mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-14 10:09:48 +00:00
ebc94b66fe
Reviewed by: pfg, gnn MFC after: 1 week Differential Revision: https://reviews.freebsd.org/D19848
1559 lines
40 KiB
C
1559 lines
40 KiB
C
/*-
|
|
* modified for Lites 1.1
|
|
*
|
|
* Aug 1995, Godmar Back (gback@cs.utah.edu)
|
|
* University of Utah, Department of Computer Science
|
|
*/
|
|
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 1982, 1986, 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)ffs_alloc.c 8.8 (Berkeley) 2/21/94
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/sdt.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/endian.h>
|
|
|
|
#include <fs/ext2fs/fs.h>
|
|
#include <fs/ext2fs/inode.h>
|
|
#include <fs/ext2fs/ext2_mount.h>
|
|
#include <fs/ext2fs/ext2fs.h>
|
|
#include <fs/ext2fs/ext2_extern.h>
|
|
|
|
SDT_PROVIDER_DEFINE(ext2fs);
|
|
/*
|
|
* ext2fs trace probe:
|
|
* arg0: verbosity. Higher numbers give more verbose messages
|
|
* arg1: Textual message
|
|
*/
|
|
SDT_PROBE_DEFINE2(ext2fs, , alloc, trace, "int", "char*");
|
|
SDT_PROBE_DEFINE3(ext2fs, , alloc, ext2_reallocblks_realloc,
|
|
"ino_t", "e2fs_lbn_t", "e2fs_lbn_t");
|
|
SDT_PROBE_DEFINE1(ext2fs, , alloc, ext2_reallocblks_bap, "uint32_t");
|
|
SDT_PROBE_DEFINE1(ext2fs, , alloc, ext2_reallocblks_blkno, "e2fs_daddr_t");
|
|
SDT_PROBE_DEFINE2(ext2fs, , alloc, ext2_b_bitmap_validate_error, "char*", "int");
|
|
SDT_PROBE_DEFINE3(ext2fs, , alloc, ext2_nodealloccg_bmap_corrupted,
|
|
"int", "daddr_t", "char*");
|
|
SDT_PROBE_DEFINE2(ext2fs, , alloc, ext2_blkfree_bad_block, "ino_t", "e4fs_daddr_t");
|
|
SDT_PROBE_DEFINE2(ext2fs, , alloc, ext2_vfree_doublefree, "char*", "ino_t");
|
|
|
|
static daddr_t ext2_alloccg(struct inode *, int, daddr_t, int);
|
|
static daddr_t ext2_clusteralloc(struct inode *, int, daddr_t, int);
|
|
static u_long ext2_dirpref(struct inode *);
|
|
static e4fs_daddr_t ext2_hashalloc(struct inode *, int, long, int,
|
|
daddr_t (*)(struct inode *, int, daddr_t,
|
|
int));
|
|
static daddr_t ext2_nodealloccg(struct inode *, int, daddr_t, int);
|
|
static daddr_t ext2_mapsearch(struct m_ext2fs *, char *, daddr_t);
|
|
|
|
/*
|
|
* Allocate a block in the filesystem.
|
|
*
|
|
* A preference may be optionally specified. If a preference is given
|
|
* the following hierarchy is used to allocate a block:
|
|
* 1) allocate the requested block.
|
|
* 2) allocate a rotationally optimal block in the same cylinder.
|
|
* 3) allocate a block in the same cylinder group.
|
|
* 4) quadradically rehash into other cylinder groups, until an
|
|
* available block is located.
|
|
* If no block preference is given the following hierarchy is used
|
|
* to allocate a block:
|
|
* 1) allocate a block in the cylinder group that contains the
|
|
* inode for the file.
|
|
* 2) quadradically rehash into other cylinder groups, until an
|
|
* available block is located.
|
|
*/
|
|
int
|
|
ext2_alloc(struct inode *ip, daddr_t lbn, e4fs_daddr_t bpref, int size,
|
|
struct ucred *cred, e4fs_daddr_t *bnp)
|
|
{
|
|
struct m_ext2fs *fs;
|
|
struct ext2mount *ump;
|
|
e4fs_daddr_t bno;
|
|
int cg;
|
|
|
|
*bnp = 0;
|
|
fs = ip->i_e2fs;
|
|
ump = ip->i_ump;
|
|
mtx_assert(EXT2_MTX(ump), MA_OWNED);
|
|
#ifdef INVARIANTS
|
|
if ((u_int)size > fs->e2fs_bsize || blkoff(fs, size) != 0) {
|
|
vn_printf(ip->i_devvp, "bsize = %lu, size = %d, fs = %s\n",
|
|
(long unsigned int)fs->e2fs_bsize, size, fs->e2fs_fsmnt);
|
|
panic("ext2_alloc: bad size");
|
|
}
|
|
if (cred == NOCRED)
|
|
panic("ext2_alloc: missing credential");
|
|
#endif /* INVARIANTS */
|
|
if (size == fs->e2fs_bsize && fs->e2fs_fbcount == 0)
|
|
goto nospace;
|
|
if (cred->cr_uid != 0 &&
|
|
fs->e2fs_fbcount < fs->e2fs_rbcount)
|
|
goto nospace;
|
|
if (bpref >= fs->e2fs_bcount)
|
|
bpref = 0;
|
|
if (bpref == 0)
|
|
cg = ino_to_cg(fs, ip->i_number);
|
|
else
|
|
cg = dtog(fs, bpref);
|
|
bno = (daddr_t)ext2_hashalloc(ip, cg, bpref, fs->e2fs_bsize,
|
|
ext2_alloccg);
|
|
if (bno > 0) {
|
|
/* set next_alloc fields as done in block_getblk */
|
|
ip->i_next_alloc_block = lbn;
|
|
ip->i_next_alloc_goal = bno;
|
|
|
|
ip->i_blocks += btodb(fs->e2fs_bsize);
|
|
ip->i_flag |= IN_CHANGE | IN_UPDATE;
|
|
*bnp = bno;
|
|
return (0);
|
|
}
|
|
nospace:
|
|
EXT2_UNLOCK(ump);
|
|
SDT_PROBE2(ext2fs, , alloc, trace, 1, "cannot allocate data block");
|
|
return (ENOSPC);
|
|
}
|
|
|
|
/*
|
|
* Allocate EA's block for inode.
|
|
*/
|
|
e4fs_daddr_t
|
|
ext2_alloc_meta(struct inode *ip)
|
|
{
|
|
struct m_ext2fs *fs;
|
|
daddr_t blk;
|
|
|
|
fs = ip->i_e2fs;
|
|
|
|
EXT2_LOCK(ip->i_ump);
|
|
blk = ext2_hashalloc(ip, ino_to_cg(fs, ip->i_number), 0, fs->e2fs_bsize,
|
|
ext2_alloccg);
|
|
if (0 == blk) {
|
|
EXT2_UNLOCK(ip->i_ump);
|
|
SDT_PROBE2(ext2fs, , alloc, trace, 1, "cannot allocate meta block");
|
|
}
|
|
|
|
return (blk);
|
|
}
|
|
|
|
/*
|
|
* Reallocate a sequence of blocks into a contiguous sequence of blocks.
|
|
*
|
|
* The vnode and an array of buffer pointers for a range of sequential
|
|
* logical blocks to be made contiguous is given. The allocator attempts
|
|
* to find a range of sequential blocks starting as close as possible to
|
|
* an fs_rotdelay offset from the end of the allocation for the logical
|
|
* block immediately preceding the current range. If successful, the
|
|
* physical block numbers in the buffer pointers and in the inode are
|
|
* changed to reflect the new allocation. If unsuccessful, the allocation
|
|
* is left unchanged. The success in doing the reallocation is returned.
|
|
* Note that the error return is not reflected back to the user. Rather
|
|
* the previous block allocation will be used.
|
|
*/
|
|
|
|
static SYSCTL_NODE(_vfs, OID_AUTO, ext2fs, CTLFLAG_RW, 0, "EXT2FS filesystem");
|
|
|
|
static int doasyncfree = 1;
|
|
|
|
SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0,
|
|
"Use asychronous writes to update block pointers when freeing blocks");
|
|
|
|
static int doreallocblks = 0;
|
|
|
|
SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
|
|
|
|
int
|
|
ext2_reallocblks(struct vop_reallocblks_args *ap)
|
|
{
|
|
struct m_ext2fs *fs;
|
|
struct inode *ip;
|
|
struct vnode *vp;
|
|
struct buf *sbp, *ebp;
|
|
uint32_t *bap, *sbap, *ebap;
|
|
struct ext2mount *ump;
|
|
struct cluster_save *buflist;
|
|
struct indir start_ap[EXT2_NIADDR + 1], end_ap[EXT2_NIADDR + 1], *idp;
|
|
e2fs_lbn_t start_lbn, end_lbn;
|
|
int soff;
|
|
e2fs_daddr_t newblk, blkno;
|
|
int i, len, start_lvl, end_lvl, pref, ssize;
|
|
|
|
if (doreallocblks == 0)
|
|
return (ENOSPC);
|
|
|
|
vp = ap->a_vp;
|
|
ip = VTOI(vp);
|
|
fs = ip->i_e2fs;
|
|
ump = ip->i_ump;
|
|
|
|
if (fs->e2fs_contigsumsize <= 0 || ip->i_flag & IN_E4EXTENTS)
|
|
return (ENOSPC);
|
|
|
|
buflist = ap->a_buflist;
|
|
len = buflist->bs_nchildren;
|
|
start_lbn = buflist->bs_children[0]->b_lblkno;
|
|
end_lbn = start_lbn + len - 1;
|
|
#ifdef INVARIANTS
|
|
for (i = 1; i < len; i++)
|
|
if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
|
|
panic("ext2_reallocblks: non-cluster");
|
|
#endif
|
|
/*
|
|
* If the cluster crosses the boundary for the first indirect
|
|
* block, leave space for the indirect block. Indirect blocks
|
|
* are initially laid out in a position after the last direct
|
|
* block. Block reallocation would usually destroy locality by
|
|
* moving the indirect block out of the way to make room for
|
|
* data blocks if we didn't compensate here. We should also do
|
|
* this for other indirect block boundaries, but it is only
|
|
* important for the first one.
|
|
*/
|
|
if (start_lbn < EXT2_NDADDR && end_lbn >= EXT2_NDADDR)
|
|
return (ENOSPC);
|
|
/*
|
|
* If the latest allocation is in a new cylinder group, assume that
|
|
* the filesystem has decided to move and do not force it back to
|
|
* the previous cylinder group.
|
|
*/
|
|
if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
|
|
dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
|
|
return (ENOSPC);
|
|
if (ext2_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
|
|
ext2_getlbns(vp, end_lbn, end_ap, &end_lvl))
|
|
return (ENOSPC);
|
|
/*
|
|
* Get the starting offset and block map for the first block.
|
|
*/
|
|
if (start_lvl == 0) {
|
|
sbap = &ip->i_db[0];
|
|
soff = start_lbn;
|
|
} else {
|
|
idp = &start_ap[start_lvl - 1];
|
|
if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &sbp)) {
|
|
brelse(sbp);
|
|
return (ENOSPC);
|
|
}
|
|
sbap = (u_int *)sbp->b_data;
|
|
soff = idp->in_off;
|
|
}
|
|
/*
|
|
* If the block range spans two block maps, get the second map.
|
|
*/
|
|
ebap = NULL;
|
|
if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
|
|
ssize = len;
|
|
} else {
|
|
#ifdef INVARIANTS
|
|
if (start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
|
|
panic("ext2_reallocblks: start == end");
|
|
#endif
|
|
ssize = len - (idp->in_off + 1);
|
|
if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &ebp))
|
|
goto fail;
|
|
ebap = (u_int *)ebp->b_data;
|
|
}
|
|
/*
|
|
* Find the preferred location for the cluster.
|
|
*/
|
|
EXT2_LOCK(ump);
|
|
pref = ext2_blkpref(ip, start_lbn, soff, sbap, 0);
|
|
/*
|
|
* Search the block map looking for an allocation of the desired size.
|
|
*/
|
|
if ((newblk = (e2fs_daddr_t)ext2_hashalloc(ip, dtog(fs, pref), pref,
|
|
len, ext2_clusteralloc)) == 0) {
|
|
EXT2_UNLOCK(ump);
|
|
goto fail;
|
|
}
|
|
/*
|
|
* We have found a new contiguous block.
|
|
*
|
|
* First we have to replace the old block pointers with the new
|
|
* block pointers in the inode and indirect blocks associated
|
|
* with the file.
|
|
*/
|
|
SDT_PROBE3(ext2fs, , alloc, ext2_reallocblks_realloc,
|
|
ip->i_number, start_lbn, end_lbn);
|
|
blkno = newblk;
|
|
for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->e2fs_fpb) {
|
|
if (i == ssize) {
|
|
bap = ebap;
|
|
soff = -i;
|
|
}
|
|
#ifdef INVARIANTS
|
|
if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap))
|
|
panic("ext2_reallocblks: alloc mismatch");
|
|
#endif
|
|
SDT_PROBE1(ext2fs, , alloc, ext2_reallocblks_bap, *bap);
|
|
*bap++ = blkno;
|
|
}
|
|
/*
|
|
* Next we must write out the modified inode and indirect blocks.
|
|
* For strict correctness, the writes should be synchronous since
|
|
* the old block values may have been written to disk. In practise
|
|
* they are almost never written, but if we are concerned about
|
|
* strict correctness, the `doasyncfree' flag should be set to zero.
|
|
*
|
|
* The test on `doasyncfree' should be changed to test a flag
|
|
* that shows whether the associated buffers and inodes have
|
|
* been written. The flag should be set when the cluster is
|
|
* started and cleared whenever the buffer or inode is flushed.
|
|
* We can then check below to see if it is set, and do the
|
|
* synchronous write only when it has been cleared.
|
|
*/
|
|
if (sbap != &ip->i_db[0]) {
|
|
if (doasyncfree)
|
|
bdwrite(sbp);
|
|
else
|
|
bwrite(sbp);
|
|
} else {
|
|
ip->i_flag |= IN_CHANGE | IN_UPDATE;
|
|
if (!doasyncfree)
|
|
ext2_update(vp, 1);
|
|
}
|
|
if (ssize < len) {
|
|
if (doasyncfree)
|
|
bdwrite(ebp);
|
|
else
|
|
bwrite(ebp);
|
|
}
|
|
/*
|
|
* Last, free the old blocks and assign the new blocks to the buffers.
|
|
*/
|
|
for (blkno = newblk, i = 0; i < len; i++, blkno += fs->e2fs_fpb) {
|
|
ext2_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
|
|
fs->e2fs_bsize);
|
|
buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
|
|
SDT_PROBE1(ext2fs, , alloc, ext2_reallocblks_blkno, blkno);
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail:
|
|
if (ssize < len)
|
|
brelse(ebp);
|
|
if (sbap != &ip->i_db[0])
|
|
brelse(sbp);
|
|
return (ENOSPC);
|
|
}
|
|
|
|
/*
|
|
* Allocate an inode in the filesystem.
|
|
*
|
|
*/
|
|
int
|
|
ext2_valloc(struct vnode *pvp, int mode, struct ucred *cred, struct vnode **vpp)
|
|
{
|
|
struct timespec ts;
|
|
struct m_ext2fs *fs;
|
|
struct ext2mount *ump;
|
|
struct inode *pip;
|
|
struct inode *ip;
|
|
struct vnode *vp;
|
|
struct thread *td;
|
|
ino_t ino, ipref;
|
|
int error, cg;
|
|
|
|
*vpp = NULL;
|
|
pip = VTOI(pvp);
|
|
fs = pip->i_e2fs;
|
|
ump = pip->i_ump;
|
|
|
|
EXT2_LOCK(ump);
|
|
if (fs->e2fs->e2fs_ficount == 0)
|
|
goto noinodes;
|
|
/*
|
|
* If it is a directory then obtain a cylinder group based on
|
|
* ext2_dirpref else obtain it using ino_to_cg. The preferred inode is
|
|
* always the next inode.
|
|
*/
|
|
if ((mode & IFMT) == IFDIR) {
|
|
cg = ext2_dirpref(pip);
|
|
if (fs->e2fs_contigdirs[cg] < 255)
|
|
fs->e2fs_contigdirs[cg]++;
|
|
} else {
|
|
cg = ino_to_cg(fs, pip->i_number);
|
|
if (fs->e2fs_contigdirs[cg] > 0)
|
|
fs->e2fs_contigdirs[cg]--;
|
|
}
|
|
ipref = cg * fs->e2fs->e2fs_ipg + 1;
|
|
ino = (ino_t)ext2_hashalloc(pip, cg, (long)ipref, mode, ext2_nodealloccg);
|
|
if (ino == 0)
|
|
goto noinodes;
|
|
|
|
td = curthread;
|
|
error = vfs_hash_get(ump->um_mountp, ino, LK_EXCLUSIVE, td, vpp, NULL, NULL);
|
|
if (error || *vpp != NULL) {
|
|
return (error);
|
|
}
|
|
|
|
ip = malloc(sizeof(struct inode), M_EXT2NODE, M_WAITOK | M_ZERO);
|
|
if (ip == NULL) {
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/* Allocate a new vnode/inode. */
|
|
if ((error = getnewvnode("ext2fs", ump->um_mountp, &ext2_vnodeops, &vp)) != 0) {
|
|
free(ip, M_EXT2NODE);
|
|
return (error);
|
|
}
|
|
|
|
lockmgr(vp->v_vnlock, LK_EXCLUSIVE, NULL);
|
|
vp->v_data = ip;
|
|
ip->i_vnode = vp;
|
|
ip->i_e2fs = fs = ump->um_e2fs;
|
|
ip->i_ump = ump;
|
|
ip->i_number = ino;
|
|
ip->i_block_group = ino_to_cg(fs, ino);
|
|
ip->i_next_alloc_block = 0;
|
|
ip->i_next_alloc_goal = 0;
|
|
|
|
error = insmntque(vp, ump->um_mountp);
|
|
if (error) {
|
|
free(ip, M_EXT2NODE);
|
|
return (error);
|
|
}
|
|
|
|
error = vfs_hash_insert(vp, ino, LK_EXCLUSIVE, td, vpp, NULL, NULL);
|
|
if (error || *vpp != NULL) {
|
|
*vpp = NULL;
|
|
free(ip, M_EXT2NODE);
|
|
return (error);
|
|
}
|
|
|
|
if ((error = ext2_vinit(ump->um_mountp, &ext2_fifoops, &vp)) != 0) {
|
|
vput(vp);
|
|
*vpp = NULL;
|
|
free(ip, M_EXT2NODE);
|
|
return (error);
|
|
}
|
|
|
|
if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_EXTENTS)
|
|
&& (S_ISREG(mode) || S_ISDIR(mode)))
|
|
ext4_ext_tree_init(ip);
|
|
else
|
|
memset(ip->i_data, 0, sizeof(ip->i_data));
|
|
|
|
|
|
/*
|
|
* Set up a new generation number for this inode.
|
|
* Avoid zero values.
|
|
*/
|
|
do {
|
|
ip->i_gen = arc4random();
|
|
} while (ip->i_gen == 0);
|
|
|
|
vfs_timestamp(&ts);
|
|
ip->i_birthtime = ts.tv_sec;
|
|
ip->i_birthnsec = ts.tv_nsec;
|
|
|
|
*vpp = vp;
|
|
|
|
return (0);
|
|
|
|
noinodes:
|
|
EXT2_UNLOCK(ump);
|
|
SDT_PROBE2(ext2fs, , alloc, trace, 1, "out of inodes");
|
|
return (ENOSPC);
|
|
}
|
|
|
|
/*
|
|
* 64-bit compatible getters and setters for struct ext2_gd from ext2fs.h
|
|
*/
|
|
uint64_t
|
|
e2fs_gd_get_b_bitmap(struct ext2_gd *gd)
|
|
{
|
|
|
|
return (((uint64_t)(gd->ext4bgd_b_bitmap_hi) << 32) |
|
|
gd->ext2bgd_b_bitmap);
|
|
}
|
|
|
|
uint64_t
|
|
e2fs_gd_get_i_bitmap(struct ext2_gd *gd)
|
|
{
|
|
|
|
return (((uint64_t)(gd->ext4bgd_i_bitmap_hi) << 32) |
|
|
gd->ext2bgd_i_bitmap);
|
|
}
|
|
|
|
uint64_t
|
|
e2fs_gd_get_i_tables(struct ext2_gd *gd)
|
|
{
|
|
|
|
return (((uint64_t)(gd->ext4bgd_i_tables_hi) << 32) |
|
|
gd->ext2bgd_i_tables);
|
|
}
|
|
|
|
static uint32_t
|
|
e2fs_gd_get_nbfree(struct ext2_gd *gd)
|
|
{
|
|
|
|
return (((uint32_t)(gd->ext4bgd_nbfree_hi) << 16) |
|
|
gd->ext2bgd_nbfree);
|
|
}
|
|
|
|
static void
|
|
e2fs_gd_set_nbfree(struct ext2_gd *gd, uint32_t val)
|
|
{
|
|
|
|
gd->ext2bgd_nbfree = val & 0xffff;
|
|
gd->ext4bgd_nbfree_hi = val >> 16;
|
|
}
|
|
|
|
static uint32_t
|
|
e2fs_gd_get_nifree(struct ext2_gd *gd)
|
|
{
|
|
|
|
return (((uint32_t)(gd->ext4bgd_nifree_hi) << 16) |
|
|
gd->ext2bgd_nifree);
|
|
}
|
|
|
|
static void
|
|
e2fs_gd_set_nifree(struct ext2_gd *gd, uint32_t val)
|
|
{
|
|
|
|
gd->ext2bgd_nifree = val & 0xffff;
|
|
gd->ext4bgd_nifree_hi = val >> 16;
|
|
}
|
|
|
|
uint32_t
|
|
e2fs_gd_get_ndirs(struct ext2_gd *gd)
|
|
{
|
|
|
|
return (((uint32_t)(gd->ext4bgd_ndirs_hi) << 16) |
|
|
gd->ext2bgd_ndirs);
|
|
}
|
|
|
|
static void
|
|
e2fs_gd_set_ndirs(struct ext2_gd *gd, uint32_t val)
|
|
{
|
|
|
|
gd->ext2bgd_ndirs = val & 0xffff;
|
|
gd->ext4bgd_ndirs_hi = val >> 16;
|
|
}
|
|
|
|
static uint32_t
|
|
e2fs_gd_get_i_unused(struct ext2_gd *gd)
|
|
{
|
|
return (((uint32_t)(gd->ext4bgd_i_unused_hi) << 16) |
|
|
gd->ext4bgd_i_unused);
|
|
}
|
|
|
|
static void
|
|
e2fs_gd_set_i_unused(struct ext2_gd *gd, uint32_t val)
|
|
{
|
|
|
|
gd->ext4bgd_i_unused = val & 0xffff;
|
|
gd->ext4bgd_i_unused_hi = val >> 16;
|
|
}
|
|
|
|
/*
|
|
* Find a cylinder to place a directory.
|
|
*
|
|
* The policy implemented by this algorithm is to allocate a
|
|
* directory inode in the same cylinder group as its parent
|
|
* directory, but also to reserve space for its files inodes
|
|
* and data. Restrict the number of directories which may be
|
|
* allocated one after another in the same cylinder group
|
|
* without intervening allocation of files.
|
|
*
|
|
* If we allocate a first level directory then force allocation
|
|
* in another cylinder group.
|
|
*
|
|
*/
|
|
static u_long
|
|
ext2_dirpref(struct inode *pip)
|
|
{
|
|
struct m_ext2fs *fs;
|
|
int cg, prefcg, cgsize;
|
|
uint64_t avgbfree, minbfree;
|
|
u_int avgifree, avgndir, curdirsize;
|
|
u_int minifree, maxndir;
|
|
u_int mincg, minndir;
|
|
u_int dirsize, maxcontigdirs;
|
|
|
|
mtx_assert(EXT2_MTX(pip->i_ump), MA_OWNED);
|
|
fs = pip->i_e2fs;
|
|
|
|
avgifree = fs->e2fs->e2fs_ficount / fs->e2fs_gcount;
|
|
avgbfree = fs->e2fs_fbcount / fs->e2fs_gcount;
|
|
avgndir = fs->e2fs_total_dir / fs->e2fs_gcount;
|
|
|
|
/*
|
|
* Force allocation in another cg if creating a first level dir.
|
|
*/
|
|
ASSERT_VOP_LOCKED(ITOV(pip), "ext2fs_dirpref");
|
|
if (ITOV(pip)->v_vflag & VV_ROOT) {
|
|
prefcg = arc4random() % fs->e2fs_gcount;
|
|
mincg = prefcg;
|
|
minndir = fs->e2fs_ipg;
|
|
for (cg = prefcg; cg < fs->e2fs_gcount; cg++)
|
|
if (e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]) < minndir &&
|
|
e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) >= avgifree &&
|
|
e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) >= avgbfree) {
|
|
mincg = cg;
|
|
minndir = e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]);
|
|
}
|
|
for (cg = 0; cg < prefcg; cg++)
|
|
if (e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]) < minndir &&
|
|
e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) >= avgifree &&
|
|
e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) >= avgbfree) {
|
|
mincg = cg;
|
|
minndir = e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]);
|
|
}
|
|
return (mincg);
|
|
}
|
|
/*
|
|
* Count various limits which used for
|
|
* optimal allocation of a directory inode.
|
|
*/
|
|
maxndir = min(avgndir + fs->e2fs_ipg / 16, fs->e2fs_ipg);
|
|
minifree = avgifree - avgifree / 4;
|
|
if (minifree < 1)
|
|
minifree = 1;
|
|
minbfree = avgbfree - avgbfree / 4;
|
|
if (minbfree < 1)
|
|
minbfree = 1;
|
|
cgsize = fs->e2fs_fsize * fs->e2fs_fpg;
|
|
dirsize = AVGDIRSIZE;
|
|
curdirsize = avgndir ? (cgsize - avgbfree * fs->e2fs_bsize) / avgndir : 0;
|
|
if (dirsize < curdirsize)
|
|
dirsize = curdirsize;
|
|
maxcontigdirs = min((avgbfree * fs->e2fs_bsize) / dirsize, 255);
|
|
maxcontigdirs = min(maxcontigdirs, fs->e2fs_ipg / AFPDIR);
|
|
if (maxcontigdirs == 0)
|
|
maxcontigdirs = 1;
|
|
|
|
/*
|
|
* Limit number of dirs in one cg and reserve space for
|
|
* regular files, but only if we have no deficit in
|
|
* inodes or space.
|
|
*/
|
|
prefcg = ino_to_cg(fs, pip->i_number);
|
|
for (cg = prefcg; cg < fs->e2fs_gcount; cg++)
|
|
if (e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]) < maxndir &&
|
|
e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) >= minifree &&
|
|
e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) >= minbfree) {
|
|
if (fs->e2fs_contigdirs[cg] < maxcontigdirs)
|
|
return (cg);
|
|
}
|
|
for (cg = 0; cg < prefcg; cg++)
|
|
if (e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]) < maxndir &&
|
|
e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) >= minifree &&
|
|
e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) >= minbfree) {
|
|
if (fs->e2fs_contigdirs[cg] < maxcontigdirs)
|
|
return (cg);
|
|
}
|
|
/*
|
|
* This is a backstop when we have deficit in space.
|
|
*/
|
|
for (cg = prefcg; cg < fs->e2fs_gcount; cg++)
|
|
if (e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) >= avgifree)
|
|
return (cg);
|
|
for (cg = 0; cg < prefcg; cg++)
|
|
if (e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) >= avgifree)
|
|
break;
|
|
return (cg);
|
|
}
|
|
|
|
/*
|
|
* Select the desired position for the next block in a file.
|
|
*
|
|
* we try to mimic what Remy does in inode_getblk/block_getblk
|
|
*
|
|
* we note: blocknr == 0 means that we're about to allocate either
|
|
* a direct block or a pointer block at the first level of indirection
|
|
* (In other words, stuff that will go in i_db[] or i_ib[])
|
|
*
|
|
* blocknr != 0 means that we're allocating a block that is none
|
|
* of the above. Then, blocknr tells us the number of the block
|
|
* that will hold the pointer
|
|
*/
|
|
e4fs_daddr_t
|
|
ext2_blkpref(struct inode *ip, e2fs_lbn_t lbn, int indx, e2fs_daddr_t *bap,
|
|
e2fs_daddr_t blocknr)
|
|
{
|
|
struct m_ext2fs *fs;
|
|
int tmp;
|
|
|
|
fs = ip->i_e2fs;
|
|
|
|
mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED);
|
|
|
|
/*
|
|
* If the next block is actually what we thought it is, then set the
|
|
* goal to what we thought it should be.
|
|
*/
|
|
if (ip->i_next_alloc_block == lbn && ip->i_next_alloc_goal != 0)
|
|
return ip->i_next_alloc_goal;
|
|
|
|
/*
|
|
* Now check whether we were provided with an array that basically
|
|
* tells us previous blocks to which we want to stay close.
|
|
*/
|
|
if (bap)
|
|
for (tmp = indx - 1; tmp >= 0; tmp--)
|
|
if (bap[tmp])
|
|
return bap[tmp];
|
|
|
|
/*
|
|
* Else lets fall back to the blocknr or, if there is none, follow
|
|
* the rule that a block should be allocated near its inode.
|
|
*/
|
|
return (blocknr ? blocknr :
|
|
(e2fs_daddr_t)(ip->i_block_group *
|
|
EXT2_BLOCKS_PER_GROUP(fs)) + fs->e2fs->e2fs_first_dblock);
|
|
}
|
|
|
|
/*
|
|
* Implement the cylinder overflow algorithm.
|
|
*
|
|
* The policy implemented by this algorithm is:
|
|
* 1) allocate the block in its requested cylinder group.
|
|
* 2) quadradically rehash on the cylinder group number.
|
|
* 3) brute force search for a free block.
|
|
*/
|
|
static e4fs_daddr_t
|
|
ext2_hashalloc(struct inode *ip, int cg, long pref, int size,
|
|
daddr_t (*allocator) (struct inode *, int, daddr_t, int))
|
|
{
|
|
struct m_ext2fs *fs;
|
|
e4fs_daddr_t result;
|
|
int i, icg = cg;
|
|
|
|
mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED);
|
|
fs = ip->i_e2fs;
|
|
/*
|
|
* 1: preferred cylinder group
|
|
*/
|
|
result = (*allocator)(ip, cg, pref, size);
|
|
if (result)
|
|
return (result);
|
|
/*
|
|
* 2: quadratic rehash
|
|
*/
|
|
for (i = 1; i < fs->e2fs_gcount; i *= 2) {
|
|
cg += i;
|
|
if (cg >= fs->e2fs_gcount)
|
|
cg -= fs->e2fs_gcount;
|
|
result = (*allocator)(ip, cg, 0, size);
|
|
if (result)
|
|
return (result);
|
|
}
|
|
/*
|
|
* 3: brute force search
|
|
* Note that we start at i == 2, since 0 was checked initially,
|
|
* and 1 is always checked in the quadratic rehash.
|
|
*/
|
|
cg = (icg + 2) % fs->e2fs_gcount;
|
|
for (i = 2; i < fs->e2fs_gcount; i++) {
|
|
result = (*allocator)(ip, cg, 0, size);
|
|
if (result)
|
|
return (result);
|
|
cg++;
|
|
if (cg == fs->e2fs_gcount)
|
|
cg = 0;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static uint64_t
|
|
ext2_cg_number_gdb_nometa(struct m_ext2fs *fs, int cg)
|
|
{
|
|
|
|
if (!ext2_cg_has_sb(fs, cg))
|
|
return (0);
|
|
|
|
if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_META_BG))
|
|
return (fs->e2fs->e3fs_first_meta_bg);
|
|
|
|
return ((fs->e2fs_gcount + EXT2_DESCS_PER_BLOCK(fs) - 1) /
|
|
EXT2_DESCS_PER_BLOCK(fs));
|
|
}
|
|
|
|
static uint64_t
|
|
ext2_cg_number_gdb_meta(struct m_ext2fs *fs, int cg)
|
|
{
|
|
unsigned long metagroup;
|
|
int first, last;
|
|
|
|
metagroup = cg / EXT2_DESCS_PER_BLOCK(fs);
|
|
first = metagroup * EXT2_DESCS_PER_BLOCK(fs);
|
|
last = first + EXT2_DESCS_PER_BLOCK(fs) - 1;
|
|
|
|
if (cg == first || cg == first + 1 || cg == last)
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
uint64_t
|
|
ext2_cg_number_gdb(struct m_ext2fs *fs, int cg)
|
|
{
|
|
unsigned long first_meta_bg, metagroup;
|
|
|
|
first_meta_bg = fs->e2fs->e3fs_first_meta_bg;
|
|
metagroup = cg / EXT2_DESCS_PER_BLOCK(fs);
|
|
|
|
if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_META_BG) ||
|
|
metagroup < first_meta_bg)
|
|
return (ext2_cg_number_gdb_nometa(fs, cg));
|
|
|
|
return ext2_cg_number_gdb_meta(fs, cg);
|
|
}
|
|
|
|
static int
|
|
ext2_number_base_meta_blocks(struct m_ext2fs *fs, int cg)
|
|
{
|
|
int number;
|
|
|
|
number = ext2_cg_has_sb(fs, cg);
|
|
|
|
if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_META_BG) ||
|
|
cg < fs->e2fs->e3fs_first_meta_bg * EXT2_DESCS_PER_BLOCK(fs)) {
|
|
if (number) {
|
|
number += ext2_cg_number_gdb(fs, cg);
|
|
number += fs->e2fs->e2fs_reserved_ngdb;
|
|
}
|
|
} else {
|
|
number += ext2_cg_number_gdb(fs, cg);
|
|
}
|
|
|
|
return (number);
|
|
}
|
|
|
|
static void
|
|
ext2_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
|
|
{
|
|
int i;
|
|
|
|
if (start_bit >= end_bit)
|
|
return;
|
|
|
|
for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
|
|
setbit(bitmap, i);
|
|
if (i < end_bit)
|
|
memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
|
|
}
|
|
|
|
static int
|
|
ext2_get_group_number(struct m_ext2fs *fs, e4fs_daddr_t block)
|
|
{
|
|
|
|
return ((block - fs->e2fs->e2fs_first_dblock) / fs->e2fs_bsize);
|
|
}
|
|
|
|
static int
|
|
ext2_block_in_group(struct m_ext2fs *fs, e4fs_daddr_t block, int cg)
|
|
{
|
|
|
|
return ((ext2_get_group_number(fs, block) == cg) ? 1 : 0);
|
|
}
|
|
|
|
static int
|
|
ext2_cg_block_bitmap_init(struct m_ext2fs *fs, int cg, struct buf *bp)
|
|
{
|
|
int bit, bit_max, inodes_per_block;
|
|
uint64_t start, tmp;
|
|
|
|
if (!(fs->e2fs_gd[cg].ext4bgd_flags & EXT2_BG_BLOCK_UNINIT))
|
|
return (0);
|
|
|
|
memset(bp->b_data, 0, fs->e2fs_bsize);
|
|
|
|
bit_max = ext2_number_base_meta_blocks(fs, cg);
|
|
if ((bit_max >> 3) >= fs->e2fs_bsize)
|
|
return (EINVAL);
|
|
|
|
for (bit = 0; bit < bit_max; bit++)
|
|
setbit(bp->b_data, bit);
|
|
|
|
start = (uint64_t)cg * fs->e2fs->e2fs_bpg + fs->e2fs->e2fs_first_dblock;
|
|
|
|
/* Set bits for block and inode bitmaps, and inode table. */
|
|
tmp = e2fs_gd_get_b_bitmap(&fs->e2fs_gd[cg]);
|
|
if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG) ||
|
|
ext2_block_in_group(fs, tmp, cg))
|
|
setbit(bp->b_data, tmp - start);
|
|
|
|
tmp = e2fs_gd_get_i_bitmap(&fs->e2fs_gd[cg]);
|
|
if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG) ||
|
|
ext2_block_in_group(fs, tmp, cg))
|
|
setbit(bp->b_data, tmp - start);
|
|
|
|
tmp = e2fs_gd_get_i_tables(&fs->e2fs_gd[cg]);
|
|
inodes_per_block = fs->e2fs_bsize/EXT2_INODE_SIZE(fs);
|
|
while( tmp < e2fs_gd_get_i_tables(&fs->e2fs_gd[cg]) +
|
|
fs->e2fs->e2fs_ipg / inodes_per_block ) {
|
|
if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG) ||
|
|
ext2_block_in_group(fs, tmp, cg))
|
|
setbit(bp->b_data, tmp - start);
|
|
tmp++;
|
|
}
|
|
|
|
/*
|
|
* Also if the number of blocks within the group is less than
|
|
* the blocksize * 8 ( which is the size of bitmap ), set rest
|
|
* of the block bitmap to 1
|
|
*/
|
|
ext2_mark_bitmap_end(fs->e2fs->e2fs_bpg, fs->e2fs_bsize * 8,
|
|
bp->b_data);
|
|
|
|
/* Clean the flag */
|
|
fs->e2fs_gd[cg].ext4bgd_flags &= ~EXT2_BG_BLOCK_UNINIT;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ext2_b_bitmap_validate(struct m_ext2fs *fs, struct buf *bp, int cg)
|
|
{
|
|
struct ext2_gd *gd;
|
|
uint64_t group_first_block;
|
|
unsigned int offset, max_bit;
|
|
|
|
if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG)) {
|
|
/*
|
|
* It is not possible to check block bitmap in case of this feature,
|
|
* because the inode and block bitmaps and inode table
|
|
* blocks may not be in the group at all.
|
|
* So, skip check in this case.
|
|
*/
|
|
return (0);
|
|
}
|
|
|
|
gd = &fs->e2fs_gd[cg];
|
|
max_bit = fs->e2fs_fpg;
|
|
group_first_block = ((uint64_t)cg) * fs->e2fs->e2fs_fpg +
|
|
fs->e2fs->e2fs_first_dblock;
|
|
|
|
/* Check block bitmap block number */
|
|
offset = e2fs_gd_get_b_bitmap(gd) - group_first_block;
|
|
if (offset >= max_bit || !isset(bp->b_data, offset)) {
|
|
SDT_PROBE2(ext2fs, , alloc, ext2_b_bitmap_validate_error,
|
|
"bad block bitmap, group", cg);
|
|
return (EINVAL);
|
|
}
|
|
|
|
/* Check inode bitmap block number */
|
|
offset = e2fs_gd_get_i_bitmap(gd) - group_first_block;
|
|
if (offset >= max_bit || !isset(bp->b_data, offset)) {
|
|
SDT_PROBE2(ext2fs, , alloc, ext2_b_bitmap_validate_error,
|
|
"bad inode bitmap", cg);
|
|
return (EINVAL);
|
|
}
|
|
|
|
/* Check inode table */
|
|
offset = e2fs_gd_get_i_tables(gd) - group_first_block;
|
|
if (offset >= max_bit || offset + fs->e2fs_itpg >= max_bit) {
|
|
SDT_PROBE2(ext2fs, , alloc, ext2_b_bitmap_validate_error,
|
|
"bad inode table, group", cg);
|
|
return (EINVAL);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Determine whether a block can be allocated.
|
|
*
|
|
* Check to see if a block of the appropriate size is available,
|
|
* and if it is, allocate it.
|
|
*/
|
|
static daddr_t
|
|
ext2_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
|
|
{
|
|
struct m_ext2fs *fs;
|
|
struct buf *bp;
|
|
struct ext2mount *ump;
|
|
daddr_t bno, runstart, runlen;
|
|
int bit, loc, end, error, start;
|
|
char *bbp;
|
|
/* XXX ondisk32 */
|
|
fs = ip->i_e2fs;
|
|
ump = ip->i_ump;
|
|
if (e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) == 0)
|
|
return (0);
|
|
|
|
EXT2_UNLOCK(ump);
|
|
error = bread(ip->i_devvp, fsbtodb(fs,
|
|
e2fs_gd_get_b_bitmap(&fs->e2fs_gd[cg])),
|
|
(int)fs->e2fs_bsize, NOCRED, &bp);
|
|
if (error)
|
|
goto fail;
|
|
|
|
if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM) ||
|
|
EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) {
|
|
error = ext2_cg_block_bitmap_init(fs, cg, bp);
|
|
if (error)
|
|
goto fail;
|
|
|
|
ext2_gd_b_bitmap_csum_set(fs, cg, bp);
|
|
}
|
|
error = ext2_gd_b_bitmap_csum_verify(fs, cg, bp);
|
|
if (error)
|
|
goto fail;
|
|
|
|
error = ext2_b_bitmap_validate(fs,bp, cg);
|
|
if (error)
|
|
goto fail;
|
|
|
|
/*
|
|
* Check, that another thread did not not allocate the last block in this
|
|
* group while we were waiting for the buffer.
|
|
*/
|
|
if (e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) == 0)
|
|
goto fail;
|
|
|
|
bbp = (char *)bp->b_data;
|
|
|
|
if (dtog(fs, bpref) != cg)
|
|
bpref = 0;
|
|
if (bpref != 0) {
|
|
bpref = dtogd(fs, bpref);
|
|
/*
|
|
* if the requested block is available, use it
|
|
*/
|
|
if (isclr(bbp, bpref)) {
|
|
bno = bpref;
|
|
goto gotit;
|
|
}
|
|
}
|
|
/*
|
|
* no blocks in the requested cylinder, so take next
|
|
* available one in this cylinder group.
|
|
* first try to get 8 contigous blocks, then fall back to a single
|
|
* block.
|
|
*/
|
|
if (bpref)
|
|
start = dtogd(fs, bpref) / NBBY;
|
|
else
|
|
start = 0;
|
|
end = howmany(fs->e2fs->e2fs_fpg, NBBY) - start;
|
|
retry:
|
|
runlen = 0;
|
|
runstart = 0;
|
|
for (loc = start; loc < end; loc++) {
|
|
if (bbp[loc] == (char)0xff) {
|
|
runlen = 0;
|
|
continue;
|
|
}
|
|
|
|
/* Start of a run, find the number of high clear bits. */
|
|
if (runlen == 0) {
|
|
bit = fls(bbp[loc]);
|
|
runlen = NBBY - bit;
|
|
runstart = loc * NBBY + bit;
|
|
} else if (bbp[loc] == 0) {
|
|
/* Continue a run. */
|
|
runlen += NBBY;
|
|
} else {
|
|
/*
|
|
* Finish the current run. If it isn't long
|
|
* enough, start a new one.
|
|
*/
|
|
bit = ffs(bbp[loc]) - 1;
|
|
runlen += bit;
|
|
if (runlen >= 8) {
|
|
bno = runstart;
|
|
goto gotit;
|
|
}
|
|
|
|
/* Run was too short, start a new one. */
|
|
bit = fls(bbp[loc]);
|
|
runlen = NBBY - bit;
|
|
runstart = loc * NBBY + bit;
|
|
}
|
|
|
|
/* If the current run is long enough, use it. */
|
|
if (runlen >= 8) {
|
|
bno = runstart;
|
|
goto gotit;
|
|
}
|
|
}
|
|
if (start != 0) {
|
|
end = start;
|
|
start = 0;
|
|
goto retry;
|
|
}
|
|
bno = ext2_mapsearch(fs, bbp, bpref);
|
|
if (bno < 0)
|
|
goto fail;
|
|
|
|
gotit:
|
|
#ifdef INVARIANTS
|
|
if (isset(bbp, bno)) {
|
|
printf("ext2fs_alloccgblk: cg=%d bno=%jd fs=%s\n",
|
|
cg, (intmax_t)bno, fs->e2fs_fsmnt);
|
|
panic("ext2fs_alloccg: dup alloc");
|
|
}
|
|
#endif
|
|
setbit(bbp, bno);
|
|
EXT2_LOCK(ump);
|
|
ext2_clusteracct(fs, bbp, cg, bno, -1);
|
|
fs->e2fs_fbcount--;
|
|
e2fs_gd_set_nbfree(&fs->e2fs_gd[cg],
|
|
e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) - 1);
|
|
fs->e2fs_fmod = 1;
|
|
EXT2_UNLOCK(ump);
|
|
ext2_gd_b_bitmap_csum_set(fs, cg, bp);
|
|
bdwrite(bp);
|
|
return (((uint64_t)cg) * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno);
|
|
|
|
fail:
|
|
brelse(bp);
|
|
EXT2_LOCK(ump);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Determine whether a cluster can be allocated.
|
|
*/
|
|
static daddr_t
|
|
ext2_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
|
|
{
|
|
struct m_ext2fs *fs;
|
|
struct ext2mount *ump;
|
|
struct buf *bp;
|
|
char *bbp;
|
|
int bit, error, got, i, loc, run;
|
|
int32_t *lp;
|
|
daddr_t bno;
|
|
|
|
fs = ip->i_e2fs;
|
|
ump = ip->i_ump;
|
|
|
|
if (fs->e2fs_maxcluster[cg] < len)
|
|
return (0);
|
|
|
|
EXT2_UNLOCK(ump);
|
|
error = bread(ip->i_devvp,
|
|
fsbtodb(fs, e2fs_gd_get_b_bitmap(&fs->e2fs_gd[cg])),
|
|
(int)fs->e2fs_bsize, NOCRED, &bp);
|
|
if (error)
|
|
goto fail_lock;
|
|
|
|
bbp = (char *)bp->b_data;
|
|
EXT2_LOCK(ump);
|
|
/*
|
|
* Check to see if a cluster of the needed size (or bigger) is
|
|
* available in this cylinder group.
|
|
*/
|
|
lp = &fs->e2fs_clustersum[cg].cs_sum[len];
|
|
for (i = len; i <= fs->e2fs_contigsumsize; i++)
|
|
if (*lp++ > 0)
|
|
break;
|
|
if (i > fs->e2fs_contigsumsize) {
|
|
/*
|
|
* Update the cluster summary information to reflect
|
|
* the true maximum-sized cluster so that future cluster
|
|
* allocation requests can avoid reading the bitmap only
|
|
* to find no cluster.
|
|
*/
|
|
lp = &fs->e2fs_clustersum[cg].cs_sum[len - 1];
|
|
for (i = len - 1; i > 0; i--)
|
|
if (*lp-- > 0)
|
|
break;
|
|
fs->e2fs_maxcluster[cg] = i;
|
|
goto fail;
|
|
}
|
|
EXT2_UNLOCK(ump);
|
|
|
|
/* Search the bitmap to find a big enough cluster like in FFS. */
|
|
if (dtog(fs, bpref) != cg)
|
|
bpref = 0;
|
|
if (bpref != 0)
|
|
bpref = dtogd(fs, bpref);
|
|
loc = bpref / NBBY;
|
|
bit = 1 << (bpref % NBBY);
|
|
for (run = 0, got = bpref; got < fs->e2fs->e2fs_fpg; got++) {
|
|
if ((bbp[loc] & bit) != 0)
|
|
run = 0;
|
|
else {
|
|
run++;
|
|
if (run == len)
|
|
break;
|
|
}
|
|
if ((got & (NBBY - 1)) != (NBBY - 1))
|
|
bit <<= 1;
|
|
else {
|
|
loc++;
|
|
bit = 1;
|
|
}
|
|
}
|
|
|
|
if (got >= fs->e2fs->e2fs_fpg)
|
|
goto fail_lock;
|
|
|
|
/* Allocate the cluster that we found. */
|
|
for (i = 1; i < len; i++)
|
|
if (!isclr(bbp, got - run + i))
|
|
panic("ext2_clusteralloc: map mismatch");
|
|
|
|
bno = got - run + 1;
|
|
if (bno >= fs->e2fs->e2fs_fpg)
|
|
panic("ext2_clusteralloc: allocated out of group");
|
|
|
|
EXT2_LOCK(ump);
|
|
for (i = 0; i < len; i += fs->e2fs_fpb) {
|
|
setbit(bbp, bno + i);
|
|
ext2_clusteracct(fs, bbp, cg, bno + i, -1);
|
|
fs->e2fs_fbcount--;
|
|
e2fs_gd_set_nbfree(&fs->e2fs_gd[cg],
|
|
e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) - 1);
|
|
}
|
|
fs->e2fs_fmod = 1;
|
|
EXT2_UNLOCK(ump);
|
|
|
|
bdwrite(bp);
|
|
return (cg * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno);
|
|
|
|
fail_lock:
|
|
EXT2_LOCK(ump);
|
|
fail:
|
|
brelse(bp);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ext2_zero_inode_table(struct inode *ip, int cg)
|
|
{
|
|
struct m_ext2fs *fs;
|
|
struct buf *bp;
|
|
int i, all_blks, used_blks;
|
|
|
|
fs = ip->i_e2fs;
|
|
|
|
if (fs->e2fs_gd[cg].ext4bgd_flags & EXT2_BG_INODE_ZEROED)
|
|
return (0);
|
|
|
|
all_blks = fs->e2fs->e2fs_inode_size * fs->e2fs->e2fs_ipg /
|
|
fs->e2fs_bsize;
|
|
|
|
used_blks = howmany(fs->e2fs->e2fs_ipg -
|
|
e2fs_gd_get_i_unused(&fs->e2fs_gd[cg]),
|
|
fs->e2fs_bsize / EXT2_INODE_SIZE(fs));
|
|
|
|
for (i = 0; i < all_blks - used_blks; i++) {
|
|
bp = getblk(ip->i_devvp, fsbtodb(fs,
|
|
e2fs_gd_get_i_tables(&fs->e2fs_gd[cg]) + used_blks + i),
|
|
fs->e2fs_bsize, 0, 0, 0);
|
|
if (!bp)
|
|
return (EIO);
|
|
|
|
vfs_bio_bzero_buf(bp, 0, fs->e2fs_bsize);
|
|
bawrite(bp);
|
|
}
|
|
|
|
fs->e2fs_gd[cg].ext4bgd_flags |= EXT2_BG_INODE_ZEROED;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Determine whether an inode can be allocated.
|
|
*
|
|
* Check to see if an inode is available, and if it is,
|
|
* allocate it using tode in the specified cylinder group.
|
|
*/
|
|
static daddr_t
|
|
ext2_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
|
|
{
|
|
struct m_ext2fs *fs;
|
|
struct buf *bp;
|
|
struct ext2mount *ump;
|
|
int error, start, len, ifree;
|
|
char *ibp, *loc;
|
|
|
|
ipref--; /* to avoid a lot of (ipref -1) */
|
|
if (ipref == -1)
|
|
ipref = 0;
|
|
fs = ip->i_e2fs;
|
|
ump = ip->i_ump;
|
|
if (e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) == 0)
|
|
return (0);
|
|
EXT2_UNLOCK(ump);
|
|
error = bread(ip->i_devvp, fsbtodb(fs,
|
|
e2fs_gd_get_i_bitmap(&fs->e2fs_gd[cg])),
|
|
(int)fs->e2fs_bsize, NOCRED, &bp);
|
|
if (error) {
|
|
brelse(bp);
|
|
EXT2_LOCK(ump);
|
|
return (0);
|
|
}
|
|
if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM) ||
|
|
EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) {
|
|
if (fs->e2fs_gd[cg].ext4bgd_flags & EXT2_BG_INODE_UNINIT) {
|
|
memset(bp->b_data, 0, fs->e2fs_bsize);
|
|
fs->e2fs_gd[cg].ext4bgd_flags &= ~EXT2_BG_INODE_UNINIT;
|
|
}
|
|
ext2_gd_i_bitmap_csum_set(fs, cg, bp);
|
|
error = ext2_zero_inode_table(ip, cg);
|
|
if (error) {
|
|
brelse(bp);
|
|
EXT2_LOCK(ump);
|
|
return (0);
|
|
}
|
|
}
|
|
error = ext2_gd_i_bitmap_csum_verify(fs, cg, bp);
|
|
if (error) {
|
|
brelse(bp);
|
|
EXT2_LOCK(ump);
|
|
return (0);
|
|
}
|
|
if (e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) == 0) {
|
|
/*
|
|
* Another thread allocated the last i-node in this
|
|
* group while we were waiting for the buffer.
|
|
*/
|
|
brelse(bp);
|
|
EXT2_LOCK(ump);
|
|
return (0);
|
|
}
|
|
ibp = (char *)bp->b_data;
|
|
if (ipref) {
|
|
ipref %= fs->e2fs->e2fs_ipg;
|
|
if (isclr(ibp, ipref))
|
|
goto gotit;
|
|
}
|
|
start = ipref / NBBY;
|
|
len = howmany(fs->e2fs->e2fs_ipg - ipref, NBBY);
|
|
loc = memcchr(&ibp[start], 0xff, len);
|
|
if (loc == NULL) {
|
|
len = start + 1;
|
|
start = 0;
|
|
loc = memcchr(&ibp[start], 0xff, len);
|
|
if (loc == NULL) {
|
|
SDT_PROBE3(ext2fs, , alloc, ext2_nodealloccg_bmap_corrupted,
|
|
cg, ipref, fs->e2fs_fsmnt);
|
|
brelse(bp);
|
|
EXT2_LOCK(ump);
|
|
return (0);
|
|
}
|
|
}
|
|
ipref = (loc - ibp) * NBBY + ffs(~*loc) - 1;
|
|
gotit:
|
|
setbit(ibp, ipref);
|
|
EXT2_LOCK(ump);
|
|
e2fs_gd_set_nifree(&fs->e2fs_gd[cg],
|
|
e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) - 1);
|
|
if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM) ||
|
|
EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) {
|
|
ifree = fs->e2fs->e2fs_ipg - e2fs_gd_get_i_unused(&fs->e2fs_gd[cg]);
|
|
if (ipref + 1 > ifree)
|
|
e2fs_gd_set_i_unused(&fs->e2fs_gd[cg],
|
|
fs->e2fs->e2fs_ipg - (ipref + 1));
|
|
}
|
|
fs->e2fs->e2fs_ficount--;
|
|
fs->e2fs_fmod = 1;
|
|
if ((mode & IFMT) == IFDIR) {
|
|
e2fs_gd_set_ndirs(&fs->e2fs_gd[cg],
|
|
e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]) + 1);
|
|
fs->e2fs_total_dir++;
|
|
}
|
|
EXT2_UNLOCK(ump);
|
|
ext2_gd_i_bitmap_csum_set(fs, cg, bp);
|
|
bdwrite(bp);
|
|
return ((uint64_t)cg * fs->e2fs_ipg + ipref + 1);
|
|
}
|
|
|
|
/*
|
|
* Free a block or fragment.
|
|
*
|
|
*/
|
|
void
|
|
ext2_blkfree(struct inode *ip, e4fs_daddr_t bno, long size)
|
|
{
|
|
struct m_ext2fs *fs;
|
|
struct buf *bp;
|
|
struct ext2mount *ump;
|
|
int cg, error;
|
|
char *bbp;
|
|
|
|
fs = ip->i_e2fs;
|
|
ump = ip->i_ump;
|
|
cg = dtog(fs, bno);
|
|
if (bno >= fs->e2fs_bcount) {
|
|
SDT_PROBE2(ext2fs, , alloc, ext2_blkfree_bad_block, ip->i_number, bno);
|
|
return;
|
|
}
|
|
error = bread(ip->i_devvp,
|
|
fsbtodb(fs, e2fs_gd_get_b_bitmap(&fs->e2fs_gd[cg])),
|
|
(int)fs->e2fs_bsize, NOCRED, &bp);
|
|
if (error) {
|
|
brelse(bp);
|
|
return;
|
|
}
|
|
bbp = (char *)bp->b_data;
|
|
bno = dtogd(fs, bno);
|
|
if (isclr(bbp, bno)) {
|
|
panic("ext2_blkfree: freeing free block %lld, fs=%s",
|
|
(long long)bno, fs->e2fs_fsmnt);
|
|
}
|
|
clrbit(bbp, bno);
|
|
EXT2_LOCK(ump);
|
|
ext2_clusteracct(fs, bbp, cg, bno, 1);
|
|
fs->e2fs_fbcount++;
|
|
e2fs_gd_set_nbfree(&fs->e2fs_gd[cg],
|
|
e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) + 1);
|
|
fs->e2fs_fmod = 1;
|
|
EXT2_UNLOCK(ump);
|
|
ext2_gd_b_bitmap_csum_set(fs, cg, bp);
|
|
bdwrite(bp);
|
|
}
|
|
|
|
/*
|
|
* Free an inode.
|
|
*
|
|
*/
|
|
int
|
|
ext2_vfree(struct vnode *pvp, ino_t ino, int mode)
|
|
{
|
|
struct m_ext2fs *fs;
|
|
struct inode *pip;
|
|
struct buf *bp;
|
|
struct ext2mount *ump;
|
|
int error, cg;
|
|
char *ibp;
|
|
|
|
pip = VTOI(pvp);
|
|
fs = pip->i_e2fs;
|
|
ump = pip->i_ump;
|
|
if ((u_int)ino > fs->e2fs_ipg * fs->e2fs_gcount)
|
|
panic("ext2_vfree: range: devvp = %p, ino = %ju, fs = %s",
|
|
pip->i_devvp, (uintmax_t)ino, fs->e2fs_fsmnt);
|
|
|
|
cg = ino_to_cg(fs, ino);
|
|
error = bread(pip->i_devvp,
|
|
fsbtodb(fs, e2fs_gd_get_i_bitmap(&fs->e2fs_gd[cg])),
|
|
(int)fs->e2fs_bsize, NOCRED, &bp);
|
|
if (error) {
|
|
brelse(bp);
|
|
return (0);
|
|
}
|
|
ibp = (char *)bp->b_data;
|
|
ino = (ino - 1) % fs->e2fs->e2fs_ipg;
|
|
if (isclr(ibp, ino)) {
|
|
SDT_PROBE2(ext2fs, , alloc, ext2_vfree_doublefree,
|
|
fs->e2fs_fsmnt, ino);
|
|
if (fs->e2fs_ronly == 0)
|
|
panic("ext2_vfree: freeing free inode");
|
|
}
|
|
clrbit(ibp, ino);
|
|
EXT2_LOCK(ump);
|
|
fs->e2fs->e2fs_ficount++;
|
|
e2fs_gd_set_nifree(&fs->e2fs_gd[cg],
|
|
e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) + 1);
|
|
if ((mode & IFMT) == IFDIR) {
|
|
e2fs_gd_set_ndirs(&fs->e2fs_gd[cg],
|
|
e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]) - 1);
|
|
fs->e2fs_total_dir--;
|
|
}
|
|
fs->e2fs_fmod = 1;
|
|
EXT2_UNLOCK(ump);
|
|
ext2_gd_i_bitmap_csum_set(fs, cg, bp);
|
|
bdwrite(bp);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Find a block in the specified cylinder group.
|
|
*
|
|
* It is a panic if a request is made to find a block if none are
|
|
* available.
|
|
*/
|
|
static daddr_t
|
|
ext2_mapsearch(struct m_ext2fs *fs, char *bbp, daddr_t bpref)
|
|
{
|
|
char *loc;
|
|
int start, len;
|
|
|
|
/*
|
|
* find the fragment by searching through the free block
|
|
* map for an appropriate bit pattern
|
|
*/
|
|
if (bpref)
|
|
start = dtogd(fs, bpref) / NBBY;
|
|
else
|
|
start = 0;
|
|
len = howmany(fs->e2fs->e2fs_fpg, NBBY) - start;
|
|
loc = memcchr(&bbp[start], 0xff, len);
|
|
if (loc == NULL) {
|
|
len = start + 1;
|
|
start = 0;
|
|
loc = memcchr(&bbp[start], 0xff, len);
|
|
if (loc == NULL) {
|
|
panic("ext2_mapsearch: map corrupted: start=%d, len=%d, fs=%s",
|
|
start, len, fs->e2fs_fsmnt);
|
|
/* NOTREACHED */
|
|
}
|
|
}
|
|
return ((loc - bbp) * NBBY + ffs(~*loc) - 1);
|
|
}
|
|
|
|
int
|
|
ext2_cg_has_sb(struct m_ext2fs *fs, int cg)
|
|
{
|
|
int a3, a5, a7;
|
|
|
|
if (cg == 0)
|
|
return (1);
|
|
|
|
if (EXT2_HAS_COMPAT_FEATURE(fs, EXT2F_COMPAT_SPARSESUPER2)) {
|
|
if (cg == fs->e2fs->e4fs_backup_bgs[0] ||
|
|
cg == fs->e2fs->e4fs_backup_bgs[1])
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
if ((cg <= 1) ||
|
|
!EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_SPARSESUPER))
|
|
return (1);
|
|
|
|
if (!(cg & 1))
|
|
return (0);
|
|
|
|
for (a3 = 3, a5 = 5, a7 = 7;
|
|
a3 <= cg || a5 <= cg || a7 <= cg;
|
|
a3 *= 3, a5 *= 5, a7 *= 7)
|
|
if (cg == a3 || cg == a5 || cg == a7)
|
|
return (1);
|
|
return (0);
|
|
}
|