1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-23 11:18:54 +00:00
freebsd/sys/netatalk/ddp_pcb.c
Robert Watson 2f60f02dc9 Modify netatalk to ensure, and assert, that pcb's remain attached to
sockets as long as the sockets have not been aborted or detached.  Do
not try to free the socket in pru_detach(), since sofree() will do so,
if needed, once pru_detach() returns.

Annotate a bug in ddp_abort(), which fails to free the socket; this
is probably OK as ddp_abort() should never be called, so should
instead be deleted.
2006-03-17 20:40:17 +00:00

399 lines
10 KiB
C

/*-
* Copyright (c) 2004-2005 Robert N. M. Watson
* Copyright (c) 1990,1994 Regents of The University of Michigan.
* All Rights Reserved.
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and without fee is hereby granted,
* provided that the above copyright notice appears in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation, and that the name of The University
* of Michigan not be used in advertising or publicity pertaining to
* distribution of the software without specific, written prior
* permission. This software is supplied as is without expressed or
* implied warranties of any kind.
*
* This product includes software developed by the University of
* California, Berkeley and its contributors.
*
* Research Systems Unix Group
* The University of Michigan
* c/o Wesley Craig
* 535 W. William Street
* Ann Arbor, Michigan
* +1-313-764-2278
* netatalk@umich.edu
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <net/if.h>
#include <net/route.h>
#include <net/netisr.h>
#include <netatalk/at.h>
#include <netatalk/at_var.h>
#include <netatalk/ddp_var.h>
#include <netatalk/ddp_pcb.h>
#include <netatalk/at_extern.h>
struct mtx ddp_list_mtx;
static struct ddpcb *ddp_ports[ ATPORT_LAST ];
struct ddpcb *ddpcb_list = NULL;
void
at_sockaddr(struct ddpcb *ddp, struct sockaddr **addr)
{
/*
* Prevent modification of ddp during copy of addr.
*/
DDP_LOCK_ASSERT(ddp);
*addr = sodupsockaddr((struct sockaddr *)&ddp->ddp_lsat, M_NOWAIT);
}
int
at_pcbsetaddr(struct ddpcb *ddp, struct sockaddr *addr, struct thread *td)
{
struct sockaddr_at lsat, *sat;
struct at_ifaddr *aa;
struct ddpcb *ddpp;
/*
* We read and write both the ddp passed in, and also ddp_ports.
*/
DDP_LIST_XLOCK_ASSERT();
DDP_LOCK_ASSERT(ddp);
if (ddp->ddp_lsat.sat_port != ATADDR_ANYPORT) { /* shouldn't be bound */
return (EINVAL);
}
if (addr != NULL) { /* validate passed address */
sat = (struct sockaddr_at *)addr;
if (sat->sat_family != AF_APPLETALK) {
return (EAFNOSUPPORT);
}
if (sat->sat_addr.s_node != ATADDR_ANYNODE ||
sat->sat_addr.s_net != ATADDR_ANYNET) {
for (aa = at_ifaddr_list; aa != NULL; aa = aa->aa_next) {
if ((sat->sat_addr.s_net == AA_SAT(aa)->sat_addr.s_net) &&
(sat->sat_addr.s_node == AA_SAT(aa)->sat_addr.s_node)) {
break;
}
}
if (!aa) {
return (EADDRNOTAVAIL);
}
}
if (sat->sat_port != ATADDR_ANYPORT) {
if (sat->sat_port < ATPORT_FIRST ||
sat->sat_port >= ATPORT_LAST) {
return (EINVAL);
}
if (sat->sat_port < ATPORT_RESERVED &&
suser(td)) {
return (EACCES);
}
}
} else {
bzero((caddr_t)&lsat, sizeof(struct sockaddr_at));
lsat.sat_len = sizeof(struct sockaddr_at);
lsat.sat_addr.s_node = ATADDR_ANYNODE;
lsat.sat_addr.s_net = ATADDR_ANYNET;
lsat.sat_family = AF_APPLETALK;
sat = &lsat;
}
if (sat->sat_addr.s_node == ATADDR_ANYNODE &&
sat->sat_addr.s_net == ATADDR_ANYNET) {
if (at_ifaddr_list == NULL) {
return (EADDRNOTAVAIL);
}
sat->sat_addr = AA_SAT(at_ifaddr_list)->sat_addr;
}
ddp->ddp_lsat = *sat;
/*
* Choose port.
*/
if (sat->sat_port == ATADDR_ANYPORT) {
for (sat->sat_port = ATPORT_RESERVED;
sat->sat_port < ATPORT_LAST; sat->sat_port++) {
if (ddp_ports[ sat->sat_port - 1 ] == NULL) {
break;
}
}
if (sat->sat_port == ATPORT_LAST) {
return (EADDRNOTAVAIL);
}
ddp->ddp_lsat.sat_port = sat->sat_port;
ddp_ports[ sat->sat_port - 1 ] = ddp;
} else {
for (ddpp = ddp_ports[ sat->sat_port - 1 ]; ddpp;
ddpp = ddpp->ddp_pnext) {
if (ddpp->ddp_lsat.sat_addr.s_net == sat->sat_addr.s_net &&
ddpp->ddp_lsat.sat_addr.s_node == sat->sat_addr.s_node) {
break;
}
}
if (ddpp != NULL) {
return (EADDRINUSE);
}
ddp->ddp_pnext = ddp_ports[ sat->sat_port - 1 ];
ddp_ports[ sat->sat_port - 1 ] = ddp;
if (ddp->ddp_pnext) {
ddp->ddp_pnext->ddp_pprev = ddp;
}
}
return (0);
}
int
at_pcbconnect(struct ddpcb *ddp, struct sockaddr *addr, struct thread *td)
{
struct sockaddr_at *sat = (struct sockaddr_at *)addr;
struct route *ro;
struct at_ifaddr *aa = NULL;
struct ifnet *ifp;
u_short hintnet = 0, net;
DDP_LIST_XLOCK_ASSERT();
DDP_LOCK_ASSERT(ddp);
if (sat->sat_family != AF_APPLETALK) {
return (EAFNOSUPPORT);
}
/*
* Under phase 2, network 0 means "the network". We take "the
* network" to mean the network the control block is bound to.
* If the control block is not bound, there is an error.
*/
if (sat->sat_addr.s_net == ATADDR_ANYNET
&& sat->sat_addr.s_node != ATADDR_ANYNODE) {
if (ddp->ddp_lsat.sat_port == ATADDR_ANYPORT) {
return (EADDRNOTAVAIL);
}
hintnet = ddp->ddp_lsat.sat_addr.s_net;
}
ro = &ddp->ddp_route;
/*
* If we've got an old route for this pcb, check that it is valid.
* If we've changed our address, we may have an old "good looking"
* route here. Attempt to detect it.
*/
if (ro->ro_rt) {
if (hintnet) {
net = hintnet;
} else {
net = sat->sat_addr.s_net;
}
aa = NULL;
if ((ifp = ro->ro_rt->rt_ifp) != NULL) {
for (aa = at_ifaddr_list; aa != NULL; aa = aa->aa_next) {
if (aa->aa_ifp == ifp &&
ntohs(net) >= ntohs(aa->aa_firstnet) &&
ntohs(net) <= ntohs(aa->aa_lastnet)) {
break;
}
}
}
if (aa == NULL || (satosat(&ro->ro_dst)->sat_addr.s_net !=
(hintnet ? hintnet : sat->sat_addr.s_net) ||
satosat(&ro->ro_dst)->sat_addr.s_node !=
sat->sat_addr.s_node)) {
RTFREE(ro->ro_rt);
ro->ro_rt = NULL;
}
}
/*
* If we've got no route for this interface, try to find one.
*/
if (ro->ro_rt == NULL || ro->ro_rt->rt_ifp == NULL) {
ro->ro_dst.sa_len = sizeof(struct sockaddr_at);
ro->ro_dst.sa_family = AF_APPLETALK;
if (hintnet) {
satosat(&ro->ro_dst)->sat_addr.s_net = hintnet;
} else {
satosat(&ro->ro_dst)->sat_addr.s_net = sat->sat_addr.s_net;
}
satosat(&ro->ro_dst)->sat_addr.s_node = sat->sat_addr.s_node;
rtalloc(ro);
}
/*
* Make sure any route that we have has a valid interface.
*/
aa = NULL;
if (ro->ro_rt && (ifp = ro->ro_rt->rt_ifp)) {
for (aa = at_ifaddr_list; aa != NULL; aa = aa->aa_next) {
if (aa->aa_ifp == ifp) {
break;
}
}
}
if (aa == NULL) {
return (ENETUNREACH);
}
ddp->ddp_fsat = *sat;
if (ddp->ddp_lsat.sat_port == ATADDR_ANYPORT) {
return (at_pcbsetaddr(ddp, NULL, td));
}
return (0);
}
void
at_pcbdisconnect(struct ddpcb *ddp)
{
DDP_LOCK_ASSERT(ddp);
ddp->ddp_fsat.sat_addr.s_net = ATADDR_ANYNET;
ddp->ddp_fsat.sat_addr.s_node = ATADDR_ANYNODE;
ddp->ddp_fsat.sat_port = ATADDR_ANYPORT;
}
int
at_pcballoc(struct socket *so)
{
struct ddpcb *ddp;
DDP_LIST_XLOCK_ASSERT();
MALLOC(ddp, struct ddpcb *, sizeof *ddp, M_PCB, M_NOWAIT | M_ZERO);
if (ddp == NULL)
return (ENOBUFS);
DDP_LOCK_INIT(ddp);
ddp->ddp_lsat.sat_port = ATADDR_ANYPORT;
ddp->ddp_socket = so;
so->so_pcb = (caddr_t)ddp;
ddp->ddp_next = ddpcb_list;
ddp->ddp_prev = NULL;
ddp->ddp_pprev = NULL;
ddp->ddp_pnext = NULL;
if (ddpcb_list != NULL) {
ddpcb_list->ddp_prev = ddp;
}
ddpcb_list = ddp;
return(0);
}
void
at_pcbdetach(struct socket *so, struct ddpcb *ddp)
{
/*
* We modify ddp, ddp_ports, and the global list.
*/
DDP_LIST_XLOCK_ASSERT();
DDP_LOCK_ASSERT(ddp);
KASSERT(so->so_pcb != NULL, ("at_pcbdetach: so_pcb == NULL"));
/* XXXRW: Why bother to disconnect it now? */
soisdisconnected(so);
so->so_pcb = NULL;
/* remove ddp from ddp_ports list */
if (ddp->ddp_lsat.sat_port != ATADDR_ANYPORT &&
ddp_ports[ ddp->ddp_lsat.sat_port - 1 ] != NULL) {
if (ddp->ddp_pprev != NULL) {
ddp->ddp_pprev->ddp_pnext = ddp->ddp_pnext;
} else {
ddp_ports[ ddp->ddp_lsat.sat_port - 1 ] = ddp->ddp_pnext;
}
if (ddp->ddp_pnext != NULL) {
ddp->ddp_pnext->ddp_pprev = ddp->ddp_pprev;
}
}
if (ddp->ddp_route.ro_rt) {
RTFREE(ddp->ddp_route.ro_rt);
}
if (ddp->ddp_prev) {
ddp->ddp_prev->ddp_next = ddp->ddp_next;
} else {
ddpcb_list = ddp->ddp_next;
}
if (ddp->ddp_next) {
ddp->ddp_next->ddp_prev = ddp->ddp_prev;
}
DDP_UNLOCK(ddp);
DDP_LOCK_DESTROY(ddp);
FREE(ddp, M_PCB);
}
/*
* For the moment, this just find the pcb with the correct local address.
* In the future, this will actually do some real searching, so we can use
* the sender's address to do de-multiplexing on a single port to many
* sockets (pcbs).
*/
struct ddpcb *
ddp_search(struct sockaddr_at *from, struct sockaddr_at *to,
struct at_ifaddr *aa)
{
struct ddpcb *ddp;
DDP_LIST_SLOCK_ASSERT();
/*
* Check for bad ports.
*/
if (to->sat_port < ATPORT_FIRST || to->sat_port >= ATPORT_LAST) {
return (NULL);
}
/*
* Make sure the local address matches the sent address. What about
* the interface?
*/
for (ddp = ddp_ports[ to->sat_port - 1 ]; ddp; ddp = ddp->ddp_pnext) {
DDP_LOCK(ddp);
/* XXX should we handle 0.YY? */
/* XXXX.YY to socket on destination interface */
if (to->sat_addr.s_net == ddp->ddp_lsat.sat_addr.s_net &&
to->sat_addr.s_node == ddp->ddp_lsat.sat_addr.s_node) {
DDP_UNLOCK(ddp);
break;
}
/* 0.255 to socket on receiving interface */
if (to->sat_addr.s_node == ATADDR_BCAST && (to->sat_addr.s_net == 0 ||
to->sat_addr.s_net == ddp->ddp_lsat.sat_addr.s_net) &&
ddp->ddp_lsat.sat_addr.s_net == AA_SAT(aa)->sat_addr.s_net) {
DDP_UNLOCK(ddp);
break;
}
/* XXXX.0 to socket on destination interface */
if (to->sat_addr.s_net == aa->aa_firstnet &&
to->sat_addr.s_node == 0 &&
ntohs(ddp->ddp_lsat.sat_addr.s_net) >=
ntohs(aa->aa_firstnet) &&
ntohs(ddp->ddp_lsat.sat_addr.s_net) <=
ntohs(aa->aa_lastnet)) {
DDP_UNLOCK(ddp);
break;
}
DDP_UNLOCK(ddp);
}
return (ddp);
}