mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-21 11:13:30 +00:00
488 lines
10 KiB
C
488 lines
10 KiB
C
/*
|
|
* Top users/processes display for Unix
|
|
* Version 3
|
|
*
|
|
* This program may be freely redistributed,
|
|
* but this entire comment MUST remain intact.
|
|
*
|
|
* Copyright (c) 1984, 1989, William LeFebvre, Rice University
|
|
* Copyright (c) 1989, 1990, 1992, William LeFebvre, Northwestern University
|
|
*/
|
|
|
|
/*
|
|
* This file contains various handy utilities used by top.
|
|
*/
|
|
|
|
#include "top.h"
|
|
#include "os.h"
|
|
|
|
int atoiwi(str)
|
|
|
|
char *str;
|
|
|
|
{
|
|
register int len;
|
|
|
|
len = strlen(str);
|
|
if (len != 0)
|
|
{
|
|
if (strncmp(str, "infinity", len) == 0 ||
|
|
strncmp(str, "all", len) == 0 ||
|
|
strncmp(str, "maximum", len) == 0)
|
|
{
|
|
return(Infinity);
|
|
}
|
|
else if (str[0] == '-')
|
|
{
|
|
return(Invalid);
|
|
}
|
|
else
|
|
{
|
|
return(atoi(str));
|
|
}
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* itoa - convert integer (decimal) to ascii string for positive numbers
|
|
* only (we don't bother with negative numbers since we know we
|
|
* don't use them).
|
|
*/
|
|
|
|
/*
|
|
* How do we know that 16 will suffice?
|
|
* Because the biggest number that we will
|
|
* ever convert will be 2^32-1, which is 10
|
|
* digits.
|
|
*/
|
|
|
|
char *itoa(val)
|
|
|
|
register int val;
|
|
|
|
{
|
|
register char *ptr;
|
|
static char buffer[16]; /* result is built here */
|
|
/* 16 is sufficient since the largest number
|
|
we will ever convert will be 2^32-1,
|
|
which is 10 digits. */
|
|
|
|
ptr = buffer + sizeof(buffer);
|
|
*--ptr = '\0';
|
|
if (val == 0)
|
|
{
|
|
*--ptr = '0';
|
|
}
|
|
else while (val != 0)
|
|
{
|
|
*--ptr = (val % 10) + '0';
|
|
val /= 10;
|
|
}
|
|
return(ptr);
|
|
}
|
|
|
|
/*
|
|
* itoa7(val) - like itoa, except the number is right justified in a 7
|
|
* character field. This code is a duplication of itoa instead of
|
|
* a front end to a more general routine for efficiency.
|
|
*/
|
|
|
|
char *itoa7(val)
|
|
|
|
register int val;
|
|
|
|
{
|
|
register char *ptr;
|
|
static char buffer[16]; /* result is built here */
|
|
/* 16 is sufficient since the largest number
|
|
we will ever convert will be 2^32-1,
|
|
which is 10 digits. */
|
|
|
|
ptr = buffer + sizeof(buffer);
|
|
*--ptr = '\0';
|
|
if (val == 0)
|
|
{
|
|
*--ptr = '0';
|
|
}
|
|
else while (val != 0)
|
|
{
|
|
*--ptr = (val % 10) + '0';
|
|
val /= 10;
|
|
}
|
|
while (ptr > buffer + sizeof(buffer) - 7)
|
|
{
|
|
*--ptr = ' ';
|
|
}
|
|
return(ptr);
|
|
}
|
|
|
|
/*
|
|
* digits(val) - return number of decimal digits in val. Only works for
|
|
* positive numbers. If val <= 0 then digits(val) == 0.
|
|
*/
|
|
|
|
int digits(val)
|
|
|
|
int val;
|
|
|
|
{
|
|
register int cnt = 0;
|
|
|
|
while (val > 0)
|
|
{
|
|
cnt++;
|
|
val /= 10;
|
|
}
|
|
return(cnt);
|
|
}
|
|
|
|
/*
|
|
* strecpy(to, from) - copy string "from" into "to" and return a pointer
|
|
* to the END of the string "to".
|
|
*/
|
|
|
|
char *strecpy(to, from)
|
|
|
|
register char *to;
|
|
register char *from;
|
|
|
|
{
|
|
while ((*to++ = *from++) != '\0');
|
|
return(--to);
|
|
}
|
|
|
|
/*
|
|
* string_index(string, array) - find string in array and return index
|
|
*/
|
|
|
|
int string_index(string, array)
|
|
|
|
char *string;
|
|
char **array;
|
|
|
|
{
|
|
register int i = 0;
|
|
|
|
while (*array != NULL)
|
|
{
|
|
if (strcmp(string, *array) == 0)
|
|
{
|
|
return(i);
|
|
}
|
|
array++;
|
|
i++;
|
|
}
|
|
return(-1);
|
|
}
|
|
|
|
/*
|
|
* argparse(line, cntp) - parse arguments in string "line", separating them
|
|
* out into an argv-like array, and setting *cntp to the number of
|
|
* arguments encountered. This is a simple parser that doesn't understand
|
|
* squat about quotes.
|
|
*/
|
|
|
|
char **argparse(line, cntp)
|
|
|
|
char *line;
|
|
int *cntp;
|
|
|
|
{
|
|
register char *from;
|
|
register char *to;
|
|
register int cnt;
|
|
register int ch;
|
|
int length;
|
|
int lastch;
|
|
register char **argv;
|
|
char **argarray;
|
|
char *args;
|
|
|
|
/* unfortunately, the only real way to do this is to go thru the
|
|
input string twice. */
|
|
|
|
/* step thru the string counting the white space sections */
|
|
from = line;
|
|
lastch = cnt = length = 0;
|
|
while ((ch = *from++) != '\0')
|
|
{
|
|
length++;
|
|
if (ch == ' ' && lastch != ' ')
|
|
{
|
|
cnt++;
|
|
}
|
|
lastch = ch;
|
|
}
|
|
|
|
/* add three to the count: one for the initial "dummy" argument,
|
|
one for the last argument and one for NULL */
|
|
cnt += 3;
|
|
|
|
/* allocate a char * array to hold the pointers */
|
|
argarray = (char **)malloc(cnt * sizeof(char *));
|
|
|
|
/* allocate another array to hold the strings themselves */
|
|
args = (char *)malloc(length+2);
|
|
|
|
/* initialization for main loop */
|
|
from = line;
|
|
to = args;
|
|
argv = argarray;
|
|
lastch = '\0';
|
|
|
|
/* create a dummy argument to keep getopt happy */
|
|
*argv++ = to;
|
|
*to++ = '\0';
|
|
cnt = 2;
|
|
|
|
/* now build argv while copying characters */
|
|
*argv++ = to;
|
|
while ((ch = *from++) != '\0')
|
|
{
|
|
if (ch != ' ')
|
|
{
|
|
if (lastch == ' ')
|
|
{
|
|
*to++ = '\0';
|
|
*argv++ = to;
|
|
cnt++;
|
|
}
|
|
*to++ = ch;
|
|
}
|
|
lastch = ch;
|
|
}
|
|
*to++ = '\0';
|
|
|
|
/* set cntp and return the allocated array */
|
|
*cntp = cnt;
|
|
return(argarray);
|
|
}
|
|
|
|
/*
|
|
* percentages(cnt, out, new, old, diffs) - calculate percentage change
|
|
* between array "old" and "new", putting the percentages i "out".
|
|
* "cnt" is size of each array and "diffs" is used for scratch space.
|
|
* The array "old" is updated on each call.
|
|
* The routine assumes modulo arithmetic. This function is especially
|
|
* useful on BSD mchines for calculating cpu state percentages.
|
|
*/
|
|
|
|
long percentages(cnt, out, new, old, diffs)
|
|
|
|
int cnt;
|
|
int *out;
|
|
register long *new;
|
|
register long *old;
|
|
long *diffs;
|
|
|
|
{
|
|
register int i;
|
|
register long change;
|
|
register long total_change;
|
|
register long *dp;
|
|
long half_total;
|
|
|
|
/* initialization */
|
|
total_change = 0;
|
|
dp = diffs;
|
|
|
|
/* calculate changes for each state and the overall change */
|
|
for (i = 0; i < cnt; i++)
|
|
{
|
|
if ((change = *new - *old) < 0)
|
|
{
|
|
/* this only happens when the counter wraps */
|
|
change = (int)
|
|
((unsigned long)*new-(unsigned long)*old);
|
|
}
|
|
total_change += (*dp++ = change);
|
|
*old++ = *new++;
|
|
}
|
|
|
|
/* avoid divide by zero potential */
|
|
if (total_change == 0)
|
|
{
|
|
total_change = 1;
|
|
}
|
|
|
|
/* calculate percentages based on overall change, rounding up */
|
|
half_total = total_change / 2l;
|
|
|
|
/* Do not divide by 0. Causes Floating point exception */
|
|
if(total_change) {
|
|
for (i = 0; i < cnt; i++)
|
|
{
|
|
*out++ = (int)((*diffs++ * 1000 + half_total) / total_change);
|
|
}
|
|
}
|
|
|
|
/* return the total in case the caller wants to use it */
|
|
return(total_change);
|
|
}
|
|
|
|
/*
|
|
* errmsg(errnum) - return an error message string appropriate to the
|
|
* error number "errnum". This is a substitute for the System V
|
|
* function "strerror" with one important difference: the string
|
|
* returned by this function does NOT end in a newline!
|
|
* N.B.: there appears to be no reliable way to determine if
|
|
* "strerror" exists at compile time, so I make do by providing
|
|
* something of similar functionality.
|
|
*/
|
|
|
|
/* externs referenced by errmsg */
|
|
|
|
char *errmsg(errnum)
|
|
|
|
int errnum;
|
|
|
|
{
|
|
if (errnum > 0 && errnum < sys_nerr)
|
|
{
|
|
return((char *)sys_errlist[errnum]);
|
|
}
|
|
return("No error");
|
|
}
|
|
|
|
/* format_time(seconds) - format number of seconds into a suitable
|
|
* display that will fit within 6 characters. Note that this
|
|
* routine builds its string in a static area. If it needs
|
|
* to be called more than once without overwriting previous data,
|
|
* then we will need to adopt a technique similar to the
|
|
* one used for format_k.
|
|
*/
|
|
|
|
/* Explanation:
|
|
We want to keep the output within 6 characters. For low values we use
|
|
the format mm:ss. For values that exceed 999:59, we switch to a format
|
|
that displays hours and fractions: hhh.tH. For values that exceed
|
|
999.9, we use hhhh.t and drop the "H" designator. For values that
|
|
exceed 9999.9, we use "???".
|
|
*/
|
|
|
|
char *format_time(seconds)
|
|
|
|
long seconds;
|
|
|
|
{
|
|
register int value;
|
|
register int digit;
|
|
register char *ptr;
|
|
static char result[10];
|
|
|
|
/* sanity protection */
|
|
if (seconds < 0 || seconds > (99999l * 360l))
|
|
{
|
|
strcpy(result, " ???");
|
|
}
|
|
else if (seconds >= (1000l * 60l))
|
|
{
|
|
/* alternate (slow) method displaying hours and tenths */
|
|
sprintf(result, "%5.1fH", (double)seconds / (double)(60l * 60l));
|
|
|
|
/* It is possible that the sprintf took more than 6 characters.
|
|
If so, then the "H" appears as result[6]. If not, then there
|
|
is a \0 in result[6]. Either way, it is safe to step on.
|
|
*/
|
|
result[6] = '\0';
|
|
}
|
|
else
|
|
{
|
|
/* standard method produces MMM:SS */
|
|
/* we avoid printf as must as possible to make this quick */
|
|
sprintf(result, "%3ld:%02ld",
|
|
(long)(seconds / 60), (long)(seconds % 60));
|
|
}
|
|
return(result);
|
|
}
|
|
|
|
/*
|
|
* format_k(amt) - format a kilobyte memory value, returning a string
|
|
* suitable for display. Returns a pointer to a static
|
|
* area that changes each call. "amt" is converted to a
|
|
* string with a trailing "K". If "amt" is 10000 or greater,
|
|
* then it is formatted as megabytes (rounded) with a
|
|
* trailing "M".
|
|
*/
|
|
|
|
/*
|
|
* Compromise time. We need to return a string, but we don't want the
|
|
* caller to have to worry about freeing a dynamically allocated string.
|
|
* Unfortunately, we can't just return a pointer to a static area as one
|
|
* of the common uses of this function is in a large call to sprintf where
|
|
* it might get invoked several times. Our compromise is to maintain an
|
|
* array of strings and cycle thru them with each invocation. We make the
|
|
* array large enough to handle the above mentioned case. The constant
|
|
* NUM_STRINGS defines the number of strings in this array: we can tolerate
|
|
* up to NUM_STRINGS calls before we start overwriting old information.
|
|
* Keeping NUM_STRINGS a power of two will allow an intelligent optimizer
|
|
* to convert the modulo operation into something quicker. What a hack!
|
|
*/
|
|
|
|
#define NUM_STRINGS 8
|
|
|
|
char *format_k(amt)
|
|
|
|
int amt;
|
|
|
|
{
|
|
static char retarray[NUM_STRINGS][16];
|
|
static int index = 0;
|
|
register char *p;
|
|
register char *ret;
|
|
register char tag = 'K';
|
|
|
|
p = ret = retarray[index];
|
|
index = (index + 1) % NUM_STRINGS;
|
|
|
|
if (amt >= 10000)
|
|
{
|
|
amt = (amt + 512) / 1024;
|
|
tag = 'M';
|
|
if (amt >= 10000)
|
|
{
|
|
amt = (amt + 512) / 1024;
|
|
tag = 'G';
|
|
}
|
|
}
|
|
|
|
p = strecpy(p, itoa(amt));
|
|
*p++ = tag;
|
|
*p = '\0';
|
|
|
|
return(ret);
|
|
}
|
|
|
|
char *format_k2(amt)
|
|
|
|
int amt;
|
|
|
|
{
|
|
static char retarray[NUM_STRINGS][16];
|
|
static int index = 0;
|
|
register char *p;
|
|
register char *ret;
|
|
register char tag = 'K';
|
|
|
|
p = ret = retarray[index];
|
|
index = (index + 1) % NUM_STRINGS;
|
|
|
|
if (amt >= 100000)
|
|
{
|
|
amt = (amt + 512) / 1024;
|
|
tag = 'M';
|
|
if (amt >= 100000)
|
|
{
|
|
amt = (amt + 512) / 1024;
|
|
tag = 'G';
|
|
}
|
|
}
|
|
|
|
p = strecpy(p, itoa(amt));
|
|
*p++ = tag;
|
|
*p = '\0';
|
|
|
|
return(ret);
|
|
}
|