
|
||
}
|
||
|
||
if (do_out)
|
||
{
|
||
ref = build_sender_ref (val, ctx);
|
||
x = build2 (MODIFY_EXPR, void_type_node, var, ref);
|
||
gimplify_and_add (x, olist);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Generate code to implement SHARED from the sender (aka parent) side.
|
||
This is trickier, since OMP_PARALLEL_CLAUSES doesn't list things that
|
||
got automatically shared. */
|
||
|
||
static void
|
||
lower_send_shared_vars (tree *ilist, tree *olist, omp_context *ctx)
|
||
{
|
||
tree var, ovar, nvar, f, x;
|
||
|
||
if (ctx->record_type == NULL)
|
||
return;
|
||
|
||
for (f = TYPE_FIELDS (ctx->record_type); f ; f = TREE_CHAIN (f))
|
||
{
|
||
ovar = DECL_ABSTRACT_ORIGIN (f);
|
||
nvar = maybe_lookup_decl (ovar, ctx);
|
||
if (!nvar || !DECL_HAS_VALUE_EXPR_P (nvar))
|
||
continue;
|
||
|
||
var = ovar;
|
||
|
||
/* If CTX is a nested parallel directive. Find the immediately
|
||
enclosing parallel or workshare construct that contains a
|
||
mapping for OVAR. */
|
||
if (ctx->is_nested)
|
||
var = lookup_decl_in_outer_ctx (ovar, ctx);
|
||
|
||
if (use_pointer_for_field (ovar, true))
|
||
{
|
||
x = build_sender_ref (ovar, ctx);
|
||
var = build_fold_addr_expr (var);
|
||
x = build2 (MODIFY_EXPR, void_type_node, x, var);
|
||
gimplify_and_add (x, ilist);
|
||
}
|
||
else
|
||
{
|
||
x = build_sender_ref (ovar, ctx);
|
||
x = build2 (MODIFY_EXPR, void_type_node, x, var);
|
||
gimplify_and_add (x, ilist);
|
||
|
||
x = build_sender_ref (ovar, ctx);
|
||
x = build2 (MODIFY_EXPR, void_type_node, var, x);
|
||
gimplify_and_add (x, olist);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Build the function calls to GOMP_parallel_start etc to actually
|
||
generate the parallel operation. REGION is the parallel region
|
||
being expanded. BB is the block where to insert the code. WS_ARGS
|
||
will be set if this is a call to a combined parallel+workshare
|
||
construct, it contains the list of additional arguments needed by
|
||
the workshare construct. */
|
||
|
||
static void
|
||
expand_parallel_call (struct omp_region *region, basic_block bb,
|
||
tree entry_stmt, tree ws_args)
|
||
{
|
||
tree t, args, val, cond, c, list, clauses;
|
||
block_stmt_iterator si;
|
||
int start_ix;
|
||
|
||
clauses = OMP_PARALLEL_CLAUSES (entry_stmt);
|
||
push_gimplify_context ();
|
||
|
||
/* Determine what flavor of GOMP_parallel_start we will be
|
||
emitting. */
|
||
start_ix = BUILT_IN_GOMP_PARALLEL_START;
|
||
if (is_combined_parallel (region))
|
||
{
|
||
switch (region->inner->type)
|
||
{
|
||
case OMP_FOR:
|
||
start_ix = BUILT_IN_GOMP_PARALLEL_LOOP_STATIC_START
|
||
+ region->inner->sched_kind;
|
||
break;
|
||
case OMP_SECTIONS:
|
||
start_ix = BUILT_IN_GOMP_PARALLEL_SECTIONS_START;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* By default, the value of NUM_THREADS is zero (selected at run time)
|
||
and there is no conditional. */
|
||
cond = NULL_TREE;
|
||
val = build_int_cst (unsigned_type_node, 0);
|
||
|
||
c = find_omp_clause (clauses, OMP_CLAUSE_IF);
|
||
if (c)
|
||
cond = OMP_CLAUSE_IF_EXPR (c);
|
||
|
||
c = find_omp_clause (clauses, OMP_CLAUSE_NUM_THREADS);
|
||
if (c)
|
||
val = OMP_CLAUSE_NUM_THREADS_EXPR (c);
|
||
|
||
/* Ensure 'val' is of the correct type. */
|
||
val = fold_convert (unsigned_type_node, val);
|
||
|
||
/* If we found the clause 'if (cond)', build either
|
||
(cond != 0) or (cond ? val : 1u). */
|
||
if (cond)
|
||
{
|
||
block_stmt_iterator si;
|
||
|
||
cond = gimple_boolify (cond);
|
||
|
||
if (integer_zerop (val))
|
||
val = build2 (EQ_EXPR, unsigned_type_node, cond,
|
||
build_int_cst (TREE_TYPE (cond), 0));
|
||
else
|
||
{
|
||
basic_block cond_bb, then_bb, else_bb;
|
||
edge e;
|
||
tree t, then_lab, else_lab, tmp;
|
||
|
||
tmp = create_tmp_var (TREE_TYPE (val), NULL);
|
||
e = split_block (bb, NULL);
|
||
cond_bb = e->src;
|
||
bb = e->dest;
|
||
remove_edge (e);
|
||
|
||
then_bb = create_empty_bb (cond_bb);
|
||
else_bb = create_empty_bb (then_bb);
|
||
then_lab = create_artificial_label ();
|
||
else_lab = create_artificial_label ();
|
||
|
||
t = build3 (COND_EXPR, void_type_node,
|
||
cond,
|
||
build_and_jump (&then_lab),
|
||
build_and_jump (&else_lab));
|
||
|
||
si = bsi_start (cond_bb);
|
||
bsi_insert_after (&si, t, BSI_CONTINUE_LINKING);
|
||
|
||
si = bsi_start (then_bb);
|
||
t = build1 (LABEL_EXPR, void_type_node, then_lab);
|
||
bsi_insert_after (&si, t, BSI_CONTINUE_LINKING);
|
||
t = build2 (MODIFY_EXPR, void_type_node, tmp, val);
|
||
bsi_insert_after (&si, t, BSI_CONTINUE_LINKING);
|
||
|
||
si = bsi_start (else_bb);
|
||
t = build1 (LABEL_EXPR, void_type_node, else_lab);
|
||
bsi_insert_after (&si, t, BSI_CONTINUE_LINKING);
|
||
t = build2 (MODIFY_EXPR, void_type_node, tmp,
|
||
build_int_cst (unsigned_type_node, 1));
|
||
bsi_insert_after (&si, t, BSI_CONTINUE_LINKING);
|
||
|
||
make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
|
||
make_edge (cond_bb, else_bb, EDGE_FALSE_VALUE);
|
||
make_edge (then_bb, bb, EDGE_FALLTHRU);
|
||
make_edge (else_bb, bb, EDGE_FALLTHRU);
|
||
|
||
val = tmp;
|
||
}
|
||
|
||
list = NULL_TREE;
|
||
val = get_formal_tmp_var (val, &list);
|
||
si = bsi_start (bb);
|
||
bsi_insert_after (&si, list, BSI_CONTINUE_LINKING);
|
||
}
|
||
|
||
list = NULL_TREE;
|
||
args = tree_cons (NULL, val, NULL);
|
||
t = OMP_PARALLEL_DATA_ARG (entry_stmt);
|
||
if (t == NULL)
|
||
t = null_pointer_node;
|
||
else
|
||
t = build_fold_addr_expr (t);
|
||
args = tree_cons (NULL, t, args);
|
||
t = build_fold_addr_expr (OMP_PARALLEL_FN (entry_stmt));
|
||
args = tree_cons (NULL, t, args);
|
||
|
||
if (ws_args)
|
||
args = chainon (args, ws_args);
|
||
|
||
t = built_in_decls[start_ix];
|
||
t = build_function_call_expr (t, args);
|
||
gimplify_and_add (t, &list);
|
||
|
||
t = OMP_PARALLEL_DATA_ARG (entry_stmt);
|
||
if (t == NULL)
|
||
t = null_pointer_node;
|
||
else
|
||
t = build_fold_addr_expr (t);
|
||
args = tree_cons (NULL, t, NULL);
|
||
t = build_function_call_expr (OMP_PARALLEL_FN (entry_stmt), args);
|
||
gimplify_and_add (t, &list);
|
||
|
||
t = built_in_decls[BUILT_IN_GOMP_PARALLEL_END];
|
||
t = build_function_call_expr (t, NULL);
|
||
gimplify_and_add (t, &list);
|
||
|
||
si = bsi_last (bb);
|
||
bsi_insert_after (&si, list, BSI_CONTINUE_LINKING);
|
||
|
||
pop_gimplify_context (NULL_TREE);
|
||
}
|
||
|
||
|
||
/* If exceptions are enabled, wrap *STMT_P in a MUST_NOT_THROW catch
|
||
handler. This prevents programs from violating the structured
|
||
block semantics with throws. */
|
||
|
||
static void
|
||
maybe_catch_exception (tree *stmt_p)
|
||
{
|
||
tree f, t;
|
||
|
||
if (!flag_exceptions)
|
||
return;
|
||
|
||
if (lang_protect_cleanup_actions)
|
||
t = lang_protect_cleanup_actions ();
|
||
else
|
||
{
|
||
t = built_in_decls[BUILT_IN_TRAP];
|
||
t = build_function_call_expr (t, NULL);
|
||
}
|
||
f = build2 (EH_FILTER_EXPR, void_type_node, NULL, NULL);
|
||
EH_FILTER_MUST_NOT_THROW (f) = 1;
|
||
gimplify_and_add (t, &EH_FILTER_FAILURE (f));
|
||
|
||
t = build2 (TRY_CATCH_EXPR, void_type_node, *stmt_p, NULL);
|
||
append_to_statement_list (f, &TREE_OPERAND (t, 1));
|
||
|
||
*stmt_p = NULL;
|
||
append_to_statement_list (t, stmt_p);
|
||
}
|
||
|
||
/* Chain all the DECLs in LIST by their TREE_CHAIN fields. */
|
||
|
||
static tree
|
||
list2chain (tree list)
|
||
{
|
||
tree t;
|
||
|
||
for (t = list; t; t = TREE_CHAIN (t))
|
||
{
|
||
tree var = TREE_VALUE (t);
|
||
if (TREE_CHAIN (t))
|
||
TREE_CHAIN (var) = TREE_VALUE (TREE_CHAIN (t));
|
||
else
|
||
TREE_CHAIN (var) = NULL_TREE;
|
||
}
|
||
|
||
return list ? TREE_VALUE (list) : NULL_TREE;
|
||
}
|
||
|
||
|
||
/* Remove barriers in REGION->EXIT's block. Note that this is only
|
||
valid for OMP_PARALLEL regions. Since the end of a parallel region
|
||
is an implicit barrier, any workshare inside the OMP_PARALLEL that
|
||
left a barrier at the end of the OMP_PARALLEL region can now be
|
||
removed. */
|
||
|
||
static void
|
||
remove_exit_barrier (struct omp_region *region)
|
||
{
|
||
block_stmt_iterator si;
|
||
basic_block exit_bb;
|
||
edge_iterator ei;
|
||
edge e;
|
||
tree t;
|
||
|
||
exit_bb = region->exit;
|
||
|
||
/* If the parallel region doesn't return, we don't have REGION->EXIT
|
||
block at all. */
|
||
if (! exit_bb)
|
||
return;
|
||
|
||
/* The last insn in the block will be the parallel's OMP_RETURN. The
|
||
workshare's OMP_RETURN will be in a preceding block. The kinds of
|
||
statements that can appear in between are extremely limited -- no
|
||
memory operations at all. Here, we allow nothing at all, so the
|
||
only thing we allow to precede this OMP_RETURN is a label. */
|
||
si = bsi_last (exit_bb);
|
||
gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_RETURN);
|
||
bsi_prev (&si);
|
||
if (!bsi_end_p (si) && TREE_CODE (bsi_stmt (si)) != LABEL_EXPR)
|
||
return;
|
||
|
||
FOR_EACH_EDGE (e, ei, exit_bb->preds)
|
||
{
|
||
si = bsi_last (e->src);
|
||
if (bsi_end_p (si))
|
||
continue;
|
||
t = bsi_stmt (si);
|
||
if (TREE_CODE (t) == OMP_RETURN)
|
||
OMP_RETURN_NOWAIT (t) = 1;
|
||
}
|
||
}
|
||
|
||
static void
|
||
remove_exit_barriers (struct omp_region *region)
|
||
{
|
||
if (region->type == OMP_PARALLEL)
|
||
remove_exit_barrier (region);
|
||
|
||
if (region->inner)
|
||
{
|
||
region = region->inner;
|
||
remove_exit_barriers (region);
|
||
while (region->next)
|
||
{
|
||
region = region->next;
|
||
remove_exit_barriers (region);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Expand the OpenMP parallel directive starting at REGION. */
|
||
|
||
static void
|
||
expand_omp_parallel (struct omp_region *region)
|
||
{
|
||
basic_block entry_bb, exit_bb, new_bb;
|
||
struct function *child_cfun, *saved_cfun;
|
||
tree child_fn, block, t, ws_args;
|
||
block_stmt_iterator si;
|
||
tree entry_stmt;
|
||
edge e;
|
||
bool do_cleanup_cfg = false;
|
||
|
||
entry_stmt = last_stmt (region->entry);
|
||
child_fn = OMP_PARALLEL_FN (entry_stmt);
|
||
child_cfun = DECL_STRUCT_FUNCTION (child_fn);
|
||
saved_cfun = cfun;
|
||
|
||
entry_bb = region->entry;
|
||
exit_bb = region->exit;
|
||
|
||
if (is_combined_parallel (region))
|
||
ws_args = region->ws_args;
|
||
else
|
||
ws_args = NULL_TREE;
|
||
|
||
if (child_cfun->cfg)
|
||
{
|
||
/* Due to inlining, it may happen that we have already outlined
|
||
the region, in which case all we need to do is make the
|
||
sub-graph unreachable and emit the parallel call. */
|
||
edge entry_succ_e, exit_succ_e;
|
||
block_stmt_iterator si;
|
||
|
||
entry_succ_e = single_succ_edge (entry_bb);
|
||
|
||
si = bsi_last (entry_bb);
|
||
gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_PARALLEL);
|
||
bsi_remove (&si, true);
|
||
|
||
new_bb = entry_bb;
|
||
remove_edge (entry_succ_e);
|
||
if (exit_bb)
|
||
{
|
||
exit_succ_e = single_succ_edge (exit_bb);
|
||
make_edge (new_bb, exit_succ_e->dest, EDGE_FALLTHRU);
|
||
}
|
||
do_cleanup_cfg = true;
|
||
}
|
||
else
|
||
{
|
||
/* If the parallel region needs data sent from the parent
|
||
function, then the very first statement (except possible
|
||
tree profile counter updates) of the parallel body
|
||
is a copy assignment .OMP_DATA_I = &.OMP_DATA_O. Since
|
||
&.OMP_DATA_O is passed as an argument to the child function,
|
||
we need to replace it with the argument as seen by the child
|
||
function.
|
||
|
||
In most cases, this will end up being the identity assignment
|
||
.OMP_DATA_I = .OMP_DATA_I. However, if the parallel body had
|
||
a function call that has been inlined, the original PARM_DECL
|
||
.OMP_DATA_I may have been converted into a different local
|
||
variable. In which case, we need to keep the assignment. */
|
||
if (OMP_PARALLEL_DATA_ARG (entry_stmt))
|
||
{
|
||
basic_block entry_succ_bb = single_succ (entry_bb);
|
||
block_stmt_iterator si;
|
||
|
||
for (si = bsi_start (entry_succ_bb); ; bsi_next (&si))
|
||
{
|
||
tree stmt, arg;
|
||
|
||
gcc_assert (!bsi_end_p (si));
|
||
stmt = bsi_stmt (si);
|
||
if (TREE_CODE (stmt) != MODIFY_EXPR)
|
||
continue;
|
||
|
||
arg = TREE_OPERAND (stmt, 1);
|
||
STRIP_NOPS (arg);
|
||
if (TREE_CODE (arg) == ADDR_EXPR
|
||
&& TREE_OPERAND (arg, 0)
|
||
== OMP_PARALLEL_DATA_ARG (entry_stmt))
|
||
{
|
||
if (TREE_OPERAND (stmt, 0) == DECL_ARGUMENTS (child_fn))
|
||
bsi_remove (&si, true);
|
||
else
|
||
TREE_OPERAND (stmt, 1) = DECL_ARGUMENTS (child_fn);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Declare local variables needed in CHILD_CFUN. */
|
||
block = DECL_INITIAL (child_fn);
|
||
BLOCK_VARS (block) = list2chain (child_cfun->unexpanded_var_list);
|
||
DECL_SAVED_TREE (child_fn) = single_succ (entry_bb)->stmt_list;
|
||
|
||
/* Reset DECL_CONTEXT on locals and function arguments. */
|
||
for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
|
||
DECL_CONTEXT (t) = child_fn;
|
||
|
||
for (t = DECL_ARGUMENTS (child_fn); t; t = TREE_CHAIN (t))
|
||
DECL_CONTEXT (t) = child_fn;
|
||
|
||
/* Split ENTRY_BB at OMP_PARALLEL so that it can be moved to the
|
||
child function. */
|
||
si = bsi_last (entry_bb);
|
||
t = bsi_stmt (si);
|
||
gcc_assert (t && TREE_CODE (t) == OMP_PARALLEL);
|
||
bsi_remove (&si, true);
|
||
e = split_block (entry_bb, t);
|
||
entry_bb = e->dest;
|
||
single_succ_edge (entry_bb)->flags = EDGE_FALLTHRU;
|
||
|
||
/* Move the parallel region into CHILD_CFUN. We need to reset
|
||
dominance information because the expansion of the inner
|
||
regions has invalidated it. */
|
||
free_dominance_info (CDI_DOMINATORS);
|
||
new_bb = move_sese_region_to_fn (child_cfun, entry_bb, exit_bb);
|
||
if (exit_bb)
|
||
single_succ_edge (new_bb)->flags = EDGE_FALLTHRU;
|
||
cgraph_add_new_function (child_fn);
|
||
|
||
/* Convert OMP_RETURN into a RETURN_EXPR. */
|
||
if (exit_bb)
|
||
{
|
||
si = bsi_last (exit_bb);
|
||
gcc_assert (!bsi_end_p (si)
|
||
&& TREE_CODE (bsi_stmt (si)) == OMP_RETURN);
|
||
t = build1 (RETURN_EXPR, void_type_node, NULL);
|
||
bsi_insert_after (&si, t, BSI_SAME_STMT);
|
||
bsi_remove (&si, true);
|
||
}
|
||
}
|
||
|
||
/* Emit a library call to launch the children threads. */
|
||
expand_parallel_call (region, new_bb, entry_stmt, ws_args);
|
||
|
||
if (do_cleanup_cfg)
|
||
{
|
||
/* Clean up the unreachable sub-graph we created above. */
|
||
free_dominance_info (CDI_DOMINATORS);
|
||
free_dominance_info (CDI_POST_DOMINATORS);
|
||
cleanup_tree_cfg ();
|
||
}
|
||
}
|
||
|
||
|
||
/* A subroutine of expand_omp_for. Generate code for a parallel
|
||
loop with any schedule. Given parameters:
|
||
|
||
for (V = N1; V cond N2; V += STEP) BODY;
|
||
|
||
where COND is "<" or ">", we generate pseudocode
|
||
|
||
more = GOMP_loop_foo_start (N1, N2, STEP, CHUNK, &istart0, &iend0);
|
||
if (more) goto L0; else goto L3;
|
||
L0:
|
||
V = istart0;
|
||
iend = iend0;
|
||
L1:
|
||
BODY;
|
||
V += STEP;
|
||
if (V cond iend) goto L1; else goto L2;
|
||
L2:
|
||
if (GOMP_loop_foo_next (&istart0, &iend0)) goto L0; else goto L3;
|
||
L3:
|
||
|
||
If this is a combined omp parallel loop, instead of the call to
|
||
GOMP_loop_foo_start, we emit 'goto L3'. */
|
||
|
||
static void
|
||
expand_omp_for_generic (struct omp_region *region,
|
||
struct omp_for_data *fd,
|
||
enum built_in_function start_fn,
|
||
enum built_in_function next_fn)
|
||
{
|
||
tree l0, l1, l2 = NULL, l3 = NULL;
|
||
tree type, istart0, iend0, iend;
|
||
tree t, args, list;
|
||
basic_block entry_bb, cont_bb, exit_bb, l0_bb, l1_bb;
|
||
basic_block l2_bb = NULL, l3_bb = NULL;
|
||
block_stmt_iterator si;
|
||
bool in_combined_parallel = is_combined_parallel (region);
|
||
|
||
type = TREE_TYPE (fd->v);
|
||
|
||
istart0 = create_tmp_var (long_integer_type_node, ".istart0");
|
||
iend0 = create_tmp_var (long_integer_type_node, ".iend0");
|
||
iend = create_tmp_var (type, NULL);
|
||
TREE_ADDRESSABLE (istart0) = 1;
|
||
TREE_ADDRESSABLE (iend0) = 1;
|
||
|
||
gcc_assert ((region->cont != NULL) ^ (region->exit == NULL));
|
||
|
||
entry_bb = region->entry;
|
||
l0_bb = create_empty_bb (entry_bb);
|
||
l1_bb = single_succ (entry_bb);
|
||
|
||
l0 = tree_block_label (l0_bb);
|
||
l1 = tree_block_label (l1_bb);
|
||
|
||
cont_bb = region->cont;
|
||
exit_bb = region->exit;
|
||
if (cont_bb)
|
||
{
|
||
l2_bb = create_empty_bb (cont_bb);
|
||
l3_bb = single_succ (cont_bb);
|
||
|
||
l2 = tree_block_label (l2_bb);
|
||
l3 = tree_block_label (l3_bb);
|
||
}
|
||
|
||
si = bsi_last (entry_bb);
|
||
gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_FOR);
|
||
if (!in_combined_parallel)
|
||
{
|
||
/* If this is not a combined parallel loop, emit a call to
|
||
GOMP_loop_foo_start in ENTRY_BB. */
|
||
list = alloc_stmt_list ();
|
||
t = build_fold_addr_expr (iend0);
|
||
args = tree_cons (NULL, t, NULL);
|
||
t = build_fold_addr_expr (istart0);
|
||
args = tree_cons (NULL, t, args);
|
||
if (fd->chunk_size)
|
||
{
|
||
t = fold_convert (long_integer_type_node, fd->chunk_size);
|
||
args = tree_cons (NULL, t, args);
|
||
}
|
||
t = fold_convert (long_integer_type_node, fd->step);
|
||
args = tree_cons (NULL, t, args);
|
||
t = fold_convert (long_integer_type_node, fd->n2);
|
||
args = tree_cons (NULL, t, args);
|
||
t = fold_convert (long_integer_type_node, fd->n1);
|
||
args = tree_cons (NULL, t, args);
|
||
t = build_function_call_expr (built_in_decls[start_fn], args);
|
||
t = get_formal_tmp_var (t, &list);
|
||
if (cont_bb)
|
||
{
|
||
t = build3 (COND_EXPR, void_type_node, t, build_and_jump (&l0),
|
||
build_and_jump (&l3));
|
||
append_to_statement_list (t, &list);
|
||
}
|
||
bsi_insert_after (&si, list, BSI_SAME_STMT);
|
||
}
|
||
bsi_remove (&si, true);
|
||
|
||
/* Iteration setup for sequential loop goes in L0_BB. */
|
||
list = alloc_stmt_list ();
|
||
t = fold_convert (type, istart0);
|
||
t = build2 (MODIFY_EXPR, void_type_node, fd->v, t);
|
||
gimplify_and_add (t, &list);
|
||
|
||
t = fold_convert (type, iend0);
|
||
t = build2 (MODIFY_EXPR, void_type_node, iend, t);
|
||
gimplify_and_add (t, &list);
|
||
|
||
si = bsi_start (l0_bb);
|
||
bsi_insert_after (&si, list, BSI_CONTINUE_LINKING);
|
||
|
||
/* Handle the rare case where BODY doesn't ever return. */
|
||
if (cont_bb == NULL)
|
||
{
|
||
remove_edge (single_succ_edge (entry_bb));
|
||
make_edge (entry_bb, l0_bb, EDGE_FALLTHRU);
|
||
make_edge (l0_bb, l1_bb, EDGE_FALLTHRU);
|
||
return;
|
||
}
|
||
|
||
/* Code to control the increment and predicate for the sequential
|
||
loop goes in the first half of EXIT_BB (we split EXIT_BB so
|
||
that we can inherit all the edges going out of the loop
|
||
body). */
|
||
list = alloc_stmt_list ();
|
||
|
||
t = build2 (PLUS_EXPR, type, fd->v, fd->step);
|
||
t = build2 (MODIFY_EXPR, void_type_node, fd->v, t);
|
||
gimplify_and_add (t, &list);
|
||
|
||
t = build2 (fd->cond_code, boolean_type_node, fd->v, iend);
|
||
t = get_formal_tmp_var (t, &list);
|
||
t = build3 (COND_EXPR, void_type_node, t, build_and_jump (&l1),
|
||
build_and_jump (&l2));
|
||
append_to_statement_list (t, &list);
|
||
|
||
si = bsi_last (cont_bb);
|
||
bsi_insert_after (&si, list, BSI_SAME_STMT);
|
||
gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_CONTINUE);
|
||
bsi_remove (&si, true);
|
||
|
||
/* Emit code to get the next parallel iteration in L2_BB. */
|
||
list = alloc_stmt_list ();
|
||
|
||
t = build_fold_addr_expr (iend0);
|
||
args = tree_cons (NULL, t, NULL);
|
||
t = build_fold_addr_expr (istart0);
|
||
args = tree_cons (NULL, t, args);
|
||
t = build_function_call_expr (built_in_decls[next_fn], args);
|
||
t = get_formal_tmp_var (t, &list);
|
||
t = build3 (COND_EXPR, void_type_node, t, build_and_jump (&l0),
|
||
build_and_jump (&l3));
|
||
append_to_statement_list (t, &list);
|
||
|
||
si = bsi_start (l2_bb);
|
||
bsi_insert_after (&si, list, BSI_CONTINUE_LINKING);
|
||
|
||
/* Add the loop cleanup function. */
|
||
si = bsi_last (exit_bb);
|
||
if (OMP_RETURN_NOWAIT (bsi_stmt (si)))
|
||
t = built_in_decls[BUILT_IN_GOMP_LOOP_END_NOWAIT];
|
||
else
|
||
t = built_in_decls[BUILT_IN_GOMP_LOOP_END];
|
||
t = build_function_call_expr (t, NULL);
|
||
bsi_insert_after (&si, t, BSI_SAME_STMT);
|
||
bsi_remove (&si, true);
|
||
|
||
/* Connect the new blocks. */
|
||
remove_edge (single_succ_edge (entry_bb));
|
||
if (in_combined_parallel)
|
||
make_edge (entry_bb, l2_bb, EDGE_FALLTHRU);
|
||
else
|
||
{
|
||
make_edge (entry_bb, l0_bb, EDGE_TRUE_VALUE);
|
||
make_edge (entry_bb, l3_bb, EDGE_FALSE_VALUE);
|
||
}
|
||
|
||
make_edge (l0_bb, l1_bb, EDGE_FALLTHRU);
|
||
|
||
remove_edge (single_succ_edge (cont_bb));
|
||
make_edge (cont_bb, l1_bb, EDGE_TRUE_VALUE);
|
||
make_edge (cont_bb, l2_bb, EDGE_FALSE_VALUE);
|
||
|
||
make_edge (l2_bb, l0_bb, EDGE_TRUE_VALUE);
|
||
make_edge (l2_bb, l3_bb, EDGE_FALSE_VALUE);
|
||
}
|
||
|
||
|
||
/* A subroutine of expand_omp_for. Generate code for a parallel
|
||
loop with static schedule and no specified chunk size. Given
|
||
parameters:
|
||
|
||
for (V = N1; V cond N2; V += STEP) BODY;
|
||
|
||
where COND is "<" or ">", we generate pseudocode
|
||
|
||
if (cond is <)
|
||
adj = STEP - 1;
|
||
else
|
||
adj = STEP + 1;
|
||
n = (adj + N2 - N1) / STEP;
|
||
q = n / nthreads;
|
||
q += (q * nthreads != n);
|
||
s0 = q * threadid;
|
||
e0 = min(s0 + q, n);
|
||
if (s0 >= e0) goto L2; else goto L0;
|
||
L0:
|
||
V = s0 * STEP + N1;
|
||
e = e0 * STEP + N1;
|
||
L1:
|
||
BODY;
|
||
V += STEP;
|
||
if (V cond e) goto L1;
|
||
L2:
|
||
*/
|
||
|
||
static void
|
||
expand_omp_for_static_nochunk (struct omp_region *region,
|
||
struct omp_for_data *fd)
|
||
{
|
||
tree l0, l1, l2, n, q, s0, e0, e, t, nthreads, threadid;
|
||
tree type, list;
|
||
basic_block entry_bb, exit_bb, seq_start_bb, body_bb, cont_bb;
|
||
basic_block fin_bb;
|
||
block_stmt_iterator si;
|
||
|
||
type = TREE_TYPE (fd->v);
|
||
|
||
entry_bb = region->entry;
|
||
seq_start_bb = create_empty_bb (entry_bb);
|
||
body_bb = single_succ (entry_bb);
|
||
cont_bb = region->cont;
|
||
fin_bb = single_succ (cont_bb);
|
||
exit_bb = region->exit;
|
||
|
||
l0 = tree_block_label (seq_start_bb);
|
||
l1 = tree_block_label (body_bb);
|
||
l2 = tree_block_label (fin_bb);
|
||
|
||
/* Iteration space partitioning goes in ENTRY_BB. */
|
||
list = alloc_stmt_list ();
|
||
|
||
t = built_in_decls[BUILT_IN_OMP_GET_NUM_THREADS];
|
||
t = build_function_call_expr (t, NULL);
|
||
t = fold_convert (type, t);
|
||
nthreads = get_formal_tmp_var (t, &list);
|
||
|
||
t = built_in_decls[BUILT_IN_OMP_GET_THREAD_NUM];
|
||
t = build_function_call_expr (t, NULL);
|
||
t = fold_convert (type, t);
|
||
threadid = get_formal_tmp_var (t, &list);
|
||
|
||
fd->n1 = fold_convert (type, fd->n1);
|
||
if (!is_gimple_val (fd->n1))
|
||
fd->n1 = get_formal_tmp_var (fd->n1, &list);
|
||
|
||
fd->n2 = fold_convert (type, fd->n2);
|
||
if (!is_gimple_val (fd->n2))
|
||
fd->n2 = get_formal_tmp_var (fd->n2, &list);
|
||
|
||
fd->step = fold_convert (type, fd->step);
|
||
if (!is_gimple_val (fd->step))
|
||
fd->step = get_formal_tmp_var (fd->step, &list);
|
||
|
||
t = build_int_cst (type, (fd->cond_code == LT_EXPR ? -1 : 1));
|
||
t = fold_build2 (PLUS_EXPR, type, fd->step, t);
|
||
t = fold_build2 (PLUS_EXPR, type, t, fd->n2);
|
||
t = fold_build2 (MINUS_EXPR, type, t, fd->n1);
|
||
t = fold_build2 (TRUNC_DIV_EXPR, type, t, fd->step);
|
||
t = fold_convert (type, t);
|
||
if (is_gimple_val (t))
|
||
n = t;
|
||
else
|
||
n = get_formal_tmp_var (t, &list);
|
||
|
||
t = build2 (TRUNC_DIV_EXPR, type, n, nthreads);
|
||
q = get_formal_tmp_var (t, &list);
|
||
|
||
t = build2 (MULT_EXPR, type, q, nthreads);
|
||
t = build2 (NE_EXPR, type, t, n);
|
||
t = build2 (PLUS_EXPR, type, q, t);
|
||
q = get_formal_tmp_var (t, &list);
|
||
|
||
t = build2 (MULT_EXPR, type, q, threadid);
|
||
s0 = get_formal_tmp_var (t, &list);
|
||
|
||
t = build2 (PLUS_EXPR, type, s0, q);
|
||
t = build2 (MIN_EXPR, type, t, n);
|
||
e0 = get_formal_tmp_var (t, &list);
|
||
|
||
t = build2 (GE_EXPR, boolean_type_node, s0, e0);
|
||
t = build3 (COND_EXPR, void_type_node, t, build_and_jump (&l2),
|
||
build_and_jump (&l0));
|
||
append_to_statement_list (t, &list);
|
||
|
||
si = bsi_last (entry_bb);
|
||
gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_FOR);
|
||
bsi_insert_after (&si, list, BSI_SAME_STMT);
|
||
bsi_remove (&si, true);
|
||
|
||
/* Setup code for sequential iteration goes in SEQ_START_BB. */
|
||
list = alloc_stmt_list ();
|
||
|
||
t = fold_convert (type, s0);
|
||
t = build2 (MULT_EXPR, type, t, fd->step);
|
||
t = build2 (PLUS_EXPR, type, t, fd->n1);
|
||
t = build2 (MODIFY_EXPR, void_type_node, fd->v, t);
|
||
gimplify_and_add (t, &list);
|
||
|
||
t = fold_convert (type, e0);
|
||
t = build2 (MULT_EXPR, type, t, fd->step);
|
||
t = build2 (PLUS_EXPR, type, t, fd->n1);
|
||
e = get_formal_tmp_var (t, &list);
|
||
|
||
si = bsi_start (seq_start_bb);
|
||
bsi_insert_after (&si, list, BSI_CONTINUE_LINKING);
|
||
|
||
/* The code controlling the sequential loop replaces the OMP_CONTINUE. */
|
||
list = alloc_stmt_list ();
|
||
|
||
t = build2 (PLUS_EXPR, type, fd->v, fd->step);
|
||
t = build2 (MODIFY_EXPR, void_type_node, fd->v, t);
|
||
gimplify_and_add (t, &list);
|
||
|
||
t = build2 (fd->cond_code, boolean_type_node, fd->v, e);
|
||
t = get_formal_tmp_var (t, &list);
|
||
t = build3 (COND_EXPR, void_type_node, t, build_and_jump (&l1),
|
||
build_and_jump (&l2));
|
||
append_to_statement_list (t, &list);
|
||
|
||
si = bsi_last (cont_bb);
|
||
gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_CONTINUE);
|
||
bsi_insert_after (&si, list, BSI_SAME_STMT);
|
||
bsi_remove (&si, true);
|
||
|
||
/* Replace the OMP_RETURN with a barrier, or nothing. */
|
||
si = bsi_last (exit_bb);
|
||
if (!OMP_RETURN_NOWAIT (bsi_stmt (si)))
|
||
{
|
||
list = alloc_stmt_list ();
|
||
build_omp_barrier (&list);
|
||
bsi_insert_after (&si, list, BSI_SAME_STMT);
|
||
}
|
||
bsi_remove (&si, true);
|
||
|
||
/* Connect all the blocks. */
|
||
make_edge (seq_start_bb, body_bb, EDGE_FALLTHRU);
|
||
|
||
remove_edge (single_succ_edge (entry_bb));
|
||
make_edge (entry_bb, fin_bb, EDGE_TRUE_VALUE);
|
||
make_edge (entry_bb, seq_start_bb, EDGE_FALSE_VALUE);
|
||
|
||
make_edge (cont_bb, body_bb, EDGE_TRUE_VALUE);
|
||
find_edge (cont_bb, fin_bb)->flags = EDGE_FALSE_VALUE;
|
||
}
|
||
|
||
|
||
/* A subroutine of expand_omp_for. Generate code for a parallel
|
||
loop with static schedule and a specified chunk size. Given
|
||
parameters:
|
||
|
||
for (V = N1; V cond N2; V += STEP) BODY;
|
||
|
||
where COND is "<" or ">", we generate pseudocode
|
||
|
||
if (cond is <)
|
||
adj = STEP - 1;
|
||
else
|
||
adj = STEP + 1;
|
||
n = (adj + N2 - N1) / STEP;
|
||
trip = 0;
|
||
L0:
|
||
s0 = (trip * nthreads + threadid) * CHUNK;
|
||
e0 = min(s0 + CHUNK, n);
|
||
if (s0 < n) goto L1; else goto L4;
|
||
L1:
|
||
V = s0 * STEP + N1;
|
||
e = e0 * STEP + N1;
|
||
L2:
|
||
BODY;
|
||
V += STEP;
|
||
if (V cond e) goto L2; else goto L3;
|
||
L3:
|
||
trip += 1;
|
||
goto L0;
|
||
L4:
|
||
*/
|
||
|
||
static void
|
||
expand_omp_for_static_chunk (struct omp_region *region, struct omp_for_data *fd)
|
||
{
|
||
tree l0, l1, l2, l3, l4, n, s0, e0, e, t;
|
||
tree trip, nthreads, threadid;
|
||
tree type;
|
||
basic_block entry_bb, exit_bb, body_bb, seq_start_bb, iter_part_bb;
|
||
basic_block trip_update_bb, cont_bb, fin_bb;
|
||
tree list;
|
||
block_stmt_iterator si;
|
||
|
||
type = TREE_TYPE (fd->v);
|
||
|
||
entry_bb = region->entry;
|
||
iter_part_bb = create_empty_bb (entry_bb);
|
||
seq_start_bb = create_empty_bb (iter_part_bb);
|
||
body_bb = single_succ (entry_bb);
|
||
cont_bb = region->cont;
|
||
trip_update_bb = create_empty_bb (cont_bb);
|
||
fin_bb = single_succ (cont_bb);
|
||
exit_bb = region->exit;
|
||
|
||
l0 = tree_block_label (iter_part_bb);
|
||
l1 = tree_block_label (seq_start_bb);
|
||
l2 = tree_block_label (body_bb);
|
||
l3 = tree_block_label (trip_update_bb);
|
||
l4 = tree_block_label (fin_bb);
|
||
|
||
/* Trip and adjustment setup goes in ENTRY_BB. */
|
||
list = alloc_stmt_list ();
|
||
|
||
t = built_in_decls[BUILT_IN_OMP_GET_NUM_THREADS];
|
||
t = build_function_call_expr (t, NULL);
|
||
t = fold_convert (type, t);
|
||
nthreads = get_formal_tmp_var (t, &list);
|
||
|
||
t = built_in_decls[BUILT_IN_OMP_GET_THREAD_NUM];
|
||
t = build_function_call_expr (t, NULL);
|
||
t = fold_convert (type, t);
|
||
threadid = get_formal_tmp_var (t, &list);
|
||
|
||
fd->n1 = fold_convert (type, fd->n1);
|
||
if (!is_gimple_val (fd->n1))
|
||
fd->n1 = get_formal_tmp_var (fd->n1, &list);
|
||
|
||
fd->n2 = fold_convert (type, fd->n2);
|
||
if (!is_gimple_val (fd->n2))
|
||
fd->n2 = get_formal_tmp_var (fd->n2, &list);
|
||
|
||
fd->step = fold_convert (type, fd->step);
|
||
if (!is_gimple_val (fd->step))
|
||
fd->step = get_formal_tmp_var (fd->step, &list);
|
||
|
||
fd->chunk_size = fold_convert (type, fd->chunk_size);
|
||
if (!is_gimple_val (fd->chunk_size))
|
||
fd->chunk_size = get_formal_tmp_var (fd->chunk_size, &list);
|
||
|
||
t = build_int_cst (type, (fd->cond_code == LT_EXPR ? -1 : 1));
|
||
t = fold_build2 (PLUS_EXPR, type, fd->step, t);
|
||
t = fold_build2 (PLUS_EXPR, type, t, fd->n2);
|
||
t = fold_build2 (MINUS_EXPR, type, t, fd->n1);
|
||
t = fold_build2 (TRUNC_DIV_EXPR, type, t, fd->step);
|
||
t = fold_convert (type, t);
|
||
if (is_gimple_val (t))
|
||
n = t;
|
||
else
|
||
n = get_formal_tmp_var (t, &list);
|
||
|
||
t = build_int_cst (type, 0);
|
||
trip = get_initialized_tmp_var (t, &list, NULL);
|
||
|
||
si = bsi_last (entry_bb);
|
||
gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_FOR);
|
||
bsi_insert_after (&si, list, BSI_SAME_STMT);
|
||
bsi_remove (&si, true);
|
||
|
||
/* Iteration space partitioning goes in ITER_PART_BB. */
|
||
list = alloc_stmt_list ();
|
||
|
||
t = build2 (MULT_EXPR, type, trip, nthreads);
|
||
t = build2 (PLUS_EXPR, type, t, threadid);
|
||
t = build2 (MULT_EXPR, type, t, fd->chunk_size);
|
||
s0 = get_formal_tmp_var (t, &list);
|
||
|
||
t = build2 (PLUS_EXPR, type, s0, fd->chunk_size);
|
||
t = build2 (MIN_EXPR, type, t, n);
|
||
e0 = get_formal_tmp_var (t, &list);
|
||
|
||
t = build2 (LT_EXPR, boolean_type_node, s0, n);
|
||
t = build3 (COND_EXPR, void_type_node, t,
|
||
build_and_jump (&l1), build_and_jump (&l4));
|
||
append_to_statement_list (t, &list);
|
||
|
||
si = bsi_start (iter_part_bb);
|
||
bsi_insert_after (&si, list, BSI_CONTINUE_LINKING);
|
||
|
||
/* Setup code for sequential iteration goes in SEQ_START_BB. */
|
||
list = alloc_stmt_list ();
|
||
|
||
t = fold_convert (type, s0);
|
||
t = build2 (MULT_EXPR, type, t, fd->step);
|
||
t = build2 (PLUS_EXPR, type, t, fd->n1);
|
||
t = build2 (MODIFY_EXPR, void_type_node, fd->v, t);
|
||
gimplify_and_add (t, &list);
|
||
|
||
t = fold_convert (type, e0);
|
||
t = build2 (MULT_EXPR, type, t, fd->step);
|
||
t = build2 (PLUS_EXPR, type, t, fd->n1);
|
||
e = get_formal_tmp_var (t, &list);
|
||
|
||
si = bsi_start (seq_start_bb);
|
||
bsi_insert_after (&si, list, BSI_CONTINUE_LINKING);
|
||
|
||
/* The code controlling the sequential loop goes in CONT_BB,
|
||
replacing the OMP_CONTINUE. */
|
||
list = alloc_stmt_list ();
|
||
|
||
t = build2 (PLUS_EXPR, type, fd->v, fd->step);
|
||
t = build2 (MODIFY_EXPR, void_type_node, fd->v, t);
|
||
gimplify_and_add (t, &list);
|
||
|
||
t = build2 (fd->cond_code, boolean_type_node, fd->v, e);
|
||
t = get_formal_tmp_var (t, &list);
|
||
t = build3 (COND_EXPR, void_type_node, t,
|
||
build_and_jump (&l2), build_and_jump (&l3));
|
||
append_to_statement_list (t, &list);
|
||
|
||
si = bsi_last (cont_bb);
|
||
gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_CONTINUE);
|
||
bsi_insert_after (&si, list, BSI_SAME_STMT);
|
||
bsi_remove (&si, true);
|
||
|
||
/* Trip update code goes into TRIP_UPDATE_BB. */
|
||
list = alloc_stmt_list ();
|
||
|
||
t = build_int_cst (type, 1);
|
||
t = build2 (PLUS_EXPR, type, trip, t);
|
||
t = build2 (MODIFY_EXPR, void_type_node, trip, t);
|
||
gimplify_and_add (t, &list);
|
||
|
||
si = bsi_start (trip_update_bb);
|
||
bsi_insert_after (&si, list, BSI_CONTINUE_LINKING);
|
||
|
||
/* Replace the OMP_RETURN with a barrier, or nothing. */
|
||
si = bsi_last (exit_bb);
|
||
if (!OMP_RETURN_NOWAIT (bsi_stmt (si)))
|
||
{
|
||
list = alloc_stmt_list ();
|
||
build_omp_barrier (&list);
|
||
bsi_insert_after (&si, list, BSI_SAME_STMT);
|
||
}
|
||
bsi_remove (&si, true);
|
||
|
||
/* Connect the new blocks. */
|
||
remove_edge (single_succ_edge (entry_bb));
|
||
make_edge (entry_bb, iter_part_bb, EDGE_FALLTHRU);
|
||
|
||
make_edge (iter_part_bb, seq_start_bb, EDGE_TRUE_VALUE);
|
||
make_edge (iter_part_bb, fin_bb, EDGE_FALSE_VALUE);
|
||
|
||
make_edge (seq_start_bb, body_bb, EDGE_FALLTHRU);
|
||
|
||
remove_edge (single_succ_edge (cont_bb));
|
||
make_edge (cont_bb, body_bb, EDGE_TRUE_VALUE);
|
||
make_edge (cont_bb, trip_update_bb, EDGE_FALSE_VALUE);
|
||
|
||
make_edge (trip_update_bb, iter_part_bb, EDGE_FALLTHRU);
|
||
}
|
||
|
||
|
||
/* Expand the OpenMP loop defined by REGION. */
|
||
|
||
static void
|
||
expand_omp_for (struct omp_region *region)
|
||
{
|
||
struct omp_for_data fd;
|
||
|
||
push_gimplify_context ();
|
||
|
||
extract_omp_for_data (last_stmt (region->entry), &fd);
|
||
region->sched_kind = fd.sched_kind;
|
||
|
||
if (fd.sched_kind == OMP_CLAUSE_SCHEDULE_STATIC
|
||
&& !fd.have_ordered
|
||
&& region->cont
|
||
&& region->exit)
|
||
{
|
||
if (fd.chunk_size == NULL)
|
||
expand_omp_for_static_nochunk (region, &fd);
|
||
else
|
||
expand_omp_for_static_chunk (region, &fd);
|
||
}
|
||
else
|
||
{
|
||
int fn_index = fd.sched_kind + fd.have_ordered * 4;
|
||
int start_ix = BUILT_IN_GOMP_LOOP_STATIC_START + fn_index;
|
||
int next_ix = BUILT_IN_GOMP_LOOP_STATIC_NEXT + fn_index;
|
||
expand_omp_for_generic (region, &fd, start_ix, next_ix);
|
||
}
|
||
|
||
pop_gimplify_context (NULL);
|
||
}
|
||
|
||
|
||
/* Expand code for an OpenMP sections directive. In pseudo code, we generate
|
||
|
||
v = GOMP_sections_start (n);
|
||
L0:
|
||
switch (v)
|
||
{
|
||
case 0:
|
||
goto L2;
|
||
case 1:
|
||
section 1;
|
||
goto L1;
|
||
case 2:
|
||
...
|
||
case n:
|
||
...
|
||
default:
|
||
abort ();
|
||
}
|
||
L1:
|
||
v = GOMP_sections_next ();
|
||
goto L0;
|
||
L2:
|
||
reduction;
|
||
|
||
If this is a combined parallel sections, replace the call to
|
||
GOMP_sections_start with 'goto L1'. */
|
||
|
||
static void
|
||
expand_omp_sections (struct omp_region *region)
|
||
{
|
||
tree label_vec, l0, l1, l2, t, u, v, sections_stmt;
|
||
unsigned i, len;
|
||
basic_block entry_bb, exit_bb, l0_bb, l1_bb, l2_bb, default_bb;
|
||
block_stmt_iterator si;
|
||
struct omp_region *inner;
|
||
edge e;
|
||
|
||
entry_bb = region->entry;
|
||
l0_bb = create_empty_bb (entry_bb);
|
||
l0 = tree_block_label (l0_bb);
|
||
|
||
gcc_assert ((region->cont != NULL) ^ (region->exit == NULL));
|
||
l1_bb = region->cont;
|
||
if (l1_bb)
|
||
{
|
||
l2_bb = single_succ (l1_bb);
|
||
default_bb = create_empty_bb (l1_bb->prev_bb);
|
||
|
||
l1 = tree_block_label (l1_bb);
|
||
}
|
||
else
|
||
{
|
||
l2_bb = create_empty_bb (l0_bb);
|
||
default_bb = l2_bb;
|
||
|
||
l1 = NULL;
|
||
}
|
||
l2 = tree_block_label (l2_bb);
|
||
|
||
exit_bb = region->exit;
|
||
|
||
v = create_tmp_var (unsigned_type_node, ".section");
|
||
|
||
/* We will build a switch() with enough cases for all the
|
||
OMP_SECTION regions, a '0' case to handle the end of more work
|
||
and a default case to abort if something goes wrong. */
|
||
len = EDGE_COUNT (entry_bb->succs);
|
||
label_vec = make_tree_vec (len + 2);
|
||
|
||
/* The call to GOMP_sections_start goes in ENTRY_BB, replacing the
|
||
OMP_SECTIONS statement. */
|
||
si = bsi_last (entry_bb);
|
||
sections_stmt = bsi_stmt (si);
|
||
gcc_assert (TREE_CODE (sections_stmt) == OMP_SECTIONS);
|
||
if (!is_combined_parallel (region))
|
||
{
|
||
/* If we are not inside a combined parallel+sections region,
|
||
call GOMP_sections_start. */
|
||
t = build_int_cst (unsigned_type_node, len);
|
||
t = tree_cons (NULL, t, NULL);
|
||
u = built_in_decls[BUILT_IN_GOMP_SECTIONS_START];
|
||
t = build_function_call_expr (u, t);
|
||
t = build2 (MODIFY_EXPR, void_type_node, v, t);
|
||
bsi_insert_after (&si, t, BSI_SAME_STMT);
|
||
}
|
||
bsi_remove (&si, true);
|
||
|
||
/* The switch() statement replacing OMP_SECTIONS goes in L0_BB. */
|
||
si = bsi_start (l0_bb);
|
||
|
||
t = build3 (SWITCH_EXPR, void_type_node, v, NULL, label_vec);
|
||
bsi_insert_after (&si, t, BSI_CONTINUE_LINKING);
|
||
|
||
t = build3 (CASE_LABEL_EXPR, void_type_node,
|
||
build_int_cst (unsigned_type_node, 0), NULL, l2);
|
||
TREE_VEC_ELT (label_vec, 0) = t;
|
||
make_edge (l0_bb, l2_bb, 0);
|
||
|
||
/* Convert each OMP_SECTION into a CASE_LABEL_EXPR. */
|
||
for (inner = region->inner, i = 1; inner; inner = inner->next, ++i)
|
||
{
|
||
basic_block s_entry_bb, s_exit_bb;
|
||
|
||
s_entry_bb = inner->entry;
|
||
s_exit_bb = inner->exit;
|
||
|
||
t = tree_block_label (s_entry_bb);
|
||
u = build_int_cst (unsigned_type_node, i);
|
||
u = build3 (CASE_LABEL_EXPR, void_type_node, u, NULL, t);
|
||
TREE_VEC_ELT (label_vec, i) = u;
|
||
|
||
si = bsi_last (s_entry_bb);
|
||
gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_SECTION);
|
||
gcc_assert (i < len || OMP_SECTION_LAST (bsi_stmt (si)));
|
||
bsi_remove (&si, true);
|
||
|
||
e = single_pred_edge (s_entry_bb);
|
||
e->flags = 0;
|
||
redirect_edge_pred (e, l0_bb);
|
||
|
||
single_succ_edge (s_entry_bb)->flags = EDGE_FALLTHRU;
|
||
|
||
if (s_exit_bb == NULL)
|
||
continue;
|
||
|
||
si = bsi_last (s_exit_bb);
|
||
gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_RETURN);
|
||
bsi_remove (&si, true);
|
||
|
||
single_succ_edge (s_exit_bb)->flags = EDGE_FALLTHRU;
|
||
}
|
||
|
||
/* Error handling code goes in DEFAULT_BB. */
|
||
t = tree_block_label (default_bb);
|
||
u = build3 (CASE_LABEL_EXPR, void_type_node, NULL, NULL, t);
|
||
TREE_VEC_ELT (label_vec, len + 1) = u;
|
||
make_edge (l0_bb, default_bb, 0);
|
||
|
||
si = bsi_start (default_bb);
|
||
t = built_in_decls[BUILT_IN_TRAP];
|
||
t = build_function_call_expr (t, NULL);
|
||
bsi_insert_after (&si, t, BSI_CONTINUE_LINKING);
|
||
|
||
/* Code to get the next section goes in L1_BB. */
|
||
if (l1_bb)
|
||
{
|
||
si = bsi_last (l1_bb);
|
||
gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_CONTINUE);
|
||
|
||
t = built_in_decls[BUILT_IN_GOMP_SECTIONS_NEXT];
|
||
t = build_function_call_expr (t, NULL);
|
||
t = build2 (MODIFY_EXPR, void_type_node, v, t);
|
||
bsi_insert_after (&si, t, BSI_SAME_STMT);
|
||
bsi_remove (&si, true);
|
||
}
|
||
|
||
/* Cleanup function replaces OMP_RETURN in EXIT_BB. */
|
||
if (exit_bb)
|
||
{
|
||
si = bsi_last (exit_bb);
|
||
if (OMP_RETURN_NOWAIT (bsi_stmt (si)))
|
||
t = built_in_decls[BUILT_IN_GOMP_SECTIONS_END_NOWAIT];
|
||
else
|
||
t = built_in_decls[BUILT_IN_GOMP_SECTIONS_END];
|
||
t = build_function_call_expr (t, NULL);
|
||
bsi_insert_after (&si, t, BSI_SAME_STMT);
|
||
bsi_remove (&si, true);
|
||
}
|
||
|
||
/* Connect the new blocks. */
|
||
if (is_combined_parallel (region))
|
||
{
|
||
/* If this was a combined parallel+sections region, we did not
|
||
emit a GOMP_sections_start in the entry block, so we just
|
||
need to jump to L1_BB to get the next section. */
|
||
make_edge (entry_bb, l1_bb, EDGE_FALLTHRU);
|
||
}
|
||
else
|
||
make_edge (entry_bb, l0_bb, EDGE_FALLTHRU);
|
||
|
||
if (l1_bb)
|
||
{
|
||
e = single_succ_edge (l1_bb);
|
||
redirect_edge_succ (e, l0_bb);
|
||
e->flags = EDGE_FALLTHRU;
|
||
}
|
||
}
|
||
|
||
|
||
/* Expand code for an OpenMP single directive. We've already expanded
|
||
much of the code, here we simply place the GOMP_barrier call. */
|
||
|
||
static void
|
||
expand_omp_single (struct omp_region *region)
|
||
{
|
||
basic_block entry_bb, exit_bb;
|
||
block_stmt_iterator si;
|
||
bool need_barrier = false;
|
||
|
||
entry_bb = region->entry;
|
||
exit_bb = region->exit;
|
||
|
||
si = bsi_last (entry_bb);
|
||
/* The terminal barrier at the end of a GOMP_single_copy sequence cannot
|
||
be removed. We need to ensure that the thread that entered the single
|
||
does not exit before the data is copied out by the other threads. */
|
||
if (find_omp_clause (OMP_SINGLE_CLAUSES (bsi_stmt (si)),
|
||
OMP_CLAUSE_COPYPRIVATE))
|
||
need_barrier = true;
|
||
gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_SINGLE);
|
||
bsi_remove (&si, true);
|
||
single_succ_edge (entry_bb)->flags = EDGE_FALLTHRU;
|
||
|
||
si = bsi_last (exit_bb);
|
||
if (!OMP_RETURN_NOWAIT (bsi_stmt (si)) || need_barrier)
|
||
{
|
||
tree t = alloc_stmt_list ();
|
||
build_omp_barrier (&t);
|
||
bsi_insert_after (&si, t, BSI_SAME_STMT);
|
||
}
|
||
bsi_remove (&si, true);
|
||
single_succ_edge (exit_bb)->flags = EDGE_FALLTHRU;
|
||
}
|
||
|
||
|
||
/* Generic expansion for OpenMP synchronization directives: master,
|
||
ordered and critical. All we need to do here is remove the entry
|
||
and exit markers for REGION. */
|
||
|
||
static void
|
||
expand_omp_synch (struct omp_region *region)
|
||
{
|
||
basic_block entry_bb, exit_bb;
|
||
block_stmt_iterator si;
|
||
|
||
entry_bb = region->entry;
|
||
exit_bb = region->exit;
|
||
|
||
si = bsi_last (entry_bb);
|
||
gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_SINGLE
|
||
|| TREE_CODE (bsi_stmt (si)) == OMP_MASTER
|
||
|| TREE_CODE (bsi_stmt (si)) == OMP_ORDERED
|
||
|| TREE_CODE (bsi_stmt (si)) == OMP_CRITICAL);
|
||
bsi_remove (&si, true);
|
||
single_succ_edge (entry_bb)->flags = EDGE_FALLTHRU;
|
||
|
||
if (exit_bb)
|
||
{
|
||
si = bsi_last (exit_bb);
|
||
gcc_assert (TREE_CODE (bsi_stmt (si)) == OMP_RETURN);
|
||
bsi_remove (&si, true);
|
||
single_succ_edge (exit_bb)->flags = EDGE_FALLTHRU;
|
||
}
|
||
}
|
||
|
||
|
||
/* Expand the parallel region tree rooted at REGION. Expansion
|
||
proceeds in depth-first order. Innermost regions are expanded
|
||
first. This way, parallel regions that require a new function to
|
||
be created (e.g., OMP_PARALLEL) can be expanded without having any
|
||
internal dependencies in their body. */
|
||
|
||
static void
|
||
expand_omp (struct omp_region *region)
|
||
{
|
||
while (region)
|
||
{
|
||
if (region->inner)
|
||
expand_omp (region->inner);
|
||
|
||
switch (region->type)
|
||
{
|
||
case OMP_PARALLEL:
|
||
expand_omp_parallel (region);
|
||
break;
|
||
|
||
case OMP_FOR:
|
||
expand_omp_for (region);
|
||
break;
|
||
|
||
case OMP_SECTIONS:
|
||
expand_omp_sections (region);
|
||
break;
|
||
|
||
case OMP_SECTION:
|
||
/* Individual omp sections are handled together with their
|
||
parent OMP_SECTIONS region. */
|
||
break;
|
||
|
||
case OMP_SINGLE:
|
||
expand_omp_single (region);
|
||
break;
|
||
|
||
case OMP_MASTER:
|
||
case OMP_ORDERED:
|
||
case OMP_CRITICAL:
|
||
expand_omp_synch (region);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
region = region->next;
|
||
}
|
||
}
|
||
|
||
|
||
/* Helper for build_omp_regions. Scan the dominator tree starting at
|
||
block BB. PARENT is the region that contains BB. */
|
||
|
||
static void
|
||
build_omp_regions_1 (basic_block bb, struct omp_region *parent)
|
||
{
|
||
block_stmt_iterator si;
|
||
tree stmt;
|
||
basic_block son;
|
||
|
||
si = bsi_last (bb);
|
||
if (!bsi_end_p (si) && OMP_DIRECTIVE_P (bsi_stmt (si)))
|
||
{
|
||
struct omp_region *region;
|
||
enum tree_code code;
|
||
|
||
stmt = bsi_stmt (si);
|
||
code = TREE_CODE (stmt);
|
||
|
||
if (code == OMP_RETURN)
|
||
{
|
||
/* STMT is the return point out of region PARENT. Mark it
|
||
as the exit point and make PARENT the immediately
|
||
enclosing region. */
|
||
gcc_assert (parent);
|
||
region = parent;
|
||
region->exit = bb;
|
||
parent = parent->outer;
|
||
|
||
/* If REGION is a parallel region, determine whether it is
|
||
a combined parallel+workshare region. */
|
||
if (region->type == OMP_PARALLEL)
|
||
determine_parallel_type (region);
|
||
}
|
||
else if (code == OMP_CONTINUE)
|
||
{
|
||
gcc_assert (parent);
|
||
parent->cont = bb;
|
||
}
|
||
else
|
||
{
|
||
/* Otherwise, this directive becomes the parent for a new
|
||
region. */
|
||
region = new_omp_region (bb, code, parent);
|
||
parent = region;
|
||
}
|
||
}
|
||
|
||
for (son = first_dom_son (CDI_DOMINATORS, bb);
|
||
son;
|
||
son = next_dom_son (CDI_DOMINATORS, son))
|
||
build_omp_regions_1 (son, parent);
|
||
}
|
||
|
||
|
||
/* Scan the CFG and build a tree of OMP regions. Return the root of
|
||
the OMP region tree. */
|
||
|
||
static void
|
||
build_omp_regions (void)
|
||
{
|
||
gcc_assert (root_omp_region == NULL);
|
||
calculate_dominance_info (CDI_DOMINATORS);
|
||
build_omp_regions_1 (ENTRY_BLOCK_PTR, NULL);
|
||
}
|
||
|
||
|
||
/* Main entry point for expanding OMP-GIMPLE into runtime calls. */
|
||
|
||
static unsigned int
|
||
execute_expand_omp (void)
|
||
{
|
||
build_omp_regions ();
|
||
|
||
if (!root_omp_region)
|
||
return 0;
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "\nOMP region tree\n\n");
|
||
dump_omp_region (dump_file, root_omp_region, 0);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
remove_exit_barriers (root_omp_region);
|
||
|
||
expand_omp (root_omp_region);
|
||
|
||
free_dominance_info (CDI_DOMINATORS);
|
||
free_dominance_info (CDI_POST_DOMINATORS);
|
||
cleanup_tree_cfg ();
|
||
|
||
free_omp_regions ();
|
||
|
||
return 0;
|
||
}
|
||
|
||
static bool
|
||
gate_expand_omp (void)
|
||
{
|
||
return flag_openmp != 0 && errorcount == 0;
|
||
}
|
||
|
||
struct tree_opt_pass pass_expand_omp =
|
||
{
|
||
"ompexp", /* name */
|
||
gate_expand_omp, /* gate */
|
||
execute_expand_omp, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
0, /* tv_id */
|
||
PROP_gimple_any, /* properties_required */
|
||
PROP_gimple_lomp, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_dump_func, /* todo_flags_finish */
|
||
0 /* letter */
|
||
};
|
||
|
||
/* Routines to lower OpenMP directives into OMP-GIMPLE. */
|
||
|
||
/* Lower the OpenMP sections directive in *STMT_P. */
|
||
|
||
static void
|
||
lower_omp_sections (tree *stmt_p, omp_context *ctx)
|
||
{
|
||
tree new_stmt, stmt, body, bind, block, ilist, olist, new_body;
|
||
tree t, dlist;
|
||
tree_stmt_iterator tsi;
|
||
unsigned i, len;
|
||
|
||
stmt = *stmt_p;
|
||
|
||
push_gimplify_context ();
|
||
|
||
dlist = NULL;
|
||
ilist = NULL;
|
||
lower_rec_input_clauses (OMP_SECTIONS_CLAUSES (stmt), &ilist, &dlist, ctx);
|
||
|
||
tsi = tsi_start (OMP_SECTIONS_BODY (stmt));
|
||
for (len = 0; !tsi_end_p (tsi); len++, tsi_next (&tsi))
|
||
continue;
|
||
|
||
tsi = tsi_start (OMP_SECTIONS_BODY (stmt));
|
||
body = alloc_stmt_list ();
|
||
for (i = 0; i < len; i++, tsi_next (&tsi))
|
||
{
|
||
omp_context *sctx;
|
||
tree sec_start, sec_end;
|
||
|
||
sec_start = tsi_stmt (tsi);
|
||
sctx = maybe_lookup_ctx (sec_start);
|
||
gcc_assert (sctx);
|
||
|
||
append_to_statement_list (sec_start, &body);
|
||
|
||
lower_omp (&OMP_SECTION_BODY (sec_start), sctx);
|
||
append_to_statement_list (OMP_SECTION_BODY (sec_start), &body);
|
||
OMP_SECTION_BODY (sec_start) = NULL;
|
||
|
||
if (i == len - 1)
|
||
{
|
||
tree l = alloc_stmt_list ();
|
||
lower_lastprivate_clauses (OMP_SECTIONS_CLAUSES (stmt), NULL,
|
||
&l, ctx);
|
||
append_to_statement_list (l, &body);
|
||
OMP_SECTION_LAST (sec_start) = 1;
|
||
}
|
||
|
||
sec_end = make_node (OMP_RETURN);
|
||
append_to_statement_list (sec_end, &body);
|
||
}
|
||
|
||
block = make_node (BLOCK);
|
||
bind = build3 (BIND_EXPR, void_type_node, NULL, body, block);
|
||
|
||
olist = NULL_TREE;
|
||
lower_reduction_clauses (OMP_SECTIONS_CLAUSES (stmt), &olist, ctx);
|
||
|
||
pop_gimplify_context (NULL_TREE);
|
||
record_vars_into (ctx->block_vars, ctx->cb.dst_fn);
|
||
|
||
new_stmt = build3 (BIND_EXPR, void_type_node, NULL, NULL, NULL);
|
||
TREE_SIDE_EFFECTS (new_stmt) = 1;
|
||
|
||
new_body = alloc_stmt_list ();
|
||
append_to_statement_list (ilist, &new_body);
|
||
append_to_statement_list (stmt, &new_body);
|
||
append_to_statement_list (bind, &new_body);
|
||
|
||
t = make_node (OMP_CONTINUE);
|
||
append_to_statement_list (t, &new_body);
|
||
|
||
append_to_statement_list (olist, &new_body);
|
||
append_to_statement_list (dlist, &new_body);
|
||
|
||
maybe_catch_exception (&new_body);
|
||
|
||
t = make_node (OMP_RETURN);
|
||
OMP_RETURN_NOWAIT (t) = !!find_omp_clause (OMP_SECTIONS_CLAUSES (stmt),
|
||
OMP_CLAUSE_NOWAIT);
|
||
append_to_statement_list (t, &new_body);
|
||
|
||
BIND_EXPR_BODY (new_stmt) = new_body;
|
||
OMP_SECTIONS_BODY (stmt) = NULL;
|
||
|
||
*stmt_p = new_stmt;
|
||
}
|
||
|
||
|
||
/* A subroutine of lower_omp_single. Expand the simple form of
|
||
an OMP_SINGLE, without a copyprivate clause:
|
||
|
||
if (GOMP_single_start ())
|
||
BODY;
|
||
[ GOMP_barrier (); ] -> unless 'nowait' is present.
|
||
|
||
FIXME. It may be better to delay expanding the logic of this until
|
||
pass_expand_omp. The expanded logic may make the job more difficult
|
||
to a synchronization analysis pass. */
|
||
|
||
static void
|
||
lower_omp_single_simple (tree single_stmt, tree *pre_p)
|
||
{
|
||
tree t;
|
||
|
||
t = built_in_decls[BUILT_IN_GOMP_SINGLE_START];
|
||
t = build_function_call_expr (t, NULL);
|
||
t = build3 (COND_EXPR, void_type_node, t,
|
||
OMP_SINGLE_BODY (single_stmt), NULL);
|
||
gimplify_and_add (t, pre_p);
|
||
}
|
||
|
||
|
||
/* A subroutine of lower_omp_single. Expand the simple form of
|
||
an OMP_SINGLE, with a copyprivate clause:
|
||
|
||
#pragma omp single copyprivate (a, b, c)
|
||
|
||
Create a new structure to hold copies of 'a', 'b' and 'c' and emit:
|
||
|
||
{
|
||
if ((copyout_p = GOMP_single_copy_start ()) == NULL)
|
||
{
|
||
BODY;
|
||
copyout.a = a;
|
||
copyout.b = b;
|
||
copyout.c = c;
|
||
GOMP_single_copy_end (©out);
|
||
}
|
||
else
|
||
{
|
||
a = copyout_p->a;
|
||
b = copyout_p->b;
|
||
c = copyout_p->c;
|
||
}
|
||
GOMP_barrier ();
|
||
}
|
||
|
||
FIXME. It may be better to delay expanding the logic of this until
|
||
pass_expand_omp. The expanded logic may make the job more difficult
|
||
to a synchronization analysis pass. */
|
||
|
||
static void
|
||
lower_omp_single_copy (tree single_stmt, tree *pre_p, omp_context *ctx)
|
||
{
|
||
tree ptr_type, t, args, l0, l1, l2, copyin_seq;
|
||
|
||
ctx->sender_decl = create_tmp_var (ctx->record_type, ".omp_copy_o");
|
||
|
||
ptr_type = build_pointer_type (ctx->record_type);
|
||
ctx->receiver_decl = create_tmp_var (ptr_type, ".omp_copy_i");
|
||
|
||
l0 = create_artificial_label ();
|
||
l1 = create_artificial_label ();
|
||
l2 = create_artificial_label ();
|
||
|
||
t = built_in_decls[BUILT_IN_GOMP_SINGLE_COPY_START];
|
||
t = build_function_call_expr (t, NULL);
|
||
t = fold_convert (ptr_type, t);
|
||
t = build2 (MODIFY_EXPR, void_type_node, ctx->receiver_decl, t);
|
||
gimplify_and_add (t, pre_p);
|
||
|
||
t = build2 (EQ_EXPR, boolean_type_node, ctx->receiver_decl,
|
||
build_int_cst (ptr_type, 0));
|
||
t = build3 (COND_EXPR, void_type_node, t,
|
||
build_and_jump (&l0), build_and_jump (&l1));
|
||
gimplify_and_add (t, pre_p);
|
||
|
||
t = build1 (LABEL_EXPR, void_type_node, l0);
|
||
gimplify_and_add (t, pre_p);
|
||
|
||
append_to_statement_list (OMP_SINGLE_BODY (single_stmt), pre_p);
|
||
|
||
copyin_seq = NULL;
|
||
lower_copyprivate_clauses (OMP_SINGLE_CLAUSES (single_stmt), pre_p,
|
||
©in_seq, ctx);
|
||
|
||
t = build_fold_addr_expr (ctx->sender_decl);
|
||
args = tree_cons (NULL, t, NULL);
|
||
t = built_in_decls[BUILT_IN_GOMP_SINGLE_COPY_END];
|
||
t = build_function_call_expr (t, args);
|
||
gimplify_and_add (t, pre_p);
|
||
|
||
t = build_and_jump (&l2);
|
||
gimplify_and_add (t, pre_p);
|
||
|
||
t = build1 (LABEL_EXPR, void_type_node, l1);
|
||
gimplify_and_add (t, pre_p);
|
||
|
||
append_to_statement_list (copyin_seq, pre_p);
|
||
|
||
t = build1 (LABEL_EXPR, void_type_node, l2);
|
||
gimplify_and_add (t, pre_p);
|
||
}
|
||
|
||
|
||
/* Expand code for an OpenMP single directive. */
|
||
|
||
static void
|
||
lower_omp_single (tree *stmt_p, omp_context *ctx)
|
||
{
|
||
tree t, bind, block, single_stmt = *stmt_p, dlist;
|
||
|
||
push_gimplify_context ();
|
||
|
||
block = make_node (BLOCK);
|
||
*stmt_p = bind = build3 (BIND_EXPR, void_type_node, NULL, NULL, block);
|
||
TREE_SIDE_EFFECTS (bind) = 1;
|
||
|
||
lower_rec_input_clauses (OMP_SINGLE_CLAUSES (single_stmt),
|
||
&BIND_EXPR_BODY (bind), &dlist, ctx);
|
||
lower_omp (&OMP_SINGLE_BODY (single_stmt), ctx);
|
||
|
||
append_to_statement_list (single_stmt, &BIND_EXPR_BODY (bind));
|
||
|
||
if (ctx->record_type)
|
||
lower_omp_single_copy (single_stmt, &BIND_EXPR_BODY (bind), ctx);
|
||
else
|
||
lower_omp_single_simple (single_stmt, &BIND_EXPR_BODY (bind));
|
||
|
||
OMP_SINGLE_BODY (single_stmt) = NULL;
|
||
|
||
append_to_statement_list (dlist, &BIND_EXPR_BODY (bind));
|
||
|
||
maybe_catch_exception (&BIND_EXPR_BODY (bind));
|
||
|
||
t = make_node (OMP_RETURN);
|
||
OMP_RETURN_NOWAIT (t) = !!find_omp_clause (OMP_SINGLE_CLAUSES (single_stmt),
|
||
OMP_CLAUSE_NOWAIT);
|
||
append_to_statement_list (t, &BIND_EXPR_BODY (bind));
|
||
|
||
pop_gimplify_context (bind);
|
||
|
||
BIND_EXPR_VARS (bind) = chainon (BIND_EXPR_VARS (bind), ctx->block_vars);
|
||
BLOCK_VARS (block) = BIND_EXPR_VARS (bind);
|
||
}
|
||
|
||
|
||
/* Expand code for an OpenMP master directive. */
|
||
|
||
static void
|
||
lower_omp_master (tree *stmt_p, omp_context *ctx)
|
||
{
|
||
tree bind, block, stmt = *stmt_p, lab = NULL, x;
|
||
|
||
push_gimplify_context ();
|
||
|
||
block = make_node (BLOCK);
|
||
*stmt_p = bind = build3 (BIND_EXPR, void_type_node, NULL, NULL, block);
|
||
TREE_SIDE_EFFECTS (bind) = 1;
|
||
|
||
append_to_statement_list (stmt, &BIND_EXPR_BODY (bind));
|
||
|
||
x = built_in_decls[BUILT_IN_OMP_GET_THREAD_NUM];
|
||
x = build_function_call_expr (x, NULL);
|
||
x = build2 (EQ_EXPR, boolean_type_node, x, integer_zero_node);
|
||
x = build3 (COND_EXPR, void_type_node, x, NULL, build_and_jump (&lab));
|
||
gimplify_and_add (x, &BIND_EXPR_BODY (bind));
|
||
|
||
lower_omp (&OMP_MASTER_BODY (stmt), ctx);
|
||
maybe_catch_exception (&OMP_MASTER_BODY (stmt));
|
||
append_to_statement_list (OMP_MASTER_BODY (stmt), &BIND_EXPR_BODY (bind));
|
||
OMP_MASTER_BODY (stmt) = NULL;
|
||
|
||
x = build1 (LABEL_EXPR, void_type_node, lab);
|
||
gimplify_and_add (x, &BIND_EXPR_BODY (bind));
|
||
|
||
x = make_node (OMP_RETURN);
|
||
OMP_RETURN_NOWAIT (x) = 1;
|
||
append_to_statement_list (x, &BIND_EXPR_BODY (bind));
|
||
|
||
pop_gimplify_context (bind);
|
||
|
||
BIND_EXPR_VARS (bind) = chainon (BIND_EXPR_VARS (bind), ctx->block_vars);
|
||
BLOCK_VARS (block) = BIND_EXPR_VARS (bind);
|
||
}
|
||
|
||
|
||
/* Expand code for an OpenMP ordered directive. */
|
||
|
||
static void
|
||
lower_omp_ordered (tree *stmt_p, omp_context *ctx)
|
||
{
|
||
tree bind, block, stmt = *stmt_p, x;
|
||
|
||
push_gimplify_context ();
|
||
|
||
block = make_node (BLOCK);
|
||
*stmt_p = bind = build3 (BIND_EXPR, void_type_node, NULL, NULL, block);
|
||
TREE_SIDE_EFFECTS (bind) = 1;
|
||
|
||
append_to_statement_list (stmt, &BIND_EXPR_BODY (bind));
|
||
|
||
x = built_in_decls[BUILT_IN_GOMP_ORDERED_START];
|
||
x = build_function_call_expr (x, NULL);
|
||
gimplify_and_add (x, &BIND_EXPR_BODY (bind));
|
||
|
||
lower_omp (&OMP_ORDERED_BODY (stmt), ctx);
|
||
maybe_catch_exception (&OMP_ORDERED_BODY (stmt));
|
||
append_to_statement_list (OMP_ORDERED_BODY (stmt), &BIND_EXPR_BODY (bind));
|
||
OMP_ORDERED_BODY (stmt) = NULL;
|
||
|
||
x = built_in_decls[BUILT_IN_GOMP_ORDERED_END];
|
||
x = build_function_call_expr (x, NULL);
|
||
gimplify_and_add (x, &BIND_EXPR_BODY (bind));
|
||
|
||
x = make_node (OMP_RETURN);
|
||
OMP_RETURN_NOWAIT (x) = 1;
|
||
append_to_statement_list (x, &BIND_EXPR_BODY (bind));
|
||
|
||
pop_gimplify_context (bind);
|
||
|
||
BIND_EXPR_VARS (bind) = chainon (BIND_EXPR_VARS (bind), ctx->block_vars);
|
||
BLOCK_VARS (block) = BIND_EXPR_VARS (bind);
|
||
}
|
||
|
||
|
||
/* Gimplify an OMP_CRITICAL statement. This is a relatively simple
|
||
substitution of a couple of function calls. But in the NAMED case,
|
||
requires that languages coordinate a symbol name. It is therefore
|
||
best put here in common code. */
|
||
|
||
static GTY((param1_is (tree), param2_is (tree)))
|
||
splay_tree critical_name_mutexes;
|
||
|
||
static void
|
||
lower_omp_critical (tree *stmt_p, omp_context *ctx)
|
||
{
|
||
tree bind, block, stmt = *stmt_p;
|
||
tree t, lock, unlock, name;
|
||
|
||
name = OMP_CRITICAL_NAME (stmt);
|
||
if (name)
|
||
{
|
||
tree decl, args;
|
||
splay_tree_node n;
|
||
|
||
if (!critical_name_mutexes)
|
||
critical_name_mutexes
|
||
= splay_tree_new_ggc (splay_tree_compare_pointers);
|
||
|
||
n = splay_tree_lookup (critical_name_mutexes, (splay_tree_key) name);
|
||
if (n == NULL)
|
||
{
|
||
char *new_str;
|
||
|
||
decl = create_tmp_var_raw (ptr_type_node, NULL);
|
||
|
||
new_str = ACONCAT ((".gomp_critical_user_",
|
||
IDENTIFIER_POINTER (name), NULL));
|
||
DECL_NAME (decl) = get_identifier (new_str);
|
||
TREE_PUBLIC (decl) = 1;
|
||
TREE_STATIC (decl) = 1;
|
||
DECL_COMMON (decl) = 1;
|
||
DECL_ARTIFICIAL (decl) = 1;
|
||
DECL_IGNORED_P (decl) = 1;
|
||
cgraph_varpool_finalize_decl (decl);
|
||
|
||
splay_tree_insert (critical_name_mutexes, (splay_tree_key) name,
|
||
(splay_tree_value) decl);
|
||
}
|
||
else
|
||
decl = (tree) n->value;
|
||
|
||
args = tree_cons (NULL, build_fold_addr_expr (decl), NULL);
|
||
lock = built_in_decls[BUILT_IN_GOMP_CRITICAL_NAME_START];
|
||
lock = build_function_call_expr (lock, args);
|
||
|
||
args = tree_cons (NULL, build_fold_addr_expr (decl), NULL);
|
||
unlock = built_in_decls[BUILT_IN_GOMP_CRITICAL_NAME_END];
|
||
unlock = build_function_call_expr (unlock, args);
|
||
}
|
||
else
|
||
{
|
||
lock = built_in_decls[BUILT_IN_GOMP_CRITICAL_START];
|
||
lock = build_function_call_expr (lock, NULL);
|
||
|
||
unlock = built_in_decls[BUILT_IN_GOMP_CRITICAL_END];
|
||
unlock = build_function_call_expr (unlock, NULL);
|
||
}
|
||
|
||
push_gimplify_context ();
|
||
|
||
block = make_node (BLOCK);
|
||
*stmt_p = bind = build3 (BIND_EXPR, void_type_node, NULL, NULL, block);
|
||
TREE_SIDE_EFFECTS (bind) = 1;
|
||
|
||
append_to_statement_list (stmt, &BIND_EXPR_BODY (bind));
|
||
|
||
gimplify_and_add (lock, &BIND_EXPR_BODY (bind));
|
||
|
||
lower_omp (&OMP_CRITICAL_BODY (stmt), ctx);
|
||
maybe_catch_exception (&OMP_CRITICAL_BODY (stmt));
|
||
append_to_statement_list (OMP_CRITICAL_BODY (stmt), &BIND_EXPR_BODY (bind));
|
||
OMP_CRITICAL_BODY (stmt) = NULL;
|
||
|
||
gimplify_and_add (unlock, &BIND_EXPR_BODY (bind));
|
||
|
||
t = make_node (OMP_RETURN);
|
||
OMP_RETURN_NOWAIT (t) = 1;
|
||
append_to_statement_list (t, &BIND_EXPR_BODY (bind));
|
||
|
||
pop_gimplify_context (bind);
|
||
BIND_EXPR_VARS (bind) = chainon (BIND_EXPR_VARS (bind), ctx->block_vars);
|
||
BLOCK_VARS (block) = BIND_EXPR_VARS (bind);
|
||
}
|
||
|
||
|
||
/* A subroutine of lower_omp_for. Generate code to emit the predicate
|
||
for a lastprivate clause. Given a loop control predicate of (V
|
||
cond N2), we gate the clause on (!(V cond N2)). The lowered form
|
||
is appended to *DLIST, iterator initialization is appended to
|
||
*BODY_P. */
|
||
|
||
static void
|
||
lower_omp_for_lastprivate (struct omp_for_data *fd, tree *body_p,
|
||
tree *dlist, struct omp_context *ctx)
|
||
{
|
||
tree clauses, cond, stmts, vinit, t;
|
||
enum tree_code cond_code;
|
||
|
||
cond_code = fd->cond_code;
|
||
cond_code = cond_code == LT_EXPR ? GE_EXPR : LE_EXPR;
|
||
|
||
/* When possible, use a strict equality expression. This can let VRP
|
||
type optimizations deduce the value and remove a copy. */
|
||
if (host_integerp (fd->step, 0))
|
||
{
|
||
HOST_WIDE_INT step = TREE_INT_CST_LOW (fd->step);
|
||
if (step == 1 || step == -1)
|
||
cond_code = EQ_EXPR;
|
||
}
|
||
|
||
cond = build2 (cond_code, boolean_type_node, fd->v, fd->n2);
|
||
|
||
clauses = OMP_FOR_CLAUSES (fd->for_stmt);
|
||
stmts = NULL;
|
||
lower_lastprivate_clauses (clauses, cond, &stmts, ctx);
|
||
if (stmts != NULL)
|
||
{
|
||
append_to_statement_list (stmts, dlist);
|
||
|
||
/* Optimize: v = 0; is usually cheaper than v = some_other_constant. */
|
||
vinit = fd->n1;
|
||
if (cond_code == EQ_EXPR
|
||
&& host_integerp (fd->n2, 0)
|
||
&& ! integer_zerop (fd->n2))
|
||
vinit = build_int_cst (TREE_TYPE (fd->v), 0);
|
||
|
||
/* Initialize the iterator variable, so that threads that don't execute
|
||
any iterations don't execute the lastprivate clauses by accident. */
|
||
t = build2 (MODIFY_EXPR, void_type_node, fd->v, vinit);
|
||
gimplify_and_add (t, body_p);
|
||
}
|
||
}
|
||
|
||
|
||
/* Lower code for an OpenMP loop directive. */
|
||
|
||
static void
|
||
lower_omp_for (tree *stmt_p, omp_context *ctx)
|
||
{
|
||
tree t, stmt, ilist, dlist, new_stmt, *body_p, *rhs_p;
|
||
struct omp_for_data fd;
|
||
|
||
stmt = *stmt_p;
|
||
|
||
push_gimplify_context ();
|
||
|
||
lower_omp (&OMP_FOR_PRE_BODY (stmt), ctx);
|
||
lower_omp (&OMP_FOR_BODY (stmt), ctx);
|
||
|
||
/* Move declaration of temporaries in the loop body before we make
|
||
it go away. */
|
||
if (TREE_CODE (OMP_FOR_BODY (stmt)) == BIND_EXPR)
|
||
record_vars_into (BIND_EXPR_VARS (OMP_FOR_BODY (stmt)), ctx->cb.dst_fn);
|
||
|
||
new_stmt = build3 (BIND_EXPR, void_type_node, NULL, NULL, NULL);
|
||
TREE_SIDE_EFFECTS (new_stmt) = 1;
|
||
body_p = &BIND_EXPR_BODY (new_stmt);
|
||
|
||
/* The pre-body and input clauses go before the lowered OMP_FOR. */
|
||
ilist = NULL;
|
||
dlist = NULL;
|
||
append_to_statement_list (OMP_FOR_PRE_BODY (stmt), body_p);
|
||
lower_rec_input_clauses (OMP_FOR_CLAUSES (stmt), body_p, &dlist, ctx);
|
||
|
||
/* Lower the header expressions. At this point, we can assume that
|
||
the header is of the form:
|
||
|
||
#pragma omp for (V = VAL1; V {<|>|<=|>=} VAL2; V = V [+-] VAL3)
|
||
|
||
We just need to make sure that VAL1, VAL2 and VAL3 are lowered
|
||
using the .omp_data_s mapping, if needed. */
|
||
rhs_p = &TREE_OPERAND (OMP_FOR_INIT (stmt), 1);
|
||
if (!is_gimple_min_invariant (*rhs_p))
|
||
*rhs_p = get_formal_tmp_var (*rhs_p, body_p);
|
||
|
||
rhs_p = &TREE_OPERAND (OMP_FOR_COND (stmt), 1);
|
||
if (!is_gimple_min_invariant (*rhs_p))
|
||
*rhs_p = get_formal_tmp_var (*rhs_p, body_p);
|
||
|
||
rhs_p = &TREE_OPERAND (TREE_OPERAND (OMP_FOR_INCR (stmt), 1), 1);
|
||
if (!is_gimple_min_invariant (*rhs_p))
|
||
*rhs_p = get_formal_tmp_var (*rhs_p, body_p);
|
||
|
||
/* Once lowered, extract the bounds and clauses. */
|
||
extract_omp_for_data (stmt, &fd);
|
||
|
||
lower_omp_for_lastprivate (&fd, body_p, &dlist, ctx);
|
||
|
||
append_to_statement_list (stmt, body_p);
|
||
|
||
append_to_statement_list (OMP_FOR_BODY (stmt), body_p);
|
||
|
||
t = make_node (OMP_CONTINUE);
|
||
append_to_statement_list (t, body_p);
|
||
|
||
/* After the loop, add exit clauses. */
|
||
lower_reduction_clauses (OMP_FOR_CLAUSES (stmt), body_p, ctx);
|
||
append_to_statement_list (dlist, body_p);
|
||
|
||
maybe_catch_exception (body_p);
|
||
|
||
/* Region exit marker goes at the end of the loop body. */
|
||
t = make_node (OMP_RETURN);
|
||
OMP_RETURN_NOWAIT (t) = fd.have_nowait;
|
||
append_to_statement_list (t, body_p);
|
||
|
||
pop_gimplify_context (NULL_TREE);
|
||
record_vars_into (ctx->block_vars, ctx->cb.dst_fn);
|
||
|
||
OMP_FOR_BODY (stmt) = NULL_TREE;
|
||
OMP_FOR_PRE_BODY (stmt) = NULL_TREE;
|
||
*stmt_p = new_stmt;
|
||
}
|
||
|
||
/* Callback for walk_stmts. Check if *TP only contains OMP_FOR
|
||
or OMP_PARALLEL. */
|
||
|
||
static tree
|
||
check_combined_parallel (tree *tp, int *walk_subtrees, void *data)
|
||
{
|
||
struct walk_stmt_info *wi = data;
|
||
int *info = wi->info;
|
||
|
||
*walk_subtrees = 0;
|
||
switch (TREE_CODE (*tp))
|
||
{
|
||
case OMP_FOR:
|
||
case OMP_SECTIONS:
|
||
*info = *info == 0 ? 1 : -1;
|
||
break;
|
||
default:
|
||
*info = -1;
|
||
break;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Lower the OpenMP parallel directive in *STMT_P. CTX holds context
|
||
information for the directive. */
|
||
|
||
static void
|
||
lower_omp_parallel (tree *stmt_p, omp_context *ctx)
|
||
{
|
||
tree clauses, par_bind, par_body, new_body, bind;
|
||
tree olist, ilist, par_olist, par_ilist;
|
||
tree stmt, child_fn, t;
|
||
|
||
stmt = *stmt_p;
|
||
|
||
clauses = OMP_PARALLEL_CLAUSES (stmt);
|
||
par_bind = OMP_PARALLEL_BODY (stmt);
|
||
par_body = BIND_EXPR_BODY (par_bind);
|
||
child_fn = ctx->cb.dst_fn;
|
||
if (!OMP_PARALLEL_COMBINED (stmt))
|
||
{
|
||
struct walk_stmt_info wi;
|
||
int ws_num = 0;
|
||
|
||
memset (&wi, 0, sizeof (wi));
|
||
wi.callback = check_combined_parallel;
|
||
wi.info = &ws_num;
|
||
wi.val_only = true;
|
||
walk_stmts (&wi, &par_bind);
|
||
if (ws_num == 1)
|
||
OMP_PARALLEL_COMBINED (stmt) = 1;
|
||
}
|
||
|
||
push_gimplify_context ();
|
||
|
||
par_olist = NULL_TREE;
|
||
par_ilist = NULL_TREE;
|
||
lower_rec_input_clauses (clauses, &par_ilist, &par_olist, ctx);
|
||
lower_omp (&par_body, ctx);
|
||
lower_reduction_clauses (clauses, &par_olist, ctx);
|
||
|
||
/* Declare all the variables created by mapping and the variables
|
||
declared in the scope of the parallel body. */
|
||
record_vars_into (ctx->block_vars, child_fn);
|
||
record_vars_into (BIND_EXPR_VARS (par_bind), child_fn);
|
||
|
||
if (ctx->record_type)
|
||
{
|
||
ctx->sender_decl = create_tmp_var (ctx->record_type, ".omp_data_o");
|
||
OMP_PARALLEL_DATA_ARG (stmt) = ctx->sender_decl;
|
||
}
|
||
|
||
olist = NULL_TREE;
|
||
ilist = NULL_TREE;
|
||
lower_send_clauses (clauses, &ilist, &olist, ctx);
|
||
lower_send_shared_vars (&ilist, &olist, ctx);
|
||
|
||
/* Once all the expansions are done, sequence all the different
|
||
fragments inside OMP_PARALLEL_BODY. */
|
||
bind = build3 (BIND_EXPR, void_type_node, NULL, NULL, NULL);
|
||
append_to_statement_list (ilist, &BIND_EXPR_BODY (bind));
|
||
|
||
new_body = alloc_stmt_list ();
|
||
|
||
if (ctx->record_type)
|
||
{
|
||
t = build_fold_addr_expr (ctx->sender_decl);
|
||
/* fixup_child_record_type might have changed receiver_decl's type. */
|
||
t = fold_convert (TREE_TYPE (ctx->receiver_decl), t);
|
||
t = build2 (MODIFY_EXPR, void_type_node, ctx->receiver_decl, t);
|
||
append_to_statement_list (t, &new_body);
|
||
}
|
||
|
||
append_to_statement_list (par_ilist, &new_body);
|
||
append_to_statement_list (par_body, &new_body);
|
||
append_to_statement_list (par_olist, &new_body);
|
||
maybe_catch_exception (&new_body);
|
||
t = make_node (OMP_RETURN);
|
||
append_to_statement_list (t, &new_body);
|
||
OMP_PARALLEL_BODY (stmt) = new_body;
|
||
|
||
append_to_statement_list (stmt, &BIND_EXPR_BODY (bind));
|
||
append_to_statement_list (olist, &BIND_EXPR_BODY (bind));
|
||
|
||
*stmt_p = bind;
|
||
|
||
pop_gimplify_context (NULL_TREE);
|
||
}
|
||
|
||
|
||
/* Pass *TP back through the gimplifier within the context determined by WI.
|
||
This handles replacement of DECL_VALUE_EXPR, as well as adjusting the
|
||
flags on ADDR_EXPR. */
|
||
|
||
static void
|
||
lower_regimplify (tree *tp, struct walk_stmt_info *wi)
|
||
{
|
||
enum gimplify_status gs;
|
||
tree pre = NULL;
|
||
|
||
if (wi->is_lhs)
|
||
gs = gimplify_expr (tp, &pre, NULL, is_gimple_lvalue, fb_lvalue);
|
||
else if (wi->val_only)
|
||
gs = gimplify_expr (tp, &pre, NULL, is_gimple_val, fb_rvalue);
|
||
else
|
||
gs = gimplify_expr (tp, &pre, NULL, is_gimple_formal_tmp_var, fb_rvalue);
|
||
gcc_assert (gs == GS_ALL_DONE);
|
||
|
||
if (pre)
|
||
tsi_link_before (&wi->tsi, pre, TSI_SAME_STMT);
|
||
}
|
||
|
||
/* Copy EXP into a temporary. Insert the initialization statement before TSI. */
|
||
|
||
static tree
|
||
init_tmp_var (tree exp, tree_stmt_iterator *tsi)
|
||
{
|
||
tree t, stmt;
|
||
|
||
t = create_tmp_var (TREE_TYPE (exp), NULL);
|
||
if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE)
|
||
DECL_COMPLEX_GIMPLE_REG_P (t) = 1;
|
||
stmt = build2 (MODIFY_EXPR, TREE_TYPE (t), t, exp);
|
||
SET_EXPR_LOCUS (stmt, EXPR_LOCUS (tsi_stmt (*tsi)));
|
||
tsi_link_before (tsi, stmt, TSI_SAME_STMT);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Similarly, but copy from the temporary and insert the statement
|
||
after the iterator. */
|
||
|
||
static tree
|
||
save_tmp_var (tree exp, tree_stmt_iterator *tsi)
|
||
{
|
||
tree t, stmt;
|
||
|
||
t = create_tmp_var (TREE_TYPE (exp), NULL);
|
||
if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE)
|
||
DECL_COMPLEX_GIMPLE_REG_P (t) = 1;
|
||
stmt = build2 (MODIFY_EXPR, TREE_TYPE (t), exp, t);
|
||
SET_EXPR_LOCUS (stmt, EXPR_LOCUS (tsi_stmt (*tsi)));
|
||
tsi_link_after (tsi, stmt, TSI_SAME_STMT);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Callback for walk_stmts. Lower the OpenMP directive pointed by TP. */
|
||
|
||
static tree
|
||
lower_omp_1 (tree *tp, int *walk_subtrees, void *data)
|
||
{
|
||
struct walk_stmt_info *wi = data;
|
||
omp_context *ctx = wi->info;
|
||
tree t = *tp;
|
||
|
||
/* If we have issued syntax errors, avoid doing any heavy lifting.
|
||
Just replace the OpenMP directives with a NOP to avoid
|
||
confusing RTL expansion. */
|
||
if (errorcount && OMP_DIRECTIVE_P (*tp))
|
||
{
|
||
*tp = build_empty_stmt ();
|
||
return NULL_TREE;
|
||
}
|
||
|
||
*walk_subtrees = 0;
|
||
switch (TREE_CODE (*tp))
|
||
{
|
||
case OMP_PARALLEL:
|
||
ctx = maybe_lookup_ctx (t);
|
||
lower_omp_parallel (tp, ctx);
|
||
break;
|
||
|
||
case OMP_FOR:
|
||
ctx = maybe_lookup_ctx (t);
|
||
gcc_assert (ctx);
|
||
lower_omp_for (tp, ctx);
|
||
break;
|
||
|
||
case OMP_SECTIONS:
|
||
ctx = maybe_lookup_ctx (t);
|
||
gcc_assert (ctx);
|
||
lower_omp_sections (tp, ctx);
|
||
break;
|
||
|
||
case OMP_SINGLE:
|
||
ctx = maybe_lookup_ctx (t);
|
||
gcc_assert (ctx);
|
||
lower_omp_single (tp, ctx);
|
||
break;
|
||
|
||
case OMP_MASTER:
|
||
ctx = maybe_lookup_ctx (t);
|
||
gcc_assert (ctx);
|
||
lower_omp_master (tp, ctx);
|
||
break;
|
||
|
||
case OMP_ORDERED:
|
||
ctx = maybe_lookup_ctx (t);
|
||
gcc_assert (ctx);
|
||
lower_omp_ordered (tp, ctx);
|
||
break;
|
||
|
||
case OMP_CRITICAL:
|
||
ctx = maybe_lookup_ctx (t);
|
||
gcc_assert (ctx);
|
||
lower_omp_critical (tp, ctx);
|
||
break;
|
||
|
||
case VAR_DECL:
|
||
if (ctx && DECL_HAS_VALUE_EXPR_P (t))
|
||
{
|
||
lower_regimplify (&t, wi);
|
||
if (wi->val_only)
|
||
{
|
||
if (wi->is_lhs)
|
||
t = save_tmp_var (t, &wi->tsi);
|
||
else
|
||
t = init_tmp_var (t, &wi->tsi);
|
||
}
|
||
*tp = t;
|
||
}
|
||
break;
|
||
|
||
case ADDR_EXPR:
|
||
if (ctx)
|
||
lower_regimplify (tp, wi);
|
||
break;
|
||
|
||
case ARRAY_REF:
|
||
case ARRAY_RANGE_REF:
|
||
case REALPART_EXPR:
|
||
case IMAGPART_EXPR:
|
||
case COMPONENT_REF:
|
||
case VIEW_CONVERT_EXPR:
|
||
if (ctx)
|
||
lower_regimplify (tp, wi);
|
||
break;
|
||
|
||
case INDIRECT_REF:
|
||
if (ctx)
|
||
{
|
||
wi->is_lhs = false;
|
||
wi->val_only = true;
|
||
lower_regimplify (&TREE_OPERAND (t, 0), wi);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
if (!TYPE_P (t) && !DECL_P (t))
|
||
*walk_subtrees = 1;
|
||
break;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
static void
|
||
lower_omp (tree *stmt_p, omp_context *ctx)
|
||
{
|
||
struct walk_stmt_info wi;
|
||
|
||
memset (&wi, 0, sizeof (wi));
|
||
wi.callback = lower_omp_1;
|
||
wi.info = ctx;
|
||
wi.val_only = true;
|
||
wi.want_locations = true;
|
||
|
||
walk_stmts (&wi, stmt_p);
|
||
}
|
||
|
||
/* Main entry point. */
|
||
|
||
static unsigned int
|
||
execute_lower_omp (void)
|
||
{
|
||
all_contexts = splay_tree_new (splay_tree_compare_pointers, 0,
|
||
delete_omp_context);
|
||
|
||
scan_omp (&DECL_SAVED_TREE (current_function_decl), NULL);
|
||
gcc_assert (parallel_nesting_level == 0);
|
||
|
||
if (all_contexts->root)
|
||
lower_omp (&DECL_SAVED_TREE (current_function_decl), NULL);
|
||
|
||
if (all_contexts)
|
||
{
|
||
splay_tree_delete (all_contexts);
|
||
all_contexts = NULL;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
static bool
|
||
gate_lower_omp (void)
|
||
{
|
||
return flag_openmp != 0;
|
||
}
|
||
|
||
struct tree_opt_pass pass_lower_omp =
|
||
{
|
||
"omplower", /* name */
|
||
gate_lower_omp, /* gate */
|
||
execute_lower_omp, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
0, /* tv_id */
|
||
PROP_gimple_any, /* properties_required */
|
||
PROP_gimple_lomp, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_dump_func, /* todo_flags_finish */
|
||
0 /* letter */
|
||
};
|
||
|
||
/* The following is a utility to diagnose OpenMP structured block violations.
|
||
It is not part of the "omplower" pass, as that's invoked too late. It
|
||
should be invoked by the respective front ends after gimplification. */
|
||
|
||
static splay_tree all_labels;
|
||
|
||
/* Check for mismatched contexts and generate an error if needed. Return
|
||
true if an error is detected. */
|
||
|
||
static bool
|
||
diagnose_sb_0 (tree *stmt_p, tree branch_ctx, tree label_ctx)
|
||
{
|
||
bool exit_p = true;
|
||
|
||
if ((label_ctx ? TREE_VALUE (label_ctx) : NULL) == branch_ctx)
|
||
return false;
|
||
|
||
/* Try to avoid confusing the user by producing and error message
|
||
with correct "exit" or "enter" verbage. We prefer "exit"
|
||
unless we can show that LABEL_CTX is nested within BRANCH_CTX. */
|
||
if (branch_ctx == NULL)
|
||
exit_p = false;
|
||
else
|
||
{
|
||
while (label_ctx)
|
||
{
|
||
if (TREE_VALUE (label_ctx) == branch_ctx)
|
||
{
|
||
exit_p = false;
|
||
break;
|
||
}
|
||
label_ctx = TREE_CHAIN (label_ctx);
|
||
}
|
||
}
|
||
|
||
if (exit_p)
|
||
error ("invalid exit from OpenMP structured block");
|
||
else
|
||
error ("invalid entry to OpenMP structured block");
|
||
|
||
*stmt_p = build_empty_stmt ();
|
||
return true;
|
||
}
|
||
|
||
/* Pass 1: Create a minimal tree of OpenMP structured blocks, and record
|
||
where in the tree each label is found. */
|
||
|
||
static tree
|
||
diagnose_sb_1 (tree *tp, int *walk_subtrees, void *data)
|
||
{
|
||
struct walk_stmt_info *wi = data;
|
||
tree context = (tree) wi->info;
|
||
tree inner_context;
|
||
tree t = *tp;
|
||
|
||
*walk_subtrees = 0;
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case OMP_PARALLEL:
|
||
case OMP_SECTIONS:
|
||
case OMP_SINGLE:
|
||
walk_tree (&OMP_CLAUSES (t), diagnose_sb_1, wi, NULL);
|
||
/* FALLTHRU */
|
||
case OMP_SECTION:
|
||
case OMP_MASTER:
|
||
case OMP_ORDERED:
|
||
case OMP_CRITICAL:
|
||
/* The minimal context here is just a tree of statements. */
|
||
inner_context = tree_cons (NULL, t, context);
|
||
wi->info = inner_context;
|
||
walk_stmts (wi, &OMP_BODY (t));
|
||
wi->info = context;
|
||
break;
|
||
|
||
case OMP_FOR:
|
||
walk_tree (&OMP_FOR_CLAUSES (t), diagnose_sb_1, wi, NULL);
|
||
inner_context = tree_cons (NULL, t, context);
|
||
wi->info = inner_context;
|
||
walk_tree (&OMP_FOR_INIT (t), diagnose_sb_1, wi, NULL);
|
||
walk_tree (&OMP_FOR_COND (t), diagnose_sb_1, wi, NULL);
|
||
walk_tree (&OMP_FOR_INCR (t), diagnose_sb_1, wi, NULL);
|
||
walk_stmts (wi, &OMP_FOR_PRE_BODY (t));
|
||
walk_stmts (wi, &OMP_FOR_BODY (t));
|
||
wi->info = context;
|
||
break;
|
||
|
||
case LABEL_EXPR:
|
||
splay_tree_insert (all_labels, (splay_tree_key) LABEL_EXPR_LABEL (t),
|
||
(splay_tree_value) context);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Pass 2: Check each branch and see if its context differs from that of
|
||
the destination label's context. */
|
||
|
||
static tree
|
||
diagnose_sb_2 (tree *tp, int *walk_subtrees, void *data)
|
||
{
|
||
struct walk_stmt_info *wi = data;
|
||
tree context = (tree) wi->info;
|
||
splay_tree_node n;
|
||
tree t = *tp;
|
||
|
||
*walk_subtrees = 0;
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case OMP_PARALLEL:
|
||
case OMP_SECTIONS:
|
||
case OMP_SINGLE:
|
||
walk_tree (&OMP_CLAUSES (t), diagnose_sb_2, wi, NULL);
|
||
/* FALLTHRU */
|
||
case OMP_SECTION:
|
||
case OMP_MASTER:
|
||
case OMP_ORDERED:
|
||
case OMP_CRITICAL:
|
||
wi->info = t;
|
||
walk_stmts (wi, &OMP_BODY (t));
|
||
wi->info = context;
|
||
break;
|
||
|
||
case OMP_FOR:
|
||
walk_tree (&OMP_FOR_CLAUSES (t), diagnose_sb_2, wi, NULL);
|
||
wi->info = t;
|
||
walk_tree (&OMP_FOR_INIT (t), diagnose_sb_2, wi, NULL);
|
||
walk_tree (&OMP_FOR_COND (t), diagnose_sb_2, wi, NULL);
|
||
walk_tree (&OMP_FOR_INCR (t), diagnose_sb_2, wi, NULL);
|
||
walk_stmts (wi, &OMP_FOR_PRE_BODY (t));
|
||
walk_stmts (wi, &OMP_FOR_BODY (t));
|
||
wi->info = context;
|
||
break;
|
||
|
||
case GOTO_EXPR:
|
||
{
|
||
tree lab = GOTO_DESTINATION (t);
|
||
if (TREE_CODE (lab) != LABEL_DECL)
|
||
break;
|
||
|
||
n = splay_tree_lookup (all_labels, (splay_tree_key) lab);
|
||
diagnose_sb_0 (tp, context, n ? (tree) n->value : NULL_TREE);
|
||
}
|
||
break;
|
||
|
||
case SWITCH_EXPR:
|
||
{
|
||
tree vec = SWITCH_LABELS (t);
|
||
int i, len = TREE_VEC_LENGTH (vec);
|
||
for (i = 0; i < len; ++i)
|
||
{
|
||
tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
|
||
n = splay_tree_lookup (all_labels, (splay_tree_key) lab);
|
||
if (diagnose_sb_0 (tp, context, (tree) n->value))
|
||
break;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case RETURN_EXPR:
|
||
diagnose_sb_0 (tp, context, NULL_TREE);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
void
|
||
diagnose_omp_structured_block_errors (tree fndecl)
|
||
{
|
||
tree save_current = current_function_decl;
|
||
struct walk_stmt_info wi;
|
||
|
||
current_function_decl = fndecl;
|
||
|
||
all_labels = splay_tree_new (splay_tree_compare_pointers, 0, 0);
|
||
|
||
memset (&wi, 0, sizeof (wi));
|
||
wi.callback = diagnose_sb_1;
|
||
walk_stmts (&wi, &DECL_SAVED_TREE (fndecl));
|
||
|
||
memset (&wi, 0, sizeof (wi));
|
||
wi.callback = diagnose_sb_2;
|
||
wi.want_locations = true;
|
||
wi.want_return_expr = true;
|
||
walk_stmts (&wi, &DECL_SAVED_TREE (fndecl));
|
||
|
||
splay_tree_delete (all_labels);
|
||
all_labels = NULL;
|
||
|
||
current_function_decl = save_current;
|
||
}
|
||
|
||
#include "gt-omp-low.h"
|