1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-11 14:10:34 +00:00
freebsd/sys/pc98/cbus/pcrtc.c

835 lines
19 KiB
C

/*-
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* William Jolitz and Don Ahn.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)clock.c 7.2 (Berkeley) 5/12/91
* $FreeBSD$
*/
/*
* Routines to handle clock hardware.
*/
/*
* inittodr, settodr and support routines written
* by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
*
* reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
*/
/*
* modified for PC98 by Kakefuda
*/
#include "opt_apic.h"
#include "opt_clock.h"
#include "opt_isa.h"
#include "opt_mca.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/clock.h>
#include <sys/lock.h>
#include <sys/kdb.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/time.h>
#include <sys/timetc.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/module.h>
#include <sys/sysctl.h>
#include <sys/cons.h>
#include <sys/power.h>
#include <machine/clock.h>
#include <machine/cpu.h>
#include <machine/cputypes.h>
#include <machine/frame.h>
#include <machine/intr_machdep.h>
#include <machine/md_var.h>
#include <machine/psl.h>
#ifdef DEV_APIC
#include <machine/apicvar.h>
#endif
#include <machine/specialreg.h>
#include <machine/ppireg.h>
#include <machine/timerreg.h>
#include <i386/isa/icu.h>
#include <pc98/cbus/cbus.h>
#include <pc98/pc98/pc98_machdep.h>
#ifdef DEV_ISA
#include <isa/isavar.h>
#endif
#define TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
int clkintr_pending;
int pscnt = 1;
int psdiv = 1;
int statclock_disable;
#ifndef TIMER_FREQ
#define TIMER_FREQ 2457600
#endif
u_int timer_freq = TIMER_FREQ;
int timer0_max_count;
int timer0_real_max_count;
struct mtx clock_lock;
static int beeping = 0;
static struct intsrc *i8254_intsrc;
static u_int32_t i8254_lastcount;
static u_int32_t i8254_offset;
static int (*i8254_pending)(struct intsrc *);
static int i8254_ticked;
static int using_lapic_timer;
/* Values for timerX_state: */
#define RELEASED 0
#define RELEASE_PENDING 1
#define ACQUIRED 2
#define ACQUIRE_PENDING 3
static u_char timer1_state;
static u_char timer2_state;
static void rtc_serialcombit(int);
static void rtc_serialcom(int);
static int rtc_inb(void);
static void rtc_outb(int);
static unsigned i8254_get_timecount(struct timecounter *tc);
static unsigned i8254_simple_get_timecount(struct timecounter *tc);
static void set_timer_freq(u_int freq, int intr_freq);
static struct timecounter i8254_timecounter = {
i8254_get_timecount, /* get_timecount */
0, /* no poll_pps */
~0u, /* counter_mask */
0, /* frequency */
"i8254", /* name */
0 /* quality */
};
static void
clkintr(struct trapframe *frame)
{
if (timecounter->tc_get_timecount == i8254_get_timecount) {
mtx_lock_spin(&clock_lock);
if (i8254_ticked)
i8254_ticked = 0;
else {
i8254_offset += timer0_max_count;
i8254_lastcount = 0;
}
clkintr_pending = 0;
mtx_unlock_spin(&clock_lock);
}
KASSERT(!using_lapic_timer, ("clk interrupt enabled with lapic timer"));
hardclock(TRAPF_USERMODE(frame), TRAPF_PC(frame));
}
int
acquire_timer1(int mode)
{
if (timer1_state != RELEASED)
return (-1);
timer1_state = ACQUIRED;
/*
* This access to the timer registers is as atomic as possible
* because it is a single instruction. We could do better if we
* knew the rate. Use of splclock() limits glitches to 10-100us,
* and this is probably good enough for timer2, so we aren't as
* careful with it as with timer0.
*/
outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
return (0);
}
int
acquire_timer2(int mode)
{
if (timer2_state != RELEASED)
return (-1);
timer2_state = ACQUIRED;
/*
* This access to the timer registers is as atomic as possible
* because it is a single instruction. We could do better if we
* knew the rate. Use of splclock() limits glitches to 10-100us,
* and this is probably good enough for timer2, so we aren't as
* careful with it as with timer0.
*/
outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
return (0);
}
int
release_timer1()
{
if (timer1_state != ACQUIRED)
return (-1);
timer1_state = RELEASED;
outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
return (0);
}
int
release_timer2()
{
if (timer2_state != ACQUIRED)
return (-1);
timer2_state = RELEASED;
outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
return (0);
}
static int
getit(void)
{
int high, low;
mtx_lock_spin(&clock_lock);
/* Select timer0 and latch counter value. */
outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
low = inb(TIMER_CNTR0);
high = inb(TIMER_CNTR0);
mtx_unlock_spin(&clock_lock);
return ((high << 8) | low);
}
/*
* Wait "n" microseconds.
* Relies on timer 1 counting down from (timer_freq / hz)
* Note: timer had better have been programmed before this is first used!
*/
void
DELAY(int n)
{
int delta, prev_tick, tick, ticks_left;
#ifdef DELAYDEBUG
int getit_calls = 1;
int n1;
static int state = 0;
if (state == 0) {
state = 1;
for (n1 = 1; n1 <= 10000000; n1 *= 10)
DELAY(n1);
state = 2;
}
if (state == 1)
printf("DELAY(%d)...", n);
#endif
/*
* Guard against the timer being uninitialized if we are called
* early for console i/o.
*/
if (timer0_max_count == 0)
set_timer_freq(timer_freq, hz);
/*
* Read the counter first, so that the rest of the setup overhead is
* counted. Guess the initial overhead is 20 usec (on most systems it
* takes about 1.5 usec for each of the i/o's in getit(). The loop
* takes about 6 usec on a 486/33 and 13 usec on a 386/20. The
* multiplications and divisions to scale the count take a while).
*
* However, if ddb is active then use a fake counter since reading
* the i8254 counter involves acquiring a lock. ddb must not do
* locking for many reasons, but it calls here for at least atkbd
* input.
*/
#ifdef KDB
if (kdb_active)
prev_tick = 1;
else
#endif
prev_tick = getit();
n -= 0; /* XXX actually guess no initial overhead */
/*
* Calculate (n * (timer_freq / 1e6)) without using floating point
* and without any avoidable overflows.
*/
if (n <= 0)
ticks_left = 0;
else if (n < 256)
/*
* Use fixed point to avoid a slow division by 1000000.
* 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
* 2^15 is the first power of 2 that gives exact results
* for n between 0 and 256.
*/
ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
else
/*
* Don't bother using fixed point, although gcc-2.7.2
* generates particularly poor code for the long long
* division, since even the slow way will complete long
* before the delay is up (unless we're interrupted).
*/
ticks_left = ((u_int)n * (long long)timer_freq + 999999)
/ 1000000;
while (ticks_left > 0) {
#ifdef KDB
if (kdb_active) {
outb(0x5f, 0);
tick = prev_tick - 1;
if (tick <= 0)
tick = timer0_max_count;
} else
#endif
tick = getit();
#ifdef DELAYDEBUG
++getit_calls;
#endif
delta = prev_tick - tick;
prev_tick = tick;
if (delta < 0) {
delta += timer0_max_count;
/*
* Guard against timer0_max_count being wrong.
* This shouldn't happen in normal operation,
* but it may happen if set_timer_freq() is
* traced.
*/
if (delta < 0)
delta = 0;
}
ticks_left -= delta;
}
#ifdef DELAYDEBUG
if (state == 1)
printf(" %d calls to getit() at %d usec each\n",
getit_calls, (n + 5) / getit_calls);
#endif
}
static void
sysbeepstop(void *chan)
{
ppi_spkr_off(); /* disable counter1 output to speaker */
timer_spkr_release();
beeping = 0;
}
int
sysbeep(int pitch, int period)
{
int x = splclock();
if (timer_spkr_acquire())
if (!beeping) {
/* Something else owns it. */
splx(x);
return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
}
disable_intr();
spkr_set_pitch(pitch);
enable_intr();
if (!beeping) {
/* enable counter1 output to speaker */
ppi_spkr_on();
beeping = period;
timeout(sysbeepstop, (void *)NULL, period);
}
splx(x);
return (0);
}
unsigned int delaycount;
#define FIRST_GUESS 0x2000
static void findcpuspeed(void)
{
int i;
int remainder;
/* Put counter in count down mode */
outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
outb(TIMER_CNTR0, 0xff);
outb(TIMER_CNTR0, 0xff);
for (i = FIRST_GUESS; i; i--)
;
remainder = getit();
delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
}
static u_int
calibrate_clocks(void)
{
int timeout;
u_int count, prev_count, tot_count;
u_short sec, start_sec;
if (bootverbose)
printf("Calibrating clock(s) ... ");
/* Check ARTIC. */
if (!(PC98_SYSTEM_PARAMETER(0x458) & 0x80) &&
!(PC98_SYSTEM_PARAMETER(0x45b) & 0x04))
goto fail;
timeout = 100000000;
/* Read the ARTIC. */
sec = inw(0x5e);
/* Wait for the ARTIC to changes. */
start_sec = sec;
for (;;) {
sec = inw(0x5e);
if (sec != start_sec)
break;
if (--timeout == 0)
goto fail;
}
prev_count = getit();
if (prev_count == 0 || prev_count > timer0_max_count)
goto fail;
tot_count = 0;
start_sec = sec;
for (;;) {
sec = inw(0x5e);
count = getit();
if (count == 0 || count > timer0_max_count)
goto fail;
if (count > prev_count)
tot_count += prev_count - (count - timer0_max_count);
else
tot_count += prev_count - count;
prev_count = count;
if ((sec == start_sec + 1200) || /* 1200 = 307.2KHz >> 8 */
(sec < start_sec &&
(u_int)sec + 0x10000 == (u_int)start_sec + 1200))
break;
if (--timeout == 0)
goto fail;
}
if (bootverbose) {
printf("i8254 clock: %u Hz\n", tot_count);
}
return (tot_count);
fail:
if (bootverbose)
printf("failed, using default i8254 clock of %u Hz\n",
timer_freq);
return (timer_freq);
}
static void
set_timer_freq(u_int freq, int intr_freq)
{
int new_timer0_real_max_count;
i8254_timecounter.tc_frequency = freq;
mtx_lock_spin(&clock_lock);
timer_freq = freq;
if (using_lapic_timer)
new_timer0_real_max_count = 0x10000;
else
new_timer0_real_max_count = TIMER_DIV(intr_freq);
if (new_timer0_real_max_count != timer0_real_max_count) {
timer0_real_max_count = new_timer0_real_max_count;
if (timer0_real_max_count == 0x10000)
timer0_max_count = 0xffff;
else
timer0_max_count = timer0_real_max_count;
outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
outb(TIMER_CNTR0, timer0_real_max_count & 0xff);
outb(TIMER_CNTR0, timer0_real_max_count >> 8);
}
mtx_unlock_spin(&clock_lock);
}
static void
i8254_restore(void)
{
mtx_lock_spin(&clock_lock);
outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
outb(TIMER_CNTR0, timer0_real_max_count & 0xff);
outb(TIMER_CNTR0, timer0_real_max_count >> 8);
mtx_unlock_spin(&clock_lock);
}
/*
* Restore all the timers non-atomically (XXX: should be atomically).
*
* This function is called from pmtimer_resume() to restore all the timers.
* This should not be necessary, but there are broken laptops that do not
* restore all the timers on resume.
*/
void
timer_restore(void)
{
i8254_restore(); /* restore timer_freq and hz */
}
/*
* Initialize 8254 timer 0 early so that it can be used in DELAY().
* XXX initialization of other timers is unintentionally left blank.
*/
void
startrtclock()
{
u_int delta, freq;
findcpuspeed();
if (pc98_machine_type & M_8M)
timer_freq = 1996800L; /* 1.9968 MHz */
else
timer_freq = 2457600L; /* 2.4576 MHz */
set_timer_freq(timer_freq, hz);
freq = calibrate_clocks();
#ifdef CLK_CALIBRATION_LOOP
if (bootverbose) {
printf(
"Press a key on the console to abort clock calibration\n");
while (cncheckc() == -1)
calibrate_clocks();
}
#endif
/*
* Use the calibrated i8254 frequency if it seems reasonable.
* Otherwise use the default, and don't use the calibrated i586
* frequency.
*/
delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
if (delta < timer_freq / 100) {
#ifndef CLK_USE_I8254_CALIBRATION
if (bootverbose)
printf(
"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
freq = timer_freq;
#endif
timer_freq = freq;
} else {
if (bootverbose)
printf(
"%d Hz differs from default of %d Hz by more than 1%%\n",
freq, timer_freq);
}
set_timer_freq(timer_freq, hz);
tc_init(&i8254_timecounter);
init_TSC();
}
static void
rtc_serialcombit(int i)
{
outb(IO_RTC, ((i&0x01)<<5)|0x07);
DELAY(1);
outb(IO_RTC, ((i&0x01)<<5)|0x17);
DELAY(1);
outb(IO_RTC, ((i&0x01)<<5)|0x07);
DELAY(1);
}
static void
rtc_serialcom(int i)
{
rtc_serialcombit(i&0x01);
rtc_serialcombit((i&0x02)>>1);
rtc_serialcombit((i&0x04)>>2);
rtc_serialcombit((i&0x08)>>3);
outb(IO_RTC, 0x07);
DELAY(1);
outb(IO_RTC, 0x0f);
DELAY(1);
outb(IO_RTC, 0x07);
DELAY(1);
}
static void
rtc_outb(int val)
{
int s;
int sa = 0;
for (s=0;s<8;s++) {
sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
outb(IO_RTC, sa); /* set DI & CLK 0 */
DELAY(1);
outb(IO_RTC, sa | 0x10); /* CLK 1 */
DELAY(1);
}
outb(IO_RTC, sa & 0xef); /* CLK 0 */
}
static int
rtc_inb(void)
{
int s;
int sa = 0;
for (s=0;s<8;s++) {
sa |= ((inb(0x33) & 0x01) << s);
outb(IO_RTC, 0x17); /* CLK 1 */
DELAY(1);
outb(IO_RTC, 0x07); /* CLK 0 */
DELAY(2);
}
return sa;
}
/*
* Initialize the time of day register, based on the time base which is, e.g.
* from a filesystem.
*/
void
inittodr(time_t base)
{
struct timespec ts;
struct clocktime ct;
if (base) {
ts.tv_sec = base;
ts.tv_nsec = 0;
tc_setclock(&ts);
}
rtc_serialcom(0x03); /* Time Read */
rtc_serialcom(0x01); /* Register shift command. */
DELAY(20);
ct.nsec = 0;
ct.sec = bcd2bin(rtc_inb() & 0xff); /* sec */
ct.min = bcd2bin(rtc_inb() & 0xff); /* min */
ct.hour = bcd2bin(rtc_inb() & 0xff); /* hour */
ct.day = bcd2bin(rtc_inb() & 0xff) - 1; /* date */
ct.mon = (rtc_inb() >> 4) & 0x0f; /* month */
ct.year = bcd2bin(rtc_inb() & 0xff) + 1900; /* year */
if (ct.year < 1995)
ct.year += 100;
clock_ct_to_ts(&ct, &ts);
tc_setclock(&ts);
}
/*
* Write system time back to RTC
*/
void
resettodr()
{
struct timespec ts;
struct clocktime ct;
if (disable_rtc_set)
return;
getnanotime(&ts);
ts.tv_sec -= utc_offset();
clock_ts_to_ct(&ts, &ct);
rtc_serialcom(0x01); /* Register shift command. */
rtc_outb(bin2bcd(ct.sec)); /* Write back Seconds */
rtc_outb(bin2bcd(ct.min)); /* Write back Minutes */
rtc_outb(bin2bcd(ct.hour)); /* Write back Hours */
rtc_outb(bin2bcd(ct.day)); /* Write back Day */
rtc_outb((ct.mon << 4) | (ct.dow + 1)); /* Write back Month and DOW */
rtc_outb(bin2bcd(ct.year % 100)); /* Write back Year */
rtc_serialcom(0x02); /* Time set & Counter hold command. */
rtc_serialcom(0x00); /* Register hold command. */
}
/*
* Start both clocks running.
*/
void
cpu_initclocks()
{
#ifdef DEV_APIC
using_lapic_timer = lapic_setup_clock();
#endif
/*
* If we aren't using the local APIC timer to drive the kernel
* clocks, setup the interrupt handler for the 8254 timer 0 so
* that it can drive hardclock(). Otherwise, change the 8254
* timecounter to user a simpler algorithm.
*/
if (!using_lapic_timer) {
intr_add_handler("clk", 0, (driver_intr_t *)clkintr, NULL,
INTR_TYPE_CLK | INTR_FAST, NULL);
i8254_intsrc = intr_lookup_source(0);
if (i8254_intsrc != NULL)
i8254_pending =
i8254_intsrc->is_pic->pic_source_pending;
} else {
i8254_timecounter.tc_get_timecount =
i8254_simple_get_timecount;
i8254_timecounter.tc_counter_mask = 0xffff;
set_timer_freq(timer_freq, hz);
}
init_TSC_tc();
}
void
cpu_startprofclock(void)
{
}
void
cpu_stopprofclock(void)
{
}
static int
sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
{
int error;
u_int freq;
/*
* Use `i8254' instead of `timer' in external names because `timer'
* is is too generic. Should use it everywhere.
*/
freq = timer_freq;
error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
if (error == 0 && req->newptr != NULL)
set_timer_freq(freq, hz);
return (error);
}
SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU", "");
static unsigned
i8254_simple_get_timecount(struct timecounter *tc)
{
return (timer0_max_count - getit());
}
static unsigned
i8254_get_timecount(struct timecounter *tc)
{
u_int count;
u_int high, low;
u_int eflags;
eflags = read_eflags();
mtx_lock_spin(&clock_lock);
/* Select timer0 and latch counter value. */
outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
low = inb(TIMER_CNTR0);
high = inb(TIMER_CNTR0);
count = timer0_max_count - ((high << 8) | low);
if (count < i8254_lastcount ||
(!i8254_ticked && (clkintr_pending ||
((count < 20 || (!(eflags & PSL_I) && count < timer0_max_count / 2u)) &&
i8254_pending != NULL && i8254_pending(i8254_intsrc))))) {
i8254_ticked = 1;
i8254_offset += timer0_max_count;
}
i8254_lastcount = count;
count += i8254_offset;
mtx_unlock_spin(&clock_lock);
return (count);
}
#ifdef DEV_ISA
/*
* Attach to the ISA PnP descriptors for the timer and realtime clock.
*/
static struct isa_pnp_id attimer_ids[] = {
{ 0x0001d041 /* PNP0100 */, "AT timer" },
{ 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
{ 0 }
};
static int
attimer_probe(device_t dev)
{
int result;
if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids)) <= 0)
device_quiet(dev);
return(result);
}
static int
attimer_attach(device_t dev)
{
return(0);
}
static device_method_t attimer_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, attimer_probe),
DEVMETHOD(device_attach, attimer_attach),
DEVMETHOD(device_detach, bus_generic_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, bus_generic_suspend), /* XXX stop statclock? */
DEVMETHOD(device_resume, bus_generic_resume), /* XXX restart statclock? */
{ 0, 0 }
};
static driver_t attimer_driver = {
"attimer",
attimer_methods,
1, /* no softc */
};
static devclass_t attimer_devclass;
DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
#endif /* DEV_ISA */