1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-16 15:11:52 +00:00
freebsd/sys/dev/fxp/if_fxp.c
2004-05-24 18:31:56 +00:00

2759 lines
78 KiB
C

/*-
* Copyright (c) 1995, David Greenman
* Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Intel EtherExpress Pro/100B PCI Fast Ethernet driver
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/endian.h>
#include <sys/mbuf.h>
/* #include <sys/mutex.h> */
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <sys/sockio.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>
#include <net/ethernet.h>
#include <net/if_arp.h>
#include <machine/clock.h> /* for DELAY */
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#ifdef FXP_IP_CSUM_WAR
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <machine/in_cksum.h>
#endif
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h> /* for PCIM_CMD_xxx */
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/fxp/if_fxpreg.h>
#include <dev/fxp/if_fxpvar.h>
#include <dev/fxp/rcvbundl.h>
MODULE_DEPEND(fxp, pci, 1, 1, 1);
MODULE_DEPEND(fxp, ether, 1, 1, 1);
MODULE_DEPEND(fxp, miibus, 1, 1, 1);
#include "miibus_if.h"
/*
* NOTE! On the Alpha, we have an alignment constraint. The
* card DMAs the packet immediately following the RFA. However,
* the first thing in the packet is a 14-byte Ethernet header.
* This means that the packet is misaligned. To compensate,
* we actually offset the RFA 2 bytes into the cluster. This
* alignes the packet after the Ethernet header at a 32-bit
* boundary. HOWEVER! This means that the RFA is misaligned!
*/
#define RFA_ALIGNMENT_FUDGE 2
/*
* Set initial transmit threshold at 64 (512 bytes). This is
* increased by 64 (512 bytes) at a time, to maximum of 192
* (1536 bytes), if an underrun occurs.
*/
static int tx_threshold = 64;
/*
* The configuration byte map has several undefined fields which
* must be one or must be zero. Set up a template for these bits
* only, (assuming a 82557 chip) leaving the actual configuration
* to fxp_init.
*
* See struct fxp_cb_config for the bit definitions.
*/
static u_char fxp_cb_config_template[] = {
0x0, 0x0, /* cb_status */
0x0, 0x0, /* cb_command */
0x0, 0x0, 0x0, 0x0, /* link_addr */
0x0, /* 0 */
0x0, /* 1 */
0x0, /* 2 */
0x0, /* 3 */
0x0, /* 4 */
0x0, /* 5 */
0x32, /* 6 */
0x0, /* 7 */
0x0, /* 8 */
0x0, /* 9 */
0x6, /* 10 */
0x0, /* 11 */
0x0, /* 12 */
0x0, /* 13 */
0xf2, /* 14 */
0x48, /* 15 */
0x0, /* 16 */
0x40, /* 17 */
0xf0, /* 18 */
0x0, /* 19 */
0x3f, /* 20 */
0x5 /* 21 */
};
struct fxp_ident {
u_int16_t devid;
int16_t revid; /* -1 matches anything */
char *name;
};
/*
* Claim various Intel PCI device identifiers for this driver. The
* sub-vendor and sub-device field are extensively used to identify
* particular variants, but we don't currently differentiate between
* them.
*/
static struct fxp_ident fxp_ident_table[] = {
{ 0x1029, -1, "Intel 82559 PCI/CardBus Pro/100" },
{ 0x1030, -1, "Intel 82559 Pro/100 Ethernet" },
{ 0x1031, -1, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
{ 0x1032, -1, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
{ 0x1033, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
{ 0x1034, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
{ 0x1035, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
{ 0x1036, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
{ 0x1037, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
{ 0x1038, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
{ 0x1039, -1, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
{ 0x103A, -1, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
{ 0x103B, -1, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
{ 0x103C, -1, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
{ 0x103D, -1, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
{ 0x103E, -1, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
{ 0x1050, -1, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
{ 0x1051, -1, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
{ 0x1059, -1, "Intel 82551QM Pro/100 M Mobile Connection" },
{ 0x1209, -1, "Intel 82559ER Embedded 10/100 Ethernet" },
{ 0x1229, 0x01, "Intel 82557 Pro/100 Ethernet" },
{ 0x1229, 0x02, "Intel 82557 Pro/100 Ethernet" },
{ 0x1229, 0x03, "Intel 82557 Pro/100 Ethernet" },
{ 0x1229, 0x04, "Intel 82558 Pro/100 Ethernet" },
{ 0x1229, 0x05, "Intel 82558 Pro/100 Ethernet" },
{ 0x1229, 0x06, "Intel 82559 Pro/100 Ethernet" },
{ 0x1229, 0x07, "Intel 82559 Pro/100 Ethernet" },
{ 0x1229, 0x08, "Intel 82559 Pro/100 Ethernet" },
{ 0x1229, 0x09, "Intel 82559ER Pro/100 Ethernet" },
{ 0x1229, 0x0c, "Intel 82550 Pro/100 Ethernet" },
{ 0x1229, 0x0d, "Intel 82550 Pro/100 Ethernet" },
{ 0x1229, 0x0e, "Intel 82550 Pro/100 Ethernet" },
{ 0x1229, 0x0f, "Intel 82551 Pro/100 Ethernet" },
{ 0x1229, 0x10, "Intel 82551 Pro/100 Ethernet" },
{ 0x1229, -1, "Intel 82557/8/9 Pro/100 Ethernet" },
{ 0x2449, -1, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
{ 0, -1, NULL },
};
#ifdef FXP_IP_CSUM_WAR
#define FXP_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
#else
#define FXP_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
#endif
static int fxp_probe(device_t dev);
static int fxp_attach(device_t dev);
static int fxp_detach(device_t dev);
static int fxp_shutdown(device_t dev);
static int fxp_suspend(device_t dev);
static int fxp_resume(device_t dev);
static void fxp_intr(void *xsc);
static void fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
u_int8_t statack, int count);
static void fxp_init(void *xsc);
static void fxp_init_body(struct fxp_softc *sc);
static void fxp_tick(void *xsc);
#ifndef BURN_BRIDGES
static void fxp_powerstate_d0(device_t dev);
#endif
static void fxp_start(struct ifnet *ifp);
static void fxp_start_body(struct ifnet *ifp);
static void fxp_stop(struct fxp_softc *sc);
static void fxp_release(struct fxp_softc *sc);
static int fxp_ioctl(struct ifnet *ifp, u_long command,
caddr_t data);
static void fxp_watchdog(struct ifnet *ifp);
static int fxp_add_rfabuf(struct fxp_softc *sc,
struct fxp_rx *rxp);
static int fxp_mc_addrs(struct fxp_softc *sc);
static void fxp_mc_setup(struct fxp_softc *sc);
static u_int16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset,
int autosize);
static void fxp_eeprom_putword(struct fxp_softc *sc, int offset,
u_int16_t data);
static void fxp_autosize_eeprom(struct fxp_softc *sc);
static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
int offset, int words);
static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
int offset, int words);
static int fxp_ifmedia_upd(struct ifnet *ifp);
static void fxp_ifmedia_sts(struct ifnet *ifp,
struct ifmediareq *ifmr);
static int fxp_serial_ifmedia_upd(struct ifnet *ifp);
static void fxp_serial_ifmedia_sts(struct ifnet *ifp,
struct ifmediareq *ifmr);
static volatile int fxp_miibus_readreg(device_t dev, int phy, int reg);
static void fxp_miibus_writereg(device_t dev, int phy, int reg,
int value);
static void fxp_load_ucode(struct fxp_softc *sc);
static int sysctl_int_range(SYSCTL_HANDLER_ARGS,
int low, int high);
static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
static void fxp_scb_wait(struct fxp_softc *sc);
static void fxp_scb_cmd(struct fxp_softc *sc, int cmd);
static void fxp_dma_wait(struct fxp_softc *sc,
volatile u_int16_t *status, bus_dma_tag_t dmat,
bus_dmamap_t map);
static device_method_t fxp_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, fxp_probe),
DEVMETHOD(device_attach, fxp_attach),
DEVMETHOD(device_detach, fxp_detach),
DEVMETHOD(device_shutdown, fxp_shutdown),
DEVMETHOD(device_suspend, fxp_suspend),
DEVMETHOD(device_resume, fxp_resume),
/* MII interface */
DEVMETHOD(miibus_readreg, fxp_miibus_readreg),
DEVMETHOD(miibus_writereg, fxp_miibus_writereg),
{ 0, 0 }
};
static driver_t fxp_driver = {
"fxp",
fxp_methods,
sizeof(struct fxp_softc),
};
static devclass_t fxp_devclass;
DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
static int fxp_rnr;
SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
static int fxp_noflow;
SYSCTL_INT(_hw, OID_AUTO, fxp_noflow, CTLFLAG_RW, &fxp_noflow, 0, "fxp flow control disabled");
TUNABLE_INT("hw.fxp_noflow", &fxp_noflow);
/*
* Wait for the previous command to be accepted (but not necessarily
* completed).
*/
static void
fxp_scb_wait(struct fxp_softc *sc)
{
int i = 10000;
while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
DELAY(2);
if (i == 0)
device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
}
static void
fxp_scb_cmd(struct fxp_softc *sc, int cmd)
{
if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
fxp_scb_wait(sc);
}
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
}
static void
fxp_dma_wait(struct fxp_softc *sc, volatile u_int16_t *status,
bus_dma_tag_t dmat, bus_dmamap_t map)
{
int i = 10000;
bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
DELAY(2);
bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
}
if (i == 0)
device_printf(sc->dev, "DMA timeout\n");
}
/*
* Return identification string if this device is ours.
*/
static int
fxp_probe(device_t dev)
{
u_int16_t devid;
u_int8_t revid;
struct fxp_ident *ident;
if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
devid = pci_get_device(dev);
revid = pci_get_revid(dev);
for (ident = fxp_ident_table; ident->name != NULL; ident++) {
if (ident->devid == devid &&
(ident->revid == revid || ident->revid == -1)) {
device_set_desc(dev, ident->name);
return (0);
}
}
}
return (ENXIO);
}
#ifndef BURN_BRIDGES
static void
fxp_powerstate_d0(device_t dev)
{
#if __FreeBSD_version >= 430002
u_int32_t iobase, membase, irq;
if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
/* Save important PCI config data. */
iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
irq = pci_read_config(dev, PCIR_INTLINE, 4);
/* Reset the power state. */
device_printf(dev, "chip is in D%d power mode "
"-- setting to D0\n", pci_get_powerstate(dev));
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
/* Restore PCI config data. */
pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
pci_write_config(dev, PCIR_INTLINE, irq, 4);
}
#endif
}
#endif
static void
fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
u_int32_t *addr;
if (error)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
addr = arg;
*addr = segs->ds_addr;
}
static int
fxp_attach(device_t dev)
{
int error = 0;
struct fxp_softc *sc = device_get_softc(dev);
struct ifnet *ifp;
struct fxp_rx *rxp;
u_int32_t val;
u_int16_t data, myea[ETHER_ADDR_LEN / 2];
int i, rid, m1, m2, prefer_iomap, maxtxseg;
int s, ipcbxmit_disable;
sc->dev = dev;
callout_init(&sc->stat_ch, CALLOUT_MPSAFE);
sysctl_ctx_init(&sc->sysctl_ctx);
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
fxp_serial_ifmedia_sts);
s = splimp();
/*
* Enable bus mastering.
*/
pci_enable_busmaster(dev);
val = pci_read_config(dev, PCIR_COMMAND, 2);
#ifndef BURN_BRIDGES
fxp_powerstate_d0(dev);
#endif
/*
* Figure out which we should try first - memory mapping or i/o mapping?
* We default to memory mapping. Then we accept an override from the
* command line. Then we check to see which one is enabled.
*/
m1 = PCIM_CMD_MEMEN;
m2 = PCIM_CMD_PORTEN;
prefer_iomap = 0;
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
"prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
m1 = PCIM_CMD_PORTEN;
m2 = PCIM_CMD_MEMEN;
}
sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE);
if (sc->mem == NULL) {
sc->rtp =
(m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
RF_ACTIVE);
}
if (!sc->mem) {
error = ENXIO;
goto fail;
}
if (bootverbose) {
device_printf(dev, "using %s space register mapping\n",
sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
}
sc->sc_st = rman_get_bustag(sc->mem);
sc->sc_sh = rman_get_bushandle(sc->mem);
/*
* Allocate our interrupt.
*/
rid = 0;
sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->irq == NULL) {
device_printf(dev, "could not map interrupt\n");
error = ENXIO;
goto fail;
}
/*
* Reset to a stable state.
*/
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
DELAY(10);
/*
* Find out how large of an SEEPROM we have.
*/
fxp_autosize_eeprom(sc);
/*
* Determine whether we must use the 503 serial interface.
*/
fxp_read_eeprom(sc, &data, 6, 1);
if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
(data & FXP_PHY_SERIAL_ONLY))
sc->flags |= FXP_FLAG_SERIAL_MEDIA;
/*
* Create the sysctl tree
*/
sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
device_get_nameunit(dev), CTLFLAG_RD, 0, "");
if (sc->sysctl_tree == NULL) {
error = ENXIO;
goto fail;
}
SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
&sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
"FXP driver receive interrupt microcode bundling delay");
SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
&sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
"FXP driver receive interrupt microcode bundle size limit");
/*
* Pull in device tunables.
*/
sc->tunable_int_delay = TUNABLE_INT_DELAY;
sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
"int_delay", &sc->tunable_int_delay);
(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
"bundle_max", &sc->tunable_bundle_max);
/*
* Find out the chip revision; lump all 82557 revs together.
*/
fxp_read_eeprom(sc, &data, 5, 1);
if ((data >> 8) == 1)
sc->revision = FXP_REV_82557;
else
sc->revision = pci_get_revid(dev);
/*
* Enable workarounds for certain chip revision deficiencies.
*
* Systems based on the ICH2/ICH2-M chip from Intel, and possibly
* some systems based a normal 82559 design, have a defect where
* the chip can cause a PCI protocol violation if it receives
* a CU_RESUME command when it is entering the IDLE state. The
* workaround is to disable Dynamic Standby Mode, so the chip never
* deasserts CLKRUN#, and always remains in an active state.
*
* See Intel 82801BA/82801BAM Specification Update, Errata #30.
*/
i = pci_get_device(dev);
if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
sc->revision >= FXP_REV_82559_A0) {
fxp_read_eeprom(sc, &data, 10, 1);
if (data & 0x02) { /* STB enable */
u_int16_t cksum;
int i;
device_printf(dev,
"Disabling dynamic standby mode in EEPROM\n");
data &= ~0x02;
fxp_write_eeprom(sc, &data, 10, 1);
device_printf(dev, "New EEPROM ID: 0x%x\n", data);
cksum = 0;
for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
fxp_read_eeprom(sc, &data, i, 1);
cksum += data;
}
i = (1 << sc->eeprom_size) - 1;
cksum = 0xBABA - cksum;
fxp_read_eeprom(sc, &data, i, 1);
fxp_write_eeprom(sc, &cksum, i, 1);
device_printf(dev,
"EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
i, data, cksum);
#if 1
/*
* If the user elects to continue, try the software
* workaround, as it is better than nothing.
*/
sc->flags |= FXP_FLAG_CU_RESUME_BUG;
#endif
}
}
/*
* If we are not a 82557 chip, we can enable extended features.
*/
if (sc->revision != FXP_REV_82557) {
/*
* If MWI is enabled in the PCI configuration, and there
* is a valid cacheline size (8 or 16 dwords), then tell
* the board to turn on MWI.
*/
if (val & PCIM_CMD_MWRICEN &&
pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
sc->flags |= FXP_FLAG_MWI_ENABLE;
/* turn on the extended TxCB feature */
sc->flags |= FXP_FLAG_EXT_TXCB;
/* enable reception of long frames for VLAN */
sc->flags |= FXP_FLAG_LONG_PKT_EN;
}
/*
* Enable use of extended RFDs and TCBs for 82550
* and later chips. Note: we need extended TXCB support
* too, but that's already enabled by the code above.
* Be careful to do this only on the right devices.
*
* At least some 82550 cards probed as "chip=0x12298086 rev=0x0d"
* truncate packets that end with an mbuf containing 1 to 3 bytes
* when used with this feature enabled in the previous version of the
* driver. This problem appears to be fixed now that the driver
* always sets the hardware parse bit in the IPCB structure, which
* the "Intel 8255x 10/100 Mbps Ethernet Controller Family Open
* Source Software Developer Manual" says is necessary in the
* cases where packet truncation was observed.
*
* The device hint "hint.fxp.UNIT_NUMBER.ipcbxmit_disable"
* allows this feature to be disabled at boot time.
*
* If fxp is not compiled into the kernel, this feature may also
* be disabled at run time:
* # kldunload fxp
* # kenv hint.fxp.0.ipcbxmit_disable=1
* # kldload fxp
*/
if (resource_int_value("fxp", device_get_unit(dev), "ipcbxmit_disable",
&ipcbxmit_disable) != 0)
ipcbxmit_disable = 0;
if (ipcbxmit_disable == 0 && (sc->revision == FXP_REV_82550 ||
sc->revision == FXP_REV_82550_C)) {
sc->rfa_size = sizeof (struct fxp_rfa);
sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
sc->flags |= FXP_FLAG_EXT_RFA;
} else {
sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
sc->tx_cmd = FXP_CB_COMMAND_XMIT;
}
/*
* Allocate DMA tags and DMA safe memory.
*/
maxtxseg = sc->flags & FXP_FLAG_EXT_RFA ? FXP_NTXSEG - 1 : FXP_NTXSEG;
error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * maxtxseg,
maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant, &sc->fxp_mtag);
if (error) {
device_printf(dev, "could not allocate dma tag\n");
goto fail;
}
error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
&sc->fxp_stag);
if (error) {
device_printf(dev, "could not allocate dma tag\n");
goto fail;
}
error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
if (error)
goto fail;
error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
if (error) {
device_printf(dev, "could not map the stats buffer\n");
goto fail;
}
error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
if (error) {
device_printf(dev, "could not allocate dma tag\n");
goto fail;
}
error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
if (error)
goto fail;
error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
&sc->fxp_desc.cbl_addr, 0);
if (error) {
device_printf(dev, "could not map DMA memory\n");
goto fail;
}
error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
&sc->mcs_tag);
if (error) {
device_printf(dev, "could not allocate dma tag\n");
goto fail;
}
error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
BUS_DMA_NOWAIT, &sc->mcs_map);
if (error)
goto fail;
error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
if (error) {
device_printf(dev, "can't map the multicast setup command\n");
goto fail;
}
/*
* Pre-allocate the TX DMA maps.
*/
for (i = 0; i < FXP_NTXCB; i++) {
error = bus_dmamap_create(sc->fxp_mtag, 0,
&sc->fxp_desc.tx_list[i].tx_map);
if (error) {
device_printf(dev, "can't create DMA map for TX\n");
goto fail;
}
}
error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
if (error) {
device_printf(dev, "can't create spare DMA map\n");
goto fail;
}
/*
* Pre-allocate our receive buffers.
*/
sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
for (i = 0; i < FXP_NRFABUFS; i++) {
rxp = &sc->fxp_desc.rx_list[i];
error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
if (error) {
device_printf(dev, "can't create DMA map for RX\n");
goto fail;
}
if (fxp_add_rfabuf(sc, rxp) != 0) {
error = ENOMEM;
goto fail;
}
}
/*
* Read MAC address.
*/
fxp_read_eeprom(sc, myea, 0, 3);
sc->arpcom.ac_enaddr[0] = myea[0] & 0xff;
sc->arpcom.ac_enaddr[1] = myea[0] >> 8;
sc->arpcom.ac_enaddr[2] = myea[1] & 0xff;
sc->arpcom.ac_enaddr[3] = myea[1] >> 8;
sc->arpcom.ac_enaddr[4] = myea[2] & 0xff;
sc->arpcom.ac_enaddr[5] = myea[2] >> 8;
if (bootverbose) {
device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
pci_get_vendor(dev), pci_get_device(dev),
pci_get_subvendor(dev), pci_get_subdevice(dev),
pci_get_revid(dev));
fxp_read_eeprom(sc, &data, 10, 1);
device_printf(dev, "Dynamic Standby mode is %s\n",
data & 0x02 ? "enabled" : "disabled");
}
/*
* If this is only a 10Mbps device, then there is no MII, and
* the PHY will use a serial interface instead.
*
* The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
* doesn't have a programming interface of any sort. The
* media is sensed automatically based on how the link partner
* is configured. This is, in essence, manual configuration.
*/
if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
} else {
if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
fxp_ifmedia_sts)) {
device_printf(dev, "MII without any PHY!\n");
error = ENXIO;
goto fail;
}
}
ifp = &sc->arpcom.ac_if;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_baudrate = 100000000;
ifp->if_init = fxp_init;
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = fxp_ioctl;
ifp->if_start = fxp_start;
ifp->if_watchdog = fxp_watchdog;
ifp->if_capabilities = ifp->if_capenable = 0;
/* Enable checksum offload for 82550 or better chips */
if (sc->flags & FXP_FLAG_EXT_RFA) {
ifp->if_hwassist = FXP_CSUM_FEATURES;
ifp->if_capabilities |= IFCAP_HWCSUM;
ifp->if_capenable |= IFCAP_HWCSUM;
}
#ifdef DEVICE_POLLING
/* Inform the world we support polling. */
ifp->if_capabilities |= IFCAP_POLLING;
ifp->if_capenable |= IFCAP_POLLING;
#endif
/*
* Attach the interface.
*/
ether_ifattach(ifp, sc->arpcom.ac_enaddr);
/*
* Tell the upper layer(s) we support long frames.
* Must appear after the call to ether_ifattach() because
* ether_ifattach() sets ifi_hdrlen to the default value.
*/
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capenable |= IFCAP_VLAN_MTU;
/*
* Let the system queue as many packets as we have available
* TX descriptors.
*/
ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
/*
* Hook our interrupt after all initialization is complete.
* XXX This driver has been tested with the INTR_MPSAFFE flag set
* however, ifp and its functions are not fully locked so MPSAFE
* should not be used unless you can handle potential data loss.
*/
error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
fxp_intr, sc, &sc->ih);
if (error) {
device_printf(dev, "could not setup irq\n");
ether_ifdetach(&sc->arpcom.ac_if);
goto fail;
}
fail:
splx(s);
if (error)
fxp_release(sc);
return (error);
}
/*
* Release all resources. The softc lock should not be held and the
* interrupt should already be torn down.
*/
static void
fxp_release(struct fxp_softc *sc)
{
struct fxp_rx *rxp;
struct fxp_tx *txp;
int i;
mtx_assert(&sc->sc_mtx, MA_NOTOWNED);
KASSERT(sc->ih == NULL,
("fxp_release() called with intr handle still active"));
if (sc->miibus)
device_delete_child(sc->dev, sc->miibus);
bus_generic_detach(sc->dev);
ifmedia_removeall(&sc->sc_media);
if (sc->fxp_desc.cbl_list) {
bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
sc->cbl_map);
}
if (sc->fxp_stats) {
bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
}
if (sc->mcsp) {
bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
}
if (sc->irq)
bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
if (sc->mem)
bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
if (sc->fxp_mtag) {
for (i = 0; i < FXP_NRFABUFS; i++) {
rxp = &sc->fxp_desc.rx_list[i];
if (rxp->rx_mbuf != NULL) {
bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
m_freem(rxp->rx_mbuf);
}
bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
}
bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
bus_dma_tag_destroy(sc->fxp_mtag);
}
if (sc->fxp_stag) {
for (i = 0; i < FXP_NTXCB; i++) {
txp = &sc->fxp_desc.tx_list[i];
if (txp->tx_mbuf != NULL) {
bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
m_freem(txp->tx_mbuf);
}
bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
}
bus_dma_tag_destroy(sc->fxp_stag);
}
if (sc->cbl_tag)
bus_dma_tag_destroy(sc->cbl_tag);
if (sc->mcs_tag)
bus_dma_tag_destroy(sc->mcs_tag);
sysctl_ctx_free(&sc->sysctl_ctx);
mtx_destroy(&sc->sc_mtx);
}
/*
* Detach interface.
*/
static int
fxp_detach(device_t dev)
{
struct fxp_softc *sc = device_get_softc(dev);
int s;
FXP_LOCK(sc);
s = splimp();
sc->suspended = 1; /* Do same thing as we do for suspend */
/*
* Close down routes etc.
*/
ether_ifdetach(&sc->arpcom.ac_if);
/*
* Stop DMA and drop transmit queue, but disable interrupts first.
*/
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
fxp_stop(sc);
FXP_UNLOCK(sc);
/*
* Unhook interrupt before dropping lock. This is to prevent
* races with fxp_intr().
*/
bus_teardown_intr(sc->dev, sc->irq, sc->ih);
sc->ih = NULL;
splx(s);
/* Release our allocated resources. */
fxp_release(sc);
return (0);
}
/*
* Device shutdown routine. Called at system shutdown after sync. The
* main purpose of this routine is to shut off receiver DMA so that
* kernel memory doesn't get clobbered during warmboot.
*/
static int
fxp_shutdown(device_t dev)
{
/*
* Make sure that DMA is disabled prior to reboot. Not doing
* do could allow DMA to corrupt kernel memory during the
* reboot before the driver initializes.
*/
fxp_stop((struct fxp_softc *) device_get_softc(dev));
return (0);
}
/*
* Device suspend routine. Stop the interface and save some PCI
* settings in case the BIOS doesn't restore them properly on
* resume.
*/
static int
fxp_suspend(device_t dev)
{
struct fxp_softc *sc = device_get_softc(dev);
int i, s;
FXP_LOCK(sc);
s = splimp();
fxp_stop(sc);
for (i = 0; i < 5; i++)
sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
sc->suspended = 1;
FXP_UNLOCK(sc);
splx(s);
return (0);
}
/*
* Device resume routine. Restore some PCI settings in case the BIOS
* doesn't, re-enable busmastering, and restart the interface if
* appropriate.
*/
static int
fxp_resume(device_t dev)
{
struct fxp_softc *sc = device_get_softc(dev);
struct ifnet *ifp = &sc->sc_if;
u_int16_t pci_command;
int i, s;
FXP_LOCK(sc);
s = splimp();
#ifndef BURN_BRIDGES
fxp_powerstate_d0(dev);
#endif
/* better way to do this? */
for (i = 0; i < 5; i++)
pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
/* reenable busmastering */
pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
DELAY(10);
/* reinitialize interface if necessary */
if (ifp->if_flags & IFF_UP)
fxp_init_body(sc);
sc->suspended = 0;
FXP_UNLOCK(sc);
splx(s);
return (0);
}
static void
fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
{
u_int16_t reg;
int x;
/*
* Shift in data.
*/
for (x = 1 << (length - 1); x; x >>= 1) {
if (data & x)
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
else
reg = FXP_EEPROM_EECS;
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
DELAY(1);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
}
}
/*
* Read from the serial EEPROM. Basically, you manually shift in
* the read opcode (one bit at a time) and then shift in the address,
* and then you shift out the data (all of this one bit at a time).
* The word size is 16 bits, so you have to provide the address for
* every 16 bits of data.
*/
static u_int16_t
fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
{
u_int16_t reg, data;
int x;
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
/*
* Shift in read opcode.
*/
fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
/*
* Shift in address.
*/
data = 0;
for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
if (offset & x)
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
else
reg = FXP_EEPROM_EECS;
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
DELAY(1);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
data++;
if (autosize && reg == 0) {
sc->eeprom_size = data;
break;
}
}
/*
* Shift out data.
*/
data = 0;
reg = FXP_EEPROM_EECS;
for (x = 1 << 15; x; x >>= 1) {
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
DELAY(1);
if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
data |= x;
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
}
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(1);
return (data);
}
static void
fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
{
int i;
/*
* Erase/write enable.
*/
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
fxp_eeprom_shiftin(sc, 0x4, 3);
fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(1);
/*
* Shift in write opcode, address, data.
*/
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
fxp_eeprom_shiftin(sc, data, 16);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(1);
/*
* Wait for EEPROM to finish up.
*/
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
DELAY(1);
for (i = 0; i < 1000; i++) {
if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
break;
DELAY(50);
}
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(1);
/*
* Erase/write disable.
*/
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
fxp_eeprom_shiftin(sc, 0x4, 3);
fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(1);
}
/*
* From NetBSD:
*
* Figure out EEPROM size.
*
* 559's can have either 64-word or 256-word EEPROMs, the 558
* datasheet only talks about 64-word EEPROMs, and the 557 datasheet
* talks about the existance of 16 to 256 word EEPROMs.
*
* The only known sizes are 64 and 256, where the 256 version is used
* by CardBus cards to store CIS information.
*
* The address is shifted in msb-to-lsb, and after the last
* address-bit the EEPROM is supposed to output a `dummy zero' bit,
* after which follows the actual data. We try to detect this zero, by
* probing the data-out bit in the EEPROM control register just after
* having shifted in a bit. If the bit is zero, we assume we've
* shifted enough address bits. The data-out should be tri-state,
* before this, which should translate to a logical one.
*/
static void
fxp_autosize_eeprom(struct fxp_softc *sc)
{
/* guess maximum size of 256 words */
sc->eeprom_size = 8;
/* autosize */
(void) fxp_eeprom_getword(sc, 0, 1);
}
static void
fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
{
int i;
for (i = 0; i < words; i++)
data[i] = fxp_eeprom_getword(sc, offset + i, 0);
}
static void
fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
{
int i;
for (i = 0; i < words; i++)
fxp_eeprom_putword(sc, offset + i, data[i]);
}
static void
fxp_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg,
bus_size_t mapsize, int error)
{
struct fxp_softc *sc;
struct fxp_cb_tx *txp;
int i;
if (error)
return;
KASSERT(nseg <= FXP_NTXSEG, ("too many DMA segments"));
sc = arg;
txp = sc->fxp_desc.tx_last->tx_next->tx_cb;
for (i = 0; i < nseg; i++) {
KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
/*
* If this is an 82550/82551, then we're using extended
* TxCBs _and_ we're using checksum offload. This means
* that the TxCB is really an IPCB. One major difference
* between the two is that with plain extended TxCBs,
* the bottom half of the TxCB contains two entries from
* the TBD array, whereas IPCBs contain just one entry:
* one entry (8 bytes) has been sacrificed for the TCP/IP
* checksum offload control bits. So to make things work
* right, we have to start filling in the TBD array
* starting from a different place depending on whether
* the chip is an 82550/82551 or not.
*/
if (sc->flags & FXP_FLAG_EXT_RFA) {
txp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
txp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
} else {
txp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
txp->tbd[i].tb_size = htole32(segs[i].ds_len);
}
}
txp->tbd_number = nseg;
}
/*
* Grab the softc lock and call the real fxp_start_body() routine
*/
static void
fxp_start(struct ifnet *ifp)
{
struct fxp_softc *sc = ifp->if_softc;
FXP_LOCK(sc);
fxp_start_body(ifp);
FXP_UNLOCK(sc);
}
/*
* Start packet transmission on the interface.
* This routine must be called with the softc lock held, and is an
* internal entry point only.
*/
static void
fxp_start_body(struct ifnet *ifp)
{
struct fxp_softc *sc = ifp->if_softc;
struct fxp_tx *txp;
struct mbuf *mb_head;
int error;
mtx_assert(&sc->sc_mtx, MA_OWNED);
/*
* See if we need to suspend xmit until the multicast filter
* has been reprogrammed (which can only be done at the head
* of the command chain).
*/
if (sc->need_mcsetup) {
return;
}
txp = NULL;
/*
* We're finished if there is nothing more to add to the list or if
* we're all filled up with buffers to transmit.
* NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
* a NOP command when needed.
*/
while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
/*
* Grab a packet to transmit.
*/
IF_DEQUEUE(&ifp->if_snd, mb_head);
/*
* Get pointer to next available tx desc.
*/
txp = sc->fxp_desc.tx_last->tx_next;
/*
* A note in Appendix B of the Intel 8255x 10/100 Mbps
* Ethernet Controller Family Open Source Software
* Developer Manual says:
* Using software parsing is only allowed with legal
* TCP/IP or UDP/IP packets.
* ...
* For all other datagrams, hardware parsing must
* be used.
* Software parsing appears to truncate ICMP and
* fragmented UDP packets that contain one to three
* bytes in the second (and final) mbuf of the packet.
*/
if (sc->flags & FXP_FLAG_EXT_RFA)
txp->tx_cb->ipcb_ip_activation_high =
FXP_IPCB_HARDWAREPARSING_ENABLE;
/*
* Deal with TCP/IP checksum offload. Note that
* in order for TCP checksum offload to work,
* the pseudo header checksum must have already
* been computed and stored in the checksum field
* in the TCP header. The stack should have
* already done this for us.
*/
if (mb_head->m_pkthdr.csum_flags) {
if (mb_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
txp->tx_cb->ipcb_ip_schedule =
FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
if (mb_head->m_pkthdr.csum_flags & CSUM_TCP)
txp->tx_cb->ipcb_ip_schedule |=
FXP_IPCB_TCP_PACKET;
}
#ifdef FXP_IP_CSUM_WAR
/*
* XXX The 82550 chip appears to have trouble
* dealing with IP header checksums in very small
* datagrams, namely fragments from 1 to 3 bytes
* in size. For example, say you want to transmit
* a UDP packet of 1473 bytes. The packet will be
* fragmented over two IP datagrams, the latter
* containing only one byte of data. The 82550 will
* botch the header checksum on the 1-byte fragment.
* As long as the datagram contains 4 or more bytes
* of data, you're ok.
*
* The following code attempts to work around this
* problem: if the datagram is less than 38 bytes
* in size (14 bytes ether header, 20 bytes IP header,
* plus 4 bytes of data), we punt and compute the IP
* header checksum by hand. This workaround doesn't
* work very well, however, since it can be fooled
* by things like VLAN tags and IP options that make
* the header sizes/offsets vary.
*/
if (mb_head->m_pkthdr.csum_flags & CSUM_IP) {
if (mb_head->m_pkthdr.len < 38) {
struct ip *ip;
mb_head->m_data += ETHER_HDR_LEN;
ip = mtod(mb_head, struct ip *);
ip->ip_sum = in_cksum(mb_head,
ip->ip_hl << 2);
mb_head->m_data -= ETHER_HDR_LEN;
} else {
txp->tx_cb->ipcb_ip_activation_high =
FXP_IPCB_HARDWAREPARSING_ENABLE;
txp->tx_cb->ipcb_ip_schedule |=
FXP_IPCB_IP_CHECKSUM_ENABLE;
}
}
#endif
}
/*
* Go through each of the mbufs in the chain and initialize
* the transmit buffer descriptors with the physical address
* and size of the mbuf.
*/
error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
mb_head, fxp_dma_map_txbuf, sc, 0);
if (error && error != EFBIG) {
device_printf(sc->dev, "can't map mbuf (error %d)\n",
error);
m_freem(mb_head);
break;
}
if (error) {
struct mbuf *mn;
/*
* We ran out of segments. We have to recopy this
* mbuf chain first. Bail out if we can't get the
* new buffers.
*/
mn = m_defrag(mb_head, M_DONTWAIT);
if (mn == NULL) {
m_freem(mb_head);
break;
} else {
mb_head = mn;
}
error = bus_dmamap_load_mbuf(sc->fxp_mtag, txp->tx_map,
mb_head, fxp_dma_map_txbuf, sc, 0);
if (error) {
device_printf(sc->dev,
"can't map mbuf (error %d)\n", error);
m_freem(mb_head);
break;
}
}
bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
BUS_DMASYNC_PREWRITE);
txp->tx_mbuf = mb_head;
txp->tx_cb->cb_status = 0;
txp->tx_cb->byte_count = 0;
if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
txp->tx_cb->cb_command =
htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
FXP_CB_COMMAND_S);
} else {
txp->tx_cb->cb_command =
htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
/*
* Set a 5 second timer just in case we don't hear
* from the card again.
*/
ifp->if_timer = 5;
}
txp->tx_cb->tx_threshold = tx_threshold;
/*
* Advance the end of list forward.
*/
#ifdef __alpha__
/*
* On platforms which can't access memory in 16-bit
* granularities, we must prevent the card from DMA'ing
* up the status while we update the command field.
* This could cause us to overwrite the completion status.
* XXX This is probably bogus and we're _not_ looking
* for atomicity here.
*/
atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
htole16(FXP_CB_COMMAND_S));
#else
sc->fxp_desc.tx_last->tx_cb->cb_command &=
htole16(~FXP_CB_COMMAND_S);
#endif /*__alpha__*/
sc->fxp_desc.tx_last = txp;
/*
* Advance the beginning of the list forward if there are
* no other packets queued (when nothing is queued, tx_first
* sits on the last TxCB that was sent out).
*/
if (sc->tx_queued == 0)
sc->fxp_desc.tx_first = txp;
sc->tx_queued++;
/*
* Pass packet to bpf if there is a listener.
*/
BPF_MTAP(ifp, mb_head);
}
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
/*
* We're finished. If we added to the list, issue a RESUME to get DMA
* going again if suspended.
*/
if (txp != NULL) {
fxp_scb_wait(sc);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
}
}
#ifdef DEVICE_POLLING
static poll_handler_t fxp_poll;
static void
fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct fxp_softc *sc = ifp->if_softc;
u_int8_t statack;
FXP_LOCK(sc);
if (!(ifp->if_capenable & IFCAP_POLLING)) {
ether_poll_deregister(ifp);
cmd = POLL_DEREGISTER;
}
if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
FXP_UNLOCK(sc);
return;
}
statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
FXP_SCB_STATACK_FR;
if (cmd == POLL_AND_CHECK_STATUS) {
u_int8_t tmp;
tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
if (tmp == 0xff || tmp == 0) {
FXP_UNLOCK(sc);
return; /* nothing to do */
}
tmp &= ~statack;
/* ack what we can */
if (tmp != 0)
CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
statack |= tmp;
}
fxp_intr_body(sc, ifp, statack, count);
FXP_UNLOCK(sc);
}
#endif /* DEVICE_POLLING */
/*
* Process interface interrupts.
*/
static void
fxp_intr(void *xsc)
{
struct fxp_softc *sc = xsc;
struct ifnet *ifp = &sc->sc_if;
u_int8_t statack;
FXP_LOCK(sc);
if (sc->suspended) {
FXP_UNLOCK(sc);
return;
}
#ifdef DEVICE_POLLING
if (ifp->if_flags & IFF_POLLING) {
FXP_UNLOCK(sc);
return;
}
if ((ifp->if_capenable & IFCAP_POLLING) &&
ether_poll_register(fxp_poll, ifp)) {
/* disable interrupts */
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
FXP_UNLOCK(sc);
fxp_poll(ifp, 0, 1);
return;
}
#endif
while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
/*
* It should not be possible to have all bits set; the
* FXP_SCB_INTR_SWI bit always returns 0 on a read. If
* all bits are set, this may indicate that the card has
* been physically ejected, so ignore it.
*/
if (statack == 0xff) {
FXP_UNLOCK(sc);
return;
}
/*
* First ACK all the interrupts in this pass.
*/
CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
fxp_intr_body(sc, ifp, statack, -1);
}
FXP_UNLOCK(sc);
}
static void
fxp_txeof(struct fxp_softc *sc)
{
struct fxp_tx *txp;
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
(le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
txp = txp->tx_next) {
if (txp->tx_mbuf != NULL) {
bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
m_freem(txp->tx_mbuf);
txp->tx_mbuf = NULL;
/* clear this to reset csum offload bits */
txp->tx_cb->tbd[0].tb_addr = 0;
}
sc->tx_queued--;
}
sc->fxp_desc.tx_first = txp;
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
}
static void
fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, u_int8_t statack,
int count)
{
struct mbuf *m;
struct fxp_rx *rxp;
struct fxp_rfa *rfa;
int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
mtx_assert(&sc->sc_mtx, MA_OWNED);
if (rnr)
fxp_rnr++;
#ifdef DEVICE_POLLING
/* Pick up a deferred RNR condition if `count' ran out last time. */
if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
rnr = 1;
}
#endif
/*
* Free any finished transmit mbuf chains.
*
* Handle the CNA event likt a CXTNO event. It used to
* be that this event (control unit not ready) was not
* encountered, but it is now with the SMPng modifications.
* The exact sequence of events that occur when the interface
* is brought up are different now, and if this event
* goes unhandled, the configuration/rxfilter setup sequence
* can stall for several seconds. The result is that no
* packets go out onto the wire for about 5 to 10 seconds
* after the interface is ifconfig'ed for the first time.
*/
if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
fxp_txeof(sc);
ifp->if_timer = 0;
if (sc->tx_queued == 0) {
if (sc->need_mcsetup)
fxp_mc_setup(sc);
}
/*
* Try to start more packets transmitting.
*/
if (ifp->if_snd.ifq_head != NULL)
fxp_start_body(ifp);
}
/*
* Just return if nothing happened on the receive side.
*/
if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
return;
/*
* Process receiver interrupts. If a no-resource (RNR)
* condition exists, get whatever packets we can and
* re-start the receiver.
*
* When using polling, we do not process the list to completion,
* so when we get an RNR interrupt we must defer the restart
* until we hit the last buffer with the C bit set.
* If we run out of cycles and rfa_headm has the C bit set,
* record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
* that the info will be used in the subsequent polling cycle.
*/
for (;;) {
rxp = sc->fxp_desc.rx_head;
m = rxp->rx_mbuf;
rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
RFA_ALIGNMENT_FUDGE);
bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
BUS_DMASYNC_POSTREAD);
#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
if (count >= 0 && count-- == 0) {
if (rnr) {
/* Defer RNR processing until the next time. */
sc->flags |= FXP_FLAG_DEFERRED_RNR;
rnr = 0;
}
break;
}
#endif /* DEVICE_POLLING */
if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
break;
/*
* Advance head forward.
*/
sc->fxp_desc.rx_head = rxp->rx_next;
/*
* Add a new buffer to the receive chain.
* If this fails, the old buffer is recycled
* instead.
*/
if (fxp_add_rfabuf(sc, rxp) == 0) {
int total_len;
/*
* Fetch packet length (the top 2 bits of
* actual_size are flags set by the controller
* upon completion), and drop the packet in case
* of bogus length or CRC errors.
*/
total_len = le16toh(rfa->actual_size) & 0x3fff;
if (total_len < sizeof(struct ether_header) ||
total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
sc->rfa_size ||
le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
m_freem(m);
continue;
}
/* Do IP checksum checking. */
if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
if (rfa->rfax_csum_sts &
FXP_RFDX_CS_IP_CSUM_BIT_VALID)
m->m_pkthdr.csum_flags |=
CSUM_IP_CHECKED;
if (rfa->rfax_csum_sts &
FXP_RFDX_CS_IP_CSUM_VALID)
m->m_pkthdr.csum_flags |=
CSUM_IP_VALID;
if ((rfa->rfax_csum_sts &
FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
(rfa->rfax_csum_sts &
FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
m->m_pkthdr.len = m->m_len = total_len;
m->m_pkthdr.rcvif = ifp;
/*
* Drop locks before calling if_input() since it
* may re-enter fxp_start() in the netisr case.
* This would result in a lock reversal. Better
* performance might be obtained by chaining all
* packets received, dropping the lock, and then
* calling if_input() on each one.
*/
FXP_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
FXP_LOCK(sc);
}
}
if (rnr) {
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
sc->fxp_desc.rx_head->rx_addr);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
}
}
/*
* Update packet in/out/collision statistics. The i82557 doesn't
* allow you to access these counters without doing a fairly
* expensive DMA to get _all_ of the statistics it maintains, so
* we do this operation here only once per second. The statistics
* counters in the kernel are updated from the previous dump-stats
* DMA and then a new dump-stats DMA is started. The on-chip
* counters are zeroed when the DMA completes. If we can't start
* the DMA immediately, we don't wait - we just prepare to read
* them again next time.
*/
static void
fxp_tick(void *xsc)
{
struct fxp_softc *sc = xsc;
struct ifnet *ifp = &sc->sc_if;
struct fxp_stats *sp = sc->fxp_stats;
int s;
FXP_LOCK(sc);
s = splimp();
bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
ifp->if_opackets += le32toh(sp->tx_good);
ifp->if_collisions += le32toh(sp->tx_total_collisions);
if (sp->rx_good) {
ifp->if_ipackets += le32toh(sp->rx_good);
sc->rx_idle_secs = 0;
} else {
/*
* Receiver's been idle for another second.
*/
sc->rx_idle_secs++;
}
ifp->if_ierrors +=
le32toh(sp->rx_crc_errors) +
le32toh(sp->rx_alignment_errors) +
le32toh(sp->rx_rnr_errors) +
le32toh(sp->rx_overrun_errors);
/*
* If any transmit underruns occured, bump up the transmit
* threshold by another 512 bytes (64 * 8).
*/
if (sp->tx_underruns) {
ifp->if_oerrors += le32toh(sp->tx_underruns);
if (tx_threshold < 192)
tx_threshold += 64;
}
/*
* Release any xmit buffers that have completed DMA. This isn't
* strictly necessary to do here, but it's advantagous for mbufs
* with external storage to be released in a timely manner rather
* than being defered for a potentially long time. This limits
* the delay to a maximum of one second.
*/
fxp_txeof(sc);
/*
* If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
* then assume the receiver has locked up and attempt to clear
* the condition by reprogramming the multicast filter. This is
* a work-around for a bug in the 82557 where the receiver locks
* up if it gets certain types of garbage in the syncronization
* bits prior to the packet header. This bug is supposed to only
* occur in 10Mbps mode, but has been seen to occur in 100Mbps
* mode as well (perhaps due to a 10/100 speed transition).
*/
if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
sc->rx_idle_secs = 0;
fxp_mc_setup(sc);
}
/*
* If there is no pending command, start another stats
* dump. Otherwise punt for now.
*/
if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
/*
* Start another stats dump.
*/
bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
BUS_DMASYNC_PREREAD);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
} else {
/*
* A previous command is still waiting to be accepted.
* Just zero our copy of the stats and wait for the
* next timer event to update them.
*/
sp->tx_good = 0;
sp->tx_underruns = 0;
sp->tx_total_collisions = 0;
sp->rx_good = 0;
sp->rx_crc_errors = 0;
sp->rx_alignment_errors = 0;
sp->rx_rnr_errors = 0;
sp->rx_overrun_errors = 0;
}
if (sc->miibus != NULL)
mii_tick(device_get_softc(sc->miibus));
/*
* Schedule another timeout one second from now.
*/
callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
FXP_UNLOCK(sc);
splx(s);
}
/*
* Stop the interface. Cancels the statistics updater and resets
* the interface.
*/
static void
fxp_stop(struct fxp_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
struct fxp_tx *txp;
int i;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
#ifdef DEVICE_POLLING
ether_poll_deregister(ifp);
#endif
/*
* Cancel stats updater.
*/
callout_stop(&sc->stat_ch);
/*
* Issue software reset, which also unloads the microcode.
*/
sc->flags &= ~FXP_FLAG_UCODE;
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
DELAY(50);
/*
* Release any xmit buffers.
*/
txp = sc->fxp_desc.tx_list;
if (txp != NULL) {
for (i = 0; i < FXP_NTXCB; i++) {
if (txp[i].tx_mbuf != NULL) {
bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
m_freem(txp[i].tx_mbuf);
txp[i].tx_mbuf = NULL;
/* clear this to reset csum offload bits */
txp[i].tx_cb->tbd[0].tb_addr = 0;
}
}
}
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
sc->tx_queued = 0;
}
/*
* Watchdog/transmission transmit timeout handler. Called when a
* transmission is started on the interface, but no interrupt is
* received before the timeout. This usually indicates that the
* card has wedged for some reason.
*/
static void
fxp_watchdog(struct ifnet *ifp)
{
struct fxp_softc *sc = ifp->if_softc;
FXP_LOCK(sc);
device_printf(sc->dev, "device timeout\n");
ifp->if_oerrors++;
fxp_init_body(sc);
FXP_UNLOCK(sc);
}
/*
* Acquire locks and then call the real initialization function. This
* is necessary because ether_ioctl() calls if_init() and this would
* result in mutex recursion if the mutex was held.
*/
static void
fxp_init(void *xsc)
{
struct fxp_softc *sc = xsc;
FXP_LOCK(sc);
fxp_init_body(sc);
FXP_UNLOCK(sc);
}
/*
* Perform device initialization. This routine must be called with the
* softc lock held.
*/
static void
fxp_init_body(struct fxp_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
struct fxp_cb_config *cbp;
struct fxp_cb_ias *cb_ias;
struct fxp_cb_tx *tcbp;
struct fxp_tx *txp;
struct fxp_cb_mcs *mcsp;
int i, prm, s;
mtx_assert(&sc->sc_mtx, MA_OWNED);
s = splimp();
/*
* Cancel any pending I/O
*/
fxp_stop(sc);
prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
/*
* Initialize base of CBL and RFA memory. Loading with zero
* sets it up for regular linear addressing.
*/
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
fxp_scb_wait(sc);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
/*
* Initialize base of dump-stats buffer.
*/
fxp_scb_wait(sc);
bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
/*
* Attempt to load microcode if requested.
*/
if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
fxp_load_ucode(sc);
/*
* Initialize the multicast address list.
*/
if (fxp_mc_addrs(sc)) {
mcsp = sc->mcsp;
mcsp->cb_status = 0;
mcsp->cb_command =
htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
mcsp->link_addr = 0xffffffff;
/*
* Start the multicast setup command.
*/
fxp_scb_wait(sc);
bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
BUS_DMASYNC_POSTWRITE);
}
/*
* We temporarily use memory that contains the TxCB list to
* construct the config CB. The TxCB list memory is rebuilt
* later.
*/
cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
/*
* This bcopy is kind of disgusting, but there are a bunch of must be
* zero and must be one bits in this structure and this is the easiest
* way to initialize them all to proper values.
*/
bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
cbp->cb_status = 0;
cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
FXP_CB_COMMAND_EL);
cbp->link_addr = 0xffffffff; /* (no) next command */
cbp->byte_count = sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
cbp->type_enable = 0; /* actually reserved */
cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
cbp->dma_mbce = 0; /* (disable) dma max counters */
cbp->late_scb = 0; /* (don't) defer SCB update */
cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */
cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
cbp->ci_int = 1; /* interrupt on CU idle */
cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
cbp->ext_stats_dis = 1; /* disable extended counters */
cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
cbp->save_bf = sc->revision == FXP_REV_82557 ? 1 : prm;
cbp->disc_short_rx = !prm; /* discard short packets */
cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */
cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
cbp->ext_rfa = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
cbp->csma_dis = 0; /* (don't) disable link */
cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */
cbp->nsai = 1; /* (don't) disable source addr insert */
cbp->preamble_length = 2; /* (7 byte) preamble */
cbp->loopback = 0; /* (don't) loopback */
cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
cbp->linear_pri_mode = 0; /* (wait after xmit only) */
cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
cbp->promiscuous = prm; /* promiscuous mode */
cbp->bcast_disable = 0; /* (don't) disable broadcasts */
cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
cbp->stripping = !prm; /* truncate rx packet to byte count */
cbp->padding = 1; /* (do) pad short tx packets */
cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
cbp->ia_wake_en = 0; /* (don't) wake up on address match */
cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
/* must set wake_en in PMCSR also */
cbp->force_fdx = 0; /* (don't) force full duplex */
cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
cbp->multi_ia = 0; /* (don't) accept multiple IAs */
cbp->mc_all = sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
cbp->gamla_rx = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
if (fxp_noflow || sc->revision == FXP_REV_82557) {
/*
* The 82557 has no hardware flow control, the values
* below are the defaults for the chip.
*/
cbp->fc_delay_lsb = 0;
cbp->fc_delay_msb = 0x40;
cbp->pri_fc_thresh = 3;
cbp->tx_fc_dis = 0;
cbp->rx_fc_restop = 0;
cbp->rx_fc_restart = 0;
cbp->fc_filter = 0;
cbp->pri_fc_loc = 1;
} else {
cbp->fc_delay_lsb = 0x1f;
cbp->fc_delay_msb = 0x01;
cbp->pri_fc_thresh = 3;
cbp->tx_fc_dis = 0; /* enable transmit FC */
cbp->rx_fc_restop = 1; /* enable FC restop frames */
cbp->rx_fc_restart = 1; /* enable FC restart frames */
cbp->fc_filter = !prm; /* drop FC frames to host */
cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
}
/*
* Start the config command/DMA.
*/
fxp_scb_wait(sc);
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
/*
* Now initialize the station address. Temporarily use the TxCB
* memory area like we did above for the config CB.
*/
cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
cb_ias->cb_status = 0;
cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
cb_ias->link_addr = 0xffffffff;
bcopy(sc->arpcom.ac_enaddr, cb_ias->macaddr,
sizeof(sc->arpcom.ac_enaddr));
/*
* Start the IAS (Individual Address Setup) command/DMA.
*/
fxp_scb_wait(sc);
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
/*
* Initialize transmit control block (TxCB) list.
*/
txp = sc->fxp_desc.tx_list;
tcbp = sc->fxp_desc.cbl_list;
bzero(tcbp, FXP_TXCB_SZ);
for (i = 0; i < FXP_NTXCB; i++) {
txp[i].tx_cb = tcbp + i;
txp[i].tx_mbuf = NULL;
tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
(((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
if (sc->flags & FXP_FLAG_EXT_TXCB)
tcbp[i].tbd_array_addr =
htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
else
tcbp[i].tbd_array_addr =
htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
}
/*
* Set the suspend flag on the first TxCB and start the control
* unit. It will execute the NOP and then suspend.
*/
tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
sc->tx_queued = 1;
fxp_scb_wait(sc);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
/*
* Initialize receiver buffer area - RFA.
*/
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
/*
* Set current media.
*/
if (sc->miibus != NULL)
mii_mediachg(device_get_softc(sc->miibus));
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/*
* Enable interrupts.
*/
#ifdef DEVICE_POLLING
/*
* ... but only do that if we are not polling. And because (presumably)
* the default is interrupts on, we need to disable them explicitly!
*/
if ( ifp->if_flags & IFF_POLLING )
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
else
#endif /* DEVICE_POLLING */
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
/*
* Start stats updater.
*/
callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
splx(s);
}
static int
fxp_serial_ifmedia_upd(struct ifnet *ifp)
{
return (0);
}
static void
fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
}
/*
* Change media according to request.
*/
static int
fxp_ifmedia_upd(struct ifnet *ifp)
{
struct fxp_softc *sc = ifp->if_softc;
struct mii_data *mii;
mii = device_get_softc(sc->miibus);
mii_mediachg(mii);
return (0);
}
/*
* Notify the world which media we're using.
*/
static void
fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct fxp_softc *sc = ifp->if_softc;
struct mii_data *mii;
mii = device_get_softc(sc->miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
sc->cu_resume_bug = 1;
else
sc->cu_resume_bug = 0;
}
/*
* Add a buffer to the end of the RFA buffer list.
* Return 0 if successful, 1 for failure. A failure results in
* adding the 'oldm' (if non-NULL) on to the end of the list -
* tossing out its old contents and recycling it.
* The RFA struct is stuck at the beginning of mbuf cluster and the
* data pointer is fixed up to point just past it.
*/
static int
fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
{
struct mbuf *m;
struct fxp_rfa *rfa, *p_rfa;
struct fxp_rx *p_rx;
bus_dmamap_t tmp_map;
int error;
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
/*
* Move the data pointer up so that the incoming data packet
* will be 32-bit aligned.
*/
m->m_data += RFA_ALIGNMENT_FUDGE;
/*
* Get a pointer to the base of the mbuf cluster and move
* data start past it.
*/
rfa = mtod(m, struct fxp_rfa *);
m->m_data += sc->rfa_size;
rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
rfa->rfa_status = 0;
rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
rfa->actual_size = 0;
/*
* Initialize the rest of the RFA. Note that since the RFA
* is misaligned, we cannot store values directly. We're thus
* using the le32enc() function which handles endianness and
* is also alignment-safe.
*/
le32enc(&rfa->link_addr, 0xffffffff);
le32enc(&rfa->rbd_addr, 0xffffffff);
/* Map the RFA into DMA memory. */
error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
&rxp->rx_addr, 0);
if (error) {
m_freem(m);
return (error);
}
bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
tmp_map = sc->spare_map;
sc->spare_map = rxp->rx_map;
rxp->rx_map = tmp_map;
rxp->rx_mbuf = m;
bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/*
* If there are other buffers already on the list, attach this
* one to the end by fixing up the tail to point to this one.
*/
if (sc->fxp_desc.rx_head != NULL) {
p_rx = sc->fxp_desc.rx_tail;
p_rfa = (struct fxp_rfa *)
(p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
p_rx->rx_next = rxp;
le32enc(&p_rfa->link_addr, rxp->rx_addr);
p_rfa->rfa_control = 0;
bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
BUS_DMASYNC_PREWRITE);
} else {
rxp->rx_next = NULL;
sc->fxp_desc.rx_head = rxp;
}
sc->fxp_desc.rx_tail = rxp;
return (0);
}
static volatile int
fxp_miibus_readreg(device_t dev, int phy, int reg)
{
struct fxp_softc *sc = device_get_softc(dev);
int count = 10000;
int value;
CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
(FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
&& count--)
DELAY(10);
if (count <= 0)
device_printf(dev, "fxp_miibus_readreg: timed out\n");
return (value & 0xffff);
}
static void
fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
{
struct fxp_softc *sc = device_get_softc(dev);
int count = 10000;
CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
(FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
(value & 0xffff));
while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
count--)
DELAY(10);
if (count <= 0)
device_printf(dev, "fxp_miibus_writereg: timed out\n");
}
static int
fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct fxp_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
struct mii_data *mii;
int s, error = 0;
/*
* Detaching causes us to call ioctl with the mutex owned. Preclude
* that by saying we're busy if the lock is already held.
*/
if (mtx_owned(&sc->sc_mtx))
return (EBUSY);
FXP_LOCK(sc);
s = splimp();
switch (command) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_ALLMULTI)
sc->flags |= FXP_FLAG_ALL_MCAST;
else
sc->flags &= ~FXP_FLAG_ALL_MCAST;
/*
* If interface is marked up and not running, then start it.
* If it is marked down and running, stop it.
* XXX If it's up then re-initialize it. This is so flags
* such as IFF_PROMISC are handled.
*/
if (ifp->if_flags & IFF_UP) {
fxp_init_body(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
fxp_stop(sc);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if (ifp->if_flags & IFF_ALLMULTI)
sc->flags |= FXP_FLAG_ALL_MCAST;
else
sc->flags &= ~FXP_FLAG_ALL_MCAST;
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
fxp_mc_setup(sc);
/*
* fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
* again rather than else {}.
*/
if (sc->flags & FXP_FLAG_ALL_MCAST)
fxp_init_body(sc);
error = 0;
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
if (sc->miibus != NULL) {
mii = device_get_softc(sc->miibus);
error = ifmedia_ioctl(ifp, ifr,
&mii->mii_media, command);
} else {
error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
}
break;
case SIOCSIFCAP:
ifp->if_capenable &= ~IFCAP_POLLING;
ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
break;
default:
/*
* ether_ioctl() will eventually call fxp_start() which
* will result in mutex recursion so drop it first.
*/
FXP_UNLOCK(sc);
error = ether_ioctl(ifp, command, data);
}
if (mtx_owned(&sc->sc_mtx))
FXP_UNLOCK(sc);
splx(s);
return (error);
}
/*
* Fill in the multicast address list and return number of entries.
*/
static int
fxp_mc_addrs(struct fxp_softc *sc)
{
struct fxp_cb_mcs *mcsp = sc->mcsp;
struct ifnet *ifp = &sc->sc_if;
struct ifmultiaddr *ifma;
int nmcasts;
nmcasts = 0;
if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
#if __FreeBSD_version < 500000
LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
#else
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
#endif
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
if (nmcasts >= MAXMCADDR) {
sc->flags |= FXP_FLAG_ALL_MCAST;
nmcasts = 0;
break;
}
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
&sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
nmcasts++;
}
}
mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
return (nmcasts);
}
/*
* Program the multicast filter.
*
* We have an artificial restriction that the multicast setup command
* must be the first command in the chain, so we take steps to ensure
* this. By requiring this, it allows us to keep up the performance of
* the pre-initialized command ring (esp. link pointers) by not actually
* inserting the mcsetup command in the ring - i.e. its link pointer
* points to the TxCB ring, but the mcsetup descriptor itself is not part
* of it. We then can do 'CU_START' on the mcsetup descriptor and have it
* lead into the regular TxCB ring when it completes.
*
* This function must be called at splimp.
*/
static void
fxp_mc_setup(struct fxp_softc *sc)
{
struct fxp_cb_mcs *mcsp = sc->mcsp;
struct ifnet *ifp = &sc->sc_if;
struct fxp_tx *txp;
int count;
/*
* If there are queued commands, we must wait until they are all
* completed. If we are already waiting, then add a NOP command
* with interrupt option so that we're notified when all commands
* have been completed - fxp_start() ensures that no additional
* TX commands will be added when need_mcsetup is true.
*/
if (sc->tx_queued) {
/*
* need_mcsetup will be true if we are already waiting for the
* NOP command to be completed (see below). In this case, bail.
*/
if (sc->need_mcsetup)
return;
sc->need_mcsetup = 1;
/*
* Add a NOP command with interrupt so that we are notified
* when all TX commands have been processed.
*/
txp = sc->fxp_desc.tx_last->tx_next;
txp->tx_mbuf = NULL;
txp->tx_cb->cb_status = 0;
txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
/*
* Advance the end of list forward.
*/
sc->fxp_desc.tx_last->tx_cb->cb_command &=
htole16(~FXP_CB_COMMAND_S);
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
sc->fxp_desc.tx_last = txp;
sc->tx_queued++;
/*
* Issue a resume in case the CU has just suspended.
*/
fxp_scb_wait(sc);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
/*
* Set a 5 second timer just in case we don't hear from the
* card again.
*/
ifp->if_timer = 5;
return;
}
sc->need_mcsetup = 0;
/*
* Initialize multicast setup descriptor.
*/
mcsp->cb_status = 0;
mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
txp = &sc->fxp_desc.mcs_tx;
txp->tx_mbuf = NULL;
txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
txp->tx_next = sc->fxp_desc.tx_list;
(void) fxp_mc_addrs(sc);
sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
sc->tx_queued = 1;
/*
* Wait until command unit is not active. This should never
* be the case when nothing is queued, but make sure anyway.
*/
count = 100;
while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
FXP_SCB_CUS_ACTIVE && --count)
DELAY(10);
if (count == 0) {
device_printf(sc->dev, "command queue timeout\n");
return;
}
/*
* Start the multicast setup command.
*/
fxp_scb_wait(sc);
bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
ifp->if_timer = 2;
return;
}
static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
#define UCODE(x) x, sizeof(x)
struct ucode {
u_int32_t revision;
u_int32_t *ucode;
int length;
u_short int_delay_offset;
u_short bundle_max_offset;
} ucode_table[] = {
{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
{ FXP_REV_82550, UCODE(fxp_ucode_d102),
D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
{ 0, NULL, 0, 0, 0 }
};
static void
fxp_load_ucode(struct fxp_softc *sc)
{
struct ucode *uc;
struct fxp_cb_ucode *cbp;
for (uc = ucode_table; uc->ucode != NULL; uc++)
if (sc->revision == uc->revision)
break;
if (uc->ucode == NULL)
return;
cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
cbp->cb_status = 0;
cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
cbp->link_addr = 0xffffffff; /* (no) next command */
memcpy(cbp->ucode, uc->ucode, uc->length);
if (uc->int_delay_offset)
*(u_int16_t *)&cbp->ucode[uc->int_delay_offset] =
htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
if (uc->bundle_max_offset)
*(u_int16_t *)&cbp->ucode[uc->bundle_max_offset] =
htole16(sc->tunable_bundle_max);
/*
* Download the ucode to the chip.
*/
fxp_scb_wait(sc);
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
device_printf(sc->dev,
"Microcode loaded, int_delay: %d usec bundle_max: %d\n",
sc->tunable_int_delay,
uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
sc->flags |= FXP_FLAG_UCODE;
}
static int
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
{
int error, value;
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || !req->newptr)
return (error);
if (value < low || value > high)
return (EINVAL);
*(int *)arg1 = value;
return (0);
}
/*
* Interrupt delay is expressed in microseconds, a multiplier is used
* to convert this to the appropriate clock ticks before using.
*/
static int
sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
}
static int
sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
}