1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-20 11:11:24 +00:00
freebsd/sys/dev/usb/if_cue.c
2001-08-22 05:33:57 +00:00

1233 lines
27 KiB
C

/*
* Copyright (c) 1997, 1998, 1999, 2000
* Bill Paul <wpaul@ee.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* CATC USB-EL1210A USB to ethernet driver. Used in the CATC Netmate
* adapters and others.
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The CATC USB-EL1210A provides USB ethernet support at 10Mbps. The
* RX filter uses a 512-bit multicast hash table, single perfect entry
* for the station address, and promiscuous mode. Unlike the ADMtek
* and KLSI chips, the CATC ASIC supports read and write combining
* mode where multiple packets can be transfered using a single bulk
* transaction, which helps performance a great deal.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/bpf.h>
#include <sys/bus.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/usb_ethersubr.h>
#include <dev/usb/if_cuereg.h>
#ifndef lint
static const char rcsid[] =
"$FreeBSD$";
#endif
/*
* Various supported device vendors/products.
*/
Static struct cue_type cue_devs[] = {
{ USB_VENDOR_CATC, USB_PRODUCT_CATC_NETMATE },
{ USB_VENDOR_CATC, USB_PRODUCT_CATC_NETMATE2 },
{ USB_VENDOR_SMARTBRIDGES, USB_PRODUCT_SMARTBRIDGES_SMARTLINK },
{ 0, 0 }
};
Static struct usb_qdat cue_qdat;
Static int cue_match __P((device_t));
Static int cue_attach __P((device_t));
Static int cue_detach __P((device_t));
Static int cue_tx_list_init __P((struct cue_softc *));
Static int cue_rx_list_init __P((struct cue_softc *));
Static int cue_newbuf __P((struct cue_softc *, struct cue_chain *,
struct mbuf *));
Static int cue_encap __P((struct cue_softc *, struct mbuf *, int));
Static void cue_rxeof __P((usbd_xfer_handle,
usbd_private_handle, usbd_status));
Static void cue_txeof __P((usbd_xfer_handle,
usbd_private_handle, usbd_status));
Static void cue_tick __P((void *));
Static void cue_rxstart __P((struct ifnet *));
Static void cue_start __P((struct ifnet *));
Static int cue_ioctl __P((struct ifnet *, u_long, caddr_t));
Static void cue_init __P((void *));
Static void cue_stop __P((struct cue_softc *));
Static void cue_watchdog __P((struct ifnet *));
Static void cue_shutdown __P((device_t));
Static void cue_setmulti __P((struct cue_softc *));
Static u_int32_t cue_crc __P((caddr_t));
Static void cue_reset __P((struct cue_softc *));
Static int csr_read_1 __P((struct cue_softc *, int));
Static int csr_write_1 __P((struct cue_softc *, int, int));
Static int csr_read_2 __P((struct cue_softc *, int));
#ifdef notdef
Static int csr_write_2 __P((struct cue_softc *, int, int));
#endif
Static int cue_mem __P((struct cue_softc *, int,
int, void *, int));
Static int cue_getmac __P((struct cue_softc *, void *));
Static device_method_t cue_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, cue_match),
DEVMETHOD(device_attach, cue_attach),
DEVMETHOD(device_detach, cue_detach),
DEVMETHOD(device_shutdown, cue_shutdown),
{ 0, 0 }
};
Static driver_t cue_driver = {
"cue",
cue_methods,
sizeof(struct cue_softc)
};
Static devclass_t cue_devclass;
DRIVER_MODULE(if_cue, uhub, cue_driver, cue_devclass, usbd_driver_load, 0);
MODULE_DEPEND(if_cue, usb, 1, 1, 1);
#define CUE_SETBIT(sc, reg, x) \
csr_write_1(sc, reg, csr_read_1(sc, reg) | (x))
#define CUE_CLRBIT(sc, reg, x) \
csr_write_1(sc, reg, csr_read_1(sc, reg) & ~(x))
Static int csr_read_1(sc, reg)
struct cue_softc *sc;
int reg;
{
usb_device_request_t req;
usbd_status err;
u_int8_t val = 0;
if (sc->cue_gone)
return(0);
CUE_LOCK(sc);
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = CUE_CMD_READREG;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, 1);
err = usbd_do_request_flags(sc->cue_udev,
&req, &val, USBD_NO_TSLEEP, NULL);
CUE_UNLOCK(sc);
if (err)
return(0);
return(val);
}
Static int csr_read_2(sc, reg)
struct cue_softc *sc;
int reg;
{
usb_device_request_t req;
usbd_status err;
u_int16_t val = 0;
if (sc->cue_gone)
return(0);
CUE_LOCK(sc);
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = CUE_CMD_READREG;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, 2);
err = usbd_do_request_flags(sc->cue_udev,
&req, &val, USBD_NO_TSLEEP, NULL);
CUE_UNLOCK(sc);
if (err)
return(0);
return(val);
}
Static int csr_write_1(sc, reg, val)
struct cue_softc *sc;
int reg, val;
{
usb_device_request_t req;
usbd_status err;
if (sc->cue_gone)
return(0);
CUE_LOCK(sc);
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = CUE_CMD_WRITEREG;
USETW(req.wValue, val);
USETW(req.wIndex, reg);
USETW(req.wLength, 0);
err = usbd_do_request_flags(sc->cue_udev,
&req, &val, USBD_NO_TSLEEP, NULL);
CUE_UNLOCK(sc);
if (err)
return(-1);
return(0);
}
#ifdef notdef
Static int csr_write_2(sc, reg, val)
struct cue_softc *sc;
int reg, val;
{
usb_device_request_t req;
usbd_status err;
if (sc->cue_gone)
return(0);
CUE_LOCK(sc);
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = CUE_CMD_WRITEREG;
USETW(req.wValue, val);
USETW(req.wIndex, reg);
USETW(req.wLength, 0);
err = usbd_do_request_flags(sc->cue_udev,
&req, &val, USBD_NO_TSLEEP, NULL);
CUE_UNLOCK(sc);
if (err)
return(-1);
return(0);
}
#endif
Static int cue_mem(sc, cmd, addr, buf, len)
struct cue_softc *sc;
int cmd;
int addr;
void *buf;
int len;
{
usb_device_request_t req;
usbd_status err;
if (sc->cue_gone)
return(0);
CUE_LOCK(sc);
if (cmd == CUE_CMD_READSRAM)
req.bmRequestType = UT_READ_VENDOR_DEVICE;
else
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = cmd;
USETW(req.wValue, 0);
USETW(req.wIndex, addr);
USETW(req.wLength, len);
err = usbd_do_request_flags(sc->cue_udev,
&req, &buf, USBD_NO_TSLEEP, NULL);
CUE_UNLOCK(sc);
if (err)
return(-1);
return(0);
}
Static int cue_getmac(sc, buf)
struct cue_softc *sc;
void *buf;
{
usb_device_request_t req;
usbd_status err;
if (sc->cue_gone)
return(0);
CUE_LOCK(sc);
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = CUE_CMD_GET_MACADDR;
USETW(req.wValue, 0);
USETW(req.wIndex, 0);
USETW(req.wLength, ETHER_ADDR_LEN);
err = usbd_do_request_flags(sc->cue_udev,
&req, buf, USBD_NO_TSLEEP, NULL);
CUE_UNLOCK(sc);
if (err) {
printf("cue%d: read MAC address failed\n", sc->cue_unit);
return(-1);
}
return(0);
}
#define CUE_POLY 0xEDB88320
#define CUE_BITS 9
Static u_int32_t cue_crc(addr)
caddr_t addr;
{
u_int32_t idx, bit, data, crc;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (idx = 0; idx < 6; idx++) {
for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
crc = (crc >> 1) ^ (((crc ^ data) & 1) ? CUE_POLY : 0);
}
return (crc & ((1 << CUE_BITS) - 1));
}
Static void cue_setmulti(sc)
struct cue_softc *sc;
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
u_int32_t h = 0, i;
ifp = &sc->arpcom.ac_if;
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
for (i = 0; i < CUE_MCAST_TABLE_LEN; i++)
sc->cue_mctab[i] = 0xFF;
cue_mem(sc, CUE_CMD_WRITESRAM, CUE_MCAST_TABLE_ADDR,
&sc->cue_mctab, CUE_MCAST_TABLE_LEN);
return;
}
/* first, zot all the existing hash bits */
for (i = 0; i < CUE_MCAST_TABLE_LEN; i++)
sc->cue_mctab[i] = 0;
/* now program new ones */
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = cue_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
sc->cue_mctab[h >> 3] |= 1 << (h & 0x7);
}
/*
* Also include the broadcast address in the filter
* so we can receive broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST) {
h = cue_crc(etherbroadcastaddr);
sc->cue_mctab[h >> 3] |= 1 << (h & 0x7);
}
cue_mem(sc, CUE_CMD_WRITESRAM, CUE_MCAST_TABLE_ADDR,
&sc->cue_mctab, CUE_MCAST_TABLE_LEN);
return;
}
Static void cue_reset(sc)
struct cue_softc *sc;
{
usb_device_request_t req;
usbd_status err;
if (sc->cue_gone)
return;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = CUE_CMD_RESET;
USETW(req.wValue, 0);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
err = usbd_do_request_flags(sc->cue_udev,
&req, NULL, USBD_NO_TSLEEP, NULL);
if (err)
printf("cue%d: reset failed\n", sc->cue_unit);
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
return;
}
/*
* Probe for a Pegasus chip.
*/
USB_MATCH(cue)
{
USB_MATCH_START(cue, uaa);
struct cue_type *t;
if (!uaa->iface)
return(UMATCH_NONE);
t = cue_devs;
while(t->cue_vid) {
if (uaa->vendor == t->cue_vid &&
uaa->product == t->cue_did) {
return(UMATCH_VENDOR_PRODUCT);
}
t++;
}
return(UMATCH_NONE);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
USB_ATTACH(cue)
{
USB_ATTACH_START(cue, sc, uaa);
char devinfo[1024];
u_char eaddr[ETHER_ADDR_LEN];
struct ifnet *ifp;
usb_interface_descriptor_t *id;
usb_endpoint_descriptor_t *ed;
int i;
bzero(sc, sizeof(struct cue_softc));
sc->cue_iface = uaa->iface;
sc->cue_udev = uaa->device;
sc->cue_unit = device_get_unit(self);
if (usbd_set_config_no(sc->cue_udev, CUE_CONFIG_NO, 0)) {
printf("cue%d: getting interface handle failed\n",
sc->cue_unit);
USB_ATTACH_ERROR_RETURN;
}
id = usbd_get_interface_descriptor(uaa->iface);
usbd_devinfo(uaa->device, 0, devinfo);
device_set_desc_copy(self, devinfo);
printf("%s: %s\n", USBDEVNAME(self), devinfo);
/* Find endpoints. */
for (i = 0; i < id->bNumEndpoints; i++) {
ed = usbd_interface2endpoint_descriptor(uaa->iface, i);
if (!ed) {
printf("cue%d: couldn't get ep %d\n",
sc->cue_unit, i);
USB_ATTACH_ERROR_RETURN;
}
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
(ed->bmAttributes & UE_XFERTYPE) == UE_BULK) {
sc->cue_ed[CUE_ENDPT_RX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
(ed->bmAttributes & UE_XFERTYPE) == UE_BULK) {
sc->cue_ed[CUE_ENDPT_TX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
(ed->bmAttributes & UE_XFERTYPE) == UE_INTERRUPT) {
sc->cue_ed[CUE_ENDPT_INTR] = ed->bEndpointAddress;
}
}
mtx_init(&sc->cue_mtx, device_get_nameunit(self), MTX_DEF |
MTX_RECURSE);
CUE_LOCK(sc);
#ifdef notdef
/* Reset the adapter. */
cue_reset(sc);
#endif
/*
* Get station address.
*/
cue_getmac(sc, &eaddr);
/*
* A CATC chip was detected. Inform the world.
*/
printf("cue%d: Ethernet address: %6D\n", sc->cue_unit, eaddr, ":");
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = sc->cue_unit;
ifp->if_name = "cue";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = cue_ioctl;
ifp->if_output = ether_output;
ifp->if_start = cue_start;
ifp->if_watchdog = cue_watchdog;
ifp->if_init = cue_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
cue_qdat.ifp = ifp;
cue_qdat.if_rxstart = cue_rxstart;
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
callout_handle_init(&sc->cue_stat_ch);
usb_register_netisr();
sc->cue_gone = 0;
CUE_UNLOCK(sc);
USB_ATTACH_SUCCESS_RETURN;
}
Static int cue_detach(dev)
device_t dev;
{
struct cue_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
CUE_LOCK(sc);
ifp = &sc->arpcom.ac_if;
sc->cue_gone = 1;
untimeout(cue_tick, sc, sc->cue_stat_ch);
ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
if (sc->cue_ep[CUE_ENDPT_TX] != NULL)
usbd_abort_pipe(sc->cue_ep[CUE_ENDPT_TX]);
if (sc->cue_ep[CUE_ENDPT_RX] != NULL)
usbd_abort_pipe(sc->cue_ep[CUE_ENDPT_RX]);
if (sc->cue_ep[CUE_ENDPT_INTR] != NULL)
usbd_abort_pipe(sc->cue_ep[CUE_ENDPT_INTR]);
CUE_UNLOCK(sc);
mtx_destroy(&sc->cue_mtx);
return(0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
Static int cue_newbuf(sc, c, m)
struct cue_softc *sc;
struct cue_chain *c;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("cue%d: no memory for rx list "
"-- packet dropped!\n", sc->cue_unit);
return(ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
printf("cue%d: no memory for rx list "
"-- packet dropped!\n", sc->cue_unit);
m_freem(m_new);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
m_adj(m_new, ETHER_ALIGN);
c->cue_mbuf = m_new;
return(0);
}
Static int cue_rx_list_init(sc)
struct cue_softc *sc;
{
struct cue_cdata *cd;
struct cue_chain *c;
int i;
cd = &sc->cue_cdata;
for (i = 0; i < CUE_RX_LIST_CNT; i++) {
c = &cd->cue_rx_chain[i];
c->cue_sc = sc;
c->cue_idx = i;
if (cue_newbuf(sc, c, NULL) == ENOBUFS)
return(ENOBUFS);
if (c->cue_xfer == NULL) {
c->cue_xfer = usbd_alloc_xfer(sc->cue_udev);
if (c->cue_xfer == NULL)
return(ENOBUFS);
}
}
return(0);
}
Static int cue_tx_list_init(sc)
struct cue_softc *sc;
{
struct cue_cdata *cd;
struct cue_chain *c;
int i;
cd = &sc->cue_cdata;
for (i = 0; i < CUE_TX_LIST_CNT; i++) {
c = &cd->cue_tx_chain[i];
c->cue_sc = sc;
c->cue_idx = i;
c->cue_mbuf = NULL;
if (c->cue_xfer == NULL) {
c->cue_xfer = usbd_alloc_xfer(sc->cue_udev);
if (c->cue_xfer == NULL)
return(ENOBUFS);
}
c->cue_buf = malloc(CUE_BUFSZ, M_USBDEV, M_NOWAIT);
if (c->cue_buf == NULL)
return(ENOBUFS);
}
return(0);
}
Static void cue_rxstart(ifp)
struct ifnet *ifp;
{
struct cue_softc *sc;
struct cue_chain *c;
sc = ifp->if_softc;
CUE_LOCK(sc);
c = &sc->cue_cdata.cue_rx_chain[sc->cue_cdata.cue_rx_prod];
if (cue_newbuf(sc, c, NULL) == ENOBUFS) {
ifp->if_ierrors++;
CUE_UNLOCK(sc);
return;
}
/* Setup new transfer. */
usbd_setup_xfer(c->cue_xfer, sc->cue_ep[CUE_ENDPT_RX],
c, mtod(c->cue_mbuf, char *), CUE_BUFSZ, USBD_SHORT_XFER_OK,
USBD_NO_TIMEOUT, cue_rxeof);
usbd_transfer(c->cue_xfer);
CUE_UNLOCK(sc);
return;
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
Static void cue_rxeof(xfer, priv, status)
usbd_xfer_handle xfer;
usbd_private_handle priv;
usbd_status status;
{
struct cue_softc *sc;
struct cue_chain *c;
struct mbuf *m;
struct ifnet *ifp;
int total_len = 0;
u_int16_t len;
c = priv;
sc = c->cue_sc;
CUE_LOCK(sc);
ifp = &sc->arpcom.ac_if;
if (!(ifp->if_flags & IFF_RUNNING)) {
CUE_UNLOCK(sc);
return;
}
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
CUE_UNLOCK(sc);
return;
}
printf("cue%d: usb error on rx: %s\n", sc->cue_unit,
usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall(sc->cue_ep[CUE_ENDPT_RX]);
goto done;
}
usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL);
m = c->cue_mbuf;
len = *mtod(m, u_int16_t *);
/* No errors; receive the packet. */
total_len = len;
if (len < sizeof(struct ether_header)) {
ifp->if_ierrors++;
goto done;
}
ifp->if_ipackets++;
m_adj(m, sizeof(u_int16_t));
m->m_pkthdr.rcvif = (struct ifnet *)&cue_qdat;
m->m_pkthdr.len = m->m_len = total_len;
/* Put the packet on the special USB input queue. */
usb_ether_input(m);
CUE_UNLOCK(sc);
return;
done:
/* Setup new transfer. */
usbd_setup_xfer(c->cue_xfer, sc->cue_ep[CUE_ENDPT_RX],
c, mtod(c->cue_mbuf, char *), CUE_BUFSZ, USBD_SHORT_XFER_OK,
USBD_NO_TIMEOUT, cue_rxeof);
usbd_transfer(c->cue_xfer);
CUE_UNLOCK(sc);
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
Static void cue_txeof(xfer, priv, status)
usbd_xfer_handle xfer;
usbd_private_handle priv;
usbd_status status;
{
struct cue_softc *sc;
struct cue_chain *c;
struct ifnet *ifp;
usbd_status err;
c = priv;
sc = c->cue_sc;
CUE_LOCK(sc);
ifp = &sc->arpcom.ac_if;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
CUE_UNLOCK(sc);
return;
}
printf("cue%d: usb error on tx: %s\n", sc->cue_unit,
usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall(sc->cue_ep[CUE_ENDPT_TX]);
CUE_UNLOCK(sc);
return;
}
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
usbd_get_xfer_status(c->cue_xfer, NULL, NULL, NULL, &err);
if (c->cue_mbuf != NULL) {
c->cue_mbuf->m_pkthdr.rcvif = ifp;
usb_tx_done(c->cue_mbuf);
c->cue_mbuf = NULL;
}
if (err)
ifp->if_oerrors++;
else
ifp->if_opackets++;
CUE_UNLOCK(sc);
return;
}
Static void cue_tick(xsc)
void *xsc;
{
struct cue_softc *sc;
struct ifnet *ifp;
sc = xsc;
if (sc == NULL)
return;
CUE_LOCK(sc);
ifp = &sc->arpcom.ac_if;
ifp->if_collisions += csr_read_2(sc, CUE_TX_SINGLECOLL);
ifp->if_collisions += csr_read_2(sc, CUE_TX_MULTICOLL);
ifp->if_collisions += csr_read_2(sc, CUE_TX_EXCESSCOLL);
if (csr_read_2(sc, CUE_RX_FRAMEERR))
ifp->if_ierrors++;
sc->cue_stat_ch = timeout(cue_tick, sc, hz);
CUE_UNLOCK(sc);
return;
}
Static int cue_encap(sc, m, idx)
struct cue_softc *sc;
struct mbuf *m;
int idx;
{
int total_len;
struct cue_chain *c;
usbd_status err;
c = &sc->cue_cdata.cue_tx_chain[idx];
/*
* Copy the mbuf data into a contiguous buffer, leaving two
* bytes at the beginning to hold the frame length.
*/
m_copydata(m, 0, m->m_pkthdr.len, c->cue_buf + 2);
c->cue_mbuf = m;
total_len = m->m_pkthdr.len + 2;
/* The first two bytes are the frame length */
c->cue_buf[0] = (u_int8_t)m->m_pkthdr.len;
c->cue_buf[1] = (u_int8_t)(m->m_pkthdr.len >> 8);
usbd_setup_xfer(c->cue_xfer, sc->cue_ep[CUE_ENDPT_TX],
c, c->cue_buf, total_len, 0, 10000, cue_txeof);
/* Transmit */
err = usbd_transfer(c->cue_xfer);
if (err != USBD_IN_PROGRESS) {
cue_stop(sc);
return(EIO);
}
sc->cue_cdata.cue_tx_cnt++;
return(0);
}
Static void cue_start(ifp)
struct ifnet *ifp;
{
struct cue_softc *sc;
struct mbuf *m_head = NULL;
sc = ifp->if_softc;
CUE_LOCK(sc);
if (ifp->if_flags & IFF_OACTIVE) {
CUE_UNLOCK(sc);
return;
}
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL) {
CUE_UNLOCK(sc);
return;
}
if (cue_encap(sc, m_head, 0)) {
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
CUE_UNLOCK(sc);
return;
}
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, m_head);
ifp->if_flags |= IFF_OACTIVE;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
CUE_UNLOCK(sc);
return;
}
Static void cue_init(xsc)
void *xsc;
{
struct cue_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct cue_chain *c;
usbd_status err;
int i;
if (ifp->if_flags & IFF_RUNNING)
return;
CUE_LOCK(sc);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
#ifdef foo
cue_reset(sc);
#endif
/* Set MAC address */
for (i = 0; i < ETHER_ADDR_LEN; i++)
csr_write_1(sc, CUE_PAR0 - i, sc->arpcom.ac_enaddr[i]);
/* Enable RX logic. */
csr_write_1(sc, CUE_ETHCTL, CUE_ETHCTL_RX_ON|CUE_ETHCTL_MCAST_ON);
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
CUE_SETBIT(sc, CUE_ETHCTL, CUE_ETHCTL_PROMISC);
} else {
CUE_CLRBIT(sc, CUE_ETHCTL, CUE_ETHCTL_PROMISC);
}
/* Init TX ring. */
if (cue_tx_list_init(sc) == ENOBUFS) {
printf("cue%d: tx list init failed\n", sc->cue_unit);
CUE_UNLOCK(sc);
return;
}
/* Init RX ring. */
if (cue_rx_list_init(sc) == ENOBUFS) {
printf("cue%d: rx list init failed\n", sc->cue_unit);
CUE_UNLOCK(sc);
return;
}
/* Load the multicast filter. */
cue_setmulti(sc);
/*
* Set the number of RX and TX buffers that we want
* to reserve inside the ASIC.
*/
csr_write_1(sc, CUE_RX_BUFPKTS, CUE_RX_FRAMES);
csr_write_1(sc, CUE_TX_BUFPKTS, CUE_TX_FRAMES);
/* Set advanced operation modes. */
csr_write_1(sc, CUE_ADVANCED_OPMODES,
CUE_AOP_EMBED_RXLEN|0x01); /* 1 wait state */
/* Program the LED operation. */
csr_write_1(sc, CUE_LEDCTL, CUE_LEDCTL_FOLLOW_LINK);
/* Open RX and TX pipes. */
err = usbd_open_pipe(sc->cue_iface, sc->cue_ed[CUE_ENDPT_RX],
USBD_EXCLUSIVE_USE, &sc->cue_ep[CUE_ENDPT_RX]);
if (err) {
printf("cue%d: open rx pipe failed: %s\n",
sc->cue_unit, usbd_errstr(err));
CUE_UNLOCK(sc);
return;
}
err = usbd_open_pipe(sc->cue_iface, sc->cue_ed[CUE_ENDPT_TX],
USBD_EXCLUSIVE_USE, &sc->cue_ep[CUE_ENDPT_TX]);
if (err) {
printf("cue%d: open tx pipe failed: %s\n",
sc->cue_unit, usbd_errstr(err));
CUE_UNLOCK(sc);
return;
}
/* Start up the receive pipe. */
for (i = 0; i < CUE_RX_LIST_CNT; i++) {
c = &sc->cue_cdata.cue_rx_chain[i];
usbd_setup_xfer(c->cue_xfer, sc->cue_ep[CUE_ENDPT_RX],
c, mtod(c->cue_mbuf, char *), CUE_BUFSZ,
USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, cue_rxeof);
usbd_transfer(c->cue_xfer);
}
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
CUE_UNLOCK(sc);
sc->cue_stat_ch = timeout(cue_tick, sc, hz);
return;
}
Static int cue_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct cue_softc *sc = ifp->if_softc;
int error = 0;
CUE_LOCK(sc);
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->cue_if_flags & IFF_PROMISC)) {
CUE_SETBIT(sc, CUE_ETHCTL, CUE_ETHCTL_PROMISC);
cue_setmulti(sc);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->cue_if_flags & IFF_PROMISC) {
CUE_CLRBIT(sc, CUE_ETHCTL, CUE_ETHCTL_PROMISC);
cue_setmulti(sc);
} else if (!(ifp->if_flags & IFF_RUNNING))
cue_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
cue_stop(sc);
}
sc->cue_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
cue_setmulti(sc);
error = 0;
break;
default:
error = EINVAL;
break;
}
CUE_UNLOCK(sc);
return(error);
}
Static void cue_watchdog(ifp)
struct ifnet *ifp;
{
struct cue_softc *sc;
struct cue_chain *c;
usbd_status stat;
sc = ifp->if_softc;
CUE_LOCK(sc);
ifp->if_oerrors++;
printf("cue%d: watchdog timeout\n", sc->cue_unit);
c = &sc->cue_cdata.cue_tx_chain[0];
usbd_get_xfer_status(c->cue_xfer, NULL, NULL, NULL, &stat);
cue_txeof(c->cue_xfer, c, stat);
if (ifp->if_snd.ifq_head != NULL)
cue_start(ifp);
CUE_UNLOCK(sc);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
Static void cue_stop(sc)
struct cue_softc *sc;
{
usbd_status err;
struct ifnet *ifp;
int i;
CUE_LOCK(sc);
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
csr_write_1(sc, CUE_ETHCTL, 0);
cue_reset(sc);
untimeout(cue_tick, sc, sc->cue_stat_ch);
/* Stop transfers. */
if (sc->cue_ep[CUE_ENDPT_RX] != NULL) {
err = usbd_abort_pipe(sc->cue_ep[CUE_ENDPT_RX]);
if (err) {
printf("cue%d: abort rx pipe failed: %s\n",
sc->cue_unit, usbd_errstr(err));
}
err = usbd_close_pipe(sc->cue_ep[CUE_ENDPT_RX]);
if (err) {
printf("cue%d: close rx pipe failed: %s\n",
sc->cue_unit, usbd_errstr(err));
}
sc->cue_ep[CUE_ENDPT_RX] = NULL;
}
if (sc->cue_ep[CUE_ENDPT_TX] != NULL) {
err = usbd_abort_pipe(sc->cue_ep[CUE_ENDPT_TX]);
if (err) {
printf("cue%d: abort tx pipe failed: %s\n",
sc->cue_unit, usbd_errstr(err));
}
err = usbd_close_pipe(sc->cue_ep[CUE_ENDPT_TX]);
if (err) {
printf("cue%d: close tx pipe failed: %s\n",
sc->cue_unit, usbd_errstr(err));
}
sc->cue_ep[CUE_ENDPT_TX] = NULL;
}
if (sc->cue_ep[CUE_ENDPT_INTR] != NULL) {
err = usbd_abort_pipe(sc->cue_ep[CUE_ENDPT_INTR]);
if (err) {
printf("cue%d: abort intr pipe failed: %s\n",
sc->cue_unit, usbd_errstr(err));
}
err = usbd_close_pipe(sc->cue_ep[CUE_ENDPT_INTR]);
if (err) {
printf("cue%d: close intr pipe failed: %s\n",
sc->cue_unit, usbd_errstr(err));
}
sc->cue_ep[CUE_ENDPT_INTR] = NULL;
}
/* Free RX resources. */
for (i = 0; i < CUE_RX_LIST_CNT; i++) {
if (sc->cue_cdata.cue_rx_chain[i].cue_buf != NULL) {
free(sc->cue_cdata.cue_rx_chain[i].cue_buf, M_USBDEV);
sc->cue_cdata.cue_rx_chain[i].cue_buf = NULL;
}
if (sc->cue_cdata.cue_rx_chain[i].cue_mbuf != NULL) {
m_freem(sc->cue_cdata.cue_rx_chain[i].cue_mbuf);
sc->cue_cdata.cue_rx_chain[i].cue_mbuf = NULL;
}
if (sc->cue_cdata.cue_rx_chain[i].cue_xfer != NULL) {
usbd_free_xfer(sc->cue_cdata.cue_rx_chain[i].cue_xfer);
sc->cue_cdata.cue_rx_chain[i].cue_xfer = NULL;
}
}
/* Free TX resources. */
for (i = 0; i < CUE_TX_LIST_CNT; i++) {
if (sc->cue_cdata.cue_tx_chain[i].cue_buf != NULL) {
free(sc->cue_cdata.cue_tx_chain[i].cue_buf, M_USBDEV);
sc->cue_cdata.cue_tx_chain[i].cue_buf = NULL;
}
if (sc->cue_cdata.cue_tx_chain[i].cue_mbuf != NULL) {
m_freem(sc->cue_cdata.cue_tx_chain[i].cue_mbuf);
sc->cue_cdata.cue_tx_chain[i].cue_mbuf = NULL;
}
if (sc->cue_cdata.cue_tx_chain[i].cue_xfer != NULL) {
usbd_free_xfer(sc->cue_cdata.cue_tx_chain[i].cue_xfer);
sc->cue_cdata.cue_tx_chain[i].cue_xfer = NULL;
}
}
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
CUE_UNLOCK(sc);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
Static void cue_shutdown(dev)
device_t dev;
{
struct cue_softc *sc;
sc = device_get_softc(dev);
CUE_LOCK(sc);
cue_reset(sc);
cue_stop(sc);
CUE_UNLOCK(sc);
return;
}