1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-29 12:03:03 +00:00
freebsd/sys/netinet/in.c
Qing Li 6e6b3f7cbc This main goals of this project are:
1. separating L2 tables (ARP, NDP) from the L3 routing tables
2. removing as much locking dependencies among these layers as
   possible to allow for some parallelism in the search operations
3. simplify the logic in the routing code,

The most notable end result is the obsolescent of the route
cloning (RTF_CLONING) concept, which translated into code reduction
in both IPv4 ARP and IPv6 NDP related modules, and size reduction in
struct rtentry{}. The change in design obsoletes the semantics of
RTF_CLONING, RTF_WASCLONE and RTF_LLINFO routing flags. The userland
applications such as "arp" and "ndp" have been modified to reflect
those changes. The output from "netstat -r" shows only the routing
entries.

Quite a few developers have contributed to this project in the
past: Glebius Smirnoff, Luigi Rizzo, Alessandro Cerri, and
Andre Oppermann. And most recently:

- Kip Macy revised the locking code completely, thus completing
  the last piece of the puzzle, Kip has also been conducting
  active functional testing
- Sam Leffler has helped me improving/refactoring the code, and
  provided valuable reviews
- Julian Elischer setup the perforce tree for me and has helped
  me maintaining that branch before the svn conversion
2008-12-15 06:10:57 +00:00

1258 lines
32 KiB
C

/*-
* Copyright (c) 1982, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
* Copyright (C) 2001 WIDE Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)in.c 8.4 (Berkeley) 1/9/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_carp.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/malloc.h>
#include <sys/priv.h>
#include <sys/socket.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/vimage.h>
#include <net/if.h>
#include <net/if_llatbl.h>
#include <net/if_types.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/in_pcb.h>
#include <netinet/ip_var.h>
#include <netinet/vinet.h>
static int in_mask2len(struct in_addr *);
static void in_len2mask(struct in_addr *, int);
static int in_lifaddr_ioctl(struct socket *, u_long, caddr_t,
struct ifnet *, struct thread *);
static int in_addprefix(struct in_ifaddr *, int);
static int in_scrubprefix(struct in_ifaddr *);
static void in_socktrim(struct sockaddr_in *);
static int in_ifinit(struct ifnet *,
struct in_ifaddr *, struct sockaddr_in *, int);
static void in_purgemaddrs(struct ifnet *);
#ifdef VIMAGE_GLOBALS
static int subnetsarelocal;
static int sameprefixcarponly;
extern struct inpcbinfo ripcbinfo;
#endif
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, subnets_are_local,
CTLFLAG_RW, subnetsarelocal, 0,
"Treat all subnets as directly connected");
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, same_prefix_carp_only,
CTLFLAG_RW, sameprefixcarponly, 0,
"Refuse to create same prefixes on different interfaces");
/*
* Return 1 if an internet address is for a ``local'' host
* (one to which we have a connection). If subnetsarelocal
* is true, this includes other subnets of the local net.
* Otherwise, it includes only the directly-connected (sub)nets.
*/
int
in_localaddr(struct in_addr in)
{
INIT_VNET_INET(curvnet);
register u_long i = ntohl(in.s_addr);
register struct in_ifaddr *ia;
if (V_subnetsarelocal) {
TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link)
if ((i & ia->ia_netmask) == ia->ia_net)
return (1);
} else {
TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link)
if ((i & ia->ia_subnetmask) == ia->ia_subnet)
return (1);
}
return (0);
}
/*
* Return 1 if an internet address is for the local host and configured
* on one of its interfaces.
*/
int
in_localip(struct in_addr in)
{
INIT_VNET_INET(curvnet);
struct in_ifaddr *ia;
LIST_FOREACH(ia, INADDR_HASH(in.s_addr), ia_hash) {
if (IA_SIN(ia)->sin_addr.s_addr == in.s_addr)
return (1);
}
return (0);
}
/*
* Determine whether an IP address is in a reserved set of addresses
* that may not be forwarded, or whether datagrams to that destination
* may be forwarded.
*/
int
in_canforward(struct in_addr in)
{
register u_long i = ntohl(in.s_addr);
register u_long net;
if (IN_EXPERIMENTAL(i) || IN_MULTICAST(i) || IN_LINKLOCAL(i))
return (0);
if (IN_CLASSA(i)) {
net = i & IN_CLASSA_NET;
if (net == 0 || net == (IN_LOOPBACKNET << IN_CLASSA_NSHIFT))
return (0);
}
return (1);
}
/*
* Trim a mask in a sockaddr
*/
static void
in_socktrim(struct sockaddr_in *ap)
{
register char *cplim = (char *) &ap->sin_addr;
register char *cp = (char *) (&ap->sin_addr + 1);
ap->sin_len = 0;
while (--cp >= cplim)
if (*cp) {
(ap)->sin_len = cp - (char *) (ap) + 1;
break;
}
}
static int
in_mask2len(mask)
struct in_addr *mask;
{
int x, y;
u_char *p;
p = (u_char *)mask;
for (x = 0; x < sizeof(*mask); x++) {
if (p[x] != 0xff)
break;
}
y = 0;
if (x < sizeof(*mask)) {
for (y = 0; y < 8; y++) {
if ((p[x] & (0x80 >> y)) == 0)
break;
}
}
return (x * 8 + y);
}
static void
in_len2mask(struct in_addr *mask, int len)
{
int i;
u_char *p;
p = (u_char *)mask;
bzero(mask, sizeof(*mask));
for (i = 0; i < len / 8; i++)
p[i] = 0xff;
if (len % 8)
p[i] = (0xff00 >> (len % 8)) & 0xff;
}
/*
* Generic internet control operations (ioctl's).
* Ifp is 0 if not an interface-specific ioctl.
*/
/* ARGSUSED */
int
in_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp,
struct thread *td)
{
INIT_VNET_INET(curvnet); /* both so and ifp can be NULL here! */
register struct ifreq *ifr = (struct ifreq *)data;
register struct in_ifaddr *ia, *iap;
register struct ifaddr *ifa;
struct in_addr allhosts_addr;
struct in_addr dst;
struct in_ifaddr *oia;
struct in_aliasreq *ifra = (struct in_aliasreq *)data;
struct sockaddr_in oldaddr;
int error, hostIsNew, iaIsNew, maskIsNew, s;
int iaIsFirst;
ia = NULL;
iaIsFirst = 0;
iaIsNew = 0;
allhosts_addr.s_addr = htonl(INADDR_ALLHOSTS_GROUP);
switch (cmd) {
case SIOCALIFADDR:
if (td != NULL) {
error = priv_check(td, PRIV_NET_ADDIFADDR);
if (error)
return (error);
}
if (ifp == NULL)
return (EINVAL);
return in_lifaddr_ioctl(so, cmd, data, ifp, td);
case SIOCDLIFADDR:
if (td != NULL) {
error = priv_check(td, PRIV_NET_DELIFADDR);
if (error)
return (error);
}
if (ifp == NULL)
return (EINVAL);
return in_lifaddr_ioctl(so, cmd, data, ifp, td);
case SIOCGLIFADDR:
if (ifp == NULL)
return (EINVAL);
return in_lifaddr_ioctl(so, cmd, data, ifp, td);
}
/*
* Find address for this interface, if it exists.
*
* If an alias address was specified, find that one instead of
* the first one on the interface, if possible.
*/
if (ifp != NULL) {
dst = ((struct sockaddr_in *)&ifr->ifr_addr)->sin_addr;
LIST_FOREACH(iap, INADDR_HASH(dst.s_addr), ia_hash)
if (iap->ia_ifp == ifp &&
iap->ia_addr.sin_addr.s_addr == dst.s_addr) {
ia = iap;
break;
}
if (ia == NULL)
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
iap = ifatoia(ifa);
if (iap->ia_addr.sin_family == AF_INET) {
ia = iap;
break;
}
}
if (ia == NULL)
iaIsFirst = 1;
}
switch (cmd) {
case SIOCAIFADDR:
case SIOCDIFADDR:
if (ifp == NULL)
return (EADDRNOTAVAIL);
if (ifra->ifra_addr.sin_family == AF_INET) {
for (oia = ia; ia; ia = TAILQ_NEXT(ia, ia_link)) {
if (ia->ia_ifp == ifp &&
ia->ia_addr.sin_addr.s_addr ==
ifra->ifra_addr.sin_addr.s_addr)
break;
}
if ((ifp->if_flags & IFF_POINTOPOINT)
&& (cmd == SIOCAIFADDR)
&& (ifra->ifra_dstaddr.sin_addr.s_addr
== INADDR_ANY)) {
return (EDESTADDRREQ);
}
}
if (cmd == SIOCDIFADDR && ia == NULL)
return (EADDRNOTAVAIL);
/* FALLTHROUGH */
case SIOCSIFADDR:
case SIOCSIFNETMASK:
case SIOCSIFDSTADDR:
if (td != NULL) {
error = priv_check(td, (cmd == SIOCDIFADDR) ?
PRIV_NET_DELIFADDR : PRIV_NET_ADDIFADDR);
if (error)
return (error);
}
if (ifp == NULL)
return (EADDRNOTAVAIL);
if (ia == NULL) {
ia = (struct in_ifaddr *)
malloc(sizeof *ia, M_IFADDR, M_WAITOK | M_ZERO);
if (ia == NULL)
return (ENOBUFS);
/*
* Protect from ipintr() traversing address list
* while we're modifying it.
*/
s = splnet();
ifa = &ia->ia_ifa;
IFA_LOCK_INIT(ifa);
ifa->ifa_addr = (struct sockaddr *)&ia->ia_addr;
ifa->ifa_dstaddr = (struct sockaddr *)&ia->ia_dstaddr;
ifa->ifa_netmask = (struct sockaddr *)&ia->ia_sockmask;
ifa->ifa_refcnt = 1;
TAILQ_INSERT_TAIL(&ifp->if_addrhead, ifa, ifa_link);
ia->ia_sockmask.sin_len = 8;
ia->ia_sockmask.sin_family = AF_INET;
if (ifp->if_flags & IFF_BROADCAST) {
ia->ia_broadaddr.sin_len = sizeof(ia->ia_addr);
ia->ia_broadaddr.sin_family = AF_INET;
}
ia->ia_ifp = ifp;
TAILQ_INSERT_TAIL(&V_in_ifaddrhead, ia, ia_link);
splx(s);
iaIsNew = 1;
}
break;
case SIOCSIFBRDADDR:
if (td != NULL) {
error = priv_check(td, PRIV_NET_ADDIFADDR);
if (error)
return (error);
}
/* FALLTHROUGH */
case SIOCGIFADDR:
case SIOCGIFNETMASK:
case SIOCGIFDSTADDR:
case SIOCGIFBRDADDR:
if (ia == NULL)
return (EADDRNOTAVAIL);
break;
}
switch (cmd) {
case SIOCGIFADDR:
*((struct sockaddr_in *)&ifr->ifr_addr) = ia->ia_addr;
return (0);
case SIOCGIFBRDADDR:
if ((ifp->if_flags & IFF_BROADCAST) == 0)
return (EINVAL);
*((struct sockaddr_in *)&ifr->ifr_dstaddr) = ia->ia_broadaddr;
return (0);
case SIOCGIFDSTADDR:
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
return (EINVAL);
*((struct sockaddr_in *)&ifr->ifr_dstaddr) = ia->ia_dstaddr;
return (0);
case SIOCGIFNETMASK:
*((struct sockaddr_in *)&ifr->ifr_addr) = ia->ia_sockmask;
return (0);
case SIOCSIFDSTADDR:
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
return (EINVAL);
oldaddr = ia->ia_dstaddr;
ia->ia_dstaddr = *(struct sockaddr_in *)&ifr->ifr_dstaddr;
if (ifp->if_ioctl != NULL) {
IFF_LOCKGIANT(ifp);
error = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR,
(caddr_t)ia);
IFF_UNLOCKGIANT(ifp);
if (error) {
ia->ia_dstaddr = oldaddr;
return (error);
}
}
if (ia->ia_flags & IFA_ROUTE) {
ia->ia_ifa.ifa_dstaddr = (struct sockaddr *)&oldaddr;
rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST);
ia->ia_ifa.ifa_dstaddr =
(struct sockaddr *)&ia->ia_dstaddr;
rtinit(&(ia->ia_ifa), (int)RTM_ADD, RTF_HOST|RTF_UP);
}
return (0);
case SIOCSIFBRDADDR:
if ((ifp->if_flags & IFF_BROADCAST) == 0)
return (EINVAL);
ia->ia_broadaddr = *(struct sockaddr_in *)&ifr->ifr_broadaddr;
return (0);
case SIOCSIFADDR:
error = in_ifinit(ifp, ia,
(struct sockaddr_in *) &ifr->ifr_addr, 1);
if (error != 0 && iaIsNew)
break;
if (error == 0) {
if (iaIsFirst && (ifp->if_flags & IFF_MULTICAST) != 0)
in_addmulti(&allhosts_addr, ifp);
EVENTHANDLER_INVOKE(ifaddr_event, ifp);
}
return (0);
case SIOCSIFNETMASK:
ia->ia_sockmask.sin_addr = ifra->ifra_addr.sin_addr;
ia->ia_subnetmask = ntohl(ia->ia_sockmask.sin_addr.s_addr);
return (0);
case SIOCAIFADDR:
maskIsNew = 0;
hostIsNew = 1;
error = 0;
if (ia->ia_addr.sin_family == AF_INET) {
if (ifra->ifra_addr.sin_len == 0) {
ifra->ifra_addr = ia->ia_addr;
hostIsNew = 0;
} else if (ifra->ifra_addr.sin_addr.s_addr ==
ia->ia_addr.sin_addr.s_addr)
hostIsNew = 0;
}
if (ifra->ifra_mask.sin_len) {
in_ifscrub(ifp, ia);
ia->ia_sockmask = ifra->ifra_mask;
ia->ia_sockmask.sin_family = AF_INET;
ia->ia_subnetmask =
ntohl(ia->ia_sockmask.sin_addr.s_addr);
maskIsNew = 1;
}
if ((ifp->if_flags & IFF_POINTOPOINT) &&
(ifra->ifra_dstaddr.sin_family == AF_INET)) {
in_ifscrub(ifp, ia);
ia->ia_dstaddr = ifra->ifra_dstaddr;
maskIsNew = 1; /* We lie; but the effect's the same */
}
if (ifra->ifra_addr.sin_family == AF_INET &&
(hostIsNew || maskIsNew))
error = in_ifinit(ifp, ia, &ifra->ifra_addr, 0);
if (error != 0 && iaIsNew)
break;
if ((ifp->if_flags & IFF_BROADCAST) &&
(ifra->ifra_broadaddr.sin_family == AF_INET))
ia->ia_broadaddr = ifra->ifra_broadaddr;
if (error == 0) {
if (iaIsFirst && (ifp->if_flags & IFF_MULTICAST) != 0)
in_addmulti(&allhosts_addr, ifp);
EVENTHANDLER_INVOKE(ifaddr_event, ifp);
}
return (error);
case SIOCDIFADDR:
/*
* in_ifscrub kills the interface route.
*/
in_ifscrub(ifp, ia);
/*
* in_ifadown gets rid of all the rest of
* the routes. This is not quite the right
* thing to do, but at least if we are running
* a routing process they will come back.
*/
in_ifadown(&ia->ia_ifa, 1);
EVENTHANDLER_INVOKE(ifaddr_event, ifp);
error = 0;
break;
default:
if (ifp == NULL || ifp->if_ioctl == NULL)
return (EOPNOTSUPP);
IFF_LOCKGIANT(ifp);
error = (*ifp->if_ioctl)(ifp, cmd, data);
IFF_UNLOCKGIANT(ifp);
return (error);
}
/*
* Protect from ipintr() traversing address list while we're modifying
* it.
*/
s = splnet();
TAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifa_link);
TAILQ_REMOVE(&V_in_ifaddrhead, ia, ia_link);
if (ia->ia_addr.sin_family == AF_INET) {
LIST_REMOVE(ia, ia_hash);
/*
* If this is the last IPv4 address configured on this
* interface, leave the all-hosts group.
* XXX: This is quite ugly because of locking and structure.
*/
oia = NULL;
IFP_TO_IA(ifp, oia);
if (oia == NULL) {
struct in_multi *inm;
IFF_LOCKGIANT(ifp);
IN_MULTI_LOCK();
IN_LOOKUP_MULTI(allhosts_addr, ifp, inm);
if (inm != NULL)
in_delmulti_locked(inm);
IN_MULTI_UNLOCK();
IFF_UNLOCKGIANT(ifp);
}
}
IFAFREE(&ia->ia_ifa);
splx(s);
return (error);
}
/*
* SIOC[GAD]LIFADDR.
* SIOCGLIFADDR: get first address. (?!?)
* SIOCGLIFADDR with IFLR_PREFIX:
* get first address that matches the specified prefix.
* SIOCALIFADDR: add the specified address.
* SIOCALIFADDR with IFLR_PREFIX:
* EINVAL since we can't deduce hostid part of the address.
* SIOCDLIFADDR: delete the specified address.
* SIOCDLIFADDR with IFLR_PREFIX:
* delete the first address that matches the specified prefix.
* return values:
* EINVAL on invalid parameters
* EADDRNOTAVAIL on prefix match failed/specified address not found
* other values may be returned from in_ioctl()
*/
static int
in_lifaddr_ioctl(struct socket *so, u_long cmd, caddr_t data,
struct ifnet *ifp, struct thread *td)
{
struct if_laddrreq *iflr = (struct if_laddrreq *)data;
struct ifaddr *ifa;
/* sanity checks */
if (data == NULL || ifp == NULL) {
panic("invalid argument to in_lifaddr_ioctl");
/*NOTRECHED*/
}
switch (cmd) {
case SIOCGLIFADDR:
/* address must be specified on GET with IFLR_PREFIX */
if ((iflr->flags & IFLR_PREFIX) == 0)
break;
/*FALLTHROUGH*/
case SIOCALIFADDR:
case SIOCDLIFADDR:
/* address must be specified on ADD and DELETE */
if (iflr->addr.ss_family != AF_INET)
return (EINVAL);
if (iflr->addr.ss_len != sizeof(struct sockaddr_in))
return (EINVAL);
/* XXX need improvement */
if (iflr->dstaddr.ss_family
&& iflr->dstaddr.ss_family != AF_INET)
return (EINVAL);
if (iflr->dstaddr.ss_family
&& iflr->dstaddr.ss_len != sizeof(struct sockaddr_in))
return (EINVAL);
break;
default: /*shouldn't happen*/
return (EOPNOTSUPP);
}
if (sizeof(struct in_addr) * 8 < iflr->prefixlen)
return (EINVAL);
switch (cmd) {
case SIOCALIFADDR:
{
struct in_aliasreq ifra;
if (iflr->flags & IFLR_PREFIX)
return (EINVAL);
/* copy args to in_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
bzero(&ifra, sizeof(ifra));
bcopy(iflr->iflr_name, ifra.ifra_name,
sizeof(ifra.ifra_name));
bcopy(&iflr->addr, &ifra.ifra_addr, iflr->addr.ss_len);
if (iflr->dstaddr.ss_family) { /*XXX*/
bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr,
iflr->dstaddr.ss_len);
}
ifra.ifra_mask.sin_family = AF_INET;
ifra.ifra_mask.sin_len = sizeof(struct sockaddr_in);
in_len2mask(&ifra.ifra_mask.sin_addr, iflr->prefixlen);
return (in_control(so, SIOCAIFADDR, (caddr_t)&ifra, ifp, td));
}
case SIOCGLIFADDR:
case SIOCDLIFADDR:
{
struct in_ifaddr *ia;
struct in_addr mask, candidate, match;
struct sockaddr_in *sin;
bzero(&mask, sizeof(mask));
bzero(&match, sizeof(match));
if (iflr->flags & IFLR_PREFIX) {
/* lookup a prefix rather than address. */
in_len2mask(&mask, iflr->prefixlen);
sin = (struct sockaddr_in *)&iflr->addr;
match.s_addr = sin->sin_addr.s_addr;
match.s_addr &= mask.s_addr;
/* if you set extra bits, that's wrong */
if (match.s_addr != sin->sin_addr.s_addr)
return (EINVAL);
} else {
/* on getting an address, take the 1st match */
/* on deleting an address, do exact match */
if (cmd != SIOCGLIFADDR) {
in_len2mask(&mask, 32);
sin = (struct sockaddr_in *)&iflr->addr;
match.s_addr = sin->sin_addr.s_addr;
}
}
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
if (match.s_addr == 0)
break;
candidate.s_addr = ((struct sockaddr_in *)&ifa->ifa_addr)->sin_addr.s_addr;
candidate.s_addr &= mask.s_addr;
if (candidate.s_addr == match.s_addr)
break;
}
if (ifa == NULL)
return (EADDRNOTAVAIL);
ia = (struct in_ifaddr *)ifa;
if (cmd == SIOCGLIFADDR) {
/* fill in the if_laddrreq structure */
bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin_len);
if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
bcopy(&ia->ia_dstaddr, &iflr->dstaddr,
ia->ia_dstaddr.sin_len);
} else
bzero(&iflr->dstaddr, sizeof(iflr->dstaddr));
iflr->prefixlen =
in_mask2len(&ia->ia_sockmask.sin_addr);
iflr->flags = 0; /*XXX*/
return (0);
} else {
struct in_aliasreq ifra;
/* fill in_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
bzero(&ifra, sizeof(ifra));
bcopy(iflr->iflr_name, ifra.ifra_name,
sizeof(ifra.ifra_name));
bcopy(&ia->ia_addr, &ifra.ifra_addr,
ia->ia_addr.sin_len);
if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr,
ia->ia_dstaddr.sin_len);
}
bcopy(&ia->ia_sockmask, &ifra.ifra_dstaddr,
ia->ia_sockmask.sin_len);
return (in_control(so, SIOCDIFADDR, (caddr_t)&ifra,
ifp, td));
}
}
}
return (EOPNOTSUPP); /*just for safety*/
}
/*
* Delete any existing route for an interface.
*/
void
in_ifscrub(struct ifnet *ifp, struct in_ifaddr *ia)
{
in_scrubprefix(ia);
}
/*
* Initialize an interface's internet address
* and routing table entry.
*/
static int
in_ifinit(struct ifnet *ifp, struct in_ifaddr *ia, struct sockaddr_in *sin,
int scrub)
{
INIT_VNET_INET(ifp->if_vnet);
register u_long i = ntohl(sin->sin_addr.s_addr);
struct sockaddr_in oldaddr;
int s = splimp(), flags = RTF_UP, error = 0;
oldaddr = ia->ia_addr;
if (oldaddr.sin_family == AF_INET)
LIST_REMOVE(ia, ia_hash);
ia->ia_addr = *sin;
if (ia->ia_addr.sin_family == AF_INET)
LIST_INSERT_HEAD(INADDR_HASH(ia->ia_addr.sin_addr.s_addr),
ia, ia_hash);
/*
* Give the interface a chance to initialize
* if this is its first address,
* and to validate the address if necessary.
*/
if (ifp->if_ioctl != NULL) {
IFF_LOCKGIANT(ifp);
error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia);
IFF_UNLOCKGIANT(ifp);
if (error) {
splx(s);
/* LIST_REMOVE(ia, ia_hash) is done in in_control */
ia->ia_addr = oldaddr;
if (ia->ia_addr.sin_family == AF_INET)
LIST_INSERT_HEAD(INADDR_HASH(
ia->ia_addr.sin_addr.s_addr), ia, ia_hash);
else
/*
* If oldaddr family is not AF_INET (e.g.
* interface has been just created) in_control
* does not call LIST_REMOVE, and we end up
* with bogus ia entries in hash
*/
LIST_REMOVE(ia, ia_hash);
return (error);
}
}
splx(s);
if (scrub) {
ia->ia_ifa.ifa_addr = (struct sockaddr *)&oldaddr;
in_ifscrub(ifp, ia);
ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
}
if (IN_CLASSA(i))
ia->ia_netmask = IN_CLASSA_NET;
else if (IN_CLASSB(i))
ia->ia_netmask = IN_CLASSB_NET;
else
ia->ia_netmask = IN_CLASSC_NET;
/*
* The subnet mask usually includes at least the standard network part,
* but may may be smaller in the case of supernetting.
* If it is set, we believe it.
*/
if (ia->ia_subnetmask == 0) {
ia->ia_subnetmask = ia->ia_netmask;
ia->ia_sockmask.sin_addr.s_addr = htonl(ia->ia_subnetmask);
} else
ia->ia_netmask &= ia->ia_subnetmask;
ia->ia_net = i & ia->ia_netmask;
ia->ia_subnet = i & ia->ia_subnetmask;
in_socktrim(&ia->ia_sockmask);
#ifdef DEV_CARP
/*
* XXX: carp(4) does not have interface route
*/
if (ifp->if_type == IFT_CARP)
return (0);
#endif
/*
* Add route for the network.
*/
ia->ia_ifa.ifa_metric = ifp->if_metric;
if (ifp->if_flags & IFF_BROADCAST) {
ia->ia_broadaddr.sin_addr.s_addr =
htonl(ia->ia_subnet | ~ia->ia_subnetmask);
ia->ia_netbroadcast.s_addr =
htonl(ia->ia_net | ~ ia->ia_netmask);
} else if (ifp->if_flags & IFF_LOOPBACK) {
ia->ia_dstaddr = ia->ia_addr;
flags |= RTF_HOST;
} else if (ifp->if_flags & IFF_POINTOPOINT) {
if (ia->ia_dstaddr.sin_family != AF_INET)
return (0);
flags |= RTF_HOST;
}
if ((error = in_addprefix(ia, flags)) != 0)
return (error);
return (error);
}
#define rtinitflags(x) \
((((x)->ia_ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) != 0) \
? RTF_HOST : 0)
/*
* Check if we have a route for the given prefix already or add one accordingly.
*/
static int
in_addprefix(struct in_ifaddr *target, int flags)
{
INIT_VNET_INET(curvnet);
struct in_ifaddr *ia;
struct in_addr prefix, mask, p, m;
int error;
if ((flags & RTF_HOST) != 0) {
prefix = target->ia_dstaddr.sin_addr;
mask.s_addr = 0;
} else {
prefix = target->ia_addr.sin_addr;
mask = target->ia_sockmask.sin_addr;
prefix.s_addr &= mask.s_addr;
}
TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
if (rtinitflags(ia)) {
p = ia->ia_addr.sin_addr;
if (prefix.s_addr != p.s_addr)
continue;
} else {
p = ia->ia_addr.sin_addr;
m = ia->ia_sockmask.sin_addr;
p.s_addr &= m.s_addr;
if (prefix.s_addr != p.s_addr ||
mask.s_addr != m.s_addr)
continue;
}
/*
* If we got a matching prefix route inserted by other
* interface address, we are done here.
*/
if (ia->ia_flags & IFA_ROUTE) {
if (V_sameprefixcarponly &&
target->ia_ifp->if_type != IFT_CARP &&
ia->ia_ifp->if_type != IFT_CARP)
return (EEXIST);
else
return (0);
}
}
/*
* No-one seem to have this prefix route, so we try to insert it.
*/
error = rtinit(&target->ia_ifa, (int)RTM_ADD, flags);
if (!error)
target->ia_flags |= IFA_ROUTE;
return (error);
}
extern void arp_ifscrub(struct ifnet *ifp, uint32_t addr);
/*
* If there is no other address in the system that can serve a route to the
* same prefix, remove the route. Hand over the route to the new address
* otherwise.
*/
static int
in_scrubprefix(struct in_ifaddr *target)
{
INIT_VNET_INET(curvnet);
struct in_ifaddr *ia;
struct in_addr prefix, mask, p;
int error;
if ((target->ia_flags & IFA_ROUTE) == 0)
return (0);
if (rtinitflags(target))
prefix = target->ia_dstaddr.sin_addr;
else {
prefix = target->ia_addr.sin_addr;
mask = target->ia_sockmask.sin_addr;
prefix.s_addr &= mask.s_addr;
/* remove arp cache */
arp_ifscrub(target->ia_ifp, IA_SIN(target)->sin_addr.s_addr);
}
TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
if (rtinitflags(ia))
p = ia->ia_dstaddr.sin_addr;
else {
p = ia->ia_addr.sin_addr;
p.s_addr &= ia->ia_sockmask.sin_addr.s_addr;
}
if (prefix.s_addr != p.s_addr)
continue;
/*
* If we got a matching prefix address, move IFA_ROUTE and
* the route itself to it. Make sure that routing daemons
* get a heads-up.
*
* XXX: a special case for carp(4) interface
*/
if ((ia->ia_flags & IFA_ROUTE) == 0
#ifdef DEV_CARP
&& (ia->ia_ifp->if_type != IFT_CARP)
#endif
) {
rtinit(&(target->ia_ifa), (int)RTM_DELETE,
rtinitflags(target));
target->ia_flags &= ~IFA_ROUTE;
error = rtinit(&ia->ia_ifa, (int)RTM_ADD,
rtinitflags(ia) | RTF_UP);
if (error == 0)
ia->ia_flags |= IFA_ROUTE;
return (error);
}
}
/*
* As no-one seem to have this prefix, we can remove the route.
*/
rtinit(&(target->ia_ifa), (int)RTM_DELETE, rtinitflags(target));
target->ia_flags &= ~IFA_ROUTE;
return (0);
}
#undef rtinitflags
/*
* Return 1 if the address might be a local broadcast address.
*/
int
in_broadcast(struct in_addr in, struct ifnet *ifp)
{
register struct ifaddr *ifa;
u_long t;
if (in.s_addr == INADDR_BROADCAST ||
in.s_addr == INADDR_ANY)
return (1);
if ((ifp->if_flags & IFF_BROADCAST) == 0)
return (0);
t = ntohl(in.s_addr);
/*
* Look through the list of addresses for a match
* with a broadcast address.
*/
#define ia ((struct in_ifaddr *)ifa)
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
if (ifa->ifa_addr->sa_family == AF_INET &&
(in.s_addr == ia->ia_broadaddr.sin_addr.s_addr ||
in.s_addr == ia->ia_netbroadcast.s_addr ||
/*
* Check for old-style (host 0) broadcast.
*/
t == ia->ia_subnet || t == ia->ia_net) &&
/*
* Check for an all one subnetmask. These
* only exist when an interface gets a secondary
* address.
*/
ia->ia_subnetmask != (u_long)0xffffffff)
return (1);
return (0);
#undef ia
}
/*
* Delete all IPv4 multicast address records, and associated link-layer
* multicast address records, associated with ifp.
*/
static void
in_purgemaddrs(struct ifnet *ifp)
{
INIT_VNET_INET(ifp->if_vnet);
struct in_multi *inm;
struct in_multi *oinm;
#ifdef DIAGNOSTIC
printf("%s: purging ifp %p\n", __func__, ifp);
#endif
IFF_LOCKGIANT(ifp);
IN_MULTI_LOCK();
LIST_FOREACH_SAFE(inm, &V_in_multihead, inm_link, oinm) {
if (inm->inm_ifp == ifp)
in_delmulti_locked(inm);
}
IN_MULTI_UNLOCK();
IFF_UNLOCKGIANT(ifp);
}
/*
* On interface removal, clean up IPv4 data structures hung off of the ifnet.
*/
void
in_ifdetach(struct ifnet *ifp)
{
INIT_VNET_INET(ifp->if_vnet);
in_pcbpurgeif0(&V_ripcbinfo, ifp);
in_pcbpurgeif0(&V_udbinfo, ifp);
in_purgemaddrs(ifp);
}
#include <sys/syslog.h>
#include <net/if_dl.h>
#include <netinet/if_ether.h>
struct in_llentry {
struct llentry base;
struct sockaddr_in l3_addr4;
};
static struct llentry *
in_lltable_new(const struct sockaddr *l3addr, u_int flags)
{
struct in_llentry *lle;
lle = malloc(sizeof(struct in_llentry), M_LLTABLE, M_DONTWAIT | M_ZERO);
if (lle == NULL) /* NB: caller generates msg */
return NULL;
callout_init(&lle->base.la_timer, CALLOUT_MPSAFE);
/*
* For IPv4 this will trigger "arpresolve" to generate
* an ARP request.
*/
lle->base.la_expire = time_second; /* mark expired */
lle->l3_addr4 = *(const struct sockaddr_in *)l3addr;
lle->base.lle_refcnt = 1;
LLE_LOCK_INIT(&lle->base);
return &lle->base;
}
/*
* Deletes an address from the address table.
* This function is called by the timer functions
* such as arptimer() and nd6_llinfo_timer(), and
* the caller does the locking.
*/
static void
in_lltable_free(struct lltable *llt, struct llentry *lle)
{
free(lle, M_LLTABLE);
}
static int
in_lltable_rtcheck(struct ifnet *ifp, const struct sockaddr *l3addr)
{
struct rtentry *rt;
KASSERT(l3addr->sa_family == AF_INET,
("sin_family %d", l3addr->sa_family));
/* XXX rtalloc1 should take a const param */
rt = rtalloc1(__DECONST(struct sockaddr *, l3addr), 0, 0);
if (rt == NULL || (rt->rt_flags & RTF_GATEWAY) || rt->rt_ifp != ifp) {
log(LOG_INFO, "IPv4 address: \"%s\" is not on the network\n",
inet_ntoa(((const struct sockaddr_in *)l3addr)->sin_addr));
if (rt != NULL)
RTFREE_LOCKED(rt);
return (EINVAL);
}
RTFREE_LOCKED(rt);
return 0;
}
/*
* Return NULL if not found or marked for deletion.
* If found return lle read locked.
*/
static struct llentry *
in_lltable_lookup(struct lltable *llt, u_int flags, const struct sockaddr *l3addr)
{
const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
struct ifnet *ifp = llt->llt_ifp;
struct llentry *lle;
struct llentries *lleh;
u_int hashkey;
IF_AFDATA_LOCK_ASSERT(ifp);
KASSERT(l3addr->sa_family == AF_INET,
("sin_family %d", l3addr->sa_family));
hashkey = sin->sin_addr.s_addr;
lleh = &llt->lle_head[LLATBL_HASH(hashkey, LLTBL_HASHMASK)];
LIST_FOREACH(lle, lleh, lle_next) {
if (lle->la_flags & LLE_DELETED)
continue;
if (bcmp(L3_ADDR(lle), l3addr, sizeof(struct sockaddr_in)) == 0)
break;
}
if (lle == NULL) {
#ifdef DIAGNOSTICS
if (flags & LLE_DELETE)
log(LOG_INFO, "interface address is missing from cache = %p in delete\n", lle);
#endif
if (!(flags & LLE_CREATE))
return (NULL);
/*
* A route that covers the given address must have
* been installed 1st because we are doing a resolution,
* verify this.
*/
if (!(flags & LLE_IFADDR) &&
in_lltable_rtcheck(ifp, l3addr) != 0)
goto done;
lle = in_lltable_new(l3addr, flags);
if (lle == NULL) {
log(LOG_INFO, "lla_lookup: new lle malloc failed\n");
goto done;
}
lle->la_flags = flags & ~LLE_CREATE;
if ((flags & (LLE_CREATE | LLE_IFADDR)) == (LLE_CREATE | LLE_IFADDR)) {
bcopy(IF_LLADDR(ifp), &lle->ll_addr, ifp->if_addrlen);
lle->la_flags |= (LLE_VALID | LLE_STATIC);
}
lle->lle_tbl = llt;
lle->lle_head = lleh;
LIST_INSERT_HEAD(lleh, lle, lle_next);
} else if (flags & LLE_DELETE) {
if (!(lle->la_flags & LLE_IFADDR) || (flags & LLE_IFADDR)) {
LLE_WLOCK(lle);
lle->la_flags = LLE_DELETED;
LLE_WUNLOCK(lle);
#ifdef DIAGNOSTICS
log(LOG_INFO, "ifaddr cache = %p is deleted\n", lle);
#endif
}
lle = (void *)-1;
}
if (lle != NULL && lle != (void *)-1) {
if (flags & LLE_EXCLUSIVE)
LLE_WLOCK(lle);
else
LLE_RLOCK(lle);
}
done:
return (lle);
}
static int
in_lltable_dump(struct lltable *llt, struct sysctl_req *wr)
{
#define SIN(lle) ((struct sockaddr_in *) L3_ADDR(lle))
struct ifnet *ifp = llt->llt_ifp;
struct llentry *lle;
/* XXX stack use */
struct {
struct rt_msghdr rtm;
struct sockaddr_inarp sin;
struct sockaddr_dl sdl;
} arpc;
int error, i;
/* XXXXX
* current IFNET_RLOCK() is mapped to IFNET_WLOCK()
* so it is okay to use this ASSERT, change it when
* IFNET lock is finalized
*/
IFNET_WLOCK_ASSERT();
error = 0;
for (i = 0; i < LLTBL_HASHTBL_SIZE; i++) {
LIST_FOREACH(lle, &llt->lle_head[i], lle_next) {
struct sockaddr_dl *sdl;
/* skip deleted entries */
if ((lle->la_flags & (LLE_DELETED|LLE_VALID)) != LLE_VALID)
continue;
/*
* produce a msg made of:
* struct rt_msghdr;
* struct sockaddr_inarp; (IPv4)
* struct sockaddr_dl;
*/
bzero(&arpc, sizeof(arpc));
arpc.rtm.rtm_msglen = sizeof(arpc);
arpc.sin.sin_family = AF_INET;
arpc.sin.sin_len = sizeof(arpc.sin);
arpc.sin.sin_addr.s_addr = SIN(lle)->sin_addr.s_addr;
/* publish */
if (lle->la_flags & LLE_PUB) {
arpc.rtm.rtm_flags |= RTF_ANNOUNCE;
/* proxy only */
if (lle->la_flags & LLE_PROXY)
arpc.sin.sin_other = SIN_PROXY;
}
sdl = &arpc.sdl;
sdl->sdl_family = AF_LINK;
sdl->sdl_len = sizeof(*sdl);
sdl->sdl_alen = ifp->if_addrlen;
sdl->sdl_index = ifp->if_index;
sdl->sdl_type = ifp->if_type;
bcopy(&lle->ll_addr, LLADDR(sdl), ifp->if_addrlen);
arpc.rtm.rtm_rmx.rmx_expire =
lle->la_flags & LLE_STATIC ? 0 : lle->la_expire;
arpc.rtm.rtm_flags |= RTF_HOST;
if (lle->la_flags & LLE_STATIC)
arpc.rtm.rtm_flags |= RTF_STATIC;
arpc.rtm.rtm_index = ifp->if_index;
error = SYSCTL_OUT(wr, &arpc, sizeof(arpc));
if (error)
break;
}
}
return error;
#undef SIN
}
void *
in_domifattach(struct ifnet *ifp)
{
struct lltable *llt = lltable_init(ifp, AF_INET);
if (llt != NULL) {
llt->llt_new = in_lltable_new;
llt->llt_free = in_lltable_free;
llt->llt_rtcheck = in_lltable_rtcheck;
llt->llt_lookup = in_lltable_lookup;
llt->llt_dump = in_lltable_dump;
}
return (llt);
}
void
in_domifdetach(struct ifnet *ifp __unused, void *aux)
{
struct lltable *llt = (struct lltable *)aux;
lltable_free(llt);
}