1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-25 11:37:56 +00:00
freebsd/sys/netinet/in.c
Bruce M Simpson d966841427 The IPv4 code should clean up multicast group state when an interface
goes away. Without this change, it leaks in_multi (and often ether_multi
state) if many clonable interfaces are created and destroyed in quick
succession.

The concept of this fix is borrowed from KAME. Detailed information about
this behaviour, as well as test cases, are available in the PR.

PR:		kern/78227
MFC after:	1 week
2006-09-28 10:04:07 +00:00

1097 lines
27 KiB
C

/*-
* Copyright (c) 1982, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
* Copyright (C) 2001 WIDE Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)in.c 8.4 (Berkeley) 1/9/95
* $FreeBSD$
*/
#include "opt_carp.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/malloc.h>
#include <sys/socket.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/in_pcb.h>
#include <netinet/igmp_var.h>
static MALLOC_DEFINE(M_IPMADDR, "in_multi", "internet multicast address");
static int in_mask2len(struct in_addr *);
static void in_len2mask(struct in_addr *, int);
static int in_lifaddr_ioctl(struct socket *, u_long, caddr_t,
struct ifnet *, struct thread *);
static int in_addprefix(struct in_ifaddr *, int);
static int in_scrubprefix(struct in_ifaddr *);
static void in_socktrim(struct sockaddr_in *);
static int in_ifinit(struct ifnet *,
struct in_ifaddr *, struct sockaddr_in *, int);
static int subnetsarelocal = 0;
SYSCTL_INT(_net_inet_ip, OID_AUTO, subnets_are_local, CTLFLAG_RW,
&subnetsarelocal, 0, "Treat all subnets as directly connected");
static int sameprefixcarponly = 0;
SYSCTL_INT(_net_inet_ip, OID_AUTO, same_prefix_carp_only, CTLFLAG_RW,
&sameprefixcarponly, 0,
"Refuse to create same prefixes on different interfaces");
/*
* The IPv4 multicast list (in_multihead and associated structures) are
* protected by the global in_multi_mtx. See in_var.h for more details. For
* now, in_multi_mtx is marked as recursible due to IGMP's calling back into
* ip_output() to send IGMP packets while holding the lock; this probably is
* not quite desirable.
*/
struct in_multihead in_multihead; /* XXX BSS initialization */
struct mtx in_multi_mtx;
MTX_SYSINIT(in_multi_mtx, &in_multi_mtx, "in_multi_mtx", MTX_DEF | MTX_RECURSE);
extern struct inpcbinfo ripcbinfo;
extern struct inpcbinfo udbinfo;
/*
* Return 1 if an internet address is for a ``local'' host
* (one to which we have a connection). If subnetsarelocal
* is true, this includes other subnets of the local net.
* Otherwise, it includes only the directly-connected (sub)nets.
*/
int
in_localaddr(in)
struct in_addr in;
{
register u_long i = ntohl(in.s_addr);
register struct in_ifaddr *ia;
if (subnetsarelocal) {
TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link)
if ((i & ia->ia_netmask) == ia->ia_net)
return (1);
} else {
TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link)
if ((i & ia->ia_subnetmask) == ia->ia_subnet)
return (1);
}
return (0);
}
/*
* Return 1 if an internet address is for the local host and configured
* on one of its interfaces.
*/
int
in_localip(in)
struct in_addr in;
{
struct in_ifaddr *ia;
LIST_FOREACH(ia, INADDR_HASH(in.s_addr), ia_hash) {
if (IA_SIN(ia)->sin_addr.s_addr == in.s_addr)
return 1;
}
return 0;
}
/*
* Determine whether an IP address is in a reserved set of addresses
* that may not be forwarded, or whether datagrams to that destination
* may be forwarded.
*/
int
in_canforward(in)
struct in_addr in;
{
register u_long i = ntohl(in.s_addr);
register u_long net;
if (IN_EXPERIMENTAL(i) || IN_MULTICAST(i))
return (0);
if (IN_CLASSA(i)) {
net = i & IN_CLASSA_NET;
if (net == 0 || net == (IN_LOOPBACKNET << IN_CLASSA_NSHIFT))
return (0);
}
return (1);
}
/*
* Trim a mask in a sockaddr
*/
static void
in_socktrim(ap)
struct sockaddr_in *ap;
{
register char *cplim = (char *) &ap->sin_addr;
register char *cp = (char *) (&ap->sin_addr + 1);
ap->sin_len = 0;
while (--cp >= cplim)
if (*cp) {
(ap)->sin_len = cp - (char *) (ap) + 1;
break;
}
}
static int
in_mask2len(mask)
struct in_addr *mask;
{
int x, y;
u_char *p;
p = (u_char *)mask;
for (x = 0; x < sizeof(*mask); x++) {
if (p[x] != 0xff)
break;
}
y = 0;
if (x < sizeof(*mask)) {
for (y = 0; y < 8; y++) {
if ((p[x] & (0x80 >> y)) == 0)
break;
}
}
return x * 8 + y;
}
static void
in_len2mask(mask, len)
struct in_addr *mask;
int len;
{
int i;
u_char *p;
p = (u_char *)mask;
bzero(mask, sizeof(*mask));
for (i = 0; i < len / 8; i++)
p[i] = 0xff;
if (len % 8)
p[i] = (0xff00 >> (len % 8)) & 0xff;
}
/*
* Generic internet control operations (ioctl's).
* Ifp is 0 if not an interface-specific ioctl.
*/
/* ARGSUSED */
int
in_control(so, cmd, data, ifp, td)
struct socket *so;
u_long cmd;
caddr_t data;
register struct ifnet *ifp;
struct thread *td;
{
register struct ifreq *ifr = (struct ifreq *)data;
register struct in_ifaddr *ia = 0, *iap;
register struct ifaddr *ifa;
struct in_addr dst;
struct in_ifaddr *oia;
struct in_aliasreq *ifra = (struct in_aliasreq *)data;
struct sockaddr_in oldaddr;
int error, hostIsNew, iaIsNew, maskIsNew, s;
iaIsNew = 0;
switch (cmd) {
case SIOCALIFADDR:
case SIOCDLIFADDR:
if (td && (error = suser(td)) != 0)
return error;
/*fall through*/
case SIOCGLIFADDR:
if (!ifp)
return EINVAL;
return in_lifaddr_ioctl(so, cmd, data, ifp, td);
}
/*
* Find address for this interface, if it exists.
*
* If an alias address was specified, find that one instead of
* the first one on the interface, if possible.
*/
if (ifp) {
dst = ((struct sockaddr_in *)&ifr->ifr_addr)->sin_addr;
LIST_FOREACH(iap, INADDR_HASH(dst.s_addr), ia_hash)
if (iap->ia_ifp == ifp &&
iap->ia_addr.sin_addr.s_addr == dst.s_addr) {
ia = iap;
break;
}
if (ia == NULL)
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
iap = ifatoia(ifa);
if (iap->ia_addr.sin_family == AF_INET) {
ia = iap;
break;
}
}
}
switch (cmd) {
case SIOCAIFADDR:
case SIOCDIFADDR:
if (ifp == 0)
return (EADDRNOTAVAIL);
if (ifra->ifra_addr.sin_family == AF_INET) {
for (oia = ia; ia; ia = TAILQ_NEXT(ia, ia_link)) {
if (ia->ia_ifp == ifp &&
ia->ia_addr.sin_addr.s_addr ==
ifra->ifra_addr.sin_addr.s_addr)
break;
}
if ((ifp->if_flags & IFF_POINTOPOINT)
&& (cmd == SIOCAIFADDR)
&& (ifra->ifra_dstaddr.sin_addr.s_addr
== INADDR_ANY)) {
return EDESTADDRREQ;
}
}
if (cmd == SIOCDIFADDR && ia == 0)
return (EADDRNOTAVAIL);
/* FALLTHROUGH */
case SIOCSIFADDR:
case SIOCSIFNETMASK:
case SIOCSIFDSTADDR:
if (td && (error = suser(td)) != 0)
return error;
if (ifp == 0)
return (EADDRNOTAVAIL);
if (ia == (struct in_ifaddr *)0) {
ia = (struct in_ifaddr *)
malloc(sizeof *ia, M_IFADDR, M_WAITOK | M_ZERO);
if (ia == (struct in_ifaddr *)NULL)
return (ENOBUFS);
/*
* Protect from ipintr() traversing address list
* while we're modifying it.
*/
s = splnet();
ifa = &ia->ia_ifa;
IFA_LOCK_INIT(ifa);
ifa->ifa_addr = (struct sockaddr *)&ia->ia_addr;
ifa->ifa_dstaddr = (struct sockaddr *)&ia->ia_dstaddr;
ifa->ifa_netmask = (struct sockaddr *)&ia->ia_sockmask;
ifa->ifa_refcnt = 1;
TAILQ_INSERT_TAIL(&ifp->if_addrhead, ifa, ifa_link);
ia->ia_sockmask.sin_len = 8;
ia->ia_sockmask.sin_family = AF_INET;
if (ifp->if_flags & IFF_BROADCAST) {
ia->ia_broadaddr.sin_len = sizeof(ia->ia_addr);
ia->ia_broadaddr.sin_family = AF_INET;
}
ia->ia_ifp = ifp;
TAILQ_INSERT_TAIL(&in_ifaddrhead, ia, ia_link);
splx(s);
iaIsNew = 1;
}
break;
case SIOCSIFBRDADDR:
if (td && (error = suser(td)) != 0)
return error;
/* FALLTHROUGH */
case SIOCGIFADDR:
case SIOCGIFNETMASK:
case SIOCGIFDSTADDR:
case SIOCGIFBRDADDR:
if (ia == (struct in_ifaddr *)0)
return (EADDRNOTAVAIL);
break;
}
switch (cmd) {
case SIOCGIFADDR:
*((struct sockaddr_in *)&ifr->ifr_addr) = ia->ia_addr;
return (0);
case SIOCGIFBRDADDR:
if ((ifp->if_flags & IFF_BROADCAST) == 0)
return (EINVAL);
*((struct sockaddr_in *)&ifr->ifr_dstaddr) = ia->ia_broadaddr;
return (0);
case SIOCGIFDSTADDR:
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
return (EINVAL);
*((struct sockaddr_in *)&ifr->ifr_dstaddr) = ia->ia_dstaddr;
return (0);
case SIOCGIFNETMASK:
*((struct sockaddr_in *)&ifr->ifr_addr) = ia->ia_sockmask;
return (0);
case SIOCSIFDSTADDR:
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
return (EINVAL);
oldaddr = ia->ia_dstaddr;
ia->ia_dstaddr = *(struct sockaddr_in *)&ifr->ifr_dstaddr;
if (ifp->if_ioctl) {
IFF_LOCKGIANT(ifp);
error = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR,
(caddr_t)ia);
IFF_UNLOCKGIANT(ifp);
if (error) {
ia->ia_dstaddr = oldaddr;
return (error);
}
}
if (ia->ia_flags & IFA_ROUTE) {
ia->ia_ifa.ifa_dstaddr = (struct sockaddr *)&oldaddr;
rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST);
ia->ia_ifa.ifa_dstaddr =
(struct sockaddr *)&ia->ia_dstaddr;
rtinit(&(ia->ia_ifa), (int)RTM_ADD, RTF_HOST|RTF_UP);
}
return (0);
case SIOCSIFBRDADDR:
if ((ifp->if_flags & IFF_BROADCAST) == 0)
return (EINVAL);
ia->ia_broadaddr = *(struct sockaddr_in *)&ifr->ifr_broadaddr;
return (0);
case SIOCSIFADDR:
error = in_ifinit(ifp, ia,
(struct sockaddr_in *) &ifr->ifr_addr, 1);
if (error != 0 && iaIsNew)
break;
if (error == 0)
EVENTHANDLER_INVOKE(ifaddr_event, ifp);
return (0);
case SIOCSIFNETMASK:
ia->ia_sockmask.sin_addr = ifra->ifra_addr.sin_addr;
ia->ia_subnetmask = ntohl(ia->ia_sockmask.sin_addr.s_addr);
return (0);
case SIOCAIFADDR:
maskIsNew = 0;
hostIsNew = 1;
error = 0;
if (ia->ia_addr.sin_family == AF_INET) {
if (ifra->ifra_addr.sin_len == 0) {
ifra->ifra_addr = ia->ia_addr;
hostIsNew = 0;
} else if (ifra->ifra_addr.sin_addr.s_addr ==
ia->ia_addr.sin_addr.s_addr)
hostIsNew = 0;
}
if (ifra->ifra_mask.sin_len) {
in_ifscrub(ifp, ia);
ia->ia_sockmask = ifra->ifra_mask;
ia->ia_sockmask.sin_family = AF_INET;
ia->ia_subnetmask =
ntohl(ia->ia_sockmask.sin_addr.s_addr);
maskIsNew = 1;
}
if ((ifp->if_flags & IFF_POINTOPOINT) &&
(ifra->ifra_dstaddr.sin_family == AF_INET)) {
in_ifscrub(ifp, ia);
ia->ia_dstaddr = ifra->ifra_dstaddr;
maskIsNew = 1; /* We lie; but the effect's the same */
}
if (ifra->ifra_addr.sin_family == AF_INET &&
(hostIsNew || maskIsNew))
error = in_ifinit(ifp, ia, &ifra->ifra_addr, 0);
if (error != 0 && iaIsNew)
break;
if ((ifp->if_flags & IFF_BROADCAST) &&
(ifra->ifra_broadaddr.sin_family == AF_INET))
ia->ia_broadaddr = ifra->ifra_broadaddr;
if (error == 0)
EVENTHANDLER_INVOKE(ifaddr_event, ifp);
return (error);
case SIOCDIFADDR:
/*
* in_ifscrub kills the interface route.
*/
in_ifscrub(ifp, ia);
/*
* in_ifadown gets rid of all the rest of
* the routes. This is not quite the right
* thing to do, but at least if we are running
* a routing process they will come back.
*/
in_ifadown(&ia->ia_ifa, 1);
EVENTHANDLER_INVOKE(ifaddr_event, ifp);
error = 0;
break;
default:
if (ifp == 0 || ifp->if_ioctl == 0)
return (EOPNOTSUPP);
IFF_LOCKGIANT(ifp);
error = (*ifp->if_ioctl)(ifp, cmd, data);
IFF_UNLOCKGIANT(ifp);
return (error);
}
/*
* Protect from ipintr() traversing address list while we're modifying
* it.
*/
s = splnet();
TAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifa_link);
TAILQ_REMOVE(&in_ifaddrhead, ia, ia_link);
if (ia->ia_addr.sin_family == AF_INET)
LIST_REMOVE(ia, ia_hash);
IFAFREE(&ia->ia_ifa);
splx(s);
return (error);
}
/*
* SIOC[GAD]LIFADDR.
* SIOCGLIFADDR: get first address. (?!?)
* SIOCGLIFADDR with IFLR_PREFIX:
* get first address that matches the specified prefix.
* SIOCALIFADDR: add the specified address.
* SIOCALIFADDR with IFLR_PREFIX:
* EINVAL since we can't deduce hostid part of the address.
* SIOCDLIFADDR: delete the specified address.
* SIOCDLIFADDR with IFLR_PREFIX:
* delete the first address that matches the specified prefix.
* return values:
* EINVAL on invalid parameters
* EADDRNOTAVAIL on prefix match failed/specified address not found
* other values may be returned from in_ioctl()
*/
static int
in_lifaddr_ioctl(so, cmd, data, ifp, td)
struct socket *so;
u_long cmd;
caddr_t data;
struct ifnet *ifp;
struct thread *td;
{
struct if_laddrreq *iflr = (struct if_laddrreq *)data;
struct ifaddr *ifa;
/* sanity checks */
if (!data || !ifp) {
panic("invalid argument to in_lifaddr_ioctl");
/*NOTRECHED*/
}
switch (cmd) {
case SIOCGLIFADDR:
/* address must be specified on GET with IFLR_PREFIX */
if ((iflr->flags & IFLR_PREFIX) == 0)
break;
/*FALLTHROUGH*/
case SIOCALIFADDR:
case SIOCDLIFADDR:
/* address must be specified on ADD and DELETE */
if (iflr->addr.ss_family != AF_INET)
return EINVAL;
if (iflr->addr.ss_len != sizeof(struct sockaddr_in))
return EINVAL;
/* XXX need improvement */
if (iflr->dstaddr.ss_family
&& iflr->dstaddr.ss_family != AF_INET)
return EINVAL;
if (iflr->dstaddr.ss_family
&& iflr->dstaddr.ss_len != sizeof(struct sockaddr_in))
return EINVAL;
break;
default: /*shouldn't happen*/
return EOPNOTSUPP;
}
if (sizeof(struct in_addr) * 8 < iflr->prefixlen)
return EINVAL;
switch (cmd) {
case SIOCALIFADDR:
{
struct in_aliasreq ifra;
if (iflr->flags & IFLR_PREFIX)
return EINVAL;
/* copy args to in_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
bzero(&ifra, sizeof(ifra));
bcopy(iflr->iflr_name, ifra.ifra_name,
sizeof(ifra.ifra_name));
bcopy(&iflr->addr, &ifra.ifra_addr, iflr->addr.ss_len);
if (iflr->dstaddr.ss_family) { /*XXX*/
bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr,
iflr->dstaddr.ss_len);
}
ifra.ifra_mask.sin_family = AF_INET;
ifra.ifra_mask.sin_len = sizeof(struct sockaddr_in);
in_len2mask(&ifra.ifra_mask.sin_addr, iflr->prefixlen);
return in_control(so, SIOCAIFADDR, (caddr_t)&ifra, ifp, td);
}
case SIOCGLIFADDR:
case SIOCDLIFADDR:
{
struct in_ifaddr *ia;
struct in_addr mask, candidate, match;
struct sockaddr_in *sin;
int cmp;
bzero(&mask, sizeof(mask));
if (iflr->flags & IFLR_PREFIX) {
/* lookup a prefix rather than address. */
in_len2mask(&mask, iflr->prefixlen);
sin = (struct sockaddr_in *)&iflr->addr;
match.s_addr = sin->sin_addr.s_addr;
match.s_addr &= mask.s_addr;
/* if you set extra bits, that's wrong */
if (match.s_addr != sin->sin_addr.s_addr)
return EINVAL;
cmp = 1;
} else {
if (cmd == SIOCGLIFADDR) {
/* on getting an address, take the 1st match */
cmp = 0; /*XXX*/
} else {
/* on deleting an address, do exact match */
in_len2mask(&mask, 32);
sin = (struct sockaddr_in *)&iflr->addr;
match.s_addr = sin->sin_addr.s_addr;
cmp = 1;
}
}
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
if (!cmp)
break;
candidate.s_addr = ((struct sockaddr_in *)&ifa->ifa_addr)->sin_addr.s_addr;
candidate.s_addr &= mask.s_addr;
if (candidate.s_addr == match.s_addr)
break;
}
if (!ifa)
return EADDRNOTAVAIL;
ia = (struct in_ifaddr *)ifa;
if (cmd == SIOCGLIFADDR) {
/* fill in the if_laddrreq structure */
bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin_len);
if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
bcopy(&ia->ia_dstaddr, &iflr->dstaddr,
ia->ia_dstaddr.sin_len);
} else
bzero(&iflr->dstaddr, sizeof(iflr->dstaddr));
iflr->prefixlen =
in_mask2len(&ia->ia_sockmask.sin_addr);
iflr->flags = 0; /*XXX*/
return 0;
} else {
struct in_aliasreq ifra;
/* fill in_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
bzero(&ifra, sizeof(ifra));
bcopy(iflr->iflr_name, ifra.ifra_name,
sizeof(ifra.ifra_name));
bcopy(&ia->ia_addr, &ifra.ifra_addr,
ia->ia_addr.sin_len);
if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr,
ia->ia_dstaddr.sin_len);
}
bcopy(&ia->ia_sockmask, &ifra.ifra_dstaddr,
ia->ia_sockmask.sin_len);
return in_control(so, SIOCDIFADDR, (caddr_t)&ifra,
ifp, td);
}
}
}
return EOPNOTSUPP; /*just for safety*/
}
/*
* Delete any existing route for an interface.
*/
void
in_ifscrub(ifp, ia)
register struct ifnet *ifp;
register struct in_ifaddr *ia;
{
in_scrubprefix(ia);
}
/*
* Initialize an interface's internet address
* and routing table entry.
*/
static int
in_ifinit(ifp, ia, sin, scrub)
register struct ifnet *ifp;
register struct in_ifaddr *ia;
struct sockaddr_in *sin;
int scrub;
{
register u_long i = ntohl(sin->sin_addr.s_addr);
struct sockaddr_in oldaddr;
int s = splimp(), flags = RTF_UP, error = 0;
oldaddr = ia->ia_addr;
if (oldaddr.sin_family == AF_INET)
LIST_REMOVE(ia, ia_hash);
ia->ia_addr = *sin;
if (ia->ia_addr.sin_family == AF_INET)
LIST_INSERT_HEAD(INADDR_HASH(ia->ia_addr.sin_addr.s_addr),
ia, ia_hash);
/*
* Give the interface a chance to initialize
* if this is its first address,
* and to validate the address if necessary.
*/
if (ifp->if_ioctl) {
IFF_LOCKGIANT(ifp);
error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia);
IFF_UNLOCKGIANT(ifp);
if (error) {
splx(s);
/* LIST_REMOVE(ia, ia_hash) is done in in_control */
ia->ia_addr = oldaddr;
if (ia->ia_addr.sin_family == AF_INET)
LIST_INSERT_HEAD(INADDR_HASH(
ia->ia_addr.sin_addr.s_addr), ia, ia_hash);
return (error);
}
}
splx(s);
if (scrub) {
ia->ia_ifa.ifa_addr = (struct sockaddr *)&oldaddr;
in_ifscrub(ifp, ia);
ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
}
if (IN_CLASSA(i))
ia->ia_netmask = IN_CLASSA_NET;
else if (IN_CLASSB(i))
ia->ia_netmask = IN_CLASSB_NET;
else
ia->ia_netmask = IN_CLASSC_NET;
/*
* The subnet mask usually includes at least the standard network part,
* but may may be smaller in the case of supernetting.
* If it is set, we believe it.
*/
if (ia->ia_subnetmask == 0) {
ia->ia_subnetmask = ia->ia_netmask;
ia->ia_sockmask.sin_addr.s_addr = htonl(ia->ia_subnetmask);
} else
ia->ia_netmask &= ia->ia_subnetmask;
ia->ia_net = i & ia->ia_netmask;
ia->ia_subnet = i & ia->ia_subnetmask;
in_socktrim(&ia->ia_sockmask);
#ifdef DEV_CARP
/*
* XXX: carp(4) does not have interface route
*/
if (ifp->if_type == IFT_CARP)
return (0);
#endif
/*
* Add route for the network.
*/
ia->ia_ifa.ifa_metric = ifp->if_metric;
if (ifp->if_flags & IFF_BROADCAST) {
ia->ia_broadaddr.sin_addr.s_addr =
htonl(ia->ia_subnet | ~ia->ia_subnetmask);
ia->ia_netbroadcast.s_addr =
htonl(ia->ia_net | ~ ia->ia_netmask);
} else if (ifp->if_flags & IFF_LOOPBACK) {
ia->ia_dstaddr = ia->ia_addr;
flags |= RTF_HOST;
} else if (ifp->if_flags & IFF_POINTOPOINT) {
if (ia->ia_dstaddr.sin_family != AF_INET)
return (0);
flags |= RTF_HOST;
}
if ((error = in_addprefix(ia, flags)) != 0)
return (error);
/*
* If the interface supports multicast, join the "all hosts"
* multicast group on that interface.
*/
if (ifp->if_flags & IFF_MULTICAST) {
struct in_addr addr;
addr.s_addr = htonl(INADDR_ALLHOSTS_GROUP);
in_addmulti(&addr, ifp);
}
return (error);
}
#define rtinitflags(x) \
((((x)->ia_ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) != 0) \
? RTF_HOST : 0)
/*
* Check if we have a route for the given prefix already or add a one
* accordingly.
*/
static int
in_addprefix(target, flags)
struct in_ifaddr *target;
int flags;
{
struct in_ifaddr *ia;
struct in_addr prefix, mask, p, m;
int error;
if ((flags & RTF_HOST) != 0)
prefix = target->ia_dstaddr.sin_addr;
else {
prefix = target->ia_addr.sin_addr;
mask = target->ia_sockmask.sin_addr;
prefix.s_addr &= mask.s_addr;
}
TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) {
if (rtinitflags(ia)) {
p = ia->ia_addr.sin_addr;
if (prefix.s_addr != p.s_addr)
continue;
} else {
p = ia->ia_addr.sin_addr;
m = ia->ia_sockmask.sin_addr;
p.s_addr &= m.s_addr;
if (prefix.s_addr != p.s_addr ||
mask.s_addr != m.s_addr)
continue;
}
/*
* If we got a matching prefix route inserted by other
* interface address, we are done here.
*/
if (ia->ia_flags & IFA_ROUTE) {
if (sameprefixcarponly &&
target->ia_ifp->if_type != IFT_CARP &&
ia->ia_ifp->if_type != IFT_CARP)
return (EEXIST);
else
return (0);
}
}
/*
* No-one seem to have this prefix route, so we try to insert it.
*/
error = rtinit(&target->ia_ifa, (int)RTM_ADD, flags);
if (!error)
target->ia_flags |= IFA_ROUTE;
return error;
}
/*
* If there is no other address in the system that can serve a route to the
* same prefix, remove the route. Hand over the route to the new address
* otherwise.
*/
static int
in_scrubprefix(target)
struct in_ifaddr *target;
{
struct in_ifaddr *ia;
struct in_addr prefix, mask, p;
int error;
if ((target->ia_flags & IFA_ROUTE) == 0)
return 0;
if (rtinitflags(target))
prefix = target->ia_dstaddr.sin_addr;
else {
prefix = target->ia_addr.sin_addr;
mask = target->ia_sockmask.sin_addr;
prefix.s_addr &= mask.s_addr;
}
TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) {
if (rtinitflags(ia))
p = ia->ia_dstaddr.sin_addr;
else {
p = ia->ia_addr.sin_addr;
p.s_addr &= ia->ia_sockmask.sin_addr.s_addr;
}
if (prefix.s_addr != p.s_addr)
continue;
/*
* If we got a matching prefix address, move IFA_ROUTE and
* the route itself to it. Make sure that routing daemons
* get a heads-up.
*
* XXX: a special case for carp(4) interface
*/
if ((ia->ia_flags & IFA_ROUTE) == 0
#ifdef DEV_CARP
&& (ia->ia_ifp->if_type != IFT_CARP)
#endif
) {
rtinit(&(target->ia_ifa), (int)RTM_DELETE,
rtinitflags(target));
target->ia_flags &= ~IFA_ROUTE;
error = rtinit(&ia->ia_ifa, (int)RTM_ADD,
rtinitflags(ia) | RTF_UP);
if (error == 0)
ia->ia_flags |= IFA_ROUTE;
return error;
}
}
/*
* As no-one seem to have this prefix, we can remove the route.
*/
rtinit(&(target->ia_ifa), (int)RTM_DELETE, rtinitflags(target));
target->ia_flags &= ~IFA_ROUTE;
return 0;
}
#undef rtinitflags
/*
* Return 1 if the address might be a local broadcast address.
*/
int
in_broadcast(in, ifp)
struct in_addr in;
struct ifnet *ifp;
{
register struct ifaddr *ifa;
u_long t;
if (in.s_addr == INADDR_BROADCAST ||
in.s_addr == INADDR_ANY)
return 1;
if ((ifp->if_flags & IFF_BROADCAST) == 0)
return 0;
t = ntohl(in.s_addr);
/*
* Look through the list of addresses for a match
* with a broadcast address.
*/
#define ia ((struct in_ifaddr *)ifa)
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
if (ifa->ifa_addr->sa_family == AF_INET &&
(in.s_addr == ia->ia_broadaddr.sin_addr.s_addr ||
in.s_addr == ia->ia_netbroadcast.s_addr ||
/*
* Check for old-style (host 0) broadcast.
*/
t == ia->ia_subnet || t == ia->ia_net) &&
/*
* Check for an all one subnetmask. These
* only exist when an interface gets a secondary
* address.
*/
ia->ia_subnetmask != (u_long)0xffffffff)
return 1;
return (0);
#undef ia
}
/*
* Add an address to the list of IP multicast addresses for a given interface.
*/
struct in_multi *
in_addmulti(ap, ifp)
register struct in_addr *ap;
register struct ifnet *ifp;
{
register struct in_multi *inm;
int error;
struct sockaddr_in sin;
struct ifmultiaddr *ifma;
IFF_LOCKGIANT(ifp);
IN_MULTI_LOCK();
/*
* Call generic routine to add membership or increment
* refcount. It wants addresses in the form of a sockaddr,
* so we build one here (being careful to zero the unused bytes).
*/
bzero(&sin, sizeof sin);
sin.sin_family = AF_INET;
sin.sin_len = sizeof sin;
sin.sin_addr = *ap;
error = if_addmulti(ifp, (struct sockaddr *)&sin, &ifma);
if (error) {
IN_MULTI_UNLOCK();
IFF_UNLOCKGIANT(ifp);
return 0;
}
/*
* If ifma->ifma_protospec is null, then if_addmulti() created
* a new record. Otherwise, we are done.
*/
if (ifma->ifma_protospec != NULL) {
IN_MULTI_UNLOCK();
IFF_UNLOCKGIANT(ifp);
return ifma->ifma_protospec;
}
inm = (struct in_multi *)malloc(sizeof(*inm), M_IPMADDR,
M_NOWAIT | M_ZERO);
if (inm == NULL) {
IN_MULTI_UNLOCK();
IFF_UNLOCKGIANT(ifp);
return (NULL);
}
inm->inm_addr = *ap;
inm->inm_ifp = ifp;
inm->inm_ifma = ifma;
ifma->ifma_protospec = inm;
LIST_INSERT_HEAD(&in_multihead, inm, inm_link);
/*
* Let IGMP know that we have joined a new IP multicast group.
*/
igmp_joingroup(inm);
IN_MULTI_UNLOCK();
IFF_UNLOCKGIANT(ifp);
return (inm);
}
/*
* Delete a multicast address record.
*/
void
in_delmulti(inm)
register struct in_multi *inm;
{
struct ifnet *ifp;
ifp = inm->inm_ifp;
IFF_LOCKGIANT(ifp);
IN_MULTI_LOCK();
in_delmulti_locked(inm);
IN_MULTI_UNLOCK();
IFF_UNLOCKGIANT(ifp);
}
void
in_delmulti_locked(inm)
register struct in_multi *inm;
{
struct ifmultiaddr *ifma;
struct in_multi my_inm;
ifma = inm->inm_ifma;
my_inm.inm_ifp = NULL ; /* don't send the leave msg */
if (ifma->ifma_refcount == 1) {
/*
* No remaining claims to this record; let IGMP know that
* we are leaving the multicast group.
* But do it after the if_delmulti() which might reset
* the interface and nuke the packet.
*/
my_inm = *inm ;
ifma->ifma_protospec = NULL;
LIST_REMOVE(inm, inm_link);
free(inm, M_IPMADDR);
}
/* XXX - should be separate API for when we have an ifma? */
if_delmulti(ifma->ifma_ifp, ifma->ifma_addr);
if (my_inm.inm_ifp != NULL)
igmp_leavegroup(&my_inm);
}
/*
* Delete all multicast address records associated with the ifp.
*/
void
in_delmulti_ifp(ifp)
register struct ifnet *ifp;
{
struct in_multi *inm;
struct in_multi *oinm;
IFF_LOCKGIANT(ifp);
IN_MULTI_LOCK();
LIST_FOREACH_SAFE(inm, &in_multihead, inm_link, oinm) {
if (inm->inm_ifp == ifp)
in_delmulti_locked(inm);
}
IN_MULTI_UNLOCK();
IFF_UNLOCKGIANT(ifp);
}
/*
* On interface removal, clean up IPv4 data structures hung off of the ifnet.
*/
void
in_ifdetach(ifp)
struct ifnet *ifp;
{
in_pcbpurgeif0(&ripcbinfo, ifp);
in_pcbpurgeif0(&udbinfo, ifp);
in_delmulti_ifp(ifp);
}